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Sequential Composition of Walking Motions for a
5-Link Planar Biped Walker

E.R. Westervelt and J.W. Grizzle

Abstract— Work by the authors published elsewhere ad-
dressed the problem of designing controllers that induce ex-
ponentially stable, periodic walking motions at a given fixed
speed for a 5-link, planar biped robot with one degree of un-
deractuation in single support. The key technical tool was
the hybrid zero dynamics, a 1-DOF invariant subdynamics of
the full robot model. Further exploiting the features of the
hybrid zero dynamics, this paper provides an additional con-
trol feature: the ability to compose such controllers in order
to obtain walking at several discrete speeds with guaranteed
stability during the transitions. This feature affords the con-
struction of a feedback controller that takes the robot from
one exponentially stable walking motion to another while
providing local stabilization and disturbance rejection.

I. Introduction

This work builds on the results in [9,10], which developed
the notion of the hybrid zero dynamics for the walking mo-
tion of an N -link, planar, biped robot with one less degree
of actuation than degree of motion freedom (DOF) during
the single support phase. This two dimensional, invariant
sub-dynamics of the complete hybrid model of the biped
robot was shown to be key to designing exponentially sta-
bilizing controllers for walking motions. In particular, ex-
ponentially stable orbits of the hybrid zero dynamics can
be rendered exponentially stable in the complete hybrid
model. The Poincaré map of the hybrid zero dynamics was
proven to be diffeomorphic to a scalar, LTI system, ren-
dering transparent the existence and stability properties of
periodic orbits of the hybrid zero dynamics. A special class
of output functions based on Bézier polynomials was used
to simplify the computation of the hybrid zero dynamics,
while at the same time inducing a convenient, finite param-
eterization of these dynamics. Parameter optimization was
then applied to the hybrid zero dynamics to directly design
a provably stable, closed-loop system which satisfied design
constraints, such as walking at a given average speed and
the forces on the support leg lying in the allowed friction
cone. All of the results were illustrated on a 5-link walker
(see Figure 1).

This work provides the ability to compose the above con-
trollers in order to obtain walking at several discrete speeds
with guaranteed stability during the transitions. For sim-
plicity, this development will be specialized to the 5-link
walker studied in [7,8], though the results may be directly
extend to the class of N -link bipeds studied in [3, 9].

Section II reviews the 5-link robot model studied. Sec-
tion III summarizes the work of [9, 10] on the hybrid zero
dynamics. Section IV presents a class of finitely parame-
terized, almost linear output functions. Section V presents
a method for serially composing two controllers so as to
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Fig. 1. Schematic of the 5-link robot considered with measurement
conventions.

transition the robot from walking at a given fixed speed to
another, without loss of stability. The controller design is
motivated by a switching idea presented in [2]: controllers
were first designed to accomplish the individual tasks of
juggling, catching, and palming a ping-pong ball by a robot
arm; these controllers were then sequentially composed via
switching to accomplish the complex task of maneuvering
the ping-pong ball in a 3-D workspace with an obstacle.
The regions of attraction of each controller were first em-
pirically estimated within the full state space of the robot.
Switching from one controller to another without loss of
stability was then accomplished by comparing the current
state of the robot to the region of attraction of the con-
troller for the next desired task. The problem faced in
this work is more challenging in that the domains of at-
traction of any two of the individual controllers may have
empty intersection, and hence a transition controller will
be required in order to steer the robot from the region of
attraction of one controller into the region of attraction of
a second, “nearby”, controller.

Section VI illustrates how the results of Section V af-
fords the construction of a feedback controller that steers
the robot from one walking rate to another to another while
providing stabilization and a modest amount of robustness
to disturbances and parameter mismatch between the de-
sign model and the actual robot. The results are illustrated
via simulation; an animation of the robot’s walking motion
is available on [1].
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Fig. 2. Schematic of leg with
measurement conventions.
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Fig. 3. Schematic of torso with
measurement conventions.

II. Robot model and modeling assumptions

The robot, depicted in Figure 1, is assumed to be planar
and consist of a torso and two identical legs with knees; fur-
thermore, all links have mass, are rigid, and are connected
in revolute joints. All walking cycles will be assumed to
take place in the sagittal plane and consist of successive
phases of single support (meaning the stance leg is touch-
ing the walking surface and the swing leg is not) and double
support (the swing leg and the stance leg are both in con-
tact with the walking surface). During the single support
phase, it is assumed that the stance leg acts as a pivot. It is
further supposed that the walking gaits of interest are such
that successive phases of single support are symmetric, and
progress from left to right.

The two phases of the walking cycle naturally lead to a
mathematical model of the biped consisting of two parts:
the differential equations describing the dynamics during
the single support phase, and a model of the contact event.
The rigid contact model of [5] is assumed, which collapses
the double support phase to an instant in time, and allows
a discontinuity in the velocity component of the state, with
the position remaining continuous. The biped model is thus
hybrid in nature, consisting of a continuous dynamics and
a re-initialization rule at the contact event.
Swing phase model: With 5-links, the dynamic model
of the robot during the swing phase has 5-DOF. Let q =
(q1, · · · , q5)′ be the set of coordinates depicted in Figure 1,
which describe the configuration of the robot with respect
to the world reference frame W . Since only symmetric gaits
are of interest, the same model can be used irrespective of
which leg is the stance leg if the coordinates are relabeled
after each phase of double support. Using the method of
Lagrange, the model is written in the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu. (1)

Table I lists the associated model parameters (see Figures
2 and 3 for details on the parameter definitions used here;
the inertias listed here include the rotor inertia reflected
through the gear reducer). Torques ui, i = 1 to 4, are ap-

Model Torso Femurs Tibias
parameters (T ) (f) (t)

Mass (kg) 20 6.8 3.2
L∗ (m) 0.625 0.4 0.4

Inertia (m2kg) 2.22 1.08 0.93
pM
∗ (m) 0.2 0.163 0.128

TABLE I

Model parameters

plied between each connection of two links, but not between
the stance leg and ground. The model is written in state
space form by

ẋ =
[

q̇
D−1(q) [−C(q, q̇)q̇ − G(q) + Bu]

]

=: f(x) + g(x)u. (2)

where x := (q′, q̇′)′. The state space of the model is taken
as TQ := {x := (q′, q̇′)′ | q ∈ Q, q̇ ∈ IR5}, where Q is a
simply-connected, open subset of [0, 2π)5 corresponding to
physically reasonable configurations of the robot, as done
in [7].
Impact model: An impact occurs when the swing leg
touches the walking surface, S := {(q, q̇) ∈ TQ | pv

2 =
0, ph

2 > 0}, also called the ground (see Figure 1 for defi-
nitions of ph

2 and pv
2). The impact between the swing leg

and the ground is modeled as a contact between two rigid
bodies. In addition to modeling the change in state of the
robot, the impact model accounts for the relabeling of the
robot’s coordinates that occurs after each phase of double
support. Let R be the constant matrix such that R q ac-
counts for relabeling of the coordinates when the swing leg
becomes the new stance leg. Then the impact model of [5]
under standard hypotheses (see [4], for example), results in
a smooth map ∆ : S → TQ,

x+ = ∆(x−), (3)

where x+ := (q+, q̇+) (resp. x− := (q−, q̇−)) is the state
value just after (resp. just before) impact. For later con-
venience, ∆ is expressed as

∆(x−) :=
[

∆q q−
∆q̇(q−) q̇−

]
(4)

where ∆q := R and ∆q̇(q) is a 5 × 5 matrix of smooth
functions of q.
Nonlinear system with impulse effects: The overall
biped robot model can be expressed as a nonlinear system
with impulse effects [11]

ẋ = f(x) + g(x)u x− /∈ S
x+ = ∆(x−) x− ∈ S,

(5)

where, x−(t) := limτ↗t x(τ). Solutions are taken to be
right continuous and must have finite left and right limits
at each impact event (see [4] for details).

A half-step of the robot is defined to be a solution of
(5) that starts with the robot in double support, ends in
double support with the positions of the legs swapped, and
contains no other impact event.
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III. Summary of hybrid zero dynamics

In general, the maximal internal dynamics of a system
that are compatible with the output being identically zero is
called the zero dynamics [6]. In [10], this notion was ex-
tended to include the impact map common in many biped
models. This section briefly summarizes the main results
of [10], and due to space limitations, assumes familiarity
with the zero dynamics of non-hybrid models.

Consider first the swing phase dynamics, (2), and note
that if an output y = h(q) depends only on the position
variables, then, due to the second order nature of the robot
model, the derivative of the output along solutions of (2)
does not depend directly on the inputs. Hence its relative
degree is at least two. Differentiating the output once again
computes the accelerations, resulting in

d2y

dt2
= L2

fh(q, q̇) + LgLfh(q)u, (6)

where the matrix LgLfh(q) is called the decoupling matrix
and depends only on the configuration variables. A conse-
quence of the general results in [6] is that the invertibility
of this matrix at a given point assures the existence and
uniqueness of the zero dynamics in the neighborhood of
that point. With a few extra hypotheses, these properties
can be assured on a given open set.
Output function hypotheses: The output functions
considered are assumed to be smooth functions satisfying
the following hypotheses:
HH1) h is a function of only the position coordinates;
HH2) there exists an open set Q̃ ⊂ Q such that for

each point q ∈ Q̃, the decoupling matrix LgLfh(q) is
square and invertible (i.e., h has vector relative degree
(2, . . . , 2)′);

HH3) there exists a smooth real valued function θ(q) such
that Φ : Q̃ → IR5 by Φ(q) := (h(q)′, θ(q))′ is a diffeo-
morphism onto its image;

HH4) there exists a unique point q− ∈ Q̃ such that
(h(q−), pv

2(q
−)) = (0, 0) and the rank of [h′, pv

2]
′ at

q− equals 5.
Swing phase zero dynamics (cf. [10, Lemma 1]): Hy-
potheses HH1–HH4 ensure that Z := {x ∈ T Q̃ | h(x) =
0, Lfh(x) = 0} is a smooth two dimensional submanifold
of TQ; moreover, the feedback control

u∗(x) = −(LgLfh(x))−1L2
fh(x) (7)

renders Z invariant under the swing phase dynamics in the
sense that, every z ∈ Z, fzero(z) := f(z)+g(z)u∗(z) ∈ TzZ.
Z is called the zero dynamics manifold and ż = fzero(z) is
called the (swing phase) zero dynamics.
Hybrid zero dynamics (cf. [10, Theorem 2 and 5]): Re-
quiring that the swing phase dynamics be invariant under
the impact map, that is, ∆(S∩Z) ⊂ Z, results in the hybrid
zero dynamics,

ż = fzero(z) z− /∈ S ∩ Z
z+ = ∆(z−) z− ∈ S ∩ Z.

(8)

It is shown in [10] that along all solutions of (8), the output
h is identically zero, hence this is a valid zero dynamics for

the hybrid model. Let θ be as in HH3 and let γ0 be the
last row of D and γ(q, q̇) := γ0(q) q̇. Then in the local
coordinates, (ξ1, ξ2) := (θ(q), γ(q, q̇)), the swing phase zero
dynamics of (2) become

ξ̇1 = κ1(ξ1) ξ2

ξ̇2 = κ2(ξ1)
(9)

where κ1 and κ2 are smooth functions of ξ1. Furthermore,
S ∩Z can be shown to be diffeomorphic to IR per σ : IR →
S ∩ Z, where σ(ω) := [σ′

q, (σq̇(q−)ω)′]′, σq := q−,

σq̇(q−) :=
[

∂h
∂q (q−)
γ0(q−)

]−1 [
0
1

]
, (10)

and q− is given by HH4. In addition, θ, when evaluated
along any half-step of the zero dynamics, is a strictly mono-
tonic function of time and thus achieves its maximum and
minimum values at the end points. Thus, the extrema of
θ(q) over a half-step are θ− := θ(q−) and θ+ := θ◦∆q(q−).
Without loss of generality, it is assumed that θ+ < θ−; that
is, that along any half-step of the hybrid zero dynamics, θ
is monotonically increasing.
Poincaré analysis of the zero dynamics (cf. [10, The-
orem 7]) Assume that a smooth output function h on (5)
satisfies HH1–HH4 function, and take the Poincaré sec-
tion to be S ∩ Z so that the Poincaré map is the par-
tial map ρ : S ∩ Z → S ∩ Z defined as in [4]. In lo-
cal coordinates (ζ1, ζ2) := (θ(q), 1

2γ2(q, q̇)), the Poincaré
map can be explicitly computed. Indeed, ∆ : (ζ−1 , ζ−2 ) →
(ζ+

1 , ζ+
2 ) is ζ+

1 = θ+ and ζ+
2 = δ2

zero ζ−2 , where δzero :=
γ0(q+)∆q̇(q−)σq̇(q−), a constant that may be computed a
priori. In these coordinates, the hybrid zero dynamics (9)
may be integrated to obtain

ρ(ζ−2 ) = δ2
zero ζ−2 + Vzero(θ−), (11)

where for θ+ ≤ ζ1 ≤ θ−,

Vzero(ζ1) :=
∫ ζ1

θ+

κ2(ζ)
κ1(ζ)

dζ. (12)

The domain of definition of (11) is{
ζ−2 > 0 | δ2

zero ζ−2 + K ≥ 0
}

. (13)

where K := minθ+≤ξ1≤θ− Vzero(ζ1) ≤ 0.
If δ2

zero 6= 1 and ζ∗2 := Vzero(θ−)/(1 − δ2
zero) is in the do-

main of definition of ρ, then it is the unique fixed point of ρ.
Moreover, if ζ∗2 is a fixed point, then ζ∗2 is an asymptotically
stable equilibrium point of

ζ2(k + 1) = ρ(ζ2(k)) (14)

if, and only if, δ2
zero < 1, and in its domain of attraction is

(13), that is, the entire domain of definition of ρ.
While the domain of definition of the Poincaré map is

(13), not all solutions of the zero dynamics satisfy the mod-
eling assumptions. In particular, the assumption that the
stance leg acts as a pivot during the swing phase limits the
ratio and sign of the ground reaction forces on the stance
leg end. This limit can be reflected as an upper bound on
the mathematical domain of definition of ρ; see [9].
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IV. Finitely parameterized zero dynamics

The outputs y ∈ IR4 are chosen as

y = h(q, α) = H0q − hd(θ(q), α), (15)

with terms defined as follows.
1. H0 is an 4×5 matrix of real coefficients specifying what
is to be controlled.
2. θ(q) := cq, where c is a 1 × 5 row vector of real coef-
ficients, is a scalar function of the configuration variables
and should be chosen so that it is monotonically increasing
along a half-step of the robot (θ(q) is playing the role of
time). Define θ+ and θ− to be the initial and final values
of θ, respectively, along a half-step.
3. Normalization of θ to take values between zero and one,

s(q) :=
θ(q) − θ+

θ− − θ+
. (16)

4. Bézier polynomials of order M ≥ 3

bi(s) :=
M∑

k=0

αi
k

M !
k!(M − k)!

sk(1 − s)M−k. (17)

5. For αi
k as above, define the 4 × 1 column vector αk :=

(α1
k, · · · , α4

k)′ and the 4×(M +1) matrix α := [α0, · · · , αM ].
6.

hd(θ(q), α) :=




b1 ◦ s(q)
...

b4 ◦ s(q)


 . (18)

The matrix of parameters α is said to be regular if the
output satisfies hypotheses HH1-HH4 of Section 3 and hy-
pothesis HH5 of Section 4 of [10], which together imply
the invertibility of the decoupling matrix and the existence
of a two dimensional, smooth, zero dynamics associated
with the single support phase of the robot. Let Zα be
the (swing phase) zero dynamics manifold. Let Γα be any
feedback satisfying assumptions CH2-CH5 of Section III.C
of [9] so that Zα is invariant under the swing phase dy-
namics in closed loop with Γα and is locally finite-time
attractive otherwise. Note that standard results imply
that Γα|Zα = −(LgLfh)−1L2

fh [6], and thus (i) Γα|Zα is
uniquely determined by the choice of parameters used in
the output and is completely independent of the choice of
feedback used to drive the constraints to zero in finite time;
and (ii) even though Γα is necessarily not smooth, Γα|Zα

is as smooth as the robot model.
For a regular parameter value, α, the definition of the

outputs and basic properties of Bézier polynomials yield a
very simple characterization of S ∩ Zα, the configuration
and velocity of the robot at the end of a phase of single
support. Define

q−α = H−1

[
αM

θ−α

]
(19)

ω−
α = H−1




M

θ−α − θ+
α

(αM − αM−1)

1


 , (20)

where H := [H ′
0 c]′, and the initial and final values of

θ corresponding to this output are denoted by θ+
α and θ−α ,

respectively. Then S∩Zα = {(q−α , q̇−α ) | q̇−α = a ω−
α , a ∈ IR}

and is determined by the last two columns of the parameter
matrix α. In a similar fashion ∆(S ∩ Zα), the configura-
tion, q+

α , and velocity, q̇+
α of the robot at the beginning of

a subsequent phase of single support, may be simply char-
acterized and are determined by the first two columns of
the parameter matrix α.

Let β also be a regular parameter value. Then using ar-
guments almost identical to those in the proof of Theorem
4 of [9], it follows that[

β0

θ+
β

]
= HRH−1

[
aM

θ−α

]
(21)

implies h(·, β)◦θ◦∆|(S∩Zα) = 0, while, if q̇+
α := ∆q̇(q−α )ω−

α ,
results in cq̇+

α 6= 0, then

β1 =
θ−β − θ+

α

Mcq̇+
α

H0q̇
+
α + α0 (22)

implies Lfh(·, β) ◦ θ ◦∆|(S∩Zα) = 0. The key thing to note
is that these two conditions involve, once again, only the
first two columns of the parameter matrix β.

Taking β = α, conditions (21) and (22) imply that
∆(S ∩ Zα) ⊂ Zα, in which case Zα is then controlled-
invariant for the full hybrid model of the robot. The re-
sulting restriction dynamics is called the hybrid zero dy-
namics. Necessary and sufficient conditions can be given
for the hybrid zero dynamics to admit an exponentially sta-
ble, periodic orbit, Oα [9]. When these conditions are met,
the matrix of parameters α is said to give rise to an expo-
nentially stable walking motion. Under controller Γα, the
exponentially stable orbit in the hybrid zero dynamics is
also exponentially stable in the full order model, (5). The
domain of attraction of Oα in the full dimensional model
cannot be easily estimated; however, its domain of attrac-
tion intersected with S ∩Zα, that is, the domain of attrac-
tion of the associated fixed-point of the restricted Poincaré
map, ρα : S ∩ Zα → S ∩ Zα, is computed analytically in
Section IV of [9]; denote this set by Dα, which is a subset
of S ∩ Zα.

Finally, define the average walking speed over a half-step,
ν̄ (m/s), to be step length (m) divided by the time to im-
pact, TI (s), i.e., the elapsed time of a half-step. Since the
controllers employed are not smooth, ν̄ : S → IR is not
a smooth function of the states. However, if α is a regu-
lar parameter value giving rise to a hybrid zero dynamics,
∆(S ∩ Zα) ⊂ Zα, then ν̄ restricted to S ∩ Zα depends
smoothly on the states and the parameter values α used to
define the outputs, (15); an explicit formula for ν̄ is given
in Section VI of [9].

V. Provably Stable Composition of Walking
Motions

Let α and β be two regular sets of parameters for
the outputs (15) with corresponding zero dynamics man-
ifolds, Zα and Zβ . Suppose that ∆(S ∩ Zα) ⊂ Zα and
∆(S ∩ Zβ) ⊂ Zβ, and that there exist exponentially sta-
ble periodic orbits1, Oα and Oβ ; denote the correspond-
ing controllers by Γα and Γβ . The goal is to be able to

1Typically, these would correspond to walking at different average
speeds.
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Zα
Zβ

Z(α→β)

∆(S ∩ Zα)

∆(S ∩ Zβ)
S ∩ Zα

S ∩ Zβ

Fig. 4. Abstraction of the composition of two controllers Γα and
Γβ via transition controller Γ(α→β). Under the action of Γα the
dynamics evolve on Zα. Switching to Γ(α→β) when the state

enters ∆(S ∩Zα) causes the dynamics to evolve along Z(α→β) to
S ∩Zβ . Switching to Γβ when the state enters S ∩Zβ causes the
dynamics to evolve on Zβ .

transition from Oα to Oβ without the robot falling (i.e.,
with stability guaranteed). If it were known that the do-
mains of attraction of the two orbits had a non-empty inter-
section, then the method of [2] could be applied directly.
Numerically evaluating the domains of attraction on the
full-order model is unpleasant, so another means of assur-
ing a stable transition is sought that is based on easily
computable quantities, the domains of attraction of the re-
stricted Poincaré maps associated with Oα and Oβ .

Since in general Zα ∩ Zβ = ∅, the method for providing
a stable transition from Oα and Oβ will be to introduce a
one-step transition controller Γ(α→β) whose (swing phase)
zero dynamics manifold Z(α→β) connects the zero dynam-
ics manifolds Zα and Zβ (see Figure 4). More precisely,
switching will be synchronized with impact events and the
zero dynamics manifold Z(α→β) will be chosen to map ex-
actly from the one-dimensional manifold ∆(S ∩ Zα) (i.e.,
the state of the robot just after impact with S under con-
troller Γα) to the one-dimensional manifold S ∩ Zβ (i.e.,
the state of the robot just before impact with S under con-
troller Γβ).

From (19)–(22), any zero dynamics manifold Z(α→β)

with parameters

(α → β)0 = α0

(α → β)1 = α0 −
θ−β − θ+

α

θ−α − θ+
α

(α0 − α1)

(α → β)M−1 = βM +
θ−β − θ+

α

θ−β − θ+
β

(βM−1 − βM )

(α → β)M = βM

θ+
(α→β) = θ+

α , θ−(α→β) = θ−β

(23)

satisfies Z(α→β) ∩ ∆(S ∩ Zα) = ∆(S ∩ Zα) and ∆(S ∩
Z(α→β)) = ∆(S ∩ Zβ). The choice of the intermediate
parameter values, (α → β)i, i = 2 to M − 2 affects the
walking motion, and one could choose their values through
optimization, for example, in order to minimize the torques
required to evolve along the surface Z(α→β). However, the

simple choice

(α → β)i = (αi + βi)/2, i = 2 to M − 2, (24)

has proven effective in examples worked by the authors.
The reason for this seems to be intimately linked the use
of Bézier polynomials; see Section V.B of [9].

Assume that the parameter matrix given in (23) and
(24) is regular and let Γ(α→β) be an associated controller;
then Γ(α→β)|Z(α→β) is uniquely determined by the matrix of
parameters (α → β). The goal now is to determine under
what conditions Γ(α→β) will effect a transition from Oα to
Oβ .

Let P(α→β) : S → S be the Poincaré return map of
the model (5) in closed loop with Γ(α→β) and consider
P(α→β)|(S∩Zα). By construction of Z(α→β), ∆(S ∩ Zα) ⊂
Z(α→β). Since Z(α→β) is invariant under Γ(α→β), it follows
that P(α→β)(S ∩ Zα) ⊂ S ∩ Z(α→β). But by construction,
S ∩Z(α→β) = S ∩Zβ . Thus, the restriction of the Poincaré
return map to S ∩ Zα induces a (partial) map

ρ(α→β) : S ∩ Zα → S ∩ Zβ. (25)

In Section IV.A of [9], a closed-form expression for ρ(α→β)

is computed on the basis of the two-dimensional zero dy-
namics associated with Z(α→β).

Let Dα ⊂ S ∩ Zα and Dβ ⊂ S ∩ Zβ be the domains of
attraction of the restricted Poincaré maps ρα : S∩Zα → S∩
Zα and ρβ : S∩Zβ → S∩Zβ associated with the orbits Oα

and Oβ , respectively. (Since the existence of exponentially
stable, periodic orbits has been assumed, these domains
are non-empty and open.) It follows that ρ−1

(α→β)(Dβ) is
precisely the set of states in S ∩ Zα that can be steered
into the domain of attraction of Oβ under the control law
Γ(α→β). In general, from stability considerations, one is
more interested in Dα ∩ ρ−1

(α→β)(Dβ), the set of states in
the domain of attraction of Oα that can be steered into the
domain of attraction of Oβ in one step under the control
law Γ(α→β).

Theorem 1: (Serial composition of stable walking
motions) Assume that α and β are regular parameters for
the output (15) and that (α → β) defined by (23) and (24)
is also regular. Suppose furthermore that
1. ∆(S ∩ Zα) ⊂ Zα and ∆(S ∩ Zβ) ⊂ Zβ ;
2. there exist exponentially stable, periodic orbits Oα and
Oβ in Zα and Zβ , respectively, so that the domains of
attraction Dα ⊂ S ∩Zα and Dβ ⊂ S ∩Zβ of the associated
restricted Poincaré maps are non-empty and open.
Then the set of states in Dα that can be steered into
Dβ in one step under any control law Γ(α→β) satisfying
assumptions CH2-CH5 of Section IV.C of [9] is equal to
Dα ∩ ρ−1

(α→β)(Dβ). 2

Proof: This follows directly from the definition of
ρ(α→β).

An example is given in the next section.

VI. Example

This section demonstrates the technique for serial com-
position developed in Section V. Exponentially stable
walking controllers designed via optimization as described
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Step TI ν̄
num.

Controller
(s) (m/s)

1 0.75 0.5186 0.7500
2 0.75 → 0.85 0.5593 0.7604
3 0.85 0.5320 0.7993
4 0.85 0.5194 0.8187
5 0.85 0.5120 0.8306
6 0.85 0.5075 0.8379
7 0.85 0.5048 0.8424
8 0.85 0.5031 0.8453
9 0.85 → 0.65 0.4481 0.8379
10 0.65 0.4839 0.7759
11 0.65 0.5073 0.7401
12 0.65 0.5258 0.7140
13 0.65 0.5401 0.6952
14 0.65 0.5507 0.6818
15 0.65 0.5585 0.6723
16 0.65 0.5641 0.6656
17 0.65 0.5682 0.6608
18 0.65 0.5710 0.6575

TABLE II

Composition example result (Notes: controllers are

identified by their average walking rate fixed points, and

A → B indicates a transition controller from a controller

at average walking rate A to average walking rate B).

step number
5 10 15

0.6

0.7

0.8

0.9

(m
/
s)

Fig. 5. Command (dashed) verses actual (solid) average speed (Note:
the sloped portions of the command curve correspond to transi-
tion controllers).

in [8] are used as well as transition controllers designed
according to (23) and (24).

For this example, the robot starts at the fixed point of
an exponentially stable walking controller with fixed point
0.75 m/s, transitions to a controller with fixed point 0.85
m/s, takes several steps under that controller, transitions
to a controller at 0.65 m/s, and, finally, takes several steps
under that controller. Table II lists result of this compo-
sition experiment: the step number; which controller was
applied; the time to impact (step duration), TI ; and the av-
erage speed, ν̄. Figure 5 gives the command verses actual
average walking speed. For an animation of this example
as well as supporting plots, see [1].
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