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STABLE WALKING OF A 7-DOF BIPED ROBOT
F. Plestan® | JW. Grizzle™, E.R. Westervelt™, G. Abba*

Abstract

The primary goal of this paper is to demonstrate a means to prove asymptotically stable walking in an under
actuated, planar, five-link biped robot model. The analysis assumes a rigid contact model when the swing leg impacts
the ground and an instantaneous double support phase. The specific robot model analyzed corresponds to a prototype
under development by the CNRS in France. A secondary goal of the paper is to establish the viability of the theoretically
motivated control law. This is explored in a number of ways. First, it is shown how known time-trajectories, such
as those determined on the basis of walking with minimal energy consumption, can be incorporated into the proposed
controller structure. Secondly, various perturbations to the walking motion are introduced to verify disturbance rejection
capability. Finally, the controller is demonstrated on a detailed simulator for the prototype which includes torque limits
and a compliant model of the walking surface, and thus a non-instantaneous double support phase.

Keywords. Biped robot, stable walking, Poincaré sections, optimal trajectories, robustness evaluation, rigid and

compliant contact models

I. INTRODUCTION

During the two last decades, the interest in legged robots has increased and has even given rise to
a few spectacular products, like Honda’s humanoid robot [51], and Sony’s dog-like and bipedal robots
54]. Good surveys can be found in [40], [46], [44], [36] and a large database of walking robots in
[50]. Representative papers in the more recent literature on controlled, bipedal robots include [34],
47), [11], [49], [19], [27], [33]. Bipedal robots are being controlled to walk, jump, and run. With
very few exceptions, the determination of whether a control law applied to a legged robot yields a
“stable” walking or running motion has been based on extensive simulations or on building the robot
and implementing the control law. In this sense, theory is significantly trailing practice.

As may be expected, the greatest analytical progress on stability analysis has been in the case of
fully actuated robots (an actuator for each mechanical degree of freedom). A key aspect of [42] is that a
periodic orbit is created without tracking a pre-computed trajectory, leading to a time-invariant closed-
loop system for which stability has been analyzed. For under actuated robots, which is the topic of this
paper, a rather complete stability analysis has been achieved in two main cases: the biped compass
model without a torso [13], [45] (an extended model with a torso locked at right angle to the walking

surface has been analyzed in [17]) and the monopod hopper of Raibert [39]. The stability analysis of
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the compass model is based on numerically computing the Poincaré map, determining a fixed point
through a Newton-Raphson search, and then linearizing about the fixed point [32]. The numerical
difficulty in checking stability in this manner increases rapidly with the dimension of the model. In
the case of the hopper, analytical progress was based on deriving approximate models of the hopper
for which the associated Poincaré return map can be computed in closed-form [23], [10], [41]. This in
turn has led to the determination of sampled-data control laws (sampling is done synchronously with
impact events) that admit low-dimensional tests for asymptotic stability of a periodic orbit. Bipeds
are much more complex than the hopper. Even for a stiff-legged biped model with a torso, determining
a closed-form representation of the Poincaré return map would be a formidable task (essentially a map
from IR’ to itself), and doing this for the case of a robot with knees is simply unthinkable at the

present time (a map from RY to itself, or worse). Indeed, the complexity of the equations of motions

has been used as a justification for intuitive control methods; see [53] and [35].

The control work closest in spirit to that presented here is [30]. As in [42], this innovative paper also
focuses on achieving walking motions in a robot without recourse to a pre-computed set of reference
trajectories. The studied robot is planar and under actuated, comnsisting of two legs without feet
connected at a hip; there is no torso. The legs have revolute knees that are unactuated, but which
are equipped with blocks so that they lock in the extended position before impact. Consequently, the
stability analysis is similar to that of the compass model. A single actuator is provided at the hips,
exerting a torque between the two femurs. The control law is parameterized in terms of the absolute
angle of the swing leg tibia. Stability is investigated by numerically computing the Poincaré map and
evaluating its eigenvalues about a fixed point. The control law was also implemented experimentally.
Once the mass and inertial parameters of the analytical model were identified from the experimental
robot and joint friction was estimated, the experiments coincided very well with the theory. A similar

set of results for the giant swing motion of a gymnastic robot is presented in [31].

The main objective of this paper is to propose, for an under actuated bipedal robot with a torso
and revolute knees, but no feet, a novel and complete asymptotic stability proof for a periodic walking
motion on a rigid, flat surface. The key breakthrough behind this is the development in [14] of a
continuous-time control strategy and a novel extension of Poincaré’s method that significantly reduce

AT

the dimension of the stability analysis problem: for a class of hybrid, mechanical systems with /
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degrees of freedom (DOF) and (N —1) independent actuators, the stability analysis problem is formally
reduced to the calculation of a (continuous) map from a sub-interval of IR to itself. This result was
illustrated in [14] on a three-link biped model (torso, two legs without knees). That model was
sufficiently simple that it could be derived by hand and all of the hypotheses of the theory checked in
an elementary manner. The robot under study here, on the other hand, is sufficiently complex that
the equations of motion must be obtained symbolically!. The equations of motion fill several pages
of dense type. Nevertheless, a controller with provable stability properties can still be designed. To
illustrate some of the design flexibility available in this approach, a second controller is designed on the
basis of optimal time-trajectories developed in [6], where limitations on torque and power have been
addressed for the same robot. This controller, like the first one, is time-invariant and has provable
stability properties.

The second objective of the paper is to investigate robustness of the closed-loop system by evalu-
ating the performance of the robot in different situations. First, the behavior of the robot is studied
when there is an obstacle on the ground and when there is an external force acting on its hips or
torso. The goal is to demonstrate that the region of attraction of the periodic orbit is non-negligible.
Secondly, the robustness is checked by supposing that the robot is walking on a compliant surface.
The formal stability analysis of the robot in closed-loop with the controller has been performed under
the hypotheses that the contact between the leg end and the ground is rigid (perfectly inelastic) and
the double support phase is instantaneous. The advantage of assuming a rigid contact model is that
it considerably lowers the dimension of the model of the robot and the walking surface. In particular,
there is a reduction in the number of degrees of freedom of the robot model (since the stance leg acts as
a pivot, two degrees of freedom are removed), and the forces on the feet are determined by an algebraic
equation instead of differential equations. This reduction in dimension greatly simplifies the feedback
design and the stability analysis. Nevertheless, a realistic walking surface will be compliant and the
ends of the legs may slip when in contact with ground. It is thus interesting to determine whether
the design hypothesis of a rigid contact is valid. To check this, the controller designed on the basis
of a rigid walking surface is applied to a model that includes compliance and dynamic friction of the

walking surface. Through simulation, it is verified that if the walking surface is sufficiently stiff then

!The authors used the Symbolic Toolbox in MATLAB for this. The full model is available at [55].
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the resulting walking motion is very similar to that obtained under the hypothesis of a rigid contact.

The remainder of the paper is structured as follows. Section II develops the dynamical model of the
5-link robot and specifies all of the mechanical parameters; the model corresponds to a prototype that
is under construction. The swing phase model is based on Lagrangian mechanics and has not yet been
experimentally validated. As discussed above, a rigid model is used for the contact between the swing
leg and ground and the double support phase is assumed to be instantaneous. The contact between
the support leg and the ground is modeled as a pivot, and thus, during the single support phase, the
model has five degrees of freedom. Section III develops the controller. The desired posture of the robot
throughout a step is first parameterized in terms of a scalar function of the configuration variables of
the robot, instead of time. From this, a set of outputs is constructed in such a way that the nulling
of the outputs is equivalent to achieving the desired posture. The feedback design is completed by
combining ideas from finite-time stabilization and computed torque to asymptotically null the outputs.
The controller’s performance is first evaluated by simulation in Section IV under the hypotheses of a
rigid contact model, an instantaneous double support phase, and no slipping of the support leg. The
simulations indicate that the controller induces an asymptotically stable walking motion of 0.6 m/s,
but requires peak torques that are very near the maximal capability of the prototype. The actual
stability of the induced walking motion is formally proven in Section V. A method to incorporate
optimal time-trajectories [6] into a time-invariant controller design is illustrated in Section VI, yielding
a controller that meets natural design constraints. Section VII evaluates the controller’s performance,
first by supposing perturbations like a change in ground height or an external force acting on the
hips, and secondly, by considering a compliant walking surface. For the latter case, the simulations
are performed on a more detailed simulator developed by the French Project Commande de Robots a
Pattes [52]. The main novelty of the detailed simulator is the inclusion of a nonlinear, compliant model
of the contact between the robot’s limbs and the ground [20], [29], [5] and a dynamic friction model [4],
28], [38]. The detailed simulator thus exercises all seven of the robot’s degrees of freedom (the angles
of the five links plus the Cartesian coordinates of the hips), and therefore serves as an independent
check of the validity of the key hypotheses made in the mathematical derivation of the controller; in
particular, the contact points of the limbs may slip and/or rebound, and the double support phase is

not instantaneous. The controller’s performance on the more complete model is shown to be similar
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to that obtained under the idealized hypotheses of Sections IV and V. Additional supporting plots

and animations of the various controllers studied here can be found at [55].

II. RoBOT MODEL

The model is based on a prototype under construction, named RABBIT?; see Figure 1. The proto-
type has four independent actuators: the axis between the torso and each thigh is actuated as is the
axis of each knee. The actuators have been sized so that the robot is capable of generating motions
of at least 5 km/h when walking and 12 km/h when running. These speeds compare well with the
capabilities of humans [7]. Many of the technical considerations that went into the design of the robot
are summarized in [7]. The principal motivations for constructing the prototype were to study mod-
eling (especially hybrid mechanical systems and compliant contact models), determination of optimal
trajectories. limit cycles, stabilization of trajectories and the transition between walking and running
52].

The prototype is limited to motion in the sagittal plane by means of a radial bar. The ends of the
robot’s legs are fitted with wheels turned normal to the sagittal plane so that radial movements of
the contact points between the robot’s legs and the floor are completely free; as the wheels are in the
frontal plane, no mobility exists between the legs and the “feet” in the sagittal plane. The radius of
the circular path imposed by the bar is approximately 3 m. The design of stabilizing controllers for
the lateral motion of a walking robot has been addressed in [25], where it is shown that stability can
be achieved by actively adjusting the lateral distance between the feet; this issue is not studied here.

The robot is modeled as a planar biped consisting of a torso, hips, and two identical legs with
knees, but no ankles (see Figure 2). It thus has 7 degrees of freedom (the five joint angles plus the
Cartesian coordinates of the hips, for example). It is supposed that the robot walks from left to
right and that there is no rebound nor slip between the leg ends and the walking surface. Under this
assumption, during the swing phase (only one leg touching the walking surface), the hip coordinates
are not independent of the angular coordinates and thus the number of degrees of freedom decreases
to 5. A torque is applied between each leg and the torso, and a torque is applied at each knee. Thus,
during the single support phase the robot is under actuated: there are 5-DOF and 4 actuators. It is

2The RABBIT prototype is under construction by the French Project Commande de Robots & Pattes of the CNRS - GdR
Automatique.
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supposed that all links and joints are rigid; in particular, there is no elasticity between the actuators
and link joints [26], [49], [12]. It is assumed that the walking cycle takes place in the sagittal plane
and counsists of successive phases of single support.

The complete model of the biped robot consists of two parts: the differential equations describing
the dynamics of the robot during the swing phase (these equations are derived using the method of
Lagrange [43]), and an impulse model of the contact event (the impact between the swing leg and the
ground is modeled as a contact between two rigid bodies [21]). The contact between the stance leg and

the ground is modeled as a pivot. As in [14], [15], the complete model can be expressed as a nonlinear

system with impulse effects [48].

A. Swing phase model

The dynamic model of the robot between successive impacts is derived from the Lagrange formalism®

D(q)-G+C(q.4)-4+G(q) = B-u (1)

with ¢ = (31, qu1, @32, a2, q1)" (see Figure 2) and u = (u, ug, us, uq)" (see Figures 3 and 4). The torques
uy, Uy, uz, and u, are applied between the torso and the stance leg, the torso and the swing leg, at
the knee of the stance leg and at the knee of the swing leg, respectively. The model can be written in

state space form by defining

. d w
W%[w}{Dl@'FC@wyw—&@+B4Q]'fUHw@%U (2)
where w = ¢, and = := (¢/,w')’. The state space of the model will be restricted to physically rea-

sonable values of ¢ for walking. To define these bounds, it is convenient to introduce the coordinates

(P31, Pa1, D32, Pa2) (see Figure 5) where

D31 %(%1 + qa1)

251 _ T+ qa — g3 (3)
D32 s(gs2 +qu) |

[PMJ [W+CJ42—Q32J

Note that, for the computation of (3), it is assumed that the tibia and the femur are of equal length
(as is the case of the prototype RABBIT). The variable ps; (resp. psg) is the angle between the vertical

axis and a “virtual” leg joining the hips to the foot of the stance leg (resp. the swing leg) and the

3The symbolic computation of the model is available at [55].
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variable pg; (resp. pg2) is the relative angle of the stance leg (resp. swing leg) knee. The state space

3

for the system will be taken as X := {(¢/.w') | ¢ € M, w € R}, where M = {q | =5 <q < 3. 3

<
P31 < BT’T, 0<pn <m, 3{ < P32 < Bf‘, 0 < pso < m}. With this choice of M, the robot’s torso and
support leg are never below the walking surface, which is taken as {(¢,w) € X|z; = 0}, the set of

points where the height of the end of the support leg is zero (for definition of 2;, see Figure 5).

B. Impact model

An impact occurs when the swing leg touches the walking surface, also called the ground. The
impact between the swing leg and the ground is modeled as a contact between two rigid bodies. The
development of the impact model requires the full seven degrees of freedom of the robot. Let us add
Cartesian coordinates (zy, zy) to the hips (see Figure 5). Oune then obtains the following extended
model

De(Qe) : ('I'e + Ce(Qea Qe) : q'e + Ge(Qe) = Be -u+ 5Feazt (4)

with q. = (gs1, qu1, @32, a2, @1, T, 21 ). O F.py represents the external forces acting on the robot at the
contact point. The basic hypotheses are

1. the contact of the swing leg with the ground results in no rebound and no slipping of the swing leg;
2. at the moment of impact, the stance leg lifts from the ground without interaction;

3. the impact is instantaneous;

4. the external forces during the impact can be represented by impulses;

5. the impulsive forces may result in an instantaneous change in the velocities, but there is no instan-
taneous change in the positions; and

6. the torques supplied by the actuators are not impulsional.

From these hypotheses, the angular momentum is conserved about the impact point. One deduces
N -
D(’<qe — 4. ) - Fe:l:L (O)

where F.,; is the result of the contact impulse forces. ¢ (resp. ¢, ) is the velocity just after (resp.
before) impact. An additional set of two equations is obtained by supposing that the stance leg does
not rebound nor slip at impact. Then, from the condition that the swing leg does not rebound nor

slip at impact, one obtains

—B(q) = =4 =0 (6)
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with E(q.) = (79, z2)" the Cartesian coordinates of the end of the swing leg. The result of solving (5)
and (6) yields an expression? for ¢ in term of ¢, . The final result is an expression for ™ := (¢, w™)
(state value just after the impact) in terms of 2~ := (¢ ,w ™) (state value just before the impact),
which is expressed as

xt = Ax7). (7)

C. Nonlinear system with tmpulse effects

The overall biped robot model can be expressed as a nonlinear system with impulse effects [48]

io= flr)+g(@)-u T ¢S (8)
rt = Ax7) r~ €S,

where,
S :={(q,w) € X|zg = 0,29 > 0}. 9)

The condition 2y = 0 defines a contact event between the swing leg end and the ground, while 2y > 0
imposes that the swing leg touches in front of the stance leg. Solutions of (8) are taken to be right
continuous (see [14] for details). With this convention, as long as the robot is initialized in X with the
swing leg on or above the walking surface, all valid solutions of the model result in the robot remaining

on or above the walking surface.

I1I. FEEDBACK CONTROLLER DESIGN

This section develops the extension of the controller of [14], [15] for the 5-link biped with knees.
The fundamental idea is to encode walking in terms of a set of “posture conditions”, which are in turn
expressed as “holonomic constraints” on the position variables. These “constraints” are then used to
construct outputs of the mechanical model and are “imposed” on the robot via feedback control. The
controller is designed on the basis of the assumptions made in Section II, namely that the impact
model is rigid and the double support phase is instantaneous. These hypotheses will be re-visited in

Section VII.

A. Qutput definition

In human walking, one observes that the torso is maintained at a nearly vertical angle, the hips

remain roughly centered between the feet and at a nearly constant height above the walking surface,

“The solvability of the equations is easily verified; see [14].
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and the end of the swing leg traces an approximately parabolic trajectory. In addition, the knees are

never hyper-extended (as opposed to a bird) and only slightly flexed (as opposed to a monkey). These

observations have been used to build a set of control objectives through the following output functions

which will be driven to zero (or to numerically small values):
1 = k(@1 — qua)
y2 = ky-(di+da)

yz = kg- (ZH - Zﬂd(dl))
Ya ky - (22 - ZQd(dl))-

In the above, the Cartesian coordinates of the hips, (2, zy), and the end of the swing leg, (x4, 2y),

(10)

are expressed in the coordinate frame of the foot of the stance leg, (21,21) (see Figure 2):

X =0

21 =0

xg = Lg-sin(qs1) + Ly - sin(qq)

zy = —Ls-cos(qs) — Ly - cos(qa1) (11)
X9 = wxpy — Lz -sin(gse) — Ly - sin(qsa)

29 = zy+ Ls-cos(qse) + Ly - cos(qa2)

di = xy—x = Lz-sin(gs) + Ly - sin(qy)

dQ — TyHg — Ty — Lg : SiIl((]gQ) -+ L4 : Sill((]42).

The output y; is chosen to maintain the angle of the torso at a desired constant value, say ¢;4. The
output g, ensures the advancement of the hips while the swing leg goes from behind the stance leg to
in front of it (see Figure 5 for the definition of d; and dy). The output y3 controls the hip height in
such a way that the hips can rise and fall by a small amount in a natural way. The desired trajectory
zpq of the hips is defined as a second order polynomial of d; such that d; € [—sld/2,sld/2], where sld
is the desired step length, zymax (resp. zyvin) is the maximum (resp. minimum) desired value of zy

over a step and
za(—sld/2) = zyvin,  2n4(0) = zumaxs 2ua(sld/2) = zpan. (12)

The hip trajectory has not been chosen by optimization, though it seems quite natural that the hips
are highest at mid-gait and lowest at foot touchdown and liftoff. The output y4 controls the trajectory
of the end of the swing leg; the desired trajectory zy4 is defined as a second order polynomial of d;

such that d; € [—sld/2,sld/2|, where zomax is the maximum desired value of zy over a step and
ZZd(—Sld/Q) = 0./ ZZd(O) = Z9MAX ng(Sld/Q) = 0 (13)

The foot trajectory also has not been chosen by optimization, but seems to correspond to natural

walking gait. The gains k1, ko, k3 and k4 are constant values to be chosen later. Thus, with the same
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notation as in (10), the output vector reads as

{ Zlgq; l { //21 : E?il (—)Chd)d @)

B o 2(g) | | Ko - (d1(q) + dolg

y =h(q) := ha(q) | — | ks- (ZH(q) - ZHd(dl(Q))) ' o
| hala) | | ka- (22(q) — 224(di(q)))

B. Controller synthesis

The control objective is to drive the outputs (14) to zero. Since the outputs (14) only depend on
the generalized positions, ¢, and the dynamic model (2) is second order, the relative degree of each
output component is at least two. Using standard Lie derivative notation [22], [43], direct calculation
yields

j = Lih(x)+ LyLsh(x) - u. (15)

For the moment, it is supposed that the matrix LyLh is invertible on the region of interest. This will
be confirmed later in the paper. The method of computed torque (or inverse dynamics) can then be

used to define

v = Lih+ LyLsh - u, (16)
resulting in four double integrators
Ui = v;, i=1to4. (17)

One possible approach to control design would be to design asymptotically stabilizing controllers, such
as v; = kny; + kiots, for the double integrators (17). In general, when such a feedback is applied to
the full hybrid model (8), it is no longer able to drive the outputs (14) asymptotically to zero due to
the impulsive effects of the impacts. A general means of trying to “overcome” this can be observed
in the literature: for experimental as well as simulation based studies, the feedback gains appear to
be universally chosen sufficiently large so that the time constant for driving the controlled quantities
to their reference values is much less than the time interval of a step. A biological basis for doing
this is much more difficult to establish because the experiments are not easy to do well. Nevertheless,
the evidence suggests that if a perturbation is deliberately introduced in a human’s gait (8], [9], the
subject’s gait will recover in just a few cycles, suggesting high-gain control.

The use of high-gain control can be made to work quite well in simulation. The difficulty comes

in mathematically analyzing the existence and stability of periodic orbits induced by the controller.
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Since we are dealing with periodic orbits, Poincaré’s method is the appropriate tool. However, to
apply it one must compute the induced discrete-time dynamics from a hyper-surface transversal to the
orbit back to the hyper-surface [16], [32]. The induced discrete-time dynamics is called the Poincaré
map. In the case of the model (8), the hyper-surface has dimension nine and the computation of the
Poincaré map is impractical. The key idea established in [14] is that for a mechanical system with
N-degrees of freedom and m-independent inputs, the feedback control design can be carried out in a
way that greatly simplifies the stability analysis problem: the dimension of the image of the Poincaré
map can be reduced from 2N — 1 to 2(N —m) — 1. For the biped considered here, this results in a
one-dimensional analysis problem. The Poincaré map for this one-dimensional problem must still be
computed numerically. The main points are that its numerical computation is very easy and it leads
to conclusive existence and stability properties for periodic orbits.

The feedback design proceeds as follows. Define a continuous® feedback v = v(y,4) on (15) so that
each of the four double integrators ¢; = v; is (globally) finite-time stabilized. The feedback functions

used here come from [2]:

?/1(7/1, € 7{1)
v :\Ij ] ‘/' :l ufz(y2‘€y2> . 18
‘ (y, y) € 7#/'3(1/3, € y:s) ( )
//'4(2/47 € U4>
Each function v;(y;,€-9;), i = 1 to 4, is defined as
Gilyie-gi) = —sign(e- ;) - e - 5|* — sign(s(yi, € - ) - |y, € - )| == (19)
with 0 < oo < 1 and
Gi(yi € 1) = yi+ ﬁSigﬂ(é “gi) - e ?)i|2_u- (20)

The real parameter € > 0 allows the settling time of the controllers to be adjusted. The overall feedback

applied to (8) is given by

w(x) = (LyLsh(x)) " (lli(h(x), Lih(x)) — L?h(a:)) : (21)

This is the method of computed torque with a finite-time stabilizing controller on each of the double
integrators.

®The theory in [14], [15] does NOT allow the use a discontinuous feedback as is commonly used in sliding mode control.
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IV. SIMULATIONS
Consider the biped robot model (8) with the following parameter values [52] (see Figures 3 and 4);

suppose in addition that the actuators at the knees and at the hips have a gear ratio of 50:1, with a

rotor inertia of 0.83 kg.m?. The mechanical parameters are given by

| Mechanical parameters | Torso | Femur | Tibia |
Mass(kg) Mpr=20 | M3=68 | M,=3.2
Length (m) Ly=0.625| Ls=04 | L,=04
Position of the Center of Mass (m) | Zp=0.2 | Z3=0.16 | Z,=0.128

Consider the feedback of Section ITI-B with the following parameters

| Output | Gain | Parameters |
Y1 F1=62.5 | ¢14 = —7/30 rad
Yo ko=500
Ys /{3:1 ZHMIN — 0.76 m, ZpMAX — 0.79 m, sld= 0.45 m
Ya ka= Zomax = 20 mm, sld= 0.45 m

The robot was initialized in double support with an initial hip velocity , v (i.e. the horizontal velocity
of the hips just before impact), of 0.90 m/s. This choice is justified® in Section V: in fact, the closed-
loop system stability analysis shows that the system is stable if v, is taken between 0.85 m/s and 1.25
m/s (see Section V and Figure 13), and also that vy is close to 1.02 m/s on the limit cycle. Note also
that the average velocity of the biped equals about 0.6 m/s on the limit cycle. In the feedback (21),
e = 0.06 and a = 0.9. The parameter € > 0 allows the settling time of the controller to be adjusted
and 0 < o < 1 achieves a finite-settling time.

Several aspects of the solution corresponding to the model and feedback with the above parameters
are now highlighted. Simulations were performed in the MATLAB/Simulink environment, using the
ode45 integration algorithm with variable step size. Figure 6 displays the outputs and shows that the
controller drives them to zero before impact. This implies that the posture constraint encoded in the
output function (14) is satisfied and that the proof of stability to be presented in the next section
can be applied. Figure 7 displays the walking motion of the biped robot as a series of stick figures
over three steps. The walking appears to be natural, i.e., how a human without arms might walk.
Figure 8 displays the applied torques over a few walking cycles; note that the peak torque magnitude
is around 150 N'm on the limit cycle. Figure 9 displays the normal and tangential forces acting on the

stance leg end; note that the maximum force is less than 400 N. Figure 10 displays the coordinates

SExtensive simulations are not performed here to verify stability because an analytical proof is provided in the next section.
However, supporting plots and animations are available at [55].
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zy (vertical height of the end of the swing leg) and zy (vertical height of the hips), which are key
quantities in the definition of the outputs used to generate the feedback controller. From the plot of
zpr it is observed that the gait is “compass-like” in that the hips are highest at mid stance and lowest

at foot touchdown/liftoff.

From Figures 6-10, the walking trajectories appear to be asymptotically stable: after several steps.
the robot seems to reach a limit cycle. This appearance will proved in the following section. In
the sequel, robustness of the feedback is investigated versus ground height variations and external
perturbations; that is, the robot still walks with moderate perturbations (see Section VII). The
output function chosen, (14), is certainly not unique; for example, appropriately controlling torso
angle, horizontal hip placement, and swing and stance leg knee angles will also yield a stable walking

motion. In order to use the controller on RABBIT, it is interesting (for achieving greater autonomy

of the robot) to decrease the energy used for walking. This will be addressed in Section VI.

V. STABILITY PROOF

The purpose of this section is to prove the asymptotic stability or instability of trajectories resulting
from the biped in closed loop with the controller (21). An important result from [14] is that stability
(or instability) can be proven on the basis of the restriction of the Poincaré map to a one-dimensional
manifold. In the following, only the bare minimum of mathematical notation needed to use this tool
will be introduced. The reader seeking a careful development of these ideas is referred to [14]. The

steps followed here would be the same for any N-link biped with N — 1 independent actuators.

Let Z denote the zero dynamics manifold, i.e. Z = {(q,¢) € X|h(q) = 0. Lsh(q) = 0}, and recall
that S = {(¢q,w) € X|z = 0,29 > 0}. The conditions required to define the restricted Poincaré map

are

1. SN Z is a smooth submanifold of A;
2. the decoupling matrix L,L¢h is invertible; and

3. the convergence time of the controller is strictly less than the time of a single step of the robot.



14 SUBMITTED TO IEEE TRANS. ROBOTICS AND AUTOMATION - REGULAR PAPER REVISED 18/MARCH /2002
A. Smoothness of SN Z

From standard results in [3], SN Z will be a smooth one-dimensional manifold if the map
h(g)
Lyh(g,d) (22)
%(q)
has constant rank’ equal to nine on SN Z. A simple argument shows that this is equivalent to the
rank of [h(q) 22(q)] being equal to five. Hence, define the 5 x 5 matrix

A_[‘] )

Ozy
Oq

whose determinant in the p coordinates is proportional to

sin (pgg) - sin (p31) - sin (%) - sin (pg1). (24)

On M, it is easily verified that the determinant vanishes only at p3; = m. However, if ¢ € Z and
p31 =7, then z5(q) = 0.01 #£ 0, and thus ¢ € S. Hence, the determinant of A is non-zero on SN Z. If
(g,w) € SN Z, then it follows that ¢ is equal to a constant; call this value go. Furthermore, it follows
that w is parameterized by a single variable. This parameterization is developed next. Let

h{q) 1 |

25
riu(q) (25)

2(q) = [

where xy is the horizontal position of the robot’s hips. It is straightforward to verify that ® has full

rank at ¢o. On Z, it follows that %h(q) = Lsh(q,w) =0, and thus

0 d o
= —@ = — . 2
{7/’11 } dt (9) dq “ (26)
Thus, 0 : IR — SN Z by
4o
otoi) = | orn] (21)
dq H

is a diffeomorphism from IR to S N Z, with v, the horizontal velocity of the hips just before impact.

B. Proving invertibility of the decoupling matrix

The complexity of the decoupling matrix, LyLh, makes a direct proof of invertibility highly non-

trivial. Moreover, since the point e,y = (7, 7,7, 7,0) is an extremum of the height of the hips, the

"Recall that the rank of a map at a point is by definition the rank of its Jacobian matrix evaluated at the same point.



PLESTAN, GRIZZLE, WESTERVELT AND ABBA: STABLE BIPED WALKING 15

decoupling matrix for the choice of outputs (14) is necessarily singular at q.,;. Hence, a proof of the
invertibility of the decoupling matrix must be local in ¢. One method of local proof is to demonstrate
sign definiteness of the decoupling matrix’s determinant in an open set about the biped’s trajectories.
Sign definiteness implies the determinant never equals zero in that set and, hence, in that set, the
decoupling matrix is invertible. This is the method used here. The proof is carried out in two steps.
In the first step, the decoupling matrix is simplified by the application of an invertible feedback [37]
to the model®. In the second step, elementary bounds on the individual terms appearing in the
determinant of the decoupling matrix are determined and used to compute upper and lower bounds
on the determinant of the decoupling matrix. To apply the technique of [37], it is easiest to work in

relative coordinates

q = ((jgla qﬁ:ly ('7327 6427 C]l)/ (28)
where B
g31 q31 — q1
qn _ 931 —qu | (29)
432 432 — q1
Q4o q32 — qa2

Denote the dynamic model (1) in these new coordinates as

— I
B [ : } . (31)
Next, partition the coordinates into
Qo = (@31, Qu1, @32, Ga2) and g, = qi, (32)

the “actuated” coordinates and “un-actuated” coordinates, respectively. Write (30) as

D11(@)da + D12(@)G + C1(, @)da + G1(@) = (33)

D21(@)Ga + Da2(@)dy + Co(q, §)4a + G2(@) = 0, (34)
and solve (34) for ¢, as

G = —D2(@) " (Do1(@)da + Ca(q @ + Ga(q)) - (35)

8By standard results in [22], the invertibility of the decoupling matrix is invariant under the application of invertible feedbacks.
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Substituting (35) into (33) yields

D(@)ga + C(q.§)da + G(@) = u (36)
where?
D(q) = Dii(q) — Dis(q)Dy;' (@)D (q) (37)
C(@.q) = Ci(q.§) — Di2(q)DZ (9)C(. ) (38)
G(@) = Gi(q) — D12(q) D3, (7)G(q) (39)

Applying the partial linearizing feedback

u=D(q)v + C(q.9)da + G(q) (40)
to (33) allows (33) and (34) to be re-written as

(.ja = v (41)

G = —Doa(@) (Da1(@ia + Co(q, Qo + Ga(q)) - (42)

The model (41) and (42) is feedback equivalent to the original system. It can be expressed in state

space form with the same choice of x as before to obtain

i = f(x) +g(x)v. (43)

Since the rank of the decoupling matrix is invariant under invertible feedback, the decoupling matrices

for systems (2) and (43) have the same rank. The determinant of the decoupling matrix for (43) can

be directly computed and shown to be of the form®

. Num(q)
det Lngh(q) = m (44)

with
94 9

Num(q) = > kg (cfvcj) and Den(q) =>_ k’g/ (clpcj) (45)

i=1 =1
where the k;’s are constants, g;’s are sine and cosine functions, and ¢;’s are row vectors in IR®. For a
given subset @ C M (recall that M is the allowed set for the configuration variables), upper and lower
®The invertibility of Dsy is assured by the positive definiteness of D.

107t is straightforward to check that the decoupling matrix depends only upon the configuration variables, ¢, and not on the
angular velocities.
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bounds on the determinant of the decoupling matrix can be found via calculation of the minimum and
maximum of each of the 103 terms of the numerator and denominator over O. For example, if the
denominator in (44) is positive, then

max,eco Num(g) = max;e; max,eo, Num(q)

?

xdet Ly L ;h(g) <
1;162%;{ det Lgth(q) <

(46)

mingeo Den(g) — miner mingeo, Den(q)

where, O C U,;¢; O;, and the O; are closed and bounded. The max and min operations in (46) are

especially trivial to evaluate if the sets O; are selected to be of the form

O; = {17 | %Tﬁn < g3 S g1 ‘?477;7;:” S qun =4 (47)

Gt < Gx < @B A < due <GB q < g < q{f}’”‘"} :

The above technique was applied to the apparent limit-cycle of Section of TV. Individual closed
sets O; were determined by dividing the time trajectory into disjoint pieces, and over bounding the
configuration variables so that over the ¢ —th time interval, the trajectory of the configuration variables
lies strictly in the interior of O;. As an illustration, Figure 11 shows the result of this process for s.
Division of the trajectories in time into pieces over which the determinant could be proven to be
sign definite was accomplished with a simple binary search algorithm. The results of this process are
presented in Table I, which gives the upper and lower bounds of the determinant of the decoupling
matrix as well as the minimum and maximum of the determinant over each subset, and the beginning
and end of each set’s division in time. It should be noted that: (1) this process could be iterated
to prove the decoupling matrix’s invertibility over a larger subset of the biped’s state space, and, (2)
the fact that this method works is not an accident. Standard compactness and continuity arguments
can be used to show that the decoupling matrix is invertible on an open set about the configuration
variable trajectories if and only if a there exists a set O which is the interior of a union of a finite

number of closed sets O; as described above.

C. The restricted Poincaré map

The cross section for the Poincaré map will be taken to be S, the impact surface. Let P : S — S be

11

the usual Poincaré'! map. For those trajectories for which the convergence time of the controller (21)

is less than the time to make a single step, the trajectory will have converged to the zero dynamics

1Since not every initial condition in S will result in the robot making a successful step, P is in general only a partial map; that
is, its domain of definition is not all of S. The same is true, of course, for the restricted Poincaré map.
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manifold, Z, in finite-time. In this case, P takes values in S N Z. The restricted Poincaré map is
defined tobe p: SNZ — SNZ by p(x) = P(x); that is p :== P|snz. To compute p, it is easiest to use
the identification of SN Z with IR given by (27). Thus, define A : R — R by A := 0 topoo. The

function A can be computed in a straightforward manner:

Restricted Poincaré map: A : IR — IR

1. Let v > 0 denote the horizontal velocity of the robot’s hips just before impact (the restriction to
positive velocities corresponds to the robot walking from left to right). Compute = :=o(v,) € SNZ,
the position of the robot just before impact.

2. Apply the impact model to 7, that is, compute 2 := A(x7).

3. Use 27 as the initial condition in (2) controlled by (21), the robot in closed loop with the controller,
and simulate until one of the following happens:

a. There exists a (first) time 7 > 0 where 2o(T) = 0. If T is greater than the settling time of the
controller, then A(vy) := v} (T); else, A(vy) is undefined at this point.

b. There does not exist a 7" > 0 such that z(7") = 0; in this case, it is also true that A(vy) is

undefined at this point. -

D. Stability results

To determine if the closed-loop system is stable under the controller (21), the function X is computed
for vy; € [0.5,1.5]. Figure 13 displays the functions A. Oune deduces that A is undefined for vy; less
than 0.85 m/s (because the robot does not have enough kinetic energy to make a step) and more than
1.25 m/s (because the robot is moving too fast for the outputs to converge in a single stride). A fixed
point appears at approximately 1.02m/s, and corresponds to an asymptotically stable walking cycle.
Figure 12 displays the limit cycle over several steps with the previous parameters of simulation, and

with the initial hip velocity set to v; = 0.9 m/s. The resulting trajectory converges to a limit cycle,

supporting the stability analysis.

V1. INCORPORATING KNOWN OPTIMAL TRAJECTORIES INTO THE CONTROL LLAW

There is a great deal of flexibility in how one chooses the outputs that are to be driven to zero.

Furthermore, the choice of the (trajectories of the) outputs has a strong influence on the energy
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consumed by the system. In [6], optimal walking and running time-trajectories are analyzed for
the same biped model, RABBIT. Following [14], Section IV.A, these time trajectories can often be
converted into output functions. Observe that in a normal walking motion, the angle p3; (see Figure 5)
will be strictly monotonically increasing (the horizontal position of the hips and often the angle of the
tibia of the stance leg are also strictly monotonically increasing over a step). Once a strictly increasing
generalized coordinate has been identified, it is always possible to re-parameterize the trajectories
for the remaining generalized coordinates in terms of it. This procedure was carried out here for a
walking motion of 0.75 m/s that is optimal with respect to consumed energy (6], Section 3.4, criteria
(43, where, in the optimization procedure, the actuator limitations and other constraints associated
with the prototype have been taken into account.

As in Section III, the quantities to be controlled were taken as ¢, di + do, z;; and z9. New outputs

were posed in the form

vy = q— Pi(ps) :
yo = di+dy — Py(ps)
, 48
ys = zm — P 3,(p31) (48)
Yo — 22 —P4(p31>7
where each polynomial P; is defined as
P = ap+ay - py +ag - pi 4 asi - piy A+ as - py + as o phy + aei - 5. (49)

Regressing these polynomials against the optimal time-trajectories from [6] yields the coefficients

[ ] ag; | a1 | ag; | ag; | G4 | as; | g |
1 | -136086.0283 | 263196.5827 | -211641.5047 | 90571.6040 | -21756.4411 2781.4884 | -147.8650
2 -86061.3688 | 164670.7771 | -130953.7421 | 55403.0739 | -13152.4760 | 1661.2808 -87.2302
3 -5372.2560 10341.4986 -8272.1673 3519.0483 -839.5249 106.4757 -5.6081
4 53681.4636 | -102339.3127 81157.6538 | -34268.2707 8125.5162 | -1025.8363 53.8715

Consider next the biped robot model (8) with the parameter values of Section IV, the above outputs,
and the feedback of Section III. The initial velocity of the hips, vy, is chosen as 1.6 m/s, in order
to show that there is convergence to a limit cycle after several steps. This choice is justified by the
stability analysis. Indeed, proceeding exactly as in Section V, it can be shown that
e SN Z is a smooth one-dimensional manifold;

o the decoupling matrix L,Lh is invertible;
« the function A(vy) has a fixed point and is defined over a reasonable domain (see Figure 14).
The closed-loop system stability analysis based on A(vj;) shows that the system is stable if v}, is taken

greater than 1 m/s, and that there is a limit cycle corresponding to vy of about 1.1 m/s. The initial
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condition of v,; = 1.6 m/s does not start the system on the limit cycle, but the simulations show that
the biped’s motion converges to a limit cycle (see Figure 19), corresponding to an average velocity of
the biped equal to 0.75 m/s, and to hips velocity before the impact, vz, equal to 1.1 m/s. Simulations
therefore confirm the results derived from analysis of A. The feedback (21) has been tuned with e = 0.1
and a = 0.9.

The simulation verified that the countroller successfully drives the outputs to zero before impact.
Figure 15 displays the walking motion of the biped robot as a series of stick figures over three steps.
Figure 16 displays the applied torques over a few steps; note that the peak torque magnitude on the
limit cycle is now about 60 Nm, which is compatible with the prototype’s torque limits, and which is
about 40% of that used by the previous control law. The normal and tangential forces acting on the
stance leg end are within the allowed friction cone with coefficient of friction p < 0.7; the maximum
normal force is now less than 400 N. Figure 17 displays the coordinates zo (vertical height of the
end of the swing leg) and zy (vertical height of the hips) for later comparison when walking on a
compliant surface. Figure 18 displays the absolute values of the actuator angular velocities versus the
absolute values of torque (these values take into account the gear ratio) and shows that the results are

compatible with RABBIT’s actuators [6], [7].

VII. A PARTIAL ROBUSTNESS EVALUATION

Robustness of the “optimal” controller of Section VI is investigated through simulation in three
different situations: an external force acting on the hips or the torso; a change in the height of the
walking surface; and walking on a compliant surface. The last point is studied separately since it
necessitates a change in the model of the robot from the previous one: the compliance in the walking

surface exercises all 7-DOF of the model.

A. External perturbations

This section provides two results towards checking the robustness of the controller Section VI to ex-
ternal disturbances. In each case, the simulations have been performed with the controller parameters
used previously, i.e. € = 0.1 and o = 0.9. Furthermore, the initial velocity of the hips vy has been
taken to be 1.1m/s (v is set to the value corresponding to the limit cycle) . In order to limit the

number of figures, only the output behavior is shown for theses tests. These plots, which give a good



PLESTAN, GRIZZLE, WESTERVELT AND ABBA: STABLE BIPED WALKING 21

picture of the stability, are used to show whether the closed-loop system returns to the limit cycle

after the perturbation is removed.

« External force. A horizontal force is applied in the middle of the torso at ¢t = 1.3 s; its magnitude
is 100 N and its duration is 0.4 s. As born out by Figure 20, the system returns to the limit cycle
when the force is removed. The test was also repeated, with similar results, with a force acting on the
hips.

« Change in walking surface height. A 5 mm high obstacle!? is placed on the walking surface
in the path of the robot. Stepping on the obstacle introduces an error in the zero-altitude for two
successive contacts (i.e., over two half-steps). When the biped steps up on the obstacle there is contact
at zo = b mm, and when it steps off the obstacle, there is contact at 2z = —5 mm. Figure 21 shows

that the controller takes this perturbation in stride.

B. Walking on a compliant surface

On the actual prototype, the contact between the ends of the legs and the ground will not be rigid
and the ends of the legs may slip. This section presents the results of evaluating the controller (21)
with the outputs defined in Section VI on a detailed simulator for RABBIT [52] that includes the
normal forces on the legs due to a compliant contact with the ground [20], [29], [5] and the tangential
forces due to dynamic friction [4], [28], [38]. For the sake of completeness, the nominal models of [20],
29], [5], [4], [18], [28], [38] are first summarized, a modification is discussed, and then the simulation
results are reported.

The rigid and compliant models are conceptually very different. As presented in Section II, the
rigid model is composed of a dynamical nonlinear system for the swing phase, and an impulsional
system for the contact event. With the assumptions stated in Section IT (in particular, the impact is
instantaneous), this implies that there is no double support phase during a step. The compliant model,
on the other hand, is an ordinary (non-hybrid) dynamical nonlinear system and allows a double support
phase where there is simultaneous contact between the swing leg and the ground and the stance leg
and the ground. Of course, this fact was not taken into account in the synthesis of the controller, and
applying the controller to the case of walking on a compliant surface allows a check of its robustness

12This perturbation is not negligible in view of the value of the maximum height of the swing leg end 73 (see Figure 17) in the
nominal case.
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properties.

B.1 Compliant contact and friction models

The dynamic model is based on the full 7-DOF model of the biped with a computation of the forces

acting on the end of each leg:
D(qe> . qe + C(Qe7 Qe) . Cje + G(Qe) = B-u + '],(Qe) . F (50)

where, ¢. = (g1, @32, qa1, Qa2 q1. Trr, 2i)» J(qo) is the 4 x 7 Jacobian matrix of the end points of the

two legs

, [
_ Y | Z1\Ge _
1@) = 50| mig | (51)
22((]@)

and F' consists of the normal and tangential forces acting on the ends of the two legs
= (FnlaFtlaFn%FtQ)I- (52>

The robot’s dynamics are then described by ordinary (non-hybrid) differential equations over the
entire step, even during the impact, which will have a non-zero duration. Whenever one or both of
the ends of the legs are in contact with ground, the resulting normal and tangential forces acting on
the end of the leg are given by (if the penetration depth z < 0, i.e. the foot is touching the ground ;
if 2z > 0, these forces equal zero)

n

F, = =M -|za|" za+ k- |za
Fi = pldv)-|F)
. (33)
d — o |- I g
Qo

w(d,v) = opo-d+op - d+ Qpy U
The model comes from a mathematical and physical analysis of the contact between a steel ball and
a planar steel surface'. The model of the normal force can be viewed as a vertical nonlinear spring-
damper; 2¢ is the penetration of the link into the ground, A is the damping coefficient of the vertical
damper, k, the stiffness of the vertical spring and n is a coefficient characterizing the form of the

surfaces in contact. For the biped robot, it is assumed that a sphere is impacting a Hertzian plane, so

13This is a rough approximation for the prototype because the wheel is made of polymer, resulting in less stiffness, a larger
contact surface, and damping.
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that n = 1.5 (this value corresponds to the contact of a steel ball and a planar steel surface, which is

an approximation for the biped).

The tangential force, F, = u(d,v) - |F,|, is in the form of a friction model with a non-constant
coefficient of friction. The LuGre friction model is used to evaluate the friction coefficient o [4], [38].
This model supposes that the interface between the two contacting surfaces is a contact between
bristles. The bristle dynamics are modeled by horizontal springs and dampers, which, if the applied
tangential force is sufficient, are deflecting and slipping. The model uses the average deflection d of

. . I ; Ono . . .
the bristles as the internal state of the friction, d = v — |v| - — - d, where v is the relative velocity

Qho
of the contacting surfaces, 0,0 the stiffness of the horizontal spring and a4, is the coeflicient of static
friction. In the overall friction coefficient, p(d) = oy -d+op; cd+ Qpo v, 071 18 the damping coeflicient
of the horizontal damper and «,y is the coefficient of viscous friction.
In the case of the biped, the penetration zg; (where i equals 1 or 2) is the vertical coordinate of the

end of leg i; this value is derived from the height of the hips zy and the angular coordinates ¢3; and

G4

2ai = zm + Lz - cos(qsi) + La - cos(qu;) (54)

The relative velocity v; (where i equals 1 or 2) is the relative velocity of the end of the leg i with
respect to the ground; this value is derived from the horizontal velocity of the hips @, and the

angular coordinates and velocities gs;, qui, ¢3; and q¢4;

v; = &y — L3 -cos(gs) - g3 — La - cos(qai) - Gui (55)

B.2 A modification

The above model performs well when the walking surface is relatively compliant (ground penetration
of on the order of a tens of milli-meters). However, when the parameters are tuned up for a surface
where the penetration of the leg is on the order of a few milli-meters, it is difficult to adjust the
damping to avoid ringing. For this reason, signed-square root terms were added to the normal force

and the friction coefficient, as shown below, to provide better damping. Also, the magnitude of the
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friction coefficient 1 was saturated at 0.7 to ensure that the leg could slip.

F, = —)\g ’ZG ln'-Zg—)\Z‘ZG nSgIl(Zg)\/|Zg‘—|—k- ‘ZGn

F, = uld,v)-|F,]

| (56)
d — /U—‘U|.m.d

Apo -
p(d,v) = opg-d+op-d+ag-v+ oz;,,gsgn(i:)\/]w\

B.3 Simulations

In this section, the feedback controller of Section III-B with the outputs defined in Section VI
(optimal trajectories) is directly applied to the biped robot model derived from (50), with the forces
on the feet computed by (56). It is assumed that the mechanical parameters defined in Section IV are
the same, and that the parameters of the controller have not been changed (o = 0.9 and € = 0.1). The
initial condition vy is 1.1 m/s, i.e. the velocity corresponding to the limit cycle in the rigid case. The

ground parameters are taken to be as close as possible to the parameters of the ground used by the

prototype RABBIT

A =1.5x10% A =3x10", n=1.5, k=25x10°, (57)
onpo — 260, op1 — 06 ano = 0285, apo = 0.].8, Qp3 — 0.3.

Note that
1. n = 1.5 since the end of each of RABBIT’s legs is equipped with a wheel in the frontal plane,
2. The stiffness parameter of the walking surface, k, was adjusted for a nominal penetration of ap-
proximately 7 mm. The damping coefficients were adjusted to yield minimal ringing.
In the case of the compliant contact model, there is a continuous change in the forces applied to the
two legs, and hence there is not a contact moment, since, in fact, there is a non-zero period of time
where both legs are in contact with the ground. However, to apply the controller computed on the
basis of the rigid contact model, a contact moment must be declared so that the correct torques can
be applied to the support leg and the swing leg. For the controller, therefore, contact was declared
when the heights of the two feet were equal. This, of course, is exactly the same criterion as in the
rigid contact model.

The controller of Section III-B when applied to the model that includes the compliant walking
surface results in an apparently attractive orbit. Figures 22-26 present some simulation results over a

few cycles near the stable orbit. Figure 22 displays the outputs, which are still driven to zero before
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the impact. Figure 24 displays the applied torques over a few walking cycles in the compliant (plain
line) and rigid (dotted line) case; the peak torque magnitude is around 100 Nm in the compliant
case. The average walking speed of the robot on the compliant surface equals about 0.6 m/s and is
lower than in the rigid case: there seems to be additional loss of energy during the compliant impact,
which induces a lower average walking speed. The torque at the impact has significantly increased, but
otherwise throughtout the step, the torques in the rigid and compliant cases are quite similar. Figure
25 displays!® the normal forces acting on the leg ends: it is clear that there is a double support phase.
Note also that the maximum values (about 800 N) are acceptable by the prototype RABBIT. Figure
26 displays the coordinates zp, z1 and z9, which give the vertical position of the hips and the ends of

the legs. z; and z; become negative, showing that there is penetration in the ground of about Tmm.

VIII. CONCLUSIONS

A rigorous stability analysis has been accomplished for a planar, five-link, four-actuator biped model
when walking on a rigid, flat surface. The studied biped consists of a torso and two identical legs with
revolute knees but no feet. It is thus under actuated during single support, as opposed to fully actuated
(a control at each joint and the contact point with the ground). The double support phase was modeled
as being instantaneous, thus a walking motion cannot in any sense be construed as statically stable.

A steady walking cycle is a non-trivial periodic motion. This means that standard stability tools for
static equilibria do not apply. Instead, one must use tools appropriate for the study of periodic orbits,
such as Poincaré return maps. It is of course well known how to use numerical methods to compute a
Poincaré return map and to find fixed points of it. The drawback in such a direct approach for bipeds
is that it involves the numerical computation of a high-dimensional, nonlinear map and does not yield
much insight for feedback design and synthesis.

A key development in [14] showed how to design a continuous-time control strategy in such a way that
the existence and stability properties of periodic orbits can be checked, with necessary and sufficient
conditions, on the basis of a one-dimensional map. This method was fully illustrated here on the
five-link biped model. These results are a first attempt at a complete closed-loop stability analysis of
a biped walker of non-trivial complexity. It is hoped that this analysis will inspire other researchers

14Note that, for Figures 25 and 26, Leg 1 (resp. 2) is not considered always as the stance (resp. swing) leg, but is acting as a
normal leg, i.e. swapping between the stance and swing states during walking.
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to develop additional analytically-oriented design methods for bipedal walkers.

The stability analysis performed here assumed a rigid contact model and instantaneous double
support phase. In the biped robotics community, these assumptions have been generally regarded
as being good approximations to walking on a stiff, though compliant, walking surface. To further
investigate these two assumptions, a more complete model was used that included differential equations
to compute the normal forces on the legs due to a compliant contact with the ground [20], [29], [5]
and the tangential forces due to dynamic friction [4], [28], [38]. This model necessarily exercised the
full 7-DOF of the biped since the support leg is no longer assumed to act as a pivot. Furthermore, the
walking motion necessarily has a non-trivial double support phase. Nevertheless, when the parameters
in the compliant contact model were adjusted to correspond to walking on a relatively stiff surface,
simulations showed that the controller designed under the simplifying assumptions of a rigid contact

and instantaneous double support phase resulted in an apparently attractive limit cycle.

Currently, work is being done to more directly incorporate optimality into the feedback design
process. An indirect method was illustrated in Section VI. The objective is to achieve stable walking
motions that exploit the “natural” dynamics of the system. In this regard. it may also be interesting to
“relax” somewhat the control laws used in this paper by moving away from the finite-time convergence
properties, while still preserving the spirit of the simple and elegant analytical results used here. It
seems that this might be possible by introducing a one-parameter family of controllers where the finite-
time convergence property is only obtained as a limiting value of the parameter. This may involve a
singular perturbation-like analysis of the hybrid robot model, that, if done carefully, may be able to
approximately factor the Poincaré return map of the full-order closed-loop robot model into a portion
that corresponds to the restricted Poincaré map and a portion corresponding to the “transversal”
variables specified by h and L h. If the transversal variables are sufficiently rapidly contracting, then
the restricted Poincaré map will still determine stability, just as in the “slow-fast” decomposition of a
singularly perturbed system.

When the prototype is ready for testing, a number of implementation related issues will be in-
vestigated. These include: a nonlinear model of the gear boxes; potential compliance in the torque
transmission path and links; effects of implementing the controller in discrete-time; effects in errors in

determining the impact condition.



PLESTAN, GRIZZLE, WESTERVELT AND ABBA: STABLE BIPED WALKING 27

ACKNOWLEDGMENTS

The work of J.W. Grizzle and E. Westervelt was supported in part by NSF grants INT-9980227 and

I1S-9988695, and in part by the University of Michigan Center for Biomedical Engineering Research

(CBER). F. Plestan and G. Abba thank the French Research Group, Groupe de Recherche Commande

de Robots o Pattes.

REFERENCES

Bainov, D.D., Simeonov, P.S., Systems with impulse effects: stability, theory and applications, Ellis Horwood Limited, Chich-
ester, 1989.

Bhat, S.P., Bernstein, D.S., “Continuous finite-time stabilization of the translational and rotational double integrators”,
IEEE Trans. Autom. Control, 43, 5, pp.678-682, 1998.

Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.

Canudas, C., Olsson, H., Astrom, K.J., Lischinsky, P., “A new-model for control of systems with friction”, IEEE Trans.
Autom. Control, 40, 3, pp.419-425, 1995.

Canudas, C., Roussel, L., Goswani, A., “Periodic stabilization of a 1-DOF hopping robot on nonlinear compliant surface”,
Proc. IFAC Symposium on Robot Control, Nantes, France, September, 1997.

Chevallereau, C., Aoustin, Y., “Optimal reference trajectories for walking and running of a biped robot”, Robotica, 19,
pp.557-569, 2001.

Chevallereau, C., Sardain, P., “Design and actuation optimization of a 4-axes biped robot for walking and running ”, Proc.
IEELE International Conference on Robotics and Automation, San-Francisco, California, April, 2000.

Eng, J.J., Winter, D.A., Patla, A.E., “Strategies for recovery from a trip in early and late swing during human walking”,
lhxperimental Brain Research, 102, 2, pp.339-349, 1994.

Eng, J.J., Winter, D.A., Patla, A.E., “Intralimb dynamics simplify reactive control strategies during locomotion”, Journal
of Biomechanics, 30, 5, pp.581-588, 1997.

Frangois, C., Samson, C., “A new approach to the control of the planar one-legged hopper”, The International Journal of
Robotics Research, 17, 11, pp.1150-1166, 1998.

Fujimoto, Y., Kawamura, A., “Simulation of an autonomous biped walking robot including environmental force interaction”,
IEELE Robotics and Automation Magazine, pp. 33-42, June, 1998.

Ghorbel, F., Spong, M.W., “Integral manifolds of singularly perturbed systems with application to rigid-link flexible-joint
multibody systems”, International Journal of Non-linear Mechanics, 34, pp. 133-155, 2000.

Goswani, A., Espiau, B., Keramane, A., “Limit cycles and their stability in a passive bipedal gait”, Proc. IEEE International
Conference on Robolics and Automation, Minneapolis, Minnesota, April, 1996.

Grizzle, J.W., Abba, G., Plestan, F., “Asymptotically stable walking for biped robots: analysis via systems with impulse
effects”, IFEE Trans. Autom. Control, 46, 1, pp.51-64, 2001.

Grizzle, J.W., Abba, G., Plestan, F., “Proving asymptotic stability of a walking cycle for a five DOF biped robot model”,
Proc. International Conference on Climbing and Walking Robots, Portsmouth, England, 1999.

Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of
Applied Mathematical Sciences, Springer-Verlag, New York, corrected second printing edition, 1996.

Howell, G.W.; Baillieul, J.. “Simple controllable walking mechanisms which exhibit bifurcations,” Proceedings of the 37th
IEEE Conference on Decision and Control, Vol. 3, pp. 3027-3032,1998

Hensen, R.H.A., van de Molengraft, M.J.G., and Steinbuch, M., “Frequency domain idenitification of dynamic friction model
parameters,” IEEE Trans. Autom. Conl., 10, 2, pp. 191-196, 2002.

Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K., “Planning walking patterns for a biped
robot”, IEEE Trans. Robol. Autom., 17, 3, pp.280-289, 2001.

Hunt, K.H., Crosseley, F.R., “Coefficient of restitution interpreted as damping in vibroimpact”, Journal of Applied Mechanics,
pp.440-445, 1975.

Hurmuzlu, Y., Marghitu, D.B., “Rigid body collisions of planar kinematic chains with multiple contact points”, The Inter-
national Journal of Robotics Research, 13, 1, pp.82-92, 1994.

Isidori, A., Nonlinear control systems: an Introduction, Springer-Verlag, Berlin, 2nd edition, 1989.

Koditschek, D.D., Buhler, M., “Analysis of a simplified hopping robot”, The International Journal of Robotics Research, 10,
6, pp-587-605, 1991.

P. Kokotovic, H. K., Khalil, O'Reilly, J., Singular Perturbation Methods in Control: Analysis and Design. Academic Press,
London, 1986.

Kuo, A. D., “Stabilization of lateral motion in passive dynamic walking,” The International Journal of Robotics Research,
18, 9, pp-917-930, 1999.

de Lasa, M., Buehler, M., “Dynamic compliant walking of a quadruped robot: preliminary experiments”, Proc. International
Conference on Climbing and Walking Robots, Madrid, Spain, 2000.

Lim, H., Takanishi, A., “Walking pattern generation for biped locomotion”, Proc. 32" International Symposium on Robolics,
Seoul, Korea, April, 2001.

Lischinsky, P.A., Compensation de frottement et commmande en position d’un robot hydraulique industriel, Ph.D. Thesis,
Institut National Polytechnique de Grenoble, in French, 1997.

Marhefka, D.W., Orin, D.E., “Simulation of contact using a nonlinear damping model”, Proc. IEEE International Conference
on Robotics and Automation, Minneapolis, Minnesota, April, 1996.



28
[30]
31]

[32
[33]

[34]
3]

36
37

3]
39
41
42

43
[44]

[46]

il
© %

ororororor ot

Ot L0 = O

SUBMITTED TO JEEE TRANS. ROBOTICS AND AUTOMATION - REGULAR PAPER REVISED 18/ MARCH /2002

Ono, K., Takahashi, R., Shimada, T., “Self-excited walking of a biped mechanism”, to appear in Int. J. Robotics Research.
Ono, K., Yamamoto, K., Imadu, A., “Control of giant swing motion of a two-link horizontal bar gymnast robot”, Advanced
Robotics, Vol. 15, No. 4, pp. 449-465, 2001.

| Parker, T.S., Chua, L.O., Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York, 1989.

Pfeiffer, F., Loffler, K., Gienger, M.,“The Concept of Jogging JOHNNIE”, to appear in Proc. of the IEEE International
Conference on Robotics and Automation, Washington DC, May, 2002.

Pratt, J., Dilworth, P., Pratt, G., “Virtual model control of a bipedal walking robot”, Proc. IEEFE International Conference
on Robolics and Automnation, Albuquerque, New-Mexico, April, 1997.

Pratt, J., Pratt, G., “Intuitive control of a planar bipedal walking robot”, Proc. IEEE International Conference on Robolics
and Automation, Leuven, Belgium, May, 1998.

Pratt, G., “Legged robots at MIT: what’s new since Raibert?”, IEEE Robotics and Automation Magazine, September, 2000.
Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, 1., “Dynamics and control of a class of underactuated
mechanical systems”, IFFE Transactions on Automatic Control, 44, 9, pp.1663-1671, 1999.

Roussel, L., Génération de trajectoires de marche optimales pour un robot bipéde, Ph.D. Thesis, Institut National Polytech-
nique de Grenoble, in French, 1998.

Raibert, M.H., Legged robots, Communications of the ACM, 29, 6, pp.499-514, 1986.

Raibert, M.H., “Legged robots that balance”, MITP, Mass., 1986.

Saranli, U., Berkemeier, M.D., Kodistschek, D.T., “Toward the control of multi-joined, monopod runner”, Proc. IEEE
International Conference on Robotics and Automation, Leuven, Belgium, May, 1998.

Spong, M.W., “Passivity Based Control of The Compass Gait Biped,” IFAC World Congress, Beijing, China, July, 1999.
Spong, M.W., Vidyasagar, M., Robot dynamics and control, John Wiley and Sons, New-York, 1991.

Takanishi, A., “Humanoid robots and animal robots - Towards entertainment robot market in 215" century”, Proc. 32"
International Symposium on Robotics, Seoul, Korea, April, 2001.

Thuilot, B., Goswani, A., Espiau, B., “Bifurcation and chaos in a simple passive bipedal gait”, Proc. IEEE International
Conference on Robolics and Aulomation, Albuquerque, New-Mexico, April, 1997.

Vukobratovic, M., Borovac, B., Surla, D., Stokic, D., Biped locomotion, Springer-Verlag, Berlin, 1990.

Yamaguchi, J., Nishino, D., Takanishi, A., “Realization of dynamic biped walking varying joint stiffness using antagonistic
driven joints”, Proc. IEELE International Conference on Robotics and Automation, Leuven, Belgium, May, 1998.

Ye, H., Michel, A.N., Hou, L., “Stability theory for hybrid dynamical systems”, IEFEE Trans. Autom. Control, 43, 4, pp.461-
474, 1998.

Yi, K.Y., “Walking of a biped robot with compliant ankle joints: implementation with KUBCA”, Proc. IEEE Conference on
Decision and Control, Sydney, Australia, December, 2000.

www.uwe.ac.uk/clawar/

www.honda.co.jp/robot/

www-lag.ensieg.inpg.fr/recherche/cser/PRC-Bipedes/Prototype/rabbit.html.

www.al.mit.edu/projects/leglab/

www.sony.co.jp/en/Products/

www.eecs.umich.edu/~grizzle/



PLESTAN, GRIZZLE, WESTERVELT AND ABBA: STABLE BIPED WALKING

O SET DEFINITION AND DETERMINANT VALUE

Set 1 | 2 [ 3 | 4 | 5 T 6 |
7. (deg) min | 207.0166 | 205.7424 | 204.2841 | 202.3595 | 199.5658 | 194.2874
31, (08 max | 212.3901 | 211.1987 | 209.8988 | 208.4111 | 206.4476 | 203.5974
. (dog) min | 15.3876 | 15.9275 | 16.5074 | 16.9435 | 17.3139 | 17.6530
a1, (008 max | 16.2493 | 16.8409 | 17.2858 | 17.6637 | 18.0096 | 18.3090
. (dog) min | 175.3398 | 175.8788 | 177.9546 | 180.0052 | 184.9266 | 190.4181
32, 08 max | 179.4319 | 181.5496 | 184.5598 | 188.6625 | 194.2649 | 202.3273
e, (deg) min | 14.8858 | 15.0474 | 16.8056 | 19.8622 | 23.6792 | 27.9329
A2, (€08 max | 15.7473 | 17.2369 | 20.2635 | 24.1576 | 28.4972 | 31.7051
7 (deg) min 70426 | -7.0858 | -7.0561 | -6.8805| -6.5926| -6.2564
41, 1908 max | -5.9400 | -6.9031 | -6.7442 | -6.4621 | -6.1325| -5.9454
det Ly L, b () min_| -124.4397 | -T34.1952 | -157.0248 | -186.2019 | -219.7093 | -248.1343
a max | -0.1162 | -0.2627 | -0.1244 | -0.1879 | -0.3249 | -0.0193
time, () start 0.0000 0.0467 0.0787 0.1115 0.1548 0.2256
’ stop 0.0467 0.0787 0.1115 0.1548 0.2256 0.3891
Set | 7 | 8 | 9 [ 10 [ 11 [ 12 ]
1. (dog) min | 186.9412 | 182.5195 | 179.5019 | 177.6256 | 176.2960 | 175.5311
P31, \008 max | 198.2124 | 190.7178 | 186.2067 | 183.2200 | 181.2140 | 179.8575
. (dog) min | 17.6880 | 17.1341 | 16.5624 | 16.0697 | 15.6809 | 15.4354
a1, (€8 max | 18.3188 | 18.0453 | 17.4802 | 16.8970 | 16.3943 | 15.9977
i, (dog) min | 198.3208 | 205.0433 | 207.5178 | 208.4091 | 208.4113 | 208.1843
32, 108 max | 209.1855 | 211.7101 | 212.6194 | 212.7885 | 212.7853 | 212.6216
o, (deg) min | 20.4575 | 26.0657 | 22.6346 | 19.6170 | 17.1144 | 15.4355
a2, \CC8 max | 31.7961 | 30.0526 | 26.5923 | 23.0918 | 20.0133 | 17.4601
7. (dog) min 26.0655 | -6.0600 | -6.0600 | -6.0600 | -6.0600 | -6.0600
41, (008 max | -5.9400 | -5.9400 | -5.9400 | -5.9400 | -5.9400 | -5.9400
det Lo L o (x) min_| -249.7731 | -222.8545 | -190.2246 | -159.9935 | -136.3146 | -115.1739
95 max | -0.4242 | -0.0617 | -0.3339 | -1.1705| -0.3394 | -3.7762
time. (5) start 0.3801 0.5906 0.6754 0.7201 0.7461 0.7621
’ stop 0.5906 0.6754 0.7201 0.7461 0.7621 0.7708
TABLE I
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Fig. 2. Schematic of biped robot; absolute angles.
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Fig. 7. Plot of walking as a sequence of stick figures.
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Fig. 10. Plot of zi and 2y (meters). Fig. 13. Function A (bold line) and identity function (dot-

ted line) versus vy;. This graph establishes the exis-
tence of an asymptotically stable walking motion.
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Fig. 12. Three-dimensional projection of the attractive or- sequence of stick figures.

bit. The straight-line segment of the trajectory (near
bottom) reflects the instantaneous change in veloc-
ity at the impact. The initial conditions are in the
bottom-right, outside the cycle.
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Fig. 25. Compliant surface. Plot of normal forces (New-
tons) acting on the stance leg end (top) and the swing
leg end (bottom), versus time.
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24. Compliant surface. Plot of applied torques
(Newton-meters) versus time in the compliant case
(solid line) and, for reference, the rigid case (dashed
line). The relative phasing has been deliberately off-
set for ease of reading the plot.
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