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ABSTRACT

To minimized the machine down time in semiconductor manufacturing process, a novel sensor fault

detection in a plasma etching system employing a Broadband RF sensor was developed. The work

presented here focuses on detecting errors in the TCP measurement and pressure sensor, though the

method has potential for several of the other sensors. To improve the detection sensitivity, we used

real-time machine input estimation, and compared it from actual recipe setting instead of employing

raw RF signals directly. For a main etch process on a Lam TCP 9400SE , � 10 % relative deviations

in TCP measurement, or � 25 % in pressure simulating respective TCP and pressure sensor faults in

etching process can be detected with high accuracy: Detection probability PD � 1 and false alarm

rate PF � 0 for both.
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I. Introduction

As described by Bogardus [1], fault detection studies in semiconductor manufacturing are motivated

by the needs to reduce 1) equipment downtime by rapid identi�cation and characterization of a fault,

2) the number of scrap wafers by identifying when the equipment is not operating properly, and 3) the

number of test wafers by identifying optimum equipment operating conditions. Malfunction should be

avoided by means of preventive maintenance or, at least, be detected and recovered from as soon as

possible to minimize machine downtime and loss of wafers. Machine malfunction caused by mechanical

subsystem failure, such as a broken wafer transfer robot arm, is easy to detect via visual inspection.

However, sensor errors caused by sensor aging, miscalibration, or drift are insidious and cannot be

easily detected until scheduled maintenance or post-process wafer quality check. With the decrease in

device feature size and increase in wafer size, a tight control of the process is critical. This requires

tighter process error and drift margin. Thus, even slight errors in sensors can signi�cantly impact the

process result. To reduce COO, errors in sensors should be detected in real time and corrected as soon

as possible.

Various fault detection and classi�cation techniques have been applied in semiconductor manufac-

turing areas: photolithography [2], Plasma Enhanced Chemical Vapor Deposition (PECVD) [3], Low

Pressure Chemical Vapor Deposition (LPCVD) [4], and plasma etch [5{9]. For instance, equipment

models to diagnose equipment malfunctions at a given process step were developed and applied to

detect faults in the PECVD nitride process [3]. For the identi�cation of gas 
ow controller malfunc-

tions in the Reactive Ion Etching (RIE) system, neural network trained on the monitored data using a

feed-forward, error back-propagation algorithm was used [7, 9]. An expert system that automatically

interprets the traces was also designed and tested on the plasma etch process [5].

In this paper, we propose a new technique of sensor fault detection based on Broadband Radio Fre-

quency (BRF) sensor signal observation. Speci�cally, we applied this RF sensor based fault detection

to the RIE system to identify process abnormality caused by sensor fault in real time. By observing

the broad range of plasma impedance variation, the Broadband RF sensor enables us to pinpoint the

exact source of the abnormality. For fault detection, the etching process was selected since it is a fun-

damental and irreversible step in chip production. Therefore, accurate and timely detection of sensor

faults in this area is critical to the reduction of production cost. We also employed a non-parametric

sign test to decide the occurrence of sensor fault via Broadband RF sensor signal observation. The

non-parametric detection method is a useful and e�ective method when the probability density func-
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tion (pdf) of the detector input is unknown [10]. The non-parametric detection method provides stable

performance regardless of the exact pdf.

We utilized the Broadband RF sensor's unique characteristic to detect process abnormalities caused

by sensor fault in real time, and furthermore, pinpoint the source of the abnormality by observing

the broad range of plasma impedance. Plasma impedance contains important information about

plasma characteristics such as ion concentration (resistance) and sheath thickness (reactance), which

are factors critical to the etch rate and etch pro�le. The plasma impedance is strongly dependent on

the speci�c plasma generation parameters such as pressure, supplied power, gas 
ow rate, and chamber

conditions. A number of researchers have investigated plasma impedance. Maynard et al. used RF

metrology for the endpoint detection of the etching process based on the change of impedance when

a new �lm layer was exposed to the plasma [11]. Scanlan applied the plasma impedance and ion 
ux

monitoring to study plasma drift and ion 
ux uniformity [12]. Garvin at the University of Michigan

pursued a new Broadband RF sensing technique [13]. The conventional RF sensing technique only

measures the impedance of the fundamental frequency (typically 13.56 MHz), which is the frequency

of the Alternating Current (AC) power supply used to generate the plasma, or couples of harmonic

frequencies at most [14]. The distinctive feature of Garvin's Broadband RF sensing technique includes

that it scans a wide frequency range, typically 1 � 2 GHz, and analyzes the collected RF signal

as a whole. Thus, a small variation of plasma conditions can be detected, which is impossible by

conventional RF sensor measurement. Figure 1 illustrates the comparison of the re
ectance coeÆcient

in magnitude vs. frequency between an empty chamber (no process) and a chamber under the poly-Si

Main Etch (ME). Two resonant peaks appear in the range of 1 � 1.5 GHz under the ME of poly-Si

whereas rather noisy peaks in 2 � 2.5 GHz.

In the sensor fault detection experiment, we assume the following conditions:

A. The RF sensor is more reliable and robust than the other sensors in the plasma etching system.

B. Only one sensor can fail at a time.

C. Sensor abnormality can be simulated by a change in the machine input setting.

Its simple con�guration and lack of moving parts make the Broadband RF sensor more robust

compared to the other sensors in the plasma etching system. Because the probability of simultaneous

occurrence of faults in two or more sensors is extremely low, we have chosen to ignore this scenario

as an experimental condition. Moreover, instead of miscalibrating or tampering with the sensor, we

intentionally changed the machine input setting to create sensor fault. For instance, if the pressure
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sensor is malfunctioning, then the actual chamber pressure would be di�erent from the nominal pressure

due to the . Hence, we changed the pressure setting from its nominal value to simulate a pressure

sensor fault.

Section II reviews the fundamentals of detection theory, and then Section III is followed by a brief

description of the experimental setup. The Design of Experiment (DOE) to extract the distinctive

RF sensor signal �ngerprints under the sensor fault occurrence is explained in Section IV. Section V

discusses the experimental results of the TCP and pressure sensor fault detection system. We conclude

with a summary in Section VI.

II. Detection Background

A typical detection system operates on binary decision making. Once a detection signal is observed,

one of two decisions must be made, typically: yes/no, accept/reject, or 0/1. In detection theory,

we label the two possible choices null hypothesis (H0) and alternative hypothesis (H1). When the

detector input is a random signal, z, the output is a random variable, D(z), which depends on the

input z (Fig. 2). The random variable D(z) has the value 0 or 1, H0 or H1, respectively. If the set

of hypotheses is limited to two, the problem is a binary hypothesis testing problem. However, if there

are M hypotheses with M > 2, the problem becomes a multiple-hypothesis testing or M-ary detection

problem. Detector performance can be evaluated by means of two di�erent types of detector error:

type I, false alarm, and type II, miss. False alarm is deciding H1 when H0 is true. The probability of

false alarm (PF ) is:

PI = PF = P (D1jH0) =

Z
z1

p (zjH0) dz: (1)

On the other hand, miss is deciding H0 when H1 is true. And, the probability of miss (PM) is:

PII = PM = P (D0jH1) =

Z
z0

p (zjH1) dz: (2)

Similarly, the probability of detection (PD), which is a more general measure of detector performance,

is given by:

PD = P (D1jH1) =

Z
z1

p (zjH1) dz = 1� PM : (3)

Ideally, PD and PF should be 1 and 0, respectively. Plotting the detection probability (PD) against

the false alarm probability (PF ), known as Receiver Operating Characteristics (ROC), is useful for

describing the performance of a detector.
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Detection methods can be categorized as either parametric or non-parametric detection [10]. Para-

metric detection assumes that the conditional probability density functions, p(zjH0) and p(zjH1), are

known. These probability density functions are then used to arrive at a detector D. The most general

form of parametric detection is Bayes' criterion. Given the cost for each decision, the decision regions Z0

and Z1 are selected so that the expected value of cost, E(cost)=E(costjH0)P (H0)+E(costjH1)P (H1),

is minimized. In short, the decision is expressed as:

p (zjH1)

p (zjH0)

H1

?
H0

P (H0)(C10 � C00)

P (H1)(C01 � C11)
; (4)

where Cij is the cost associated with making decision Di when the true hypothesis is Hj. When the

a priori probabilities, P (H0) and P (H1), and each cost function are unknown, the Neyman-Pearson

decision criterion can be used. This method is named the most powerful (MP) test since it achieves

the largest PD among all the tests that have the same type I error probability (PF ). Nonetheless,

these parametric decision criteria require the input probability density function (pdf), typically, in the

form of a Gaussian or an exponential distribution to facilitate analysis. However, in many cases, the

form of input probability density function is not given or diÆcult to de�ne. On the other hand, non-

parametric methods, also called distribution-free methods, do not assume that the input probability

density functions are completely known, but only make general assumptions about the detector input

such as symmetry of the probability density function and continuity of the cumulative distribution

function. Since parametric detectors are based on speci�ed forms of the input probability density

functions, their performance may vary widely depending on the actual density function of the input z.

Non-parametric detectors, however, maintain a fairly constant level of performance because they are

based on general assumptions of the input probability density. The simplest non-parametric detector,

called a sign test, bases its decision solely on the signs of the input observations. This detector has

the for

D(x) =

8<
:

0 if
Pn

i=1 u(zi) < T

1 if
Pn

i=1 u(zi) > T;
(5)

where u(zi) is the unit step function,
Pn

i=1 u(zi) is known as the test statistic, and T is the threshold

of the test. Due to the diÆculty of de�ning the probability density function of the detector input, we

applied this non-parametric method to the sensor fault detection in this study.
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III. Experimental Setup

A. Hardware

A.1 The Plasma Etching System: Lam TCP 9400SE

For the etch of a deep sub-micron patterned wafer, a low-pressure, high-plasma density Lam TCP

9400SE etcher was used (Fig. 3). As a dual-power-source etcher, the TCP 9400SE employs a \trans-

former coupled" RF power supply to set plasma density and a standard capacitively coupled RF \bias"

power supply to set ion energy. To maximize the delivered power to the plasma reactor and protect

the power supplies and cables, a matching network is connected to the power source and electrode.

The etcher is equipped with a six-inch bipolar electrostatic chuck with helium backside cooling. The

temperature controller of the bottom electrode was set to 60 C and chamber temperature to 50 C

throughout the experiment. This plasma etcher is designed for six-inch or eight-inch wafers with sub-

half-micron pattern etch of poly-Si, refractory metal silicides, organic anti-re
ection coating (ARC),

nitride, and dry photoresist, and thus, C2F6, Cl2, HBr, SF6, O2, He, and N2 purge gases are supplied.

The TCP 9400SE etcher has two built-in photodiode endpoint detectors based on Optical Emission

Spectroscopy (OES): 405 and 520 nm wavelength bandpass OES sensors. The 405 nm wavelength

matches the SiN and AlCl emission lines, whereas the 520 nm matches the C2, CO, SiCl, and O2 emis-

sion lines. To minimize disturbance from the process chamber being exposed to the atmosphere and

absorbing water vapor, an entrance and exit loadlock are provided. To acquire data and control the

etching process, a PC running LabVIEW was piggybacked onto the Nvision system, which is an origi-

nal operating system of the Lam TCP 9400SE. A custom LabVIEW-based control program, EMACS,

is monitors and controls the etching process, while other processes, such as wafer loading/unloading,

pumping, and venting, are operated by Lam's Nvision system.

A.2 Broadband RF sensor hardware and software

A Hewlett Packard 8753B Vector Network Analyzer, calibrated with a Hewlett Packard 8732B type N

calibration kit, was used to collect the frequency response of the plasma etching system. This analyzer

can sweep and collect frequency responses ranging from 300 KHz to 3 GHz. A tungsten probe was

inserted in an aluminum cylinder contained in a quartz tube. About one-inch of the tungsten probe

tip from the end of the aluminum cylinder was exposed to the atmosphere inside of the quartz tube

(Fig. 5). The tube was placed inside the etcher, however, it did not physically touch the plasma.

Contacting the plasma may improve the sensitivity of the RF sensor, however, it may increase the
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possibility of contamination of the chamber. The RF sensor control system based on the LabVIEW

program communicates with the network analyzer, and thus the collected RF data can be transferred

to the control system. The current Broadband RF sensor setup is able to collect the RF data up to

a 3 Hz sampling rate. This rather slow sampling rate mainly comes from hardware limitations: slow

computing speed retarded by the broad range of the frequency sweep, and GPIB communication delay.

The sampling frequency can be improved at the cost of the frequency sweeping range.

B. Wafer Structure and Baseline Main Etch Recipe

A six-inch blank test wafer consisting of 500 nm n-doped poly-Si on top of 30 nm oxide on a Si

substrate was etched. The native oxide layer on the test wafer was removed by 15 sec of C2F6 Break

Through (BT) etch. The fault detection experiment was conducted during the Main Etch (ME) which

uses Cl2 and HBr gases. The typical etch rate for n-doped poly-Si in BT was about 36 nm/min, and

201 nm/min in ME. The ME recipe provided 10:1 etch selectivity of poly-Si over oxide. The details of

the BT and ME recipes are shown in Table I. To extract RF sensor signal �ngerprints under various

sensor fault conditions, we designed the following experiment.

IV. Design of Experiment

A. Selection of Sensors

The standard Lam TCP 9400SE is equipped with various sensors to assure stable etch. We selected

three types of sensors for the sensor fault detection test: two power measurement sensors, two 
ow rate

sensors, and one pressure sensor. These �ve sensors were selected because they are particularly prone

to fault and their impact on the process result is signi�cant. The two power measurement sensors

are found in two power generators: one in the Transformer Coupled Power (TCP) and one in the

BIAS power generator. Sensor faults in power measurement typically come from phase or magnitude

detector errors in the matching network. The matching network maximizes the power delivered to the

etching system from the power generator. For our test, the 
ow rate sensors for Cl2 and HBr were

selected. The sources of 
ow rate sensor faults are gas leak, mass 
ow controller miscalibration, or

sensor drift. Finally, the pressure sensor regulates the chamber pressure. Errors in this sensor are the

result of either miscalibration or sensor drift.
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B. Experimental Design

After selecting sensors for the fault detection test, we proceeded with the experiment to collect

distinctive RF �ngerprints under the respective sensor faults. In this experiment, we assumed �rst

the occurrence of only one sensor fault at a time. And secondly, we assumed that sensor fault can

be simulated by a change in machine input setting. Five selected machine inputs, each corresponding

to the speci�c sensor fault, were varied one at a time to simulate a sensor fault. TCP, BIAS power,

and HBr 
ow rate were varied � 10 %, � 15 %, and � 25 % from their respective nominal values

of 250 W, 180 W, and 75 sccm, respectively. Since pressure and Cl2 
ow rate settings are small

values, 10 mTorr and 15 sccm respectively, their respective nominal values were changed by � 20 %,

� 30 %, and � 40 %. Based on the �rst assumption, only one sensor fault occurs at a time, only

one machine input was changed while the other machine inputs were �xed to nominal values. To

minimize the number of test wafers used, we etched a single wafer with several di�erent etch recipes

without breaking the established vacuum. To establish a new setpoint from the previous one, each etch

condition was maintained for 15 sec without ignition of plasma to stabilize the pressure or 
ow rate

to a new setpoint. After the stabilization phase, plasma was ignited for 15 sec. The entire experiment

was repeated and averaged to decrease random error. To investigate the stability and repeatability of

the Broadband RF sensor response, 30 base line etches were included randomly. Furthermore, each

etch setpoint was run in random order to minimize bias error where a numerical value tends to remain

constant or follow a consistent pattern over a number of experimental runs.

C. Broadband RF Sensor Signal Parameterization

A wafer undergoes a transitioning and settling period during the �rst couple of seconds after plasma

ignition. In order to obtain reliable and repeatable RF sensor �ngerprints for each etch condition,

the last 5 sec of RF sensor signal of the 15 sec etch period were averaged. The HP network ana-

lyzer swept 0.5 � 2.75 GHz and collected 201 data points of log magnitude, log(�), and 201 data

points of phase, arg(�), of the re
ection coeÆcient. The enormous number of RF data points causing

an over-determined regression problem in modeling procedure was tackled by means of RLC circuit

parameterization [15]. Each RF sensor signal peak was modeled as a single RLC circuit with the

components connected in series. The admittance of the RLC circuit is:

Y (s) =
1
L
s

s2 + R
L
s+ 1

LC

: (6)
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In our parameterization procedure, we used the natural frequency (!n), quality factor (Q), and resis-

tance (R) which are based on expressing eq. (6) as:

Y (s) =
2!n
RQ

s

s2 + 2!n
Q
s+ !2

n

: (7)

Figure 6 illustrates the Broadband RF sensor signal parameterization result. The magnitude and phase

of each RF peak were simultaneously �tted to the simulated data to �nd a set of !n, Q, and R which

minimizes R-squared modeling error.

Under the nominal ME condition, three peaks were observed near 1.1, 1.4, and 2.0 GHz respectively.

However, the third peak near 2 GHz was noisy, and not as responsive as the low (1 GHz) or medium

range (1.4 GHz) peak. Therefore, we excluded it from the valid RF sensor signal. Since R is too

sensitive to plasma conditions and 
uctuates under stable etching conditions, we excluded the R from

the valid RF sensor signal as well. In this study, therefore, we chose two peak frequencies, !n1 and !n2,

and two Q values, Q1 and Q2, of low and medium range peaks as valid RF information. The following

section provides an analysis of the Broadband RF sensor signals under simulated sensor faults.

V. Experimental Result

A. RF Sensor Signal vs. Sensor Fault

In a dual-power-source plasma etching system, Transformer Coupled Power (TCP) controls plasma

density. The plasma density can be increased by supplying more TCP to the etching system. The

RF peak frequency (!n, which has the lowest re
ection coeÆcient) is an important indicator of the

plasma density variation. Thus, we can detect the delivered TCP change to the etching system by

observing the RF peak frequency variation. The plasma density can be approximated with the RF

peak frequency of the re
ection coeÆcient [16]:

ne =
!2�ome

q2
� 1.24E-8 � f 2; (8)

where f = !=2�, the frequency having the lowest re
ection coeÆcient, eo is free space permittivity,

8.85E-12 F/m, me is the mass of electron, 9.109E-31 Kg, and q is the electron charge magnitude,

1.602E-19 C. Based on eq. (8), the calculated plasma density of the Lam TCP 9400SE was 1.0E10 �

2.1E10 under 188 � 312 W of TCP, 180 W of BIAS power, 10 mTorr of pressure, 15 sccm of Cl2, and

75 sccm of HBr 
ow rate. The calculated plasma density was lower than the actual plasma density

measured with a Langmuir probe, but was the same order of magnitude. Furthermore, the linear

increase of estimated plasma density with TCP is consistent with the �ndings in the literature [17{19].
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Figure 7 illustrates a variation of peak frequency with various TCP settings. With TCP, the peak

frequency was increased, and the gap between the two peak frequencies of each Broadband RF sensor

signal was also slightly increased. With � 25 % change in TCP, the peak frequency was changed about

� 16 % (Fig. 8 (a)). Although BIAS power strongly a�ects ion energy, it does not disturb plasma

density signi�cantly [18, 19]. In our experiment, observation con�rmed that the peak frequency change

with � 25 % BIAS power variation was only � 1 %, showing a small correlation between the two

(Fig. 8 (b)).

Pressure is another actuator controlling plasma density. However, in the pressure range in this

experiment, 6 mTorr � 14 mTorr, only a slight increase of peak frequency was observed: less than �

5 % under � 40 % pressure variation (Fig. 8 (c)). In fact, the peak frequency was maximized when

pressure reached 12.5 mTorr, then started to decrease. The peak frequency variation with Cl2 or HBr


ow rate was insigni�cant (Fig. 8 (d) and (e)). In both these cases, less than � 2 % variation of the

peak frequency was observed under � 40 % or � 25 % of Cl2 or HBr 
ow rate variation, respectively.

In short, the peak frequency in the Broadband RF sensor signal is very sensitive to the plasma density

variation. Therefore, changes in etch condition, which signi�cantly a�ect the plasma density variation

(e.g., TCP), can be easily detected by observing the peak frequency change of the Broadband RF

sensor.

The other observed RF sensor signal is Q. The variations of Q with various machine input settings

are well illustrated in Fig. 8. In most instances, Q1 and Q2 variations with machine input have a

seemingly random pattern and are not yet clearly understood. However, Q1 with pressure and Q2 with

HBr are sensitive to the variation of its machine input and they increases linearly. Except the low 
ow

rate, Q2 is also very sensitive to the Cl2 
ow rate. However, because the Q1 or Q2 variations under

each machine input variation overlap each other, it is diÆcult to trace the exact cause of the machine

input variation by observing Q1 or Q2.

When we select a Broadband RF sensor signal for a speci�c sensor fault detection, this sensor signal

should be very sensitive to that sensor fault but insensitive (orthogonal) to the other sensor faults. As

explained previously, !n1 and !n2 are excellent TCP fault indicators. However, none of the four RF

sensor signals are directly useful to detect the other types of sensor faults. When a speci�c sensor fault

occurs, the actual machine input value corresponding to that sensor in the etching system is di�erent

from the original setting due to the malfunctioning sensor. Thus, if we accurately estimate the actual

machine input value in real time, we can e�ectively identify which sensor is at fault by measuring
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the amount of drift from the nominal value. In the following section, we describe how we achieved

sensor fault detection by using RF sensor measurement to estimate actual machine input values. First,

the general procedure of machine input estimation is presented and followed by a description of TCP

measurement sensor fault detection by TCP estimation. Then, the pressure sensor fault detection,

which cannot be detected with raw RF sensor signal observation, is investigated. Lastly, a validation

experiment used for TCP and pressure sensor fault detection is reviewed.

B. Sensor Fault Detection via Machine Input Estimation

Sensor fault constitutes a drift from the original machine input setting. Thus, by estimating the

amount of drift from the nominal value, we can detect the sensor at fault. For the success of this

sensor fault detection method, an accurate estimation of the actual machine input value is critical.

First, to obtain more dynamics of RF sensor signal under various machine input variations within the

constraints of time and budget, we interpolated 7 setpoints of each machine input in the experiment to

obtain 100 setpoints. Since setpoints and signals are expressed in di�erent units, they were normalized

to the respective nominal values. Then, the standard deviation of each RF sensor signal was calculated

from the 30 baseline etches. The standard deviation was multiplied by randomly generated Gaussian

noise with mean zero and standard deviation one. This was assumed to be measurement noise. Finally,

we added the measurement noise to the interpolated RF sensor signal. We repeated this procedure,

adding measurement noise to the interpolated RF sensor signal, until 3000 RF sensor signal data sets

were generated. Figure 9 illustrates the maximum and minimum values of the generated RF sensor

signal under the �ve machine input variations simulating sensor faults.

For the machine input estimation, a full quadratic model employing a subset selection methodology,

forward selection and backward elimination, was built. To improve modeling accuracy, a 520 nm

Optical Emission Spectroscopic (OES) sensor signal was added to the four RF sensor signals. In the

modeling procedure, we �rst selected 10 modeling variables out of 20 in an order that achieved the

highest R-squared value in the forward selection step. In short, one additional variable was selected

among the possible modeling variables when the R-squared value was maximized when it was selected.

Once the desired number of the modeling variables had been selected, in the backward elimination

step the selected modeling variables were removed one by one in the order of least damaging to the

model accuracy. When the probability of decrease in model size by one was larger than 0.05 under an

F-test, we stopped the elimination step and used the modeling variables that were not eliminated for
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the model. The �nal model typically consisted of 4 � 7 variables.

B.1 TCP Measurement Sensor Fault Detection

Following the modeling procedure as described in the previous section, �rst the TCP estimation

model was built. With R2=0.94 and � 5 % modeling error, the �nal TCP estimation model has a

constant, !n1, !n2, and Q1:

[TCP = 0:1985 + 0:8574!n2 � 0:6529Q1 + 0:9510!n1Q1: (9)

where !n1 and !n2 are low and medium range RF peak frequencies respectively, and Q1 is a quality

factor of the low range RF peak. All of the modeling variables (!n1, !n2, and Q1) and estimated TCP

([TCP ) are normalized values. Figure 10 illustrates the resulting minimum and maximum values of

the estimated TCP by substituting the 3000 RF data sets for the eq. (9). Ideally, the estimated TCP

should be a straight line in the region labeled as \TCP" since TCP increased linearly. It should be


at in the regions of BIAS power, pressure, and gas 
ow rate because TCP was set to the nominal

value while those machine inputs were changed.

We then set two hypotheses for TCP fault detector, H0: no TCP fault andH1: TCP fault. The input

to the fault detector was determined to be j1�[TCP j since we detect the sensor fault by measuring

the amount of drift of actual machine input from the nominal setpoint. To check the conditional

probability density function of the input to the fault detector, histograms of \no TCP Fault" and

"TCP Fault" were evaluated (Fig. 11).

These histograms illustrate the distribution of j1�[TCP j under \no TCP Fault" and \TCP Fault"

hypotheses, respectively. Although the distribution of \no TCP Fault" is a single-sided Gaussian form,

the distribution of \TCP Fault" is diÆcult to de�ne. Therefore, we employed a non-parametric detec-

tion method instead of a parametric detection method which requires an exact distribution function

for each detector input. Based on a sign test, which is a simple non-parametric detection method, the

following decision criteria were set to determine the TCP measurement sensor fault:

H0 : no TCP Fault; jTCPnom�[TCP j
TCPnom

< 


H1 : TCP Fault; jTCPnom�[TCP j
TCPnom

� 
; (10)

where[TCP is a normalized estimated TCP, TCPnom is a normalized nominal TCP setting which is 1,

and 
 is a threshold with a value larger than 0.05. The TCP estimation model had approximately � 5

% modeling error. This means that the value of TCP estimation within � 5 % from the nominal TCP
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does not necessary imply TCP fault. Thus, we designated the estimated TCP within � 5 % variation

from the nominal TCP as the \nominal" etch condition. For this reason, the minimum threshold (
)

that determines \no TCP Fault" was set to 0.05.

We assumed that P (individual sensor fault occurred) is 10�4, and that each sensor fault occurrence

is mutually exclusive and equally likely for the further calculation of PD and PF . The fault detection

probability (PD) is de�ned as:

PD = P (TCP fault detected j TCP fault occurred);

and, the false alarm rate (PF ) is:

PF = P (TCP fault detected j TCP fault occurredc);

where superscript \c" means the set complementary. And TCP fault occurredc is de�ned as:

TCP fault occurredc , Nominal [ Bias power sensorfault [ Pressure sensor fault [

Cl2 
ow rate sensor fault [ HBr 
ow rate sensor fault :

By Bayes rule, PF can be rewritten as:

PF =
PFNominalP (nominal)+(PFBIAS+PFPressure+PFCl2+PFHBr)P (indiviual sensor fault)

1� P (TCP fault occurred)
;

where

PFNominal = P (TCP fault detected j Nominal);

PFBIAS = P (TCP fault detected j BIAS power fault occurred):

PFPressure, PFCl2 , and PFHBr can be expressed in the same manner. Since we assume that each sensor has

the same probability of fault occurrence, P (individual sensor fault)=1E-4, and thus, P (nominal)=1-

5�P (individual sensor fault)=0.9995.

Figure 12 illustrates the performance of the TCP fault detector in a graph of detection probability

(PD) vs. probability of false alarm (PF ). First, PD was calculated when � 6 %, � 7 %, � 8 %, and �

9 % TCP error from the nominal value occurred with threshold (
) ranging from 0.05 to 0.35. Then,

PF was calculated as a function of the threshold (
 = 0:05 � 0:35). When a TCP measurement sensor

fault caused the drift of the actual TCP to � 8 % deviation from its nominal setting, this TCP fault

could be detected with 0.99 detection probability when the false alarm rate was set to 1E-4. The TCP

fault detector provided excellent fault detection accuracy when TCP deviation by a TCP measurement

sensor fault was more than � 8 % from its nominal value.



14

B.2 Pressure Sensor Fault Detection

Pressure sensor fault detection, which cannot be addressed with raw RF sensor signal observation,

was also investigated. In the same manner as we designed for TCP fault detection, we built a pressure

estimation model based on forward selection and backward elimination, employing Broadband RF

sensor signals and a 520 nm OES signal. The �nal pressure estimation model is:

\pressure = 0:4389 + 1:5931wn1 � 1:6611OES + 0:1451wn1Q1 + 0:4862wn2OES; (11)

with R2=0.845. The estimated pressure ( \pressure) and all of the modeling parameters are normalized

values. Figure 13 illustrates the maximum and minimum values of the estimated pressure by evaluating

eq. (11) with each of the 3000 data sets of RF sensor signals. We allowed � 10 % of fault margin in

the pressure sensor. The following decision criteria were set to determine a pressure sensor fault:

H0 : no Pressure Fault;
jpressurenom� \pressurej

pressurenom
< 


H1 : Pressure Fault;
jpressurenom� \pressurej

pressurenom
� 
; (12)

where \pressure is the estimated pressure, pressurenom is a nominal TCP setting, and 
 is a threshold

to be determined (
 > 0:1). Assumptions that P (individual sensor fault occurred) is 10�4, and

that each sensor fault occurrence is mutually exclusive and equally likely were also applied. Fig. 14

illustrates the histograms of jpressurenom� \pressurej = j1� \pressurej under \no Pressure Fault" and

\Pressure Fault". Figure 15 illustrates the performance of the pressure sensor fault detector in a graph

of detection probability (PD) vs. probability of false alarm (PF ). When � 17.5 % of pressure error

occurred, the pressure sensor fault could be detected with 0.92 detection probability with a 1E-4 false

alarm rate. More than � 20 % drift from the nominal value causing pressure sensor fault could be

detected very accurately: PD � 1 and PF � 0. It is worth noting that the PD and PF were calculated

based on our DOE, which puts bounds on the size of the errors in the remaining variables.

B.3 Validation Experiment

To check the robustness of the TCP and pressure sensor fault detector, a validation experiment was

performed 5 months after the original fault detection experiment on the same etching system. The

etch recipe shown in Table II was used for this validation experiment. One machine input was changed

at a time. The etch conditions of nine nominal, eighteen TCP error (eight 225 W and ten 275 W),

nineteen pressure error (ten 8 mTorr and nine 12 mTorr), four BIAS power (125 W), three HBr 
ow
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rate error (86 sccm), and two Cl2 
ow rate error (7 sccm) were included. Figure 16 illustrates the

performance of the TCP and pressure sensor fault detectors in the validation experiment. The dashed

lines in the �gure are the upper and lower bounds of the nominal TCP and pressure fault margins

corresponding to � 5 % and � 10 %, respectively. In the TCP measurement sensor fault detection, the

detector identi�ed all TCP faults without generating any false alarm. Whereas, the pressure sensor

fault detector generated two false alarms. This was expected because the pressure estimation modeling

error was signi�cant in the range of low Cl2 
ow rate as shown in Fig. 13. Except for the two false

alarms, the pressure sensor fault detector provided excellent fault detection accuracy (PD � 1). The

Broadband RF sensor has been proven to be accurate and reliable in the real time detection of sensor

faults.

VI. Conclusion

To reduce a cost in semiconductor manufacturing, it is vitally important to identify and classify the

source of machine/sensor error. Thus, the machine down time can be minimized. As an e�ort to detect

sensor errors caused by drift or miscalibration in plasma etching system, a novel sensor fault detection

technique employing a Broadband RF sensor was developed. The work presented here focuses on

detecting errors in the Transformer Couple Plasma (TCP) measurement and pressure sensor, though

the method has potential for several other sensors. We utilized the Broadband RF sensor's unique

characteristic to detect the process abnormality caused by sensor fault in real time, and furthermore,

could pinpoint the source of the abnormality. To improve the detection sensitivity, we used real-time

machine input estimation and compared it from actual recipe setting instead of employing raw RF

signal directly. With the use of Broadband RF signal, TCP and pressure could be estimated within �

3 % and � 10 % estimation error, respectively. In a main etch process on a Lam TCP 9400SE, � 10

% relative deviations in TCP simulating TCP, and � 25 % in pressure simulating respective TCP and

pressure sensor faults in etch can be detected with very high accuracy: Detection probability PD � 1

and false alarm rate PF � 0.
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Fig. 11. Histogram of \no TCP Fault" and \TCP Fault" condition.
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Fig. 12. Receiver Operating Characteristics of a TCP fault detector.
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Fig. 13. Normalized minimum and maximum values of the estimated pressure.
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Fig. 16. Sensor fault detector validation experiment result.



Tables 33

Etch step BT ME
TCP power (W) 200 250
BIAS power (W) 40 180
Pressure (mTorr) 13 10
C2F6 (sccm) 100 0
Cl2 (sccm) 0 15
HBr (sccm) 0 75

TABLE I

Etch recipe used for n-doped poly-Si in a Lam TCP 9400SE plasma etcher.



Tables 34

TCP BIAS Pressure Cl2 HBr
(W) (W) (mTorr) (sccm) (sccm)

nominal value 250 180 10 15 75
setpoint used for 225 (8) 135 (4) 8 (10) 7 (2) 86 (3)
validation (# of repeat) 275(10) 12 (9)

TABLE II

Etch recipe used in a validation experiment.


