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Switching and PI Control of Walking
Motions of Planar Biped Walkers

E.R. Westervelt*, JJW. Grizzle™, and
C. Canudas de Wit~

Abstract— A companion paper has addressed the problem
of designing controllers that induce exponentially stable, pe-
riodic walking motions at a given fixed walking rate for a
planar, biped robot with one degree of underactuation in
single support. This note provides two additional control
features: (i) the ability to compose such controllers in or-
der to obtain walking at several discrete walking rates with
guaranteed stability during the transitions; (ii) the ability
to regulate the robot’s average walking rate to a continuum
of values. Taken together, these two features afford the con-
struction of a feedback controller that takes the robot from
a standing position, through a range of walking rates, and
back to a standing position, while providing local stabiliza-
tion and disturbance rejection. The key technical tool is the
hybrid zero dynamics of the robot model.

Keywords. Hybrid systems, zero dynamics, Poincaré sections,

Bézier curves, walking

I. INTRODUCTION

This note builds on the results in [8,9], which developed
the notion of the hybrid zero dynamics for the walking mo-
tion of an N-link, planar, biped robot with one less degree
of actuation than degree of motion freedom (DOF) during
the single support phase. This two-dimensional, invariant
sub-dynamics of the complete hybrid model of the biped
robot was shown to be key to designing exponentially sta-
bilizing controllers for walking motions. In particular, ex-
ponentially stable orbits of the hybrid zero dynamics can
be rendered exponentially stable in the complete hybrid
model. The Poincaré map of the hybrid zero dynamics was
proven to be diffeomorphic to a scalar, LTI system, ren-
dering transparent the existence and stability properties of
periodic orbits of the hybrid zero dynamics. A special class
of output functions based on Bézier polynomials was used
to simplify the computation of the hybrid zero dynamics,
while at the same time inducing a convenient, finite pa-
rameterization of these dynamics. Parameter optimization
was then applied to the hybrid zero dynamics to directly
design a provably stable, closed-loop system which satis-
fied design constraints, such as walking at a given average
walking rate and the forces on the support leg lying in the
allowed friction cone. All of the results were illustrated on
a five-link walker.

This note provides two additional features: (i) the ability
to compose the above controllers to obtain walking at sev-
eral discrete walking rates with guaranteed stability during
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the transitions; (ii) the ability to regulate the robot’s aver-
age walking rate to a continuum of values.

Section III presents a method for serially composing two
controllers so as to transition the robot from walking at
a given fixed walking rate to another, without loss of sta-
bility. The controller design is motivated by a switching
idea presented in [3]: controllers were first designed to ac-
complish the individual tasks of juggling, catching, and
palming a ping-pong ball by a robot arm; these controllers
were then sequentially composed via switching to accom-
plish the complex task of maneuvering the ping-pong ball
in a three-dimensional workspace with an obstacle. The re-
gions of attraction of each controller were first empirically
estimated within the full state space of the robot. Switch-
ing from one controller to another without loss of stability
was then accomplished by comparing the current state of
the robot to the region of attraction of the controller for
the next desired task. The problem faced in this note is
more challenging in that the domains of attraction of any
two of the individual controllers may have empty intersec-
tion, and hence a transition controller will be required to
steer the robot from the region of attraction of one con-
troller into the region of attraction of a second, “nearby”,
controller.

Section IV develops an event-based PI controller to reg-
ulate walking rate to a continuum of values. The controller
uses integral action to adjust the parameters in a controller
that, for fixed parameter values, induces an exponentially
stable, periodic orbit. Parameter adjustment takes place
just after impact (swing leg touching the ground). The
analysis of the controller is based on the restricted Poincaré
map of the hybrid zero dynamics.

Section V illustrates how the results of Sections III and
IV, when taken together, afford the construction of a feed-
back controller that steers the robot from a standing po-
sition, through a range of walking rates, and back to a
standing position, while providing stabilization and a mod-
est amount of robustness to disturbances and parameter
mismatch between the design model and the actual robot.
The results are illustrated via simulation on the five-link
model studied in [4,6-8]; an animation of the robot’s walk-
ing motion is available on [1].

II. NOTATION AND BAsiCc FACTS

This section summarizes some notation and results from®
[8]. The reader is encouraged to read [8] for further in-
terpretation, context and supporting diagrams. The con-
figuration coordinates of the robot in single support (also
commonly called the swing phase) are denoted by ¢ =
(g1,--+,qn)’, the state space is denoted by T'Q, and a con-
trol is applied at each connection of two links, but not at
the contact point with the ground (i.e., no ankle torque),
for a total of (N — 1) controls. The detailed assumptions
on the robot (bipedal, planar and one less degree of ac-
tuation than degrees of freedom, point feet, rigid contact
model) and the walking gait (instantaneous double support
phase, no slipping nor rebound at impact, motion from left
to right, symmetric gait) are given in Section II of [§].

The hybrid model of the robot (single support phase La-

I Preliminary versions of [8] have been presented in [7,9].
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grangian dynamics plus impact map) is expressed as a non-
linear system with impulse effects

f(x) +g9(x)u
Az7)

: TR

+

The impact or walking surface, .S, is defined as

S:={(¢,4) €TQ | p5(q) =0, ph(q) >0},  (2)

where py and p? are the Cartesian coordinates of the swing
leg end. The impact map A : S — S computes the value
of the state just after impact with S, z+ = (¢7,¢"), from
the value of the state just before impact, = = (¢—,¢7).
Since the configuration coordinates necessarily involve the
specification of which of the two the legs is in contact with
the ground, the coordinates must be relabeled after each
step to take into account the successive changing of the
support leg. This is reflected in the impact map via a
constant, invertible matrix R,
q":=Rq". (3)
The control design involves the choice of a set of holo-
nomic constraints that are asymptotically imposed on the
robot via feedback control. This is accomplished by inter-
preting the constraints as output functions depending only
on the configuration variables of the robot, and then com-
bining ideas from finite-time stabilization and computed
torque. The outputs y € IRV ! are chosen as

y = h(g,a) = Hog — ha(0(q), ), (4)
with terms defined as follows.

1. Hpis an (N —1)x N matrix of real coefficients specifying
what is to be controlled.

2. 0(q) := cq, where ¢ is a 1 x N row vector of real coef-
ficients, is a scalar function of the configuration variables
and should be chosen so that it is monotonically increasing
along a step of the robot (6(q) is playing the role of time).
Define 07 = cq™ and 0~ = cqg~ to be the initial and final
values of 6, respectively, along a step.

3. Normalization of 6 to take values between zero and one,

0(q) — 0"

s(q) = - —o+ (5)

4. Bézier polynomials of order M > 3

M

M
bi(s) ==Y o4 m sF(1—s)M—k, (6)
k=0

5. For ol as above, define the (N — 1) x 1 column vector

ag = (af, - .,aivfl)’ and the (N — 1) x (M + 1) matrix
Q= g, , Q0]
6.
b1 0 s(q)
ha(0(q), @) := : (7)
by_105(q)

The matrix of parameters « is said to be a regular pa-
rameter of output (4) if the output satisfies hypotheses

HH1-HH4 of Section ITI.A and hypothesis HH5 of Section
IIL.B of [8], which together imply the invertibility of the
decoupling matrix and the existence of a two-dimensional,
smooth, zero dynamics associated with the single support
phase of the robot. Let Z, be the (swing phase) zero dy-
namics manifold. Let I'y, be any feedback satisfying as-
sumptions CH2-CHS5 of Section II1.C of [8] so that Z, is in-
variant under the swing phase dynamics in closed loop with
Ty, and is locally finite-time attractive otherwise. Note that
standard results imply that Ta|z, = —(LyLyh)~'L}h [5],
and thus (i) T'y |z, is uniquely determined by the choice of
parameters used in the output and is completely indepen-
dent of the choice of feedback used to drive the constraints
to zero in finite time; and (ii) even though I',, is necessarily
not smooth, I'y |z, is as smooth as the robot model.

For a regular parameter value of output (4), «, the def-
inition of the outputs and basic properties of Bézier poly-
nomials yield a very simple characterization of SN Z,, the
configuration and velocity of the robot at the end of a phase
of single support. Define

w = H Gy ©
M
P I e B
1
where H := [H| ¢, and the initial and final values of

6 corresponding to this output are denoted by 6% and 6,
respectively. Then SNZ, = {(q¢,.4;) | 4, = aw, ,a € R}
and is determined by the last two columns of the parameter
matrix a. In a similar fashion A(S N Z,), the configura-
tion, ¢, and velocity, ¢, of the robot at the beginning of
a subsequent phase of single support, may be simply char-
acterized and are determined by the first two columns of
the parameter matrix a.

Let 3 also be a regular parameter value of output (4).
Then using arguments almost identical to those in the proof
of Theorem 4 of [8], it follows that

[50

ot } = HRH™! [ (10)

anr
O

implies h(-, 3) 0 Al(snz,) = 0, while, if ¢ := Ay(qy ) wy,
results in cgt # 0, then

05 — 04 o
B = WHOQQ + ap (11)

implies L¢h(-, 3) o Al(snz,) = 0. The key thing to note is
that these two conditions involve, once again, only the first
two columns of the parameter matrix 3. In a similar fashion
the last two columns of the parameter matrix S may be
chosen so that h(-, 3)|(snz,) = 0, and Lzh(-, 8)|(snz.) = 0.

Taking 8 = «, conditions (10) and (11) imply that
A(SNZ,) C Zy, in which case Z, is then controlled-
invariant for the full hybrid model of the robot. The re-
sulting restriction dynamics is called the hybrid zero dy-
namics. Necessary and sufficient conditions can be given
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for the hybrid zero dynamics to admit an exponentially?
stable, periodic orbit, O, [8]. When these conditions are
met, the matrix of parameters « is said to give rise to an
exponentially stable walking motion. Under controller T',,
the exponentially stable orbit in the hybrid zero dynamics
is also exponentially stable in the full order model, (1). The
domain of attraction of O, in the full dimensional model
cannot be easily estimated; however, its domain of attrac-
tion intersected with SN Z,, that is, the domain of attrac-
tion of the associated fixed-point of the restricted Poincaré
map, po : SN Z, — SN Z,, is computed analytically in
Section IV of [8]; denote this set by D,, which is a subset
of SNZ,.

Finally, define the average walking rate over a step®,
(m/s), to be step length (m) divided by the elapsed time of
a step (s). Since the controllers employed are not smooth,
v : S — IR is not a smooth function of the states. However,
if o is a regular parameter value of output (4) giving rise to
a hybrid zero dynamics, A(SNZ,) C Z,, then ¥ restricted
to SNZ, depends smoothly on the states and the parameter
values « used to define the outputs, (4); an explicit formula
for © is given in Section VI of [8].

III. PROVABLY STABLE COMPOSITION OF WALKING
MoTIONS

Let « and 3 be two regular sets of parameters of output
(4) with corresponding zero dynamics manifolds, Z, and
Zg. Suppose that A(SNZ,) C Z, and A(SN Zg) C Zg,
and that there exist exponentially stable periodic orbits?,
O, and Og; denote the corresponding controllers by I',
and I'g. The goal is to be able to transition from O, to Og
without the robot falling (i.e., with stability guaranteed).
If it were known that the domains of attraction of the two
orbits had a non-empty intersection, then the method of
[3] could be applied directly. Numerically evaluating the
domains of attraction on the full-order model is unpleas-
ant, so another means of assuring a stable transition is
sought that is based on easily computable quantities, the
domains of attraction of the restricted Poincaré maps as-
sociated with O, and Og.

Since in general Z, N Zz = ), the method for providing
a stable transition from O, and Oz will be to introduce a
one-step transition controller I'(,_,3) whose (swing phase)
zero dynamics manifold Z(a—p) connects the zero dynam-
ics manifolds Z, and Zg (see Figure 2). More precisely,
switching will be synchronized with impact events and the
zero dynamics manifold Z,_.3) will be chosen to map ex-
actly from the one-dimensional manifold A(S N Z,) (ie.,
the state of the robot just after impact with S under con-
troller I'y) to the one-dimensional manifold S N Z3 (i.e.,
the state of the robot just before impact with S under
controller I'g). The one-step transition controller F(a_,g)
differs from a deadbeat controller in that [(a—p) takes all

2Note that finite-time stabilization is used only to constrain (N —
1) of the N degrees of freedom while the stability properties of the
uncontrolled degree of freedom is determined by the resulting closed-
loop system dynamics.

3A step starts with the swing leg on the ground and behind the
robot and ends with the swing leg on the ground and in front of the
robot.

4Typically, these would correspond to walking at different average
walking rates.

points in a subset of manifold A(SNZ,) into a subset of the
manifold S N Zg as opposed to a deadbeat controller that
would map a subset of A(SNZ,) to a pointin SN Zg. The
design of multi-step transition controllers is also possible
but not addressed here.

From (8)—(11), any zero dynamics manifold Z,_,3) with
parameters

(=B =
05 — 04
(=B = a— - _ ot (o — a1)
05 — 07
(0= Blu-1 = Bu+ 2= (B —Bar) (19
Hﬁ o aﬂ
(@=PBm = Bu
+ — pt
e(aaﬂ) - 90(
G(ZH,@) = 05

satisfies Zq_3) N A(S N Zy) = A(S N Z,) and A(S N
Za—p)) = A(S N Zg). The choice of the intermediate
parameter values, (&« — 3);, i = 2 to M — 2 affects the
walking motion, and one could choose their values through
optimization, for example, to minimize the torques required
to evolve along the surface Z(,_.g). However, the simple
choice

(@ = B)i=(ci+0:i)/2, i=2 to M =2, (13)
has proven effective in examples worked by the authors.
The reason for this seems to be intimately linked the use
of Bézier polynomials; see Section V.B of [8].

Assume that the parameter matrix given in (12) and
(13) is regular and let I'(,_g) be an associated controller;
then F(aé5)|z(aam is uniquely determined by the matrix
of parameters (a« — (). The goal now is to determine
under what conditions F(a_,ﬁ) will effect a transition from
the region of attraction of O, to the region of attraction of
Og.

Let Pa—pg : S — S be the Poincaré return map of
the model (1) in closed loop with I'(,_.3) and consider
Pra—p)l(snz,)- By construction of Z4_.g5), A(S N Z,) C

(a—p)- Since Z(,_.p) is invariant under I'(,_ gy, it follows
that Po_3)(SNZy) C SN Zap). But by construction,
SNZq-p) = SNZg. Thus, the restriction of the Poincaré
return map to S N Z, induces a (partial) map

Pla—p) ' SNZ,— SN Zﬁ. (14)
In Section IV.A of [8], a closed-form expression for p(_. g
is computed on the basis of the two-dimensional zero dy-
namics associated with Z(aﬁﬂ).

Let D, C SN Z, and Dg C SN Zg be the domains of
attraction of the restricted Poincaré maps p,, : SNZ, — SN
Zy and pg : SNZz — SN Zg associated with the orbits O,
and Og, respectively. (Since the existence of exponentially
stable, periodic orbits has been assumed, these domains
are non-empty and open.) It follows that p(_a:ﬂ) (Dg) is
precisely the set of states in S N Z, that can be steered
into the domain of attraction of Oz under the control law
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[a—p).- In general, from stability considerations, one is

al_)ﬁ)(Dﬁ), the set of states in
the domain of attraction of O, that can be steered into the
domain of attraction of Og in one step under the control
law F(a_,ﬁ).

Theorem 1: (Serial composition of stable walking
motions) Assume that « and  are regular parameters of
output (4) and that (o — ) defined by (12) and (13) is
also regular. Suppose furthermore that
1. A(SNZ,) C Zy and A(SNZg) C Zg;

2. there exist exponentially stable, periodic orbits O, and
Op in Z, and Zg, respectively, so that the domains of
attraction D, C SN Z, and Dg C SN Zg of the associated
restricted Poincaré maps are non-empty and open.

Then the set of states in D, that can be steered into Dg
in one step under any control law I'(,_ g satisfying as-
sumptions CH2-CH5 of Section IV.C of [8] is equal to

more interested in D, N P

Do N Py (Dp)- o
Proof: ~ This follows directly from the definition of
[ ]

Pla—p)-
An example is given in Section V.

IV. EVENT-BASED PI CONTROL OF THE AVERAGE
WALKING RATE

The previous section demonstrated how to achieve walk-
ing at several discrete walking rates through a switching
law and a one-step transition controller. The goal here is to
design an event-based controller® that adjusts the param-
eters in the output (4) to achieve walking at a continuum
of rates. The controller design is based, once again, on the
hybrid zero dynamics.

Let a be a regular parameter value of output (4) for
which there exists an exponentially stable periodic orbit.
Let 2} be the corresponding fixed point of the restricted
Poincaré map, p,, : SN Z, — SN Z,. To emphasize the
dependence on the parameter value, for z € SN Z,, let
p(z,a) = pa(2).

Suppose there exists at least one pair of indices (k,1)
such that Ov o p(z%,)/dal, # 0, with 2 < k < M — 2.
Then there exists o € RV =D*(M+1) guch that

(6a)o = (da)1 = (0a)p—1 = (da)r = 0 (15)
N—-1 M
s Ovop(zh,a)
2 ;06%78@2 £ 0. (16)

For w € IR sufficiently small in magnitude, o + wda is also
regular. From (15)

SN Za+w5a
A(SN Zotwsa)

SNZ,
A(SNZ,).

(17)

Thus, pa+wsa : SNZy — SNZ,, and the following dynamic
system can be defined,

z(k+1)
n(k)

(2(k), @ + w(k)da)
(=(k),

5That is, one that acts step-to-step with updates occurring at im-
pacts.

g (1)
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with one-dimensional state space SN Z,, input w € IR and
output equal to average walking rate, n = 7 € IR. More-
over, the equilibrium point 22 for w = 0 is exponentially
stable since the periodic orbit is exponentially stable, while
the condition (16) implies that the linearization of the sys-
tem (18) about the equilibrium has a well-defined relative
degree equal to one. Therefore, by standard arguments,
the following holds:

Theorem 2: (Event-based PI control of average
walking rate) Let a be a regular parameter value for
which there exists an exponentially stable periodic orbit
in Z,. Assume there exists da satisfying (15) and (16).
Then average walking rate can be regulated via PI control.
In particular, there exist ¢ > 0, and scalars K, and K;
such that for all n* such that |7* — 7(z%)| < €, the system
with proportional plus integral control

z(E+1) = plz(k),a+ wk)da)
n(k) = v(z(k))

e(k+1) = e(k)+ (" —n(k)) (19)
w(k) Kp(n™ —n(k)) + Kre(k)

has an exponentially stable equilibrium, and thus, when
initialized sufficiently near the equilibrium, limg_ (7" —
n(k)) = 0. 0
The above controller is realized on the full-hybrid model

as follows:

T = f(z)+9(@)larwsa

é = 0 = €8S

w = 0

zt = A(z7) (20)
et = e+ —v(z7)) x~ €S

wt = Kyn*—v(z7))+ Kre”

V. EXAMPLE: STARTING AND ENDING FROM A
STANDING POSITION

Sections III and IV demonstrated a means to achieve
walking at several discrete walking rates and at a contin-
uum of rates. This section summarizes the application of
these techniques to the five-link model studied in [4, 6, 8]
(see Figure 1) and gives a simple technique for starting
and another for stopping the robot from a standing po-
sition. For reasons of space the details of the model are
omitted and the reader is referred to [8]. This example will
illustrate the following: the robot will start from a stand-
ing position, increase in walking rate to approximately 0.8
m/s, and then slow to a stop.

Initiating walking from a stable standing position — de-
fined as a configuration where ¢ = 0, both leg ends are
on the ground, and where the projection of the robot’s
center of mass is between the end of the legs — was ac-
complished by moving the projection of the robot’s center
of mass in front of what will become the stance leg — thus
moving the robot to an unstable standing position — while
not violating the no-slip condition for that leg. This task
can be accomplished using traditional control techniques
as the system is fully actuated (in fact, it is over actu-
ated). To that end, simple, hand-crafted joint trajectories
that move the torso and hips forward were tracked at each
joint. When the ground reaction forces became zero on
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what will become the swing leg, the control was switched
from joint trajectory tracking to a transition controller of
the kind designed in Section III. The transition controller
steers the robot from the unstable standing position to the
domain of attraction of an exponentially stable controller.

During the application of each exponentially stable con-
troller, event-based PI control was applied to hasten con-
vergence to the desired walking rate. The transition from
one exponentially stable controller to another was done
with a transition controller designed according to (12) and
(13).

To transition from walking to a stable standing position,
event-based PI control was used on a controller with a slow
average walking rate, 0.25 m/s, with a set-point of n* = 0.
Using this technique slowed the robot until it did not have
enough energy to make a step, thus stopping the robot®.

Table T lists which controllers were applied during which
steps. Note that (i) in both Tables I and II, the step-
initiation controller (based on tracking) that was applied
just prior to the first transition controller is not listed; (ii)
in Table II, the exponentially stable controllers are iden-
tified by their average walking rate fixed points in m/s;
and (iii) the event-based PI control was only used during
the application of exponentially stable controllers and not
during the application of transition controllers. Adding
event-based PI control increased the rate of convergence
to the respective controller’s fixed point while preserving
exponential stability. This idea is similar to that presented
in [2], but is more general in its approach.

The left half of Table I lists the transition controllers
that were applied while the right half lists the exponen-
tially stable controllers and the desired fixed points, n*’s,
used for the PI control. In each application of PI control,
the gains were chosen to be K}, = —1.7 and K; = 1. Finite
differences were used to compute dvop(z2}, ) /o, for sev-
eral values of ¢ and k. In this way, it was determined that
adjusting the angle of the swing leg femur during mid-step
would have a sufficiently strong effect on the average walk-
ing speed (this corresponded to ¢ = 2 and k = 3). Hence,
Sa was chosen to be all zeros with the exception of Ja3
which was set to 1. Each exponentially stable controller
was initialized with e~ of (20) set to zero (i.e., e~ =0 on
steps 2, 5, 18, etc.).

Table II lists the time to impact (step duration), T7, for
each step and average velocity, v, for each step. The robot
begins in an unstable standing position at the start of step
one; increases in average walking rate to a maximum of
approximately 0.8 m/s on the sixteenth step; and then is
slowed to a stop on the thirtieth step, where the robot
begins to step forward but then rocks backward to a stop.
The peak torque for this example is 63 Nm, less than half of
the 150 Nm that is possible with the motors and gearing of
the robot studied in [4,6,8]. Figure 3 gives the commanded
versus actual average walking rate. For an animation of
this example as well as additional supporting plots, see [1].

6In fact, due to rigid impacts, the robot will continue to rock
back and forth, alternating impacts with each leg, and decreasing
the robot’s kinetic energy with each impact.
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Fig. 1. Schematic of five-link model studied.



Step Transition Step Controller n*

nuim. Controller nums. (m/s)
1 S.P. — 045 2-3 0.45 0.45
4 0.45 — 0.75 5-16 0.75 0.8
17 0.75 — 0.55 18-21 0.55 0.55
22 0.55 — 0.35 23-26 0.35 0.35
27 0.35 — 0.25 28 0.25 0.00

TABLE I

APPLIED CONTROL (NOTES: S.P. 1s STANDING POSITION, AND
A — B INDICATES A TRANSITION CONTROLLER FROM A CONTROLLER
AT AVERAGE WALKING RATE A TO AVERAGE WALKING RATE B).

Step Ty v Step T v

num. (s) (m/s) num. (s) (m/s)
1 0.619 | 0.516 16 0.486 | 0.801
2 1.199 | 0.266 17 0.441 | 0.775
3 0.875 | 0.365 18 0.478 | 0.715
4 0.915 | 0.425 19 0.520 | 0.657
5] 0.692 | 0.562 20 0.569 | 0.600
6 0.594 | 0.655 21 0.609 | 0.561
7 0.535 | 0.727 22 0.528 | 0.499
8 0.510 | 0.763 23 0.535 | 0.492
9 0.498 | 0.781 24 0.584 | 0.450
10 0.492 | 0.791 25 0.656 | 0.401
11 0.489 | 0.796 26 0.726 | 0.362
12 0.487 | 0.798 27 0.659 | 0.318
13 0.486 | 0.800 28 0.642 | 0.327
14 0.486 | 0.800 29 0.690 | 0.272
15 0.486 | 0.801 30 0.875 | 0.000

TABLE II

EXAMPLE COMPOSITION STEP STATISTICS: STARTING FROM A
STANDING POSITION, INCREASING AVERAGE WALKING RATE, v, TO 0.8
m/s, THEN DECREASING ¥ TO 0 m/s, A STOP.

SNZa

Fig. 2. Abstraction of the composition of two controllers 'y, and
I'g via transition controller F(QHB). Under the action of I',, the
dynamics evolve on Zo. Switching to I'(,_.3) when the state
enters A(SN Za) causes the dynamics to evolve along Z(,_.g) to
SN Zg. Switching to I'3 when the state enters SN Zg causes the
dynamics to evolve on Zg.
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Fig. 3. Command (dashed) versus actual (solid) average walking rate
(Note: the sloped portions of the command curve correspond to

transition controllers, and average walking rate is computed at
the end of each step).



