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The Spring Loaded Inverted Pendulum as the
Hybrid Zero Dynamics of an Asymmetric Hopper

loannis Poulakakis and J. W. Grizzle

Abstract— A hybrid controller that induces provably stable
running gaits on an Asymmetric Spring Loaded Inverted Pen-
dulum (ASLIP) is developed. The controller acts on two leved.
On the first level, continuous within-stride control asympitically
imposes a (virtual) holonomic constraint corresponding toa
desired torso posture, and creates an invariant surface on kich
the two-degree-of-freedom restriction dynamics of the clsed-loop
system (i.e., the hybrid zero dynamics) is diffeomorphic tathe
center of mass dynamics of a Spring Loaded Inverted Pendulum
(SLIP). On the second level, event-based control stabilizethe
closed-loop hybrid system along a periodic orbit of the SLIP
dynamics. The controller's performance is discussed throgh
comparison with a second control law that creates a one-dege-
of-freedom non-compliant hybrid zero dynamics. Both contollers
induce identical steady-state behaviors (i.e. periodic &ations).
Under transient conditions, however, the controller indudng a
compliant hybrid zero dynamics based on the SLIP accommo-
dates significantly larger disturbances, with less actuatoeffort,
and without violation of the unilateral ground force constraints. -

. Fig. 1. Left: A preliminary design of a leg for a bipedal rolieat is currently
Index Terms— Legged robots, Spring Loaded Inverted Pendu- under construction; see [20] for design principles and ward details. The
lum, Hybrid Zero Dynamics, dynamic running. knee has a revolute series compliant actuator. Right: Thenfgetric Spring
Loaded Inverted Pendulum (ASLIP). The leg foree will be modeled as a
spring in parallel with a prismatic force source. The ASL$Raimore faithful
. INTRODUCTION representation of the robot on the left than a SLIP model.
HE Spring Loaded Inverted Pendulum (SLIP) has been

proposed as a canonical model of the center of mass

dynamics of running animals and robots. Notwithstandisg ibf more complete robot models. A framework is proposed
apparent simplicity, the SLIP has been invaluable in uncoihat combines established nonlinear control synthesits,too
ering basic principles of running in animals, [19], and i&uch as the Hybrid Zero Dynamics (HZD) originally proposed
synthesizing empirical control laws for running robots5][3 in [47], with controllers obtained in the context of the SLIP
In the relevant literature, the SLIP is not conceived merely . [35], to induce exponentially stable running motiomsi
as a model that encodes running. Itis construed as a model #gpping model termed th&symmetric Spring Loaded Inverted
implies specific high-level control hypotheses on how afémapendulum(ASLIP); see Fig. 1. Aiming to reflect a broader
or robots coordinate their joints and limbs to produce thgurpose, the ASLIP includes torso pitch dynamics nontiivia
observed running behavior, [15], [19]. However, up to thigoupled to the leg motion, an issue not addressed in the yidel
point, much of the relevant research has been concentragagtiied SLIP. Despite its importance, to the best of theasth
on the SLIP itself. The formal connection between the SLIghowledge, no formal studies of the ASLIP exist. Proposing
and more elaborate models that enjoy a more faithful corrgnd formally analyzing control laws for the stabilizatioftioe

spondence to a typical locomotor’s structure and morphplogSLIP that take advantage of SLIP controllers constitutes t
has not been fully investigated. In particular, it still r@ms primary goal of this work.

unclear how stability conclusions obtained in the conteixt o A second aspect addressed in this paper regards the per-
the SLIP can predict the behavior of more complete modejg; 1 ce benefits of embedding the SLIP as the hybrid zero
In this paper, rather than analyzing the much studied SL&, Wy namics of the ASLIP. A SLIP embedding control law is
turn our attention to its implications in the control of rumng compared with a controller that achieves a one degree-of-
Manuscript submitted August 17, 2007. This work was suggbrby freedom (DOF), non-compliant hybrid zero dynamics. The
NSF grant ECS 0600869. Portions of this paper have preyioag- two controllers induce identical steady-state behaviorsier
peared in the conference papers [33] and [34], preprints biclw as  transjent conditions, however, the underlying compliaattine
well as supplemental material relevant to this work, can band in f the SLIP all ianifi v | di b b
http://www.eecs.umich.edu/ grizzle/papers/roboticslh of the allows significantly larger disturbances to be
I. Poulakakis and J. W. Grizzle are with the Control Systerabdratory, accommodated, with less actuator effort, and without viota

Department of Electrical Engineering and Computer Scighb@versity of ; ;
Michigan, Ann Arbor, MI 48109-2122, U.S.A. (phone: +1-7886-3875; fax: of the unilateral constraints between the toe and the ground

+1-734-763-8041; e-mail{poulakas, grizzIp@ eecs.umich.edu). The results presented in this paper provide the first step



SUBMITTED TO THE IEEE TRANSACTIONS ON AUTOMATIC CONTROL AS AREGULAR PAPER 2

toward a general framework for the design of control lawf®r analyzing various leg placement control policies foe th
that induce elegant, provably stable, running motionsggéel SLIP is proposed. Three-dimensional extensions of the SLIP
robots, by combining the practical advantages of the canpli are also available, [40]. These research efforts produtzdea
SLIP with the analytical tractability offered by the hybedro variety of controllers for inducing elegant running moson
dynamics method. the SLIP, which exhibit very appealing properties such ggla
domains of attraction and minimal control effort.
A quite different paradigm for control law design combining
analytical tractabilitywith realistic modelshas been followed
The combined difficulties of hybrid dynamics and unin [18], [47], and [11]; see also [46] for an integrative
deractuation inherent in legged systems stymied the dirg@rspective. There, geometric nonlinear control meth@d® h
application of nonlinear controller synthesis tools, swsh been developed that deal directly with the underactuatimh a
those in [24], to induce provably stable motions to runningybrid dynamics present in legged robots, and induce pigvab
robots. Instead, mangmpirical control procedures have beerasymptotically stable dynamic walking and running motions
employed over the past twenty years to control hopping ailbipedal robots. In particular, it has been shown that @lan
running robots or robot models; see [35], [1], [17], [14]walking and running gaits can be “embedded” in the dynamics
[29], [23], [10], [2] for examples of one-legged robots. Irof a biped by defining a set of holonomic output functions
many cases, e.g. [1], [17], [2], these control procedures awith the control objective being to drive these outputs tmze
inspired by Raibert’s original three-part controller, wéaging [18], [47]. In essence, this method asymptotically resgric
forward speed during flight by positioning the legs at ¢he dynamics of the closed-loop hybrid model to a lower-
proper touchdown angle, and hopping height and body aétitudimensional attractive and invariant subset of the stateesp
during stance by employing leg force and hip torque; séhe stable periodic solutions of the dynamics restrictethis
[35]. A different class of controllers is introduced in [14] subset, called the Hybrid Zero Dynamics (HZD), encode the
These controllers apply impulsive (or, equivalently pigise desired task (walking or running).
constant) feedback inputs at discrete time instants throuy  The general idea of task encoding through the enforce-
a stride to stabilize unforced periodic solutions of a sifigd  ment of a lower-dimensional target dynamics, rather than
model, and were found to perform well on an exact modeirough the prescription of a set of reference trajectories
of the hopper. The reliance of the control laws in [14] ohas been employed in the control of dynamically dexterous
a simplified model is removed in [23]. From a minimalisinachines, including juggling, brachiating and runningatisb
perspective, a realistic one-legged hopper is controlEdgu by Koditschek and his collaborators; [9], [32] and [36]. The
only a hip actuator in [10]. All the control laws mentioned sgame general idea, albeit in a fully actuated setting, has be
far incorporate sensory feedback to stabilize periodinimm employed in [5] and [4], where the method of controlled
motions. However, as indicated in [29], stable running can Bymmetries introduced in [44] together with a generalorati
achieved using purely feed-forward periodic commands ¢o tbf Routhian reduction for hybrid systems were combined to
hip and leg motors. extend passive dynamic walking gaits, such as those olgtaine
The complexity of the dynamics of one-legged hoppetsy McGeer’s passive walker [27], in three-dimensions.
precluded analytically tractable stability studies, aed ko Task encoding through imposing pre-specified target dy-
introducing various simplifications: point-mass body, sl@ss namics leaves one with the question of selecting a suitable
leg, zero gravity in stance, to name a few. In one of theandidate dynamical system for the targeted running behavi
earliest analytical works, Koditschek and Buehler expth|m On one hand, a growing body of evidence in biomechanics
robust behavior of Raibert’s vertical hopping controller bindicates that diverse species, when they run, they turie the
concentrating on the vertical oscillation of a simplifiecpper; neural and musculoskeletal systems so that their COM baunce
see [26]. This analysis is extended in [45] by considerirgong as if it was following the dynamics of a SLIP; [6], [7],
the bifurcation diagram of the system’s return map. Forwaf@l5]. On the other hand, careful consideration of the SLIP
dynamics is added to the vertical hopper in [28] with thgave insight into synthesizing empirical control laws dalpa
purpose of investigating its effect on the vertical moti®he of stabilizing running robots with one, two and four legs, as
problem of controlling forward velocity alone is examined i was demonstrated in [35]. In the light of this evidence, the
[13] and [39], where no control is available at the leg. SLIP is construed as a dynamic model of the observed running
The sagittal plane model in [13] and [39] is comprisetiehavior, and thus can be used as the target dynamics for
of a point-mass body attached to a massless springy léggged robots; see [15], and [19].
and is conservative with the touchdown angle being the soleUp to this point, however, much of this research has been
controlinput. It corresponds to the most common configarati concentrated on the SLIP itself, and, as was indicated ih [10
of the SLIP, which has appeared widely in the locomotiocontrollers specifically derived for the SLIP will have to be
literature; see [15], [19] and references therein. Regerttl modified in order to be successful in inducing stable runiing
was discovered in [41], and, independently, in [16], tha thmore complete models that include pitch dynamics or energy
SLIP possesses “self-stable” running gaits, though thénbaslosses. Only preliminary results in this direction are ke,
of attraction may be impractically small. Control laws havencluding [37] and [36], in which controllers for running
been proposed that enlarge the basin of attraction of theseloit results known for the SLIP. Furthermore, the majori
gaits in [42], while in [3] a theoretical framework suitableof control laws suitable for one-legged robot models eximibi

Il. BACKGROUND
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pitch dynamics are derived based on the assumption that thgtantaneously, without affecting the motion of the tofEloe
torso COM coincideswith the hip joint; see for example seethreshold functionH;_.s : TQ¢ x A; — R given by

[1], [14], [29], [23], [10], [2]. The purpose of this assunmm, o td td )

which is crucial for the success of the control laws, is that i His(21, 0p) 2= yo — 1 cos(p™ + 0) — Lsing,  (3)
results in trivial coupling between the torso and leg dyr@mi signifies the touchdown event at its zero crossing, and define

To the best of the authors’ knowledge, only [21] and [22dmooth switching manifold;_. in the augmented state space
addressed the asymmetric case, but stability conclusiens wx; := 7Q; x Ay, given by

drawn from numerical studies only.
These observations set the stage of this research, whigh aim St—s = {(wr, ) € & | Hrs (21, ) = 0} (4)
at establishing a more formal connection between the SLIPQ§te that in (3) and (4), the parameter is available for

a control target for running and more complete plant mode&lgntrol, and will eventually be chosen according to an event
of legged robots that include nontrivial pitch dynamics.  pased feedback law.

I1l. THE ASYMMETRIC SPRING LOADED INVERTED B. Stance Dynamics

PENDULUM The configuration spacé); of the stance phase is a a

A schematic for the Asymmetric Spring Loaded Invertedimply-connected open subset Bf x S? corresponding to
Pendulum (ASLIP) is presented in Fig. 1. The hip joint (poirghysically reasonable configurations of the ASLIP, and it
at which the leg is attached to the torso) does not coincitle wis parameterized by the joint coordinates: leg lengtheg
the center of mass (COM) of the torso, which is modeled asmgle with respect to the torsp, and torso orientatior,

a rigid body with massn and moment of inertiaJ about i.e. ¢s := (I,,0) € Qs; see Fig. 1. Using the method of
the COM. The leg is assumed to be massless. The contact.afrange [43, p. 255], the stance dynamics of the ASLIP can
the leg with the ground is modeled as an unactuated pin joibe described by the second-order system

The ASLIP is controlled by two inputs: a foreg acting along . .

the leg, and a torque, applied at the hip. In Section IX, the Di(as)ds + Cs(ds, ds)ds + Gs(as) = Bsu, ®)

leg forceu; will be modeled as a spring in parallel with ayherey := (u1,u2)’ € U an open subset dk?, is the input
prismatic force source. In what follows, the subscriptsafid vector during stance, and the matrices in (5) are given by

“s” denote “flight” and “stance,” respectively. . 0 mL cos
Ds(gs)= ( 0 mi? ml(l — Lsin ) ) ,

A. Flight Dynamics mLcosp mi(l — Lsing) J+mL? +ml(l — 2Lsin ¢)

undergoing ballistic motion in a gravitational field togeth c; (g, ¢s)gs = mLlcos g 62 4 2ml i(¢ + 6)

with a double integrator governing the pitch motion. The-con I — Lsing) i(¢+ ) — mLlcos g ¢(¢ + 26)
figuration spac&); of the flight phase is a simply-connected

open subset dR? x S corresponding to physically reasonable ( mg cos(p +6) ) 5 ( (1) (1) )

The flight phase dynamics corresponds to a point mass ( mLsing 02 —ml (¢ + 6)2 )
2m(

configurations of the ASLIP, and it can be parameterized by™=(%) = —mglsin(p +6)
the Cartesian coordinates andy,. of the COM together with
the pitch angle, i.e. ¢¢ := (zc, yc,0)" € Qr; see Fig. 1. The The model (5) can be brought into standard state-space form

flight dynamics of the ASLIP can then be described by tHay defining

mgL cos 0 — mglsin(¢ + 0) 0 0

second-order system
s 4 _ ds
Dsis + Gy = 0, L 7 dt\ g D 1(gs)(—Cs(gs, Gs)ds — Gs(gs) + Bsu)
where D¢ = diag(m,m,J) and G¢ = (0,mg,0)’, with g = fs(xs) + gs(zs)u, 6
being the gravitational acceleration. The system (1) can ca 6

wherezs € TQs := {(¢},d)' | ¢s € Qs,ds € R?} =1 Ay is

the state vector.

d [ ¢ ds Transition from stance into flight can be initiated by cagsin
= = fe(ze),  (2)

easily be written in state-space form as

Tpi=— | -1 the force at the stance leg end to become zero. As explained in
dt gt _Df Gf . . . . ..
[12, Section 4], if torque discontinuities are alloeds they
evolving inTQ¢ := {z¢ = (¢}, G')' | ¢ € Qs, ¢ € R3}. are assumed to be in this model-when to transition into the
The flight phase terminates when the vertical distance of tilight phase becomes a control decision. Therefore, liftoff

toe from the ground becomes zero. To realize this conditiokSsumed to occur at predetermined configurations in theestan
the flight state vector is augmented with := (I*d, ,*)" ¢ state space that correspond to the distance between thedeg e

A; an open subset oR x S!, wherel'd and ' are the and the torso COM be equal to a constagtwhich will be

leg length and angle at touchdown, respectively, ang-= 0.
9 9 9 P Y, an 1This is a modeling issue. In practice, the torque is contisudue to

Thi§ is a consequence (_)f the assu_mption of a mas§less mator dynamics. It is assumed here that the actuatordimstant is small
during flight, the leg obtains the desired length and ori@a enough that it need not be modeled.
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fixed in the control system design; see Remark 5 in Secti®d (T (zt,0, af), T5,0), af) € Sgs. LEL A+ Sep X A — A
VI. Consequently, the threshold functidh,_.; : TQ; — R is be the map
defined b _ _

y A(xs ,af) = Af_>s [Ff (As_>f($s ),af)} . (11)

o _ 2 2 _ 1
Hs(s) =10 VI?+17 = 2Llsing, (7) The mapA “compresses” the flight phase into an “event,” and

and its zeroing defines the stance-to-flight switching serfa can be thought of as a (generalized) “impact map” [12], or a
“reset map” [5]. In this setting, the hybrid dynamics of the

Ss—t = {xs € A | Hot(25) = O} (8) ASLIP becomes
Remark 1 is :fs(xs) + gs(xs)ua
Equation (7) is physically meaningful sinc&? + [? — S¢S
2LIsing > (L —1)*> > 0. Moreover, ifl # L so that pASLP, LT st (12)
L? +1? — 2LIsiny # 0, and if o is selected so tha,_.; ol =A (a7, ar)
is nonempty, therS,_¢ is a five-dimensional' embedded g € S, agf € A

submanifold of TQg. This is a result of the regular value
theorem, see Theorem (5.8) [8, p. 78], sidée.. is C! and
OH,_t/0xs # 0 on H ', ({0}) = Ss_¢. These conditions are
easily met on a physical model; see for example Table.

The left and right limitsz; andz correspond to the states
“just prior to liftoff” and “just after touchdown,” respeigtly.
Note also that in (12), only the argumeryt € Ss_.¢ triggers
liftoff; o affects the initial conditions of the continuous part of
(12). The systennASLIP has the typical form of a system with
C. ASLIP Hybrid Dynamics of Running impulse effects i.e. it is defined on a single chait where

Let ¢¢ : [0, +00) x TQ; — TQ; denote the flow generatedthe states evolve, together with the mapwhich reinitializes
by the flight phase vector fieldf; of (2). Note that the the differential equation at liftoff.
simplicity of f; allows for explicit calculation of the flow;.

When the “augmented” flight flowi¢s, af) intersectsSe_s, IV. OVERVIEW OF THE CONTROL LAW
transition_ from flight to stancc_e_occurs. LAIf—»b 1St — A In this section, the framework within which controllers for
be the flight-to-stance transition map. Similarly, &t ¢ : the ASLIP are designed is outlined. Generally speaking, for

Ss—t — TQr be the stance-to-flight transition map. Botfthe two controllers that will be presented in this paper, the
Ar_s andA,_.¢ are provided in the Appendix. Then, the openpurpose of the feedback law is to coordinate the actuated

loop hybrid model of the ASLIP is degrees of freedom of the ASLIP so that a lower-dimensional
_ hybrid system emerges from the closed-loop ASLIP dynamics;
Xy = TQf X Af . . . .
Y , , this lower-dimensional dynamical system serves as a téoget
Y (@1, &¢) = (fi (), 0) the control of the ASLIP and governs its asymptotic behavior
Si—s = {(xr, o) € Xe|Hy—s (21, 0¢) = 0} This statement will be made mathematically precise in the
at = Ap_q (xf_7 af) following sections. In this section, only the general gliitks

(9) are briefly described. To keep the exposition concise, the
equations associated with the control laws are not included

)'(S =10 see [34] for details.
5o s = fs(s) + gs(ws)u The feedback law exploits the hybrid nature of the system
° St = {xs € X | Ho—p(ms) =0} by introducing control action on two levels; see Fig. 2.
o = Agg(aD), On the first level, a continuous-time feedback ldwy is

employed in the stance phase with the purpose of creating
wherez; = lim, -, z;(7) andz; = lim,~ ; ;(7), 7 € {f,s}, an invariant and attractive submanifol&l embedded in the
are the left and right limits of the stance and flight solusionstance state space, on which the closed-loop dynamics have
The subsystemX; and X can be combined into a singledesired properties. On the second level, event-basedesdat
system with impulse effect&*S" describing the open- controller parameters are performed at transitions framcst
loop hybrid dynamics of the ASLIP; see [46, pp. 252-254]q flight. Generally, the event-based parameter update $aw i
for a discussion of the related geometry. Define the time-tgrganized in an inner/outer-loop architecture, with theein
touchdown functiorl; : s — RU {0}, as loop controllerT's intended to render the surfacg invariant
inf {t € [0, +00)| (¢t (¢, 2t.0), ) € St} _unde_r the reset_map. This condition_is referred tohgbrid
; invariance and it leads to the creation of a reduced-order
Ti(t0,00):= if 3t such that(g(t, 2t.0), ar) € St—s hybrid subsystem called thelybrid Zero DynamicgHZD),
oo, otherwise which governs the stability properties of the full-orderlAB;
(10) see [47] for details. In cases where the in-stride controlle
The flow mag F : X — St for the (augmented) p achieves hybrid invariancd), is not needed and may be
flight phase can then be given by the rulero,as) — excluded from the controller design; Section VI presents on

5 - , _ _ such example. Finally, the outer-loop controllgr completes
The definition of the flight flow map presupposes the existesfca time

instant¢ such that(¢¢ (¢, z¢,0), ¢) € Sg_s. The case where no such time the Contr_()l design by ensuring that the resulting HZD is
instant exists does not correspond to periodic running aneti exponentially stable.
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will be terse. Moreover, only the closed-loop hybrid dynesni
of the ES-SLIP will be presented. In what follows, the su-
perscript “M” denotes the ES-SLIP target model. The flight
and stance configuration spac€’ and QY, respectively,

|
i
|
I
i will both be parameterized by the Cartesian coordinates of
|
I
I
I
I

\

the COM (z¢,y.) € QM = QM =: QM a simply-connected
open subset of (zc,y.) € R?\{(0,0)} | y. > 0}. Hence, the
system dynamics evolves in the state spadé := TQM =
{aM = col(g™, ™) | ¢™ € QM, ¢ € R?}.

In order to accommodate perturbations away from the
nominal energy, the conservative forég developed by the
springy leg of the standard SLIP is modified to include a
nonconservative feedback componeit = TM(2M). The
purpose ofu™M is to stabilize the total energy of the system at

In Sections VI and VIII we particularize these ideas throug% desired nominal Ieve’E,. and 'S. achieved by
explicit constructions of two sets of feedback laws, I M My _ _ ETcle + Yele E(zM) _ E 13
andI’; that achieve the control objectives. In Section VI, the e (@) i Vaz+y? [B@") J: 13)

objective is to coordinate the actuated DOFs of the ASLIP s M) E " :
. s where E(z") is the total energy, an&’p is a positive gain.
that the compliant SLIP emerges as the HZD; this contradler i .
To regulate the forward speed, the following event-based

referred to as th&LIP embedding controllein Section VIII, .

the objective is to impose suitably parameterized virtuwdbh control law is employed
nomic constraints on the ASLIP so that a one-DOF mechanical V=T (™)) =v+K; (2
system arises as its HZD; because, in this case, the regulti - . . .
HyZD cannot be compliant, we refer to this controller ;gsﬁth qwerew and z. speC|fy_ thg _nqmmal touchdown angle and
rigid target model controller Fundamental differences in the.orwar(_j speeq, respectlvelyt_ is the gptual fgrward speed

two control laws are highlighted in Section IX, illustragithe just prior to liftoff, and &; is a positive gain. It can be

benefits of designing the HZD to accommodate complianégmgmzed that (14) corresponds to a variation of Ratbert’

. i speed controller, [35, pp. 44-47].
such as in the SLIP embedding controller. Under the influence of the feedback laws (13) and (14), the

closed-loop ES-SLIP hybrid dynamics can be obtained as

Fig. 2. Feedback diagram presenting the basic structurheo€antrollers.

C-i),  (14)

C

V. TARGET MODEL: THE ENERGY-STABILIZED SLIP

_ _ _ M _ M (xM) (xM)— sM
In this section, the target model for the SLIP embedding 22/11 . Mot Si&l ¥ " e SﬂfM (15)
controller is introduced. The standard SLIP consists of a ()" =Aq ((CC ) )a ()" €S,

pomt mass attached tq a massless prlsmatlc; Spring, an%vﬁerefi\ﬁl(:cM) is the closed-loop stance vector field, which
is passive (no torque inputs) and conservative (no enerlgygiven below for future use

losses), thus precluding the existence of exponentiadiplst

periodic orbits; see [3], [16]. In this paper, we consider a e

variant of the SLIP, where the leg force is allowed to be non- Ve

conservative. The purpose of this modification is to intmelu £, (z™) = 1 M, M . (16)
i i ; ' m 2 2(F01+Fc (.CC ))

control authority over the total energy, which is no more . \/y%ﬂ!c N

conserved as in the standard SLIP, thus leading to the agiste m Izﬂz (Fa+T@M) — g

of exponentially stable periodic orbits. This system, ezhlihe

Energy-Stabilized SLIP (ES-SLIP), is presented in Fig. 3.

Fy, is the elastic force developed by the prismatic spring of
the leg, which is assumed to be generated by a radial patentia

M i — /2 L2
Nominal Symmetric Stance Phase Vel (r(2e, ye)) with r(ze, yc) =V tycas
m d M
F, = M . (17)
dr o=z
kr Assuming, for definiteness, that the spring is linear,
s Lo

F, :k(ro—i-Ar— \/x2+y3) ; (18)

k is the spring constant, the nominal leg length (determining
touchdown), and\r a (constant) pretention; see Fig. 3.

Fig. 3. The Energy-Stabilized SLIP (ES-SLIP), with a prisimactuator In (15), the switching surface
(force source) in parallel with the spring. M M M M M
Sy ={aMeax™ | HYL; (™) =0}, (19)

S

The derivation of the hybrid model for the ES-SLIP isvhere
similar to that of the ASLIP, thus the exposition in this sewat HY o (™) =1 — Va2 + 2, (20)

s—f
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is a three-dimensional’! embedded submanifold ¢, for to stabilize a periodic orbit of the system. These resules ar
reasons similar to those mentioned in Remark 1. Finally, tiemmarized in the following theorem and corollary.

closed-loop reset map;f : Sy — XM in (15) is defined Thegrem 1 (SLIP embedding controller)

by? Let Qs := {¢s € Qs | | # Lsinp}. Then, for everye >
AY =AY o FMo (AL x T}, (21) 0, there exists & in-stride (continuous) control law, =
I'(zs), and aC! event-based (discrete) control lasw =
M . cM M M . cM M c\"s
WhereA . : 5o — A7 andAr, : S, — A are the I'¢(z5 ) such that the following hold:

ES-SLIP stance-to-flight and flight-to-stance transitioaps) . :
. ) A. In-stride Continuous Control
respectively. Due to the fact that both the flight and stan : A 6 : . .
. . ere exists a map : T'Q)s — R° that is a diffeomorphism
state spaces are parameterized by the same coordlnatesb

e. . . : 1N o
transition maps simply correspond to the identity mapton, (I)rgxo)nz {gﬁagﬁé i?(;jsjgf:lgotharﬁolgetlzoord|najes (', )" =
e, AM = AM —idyu. In (21), EM : AM x AM —, SM s ’ P

s—f f—s s—f
is the ES-SLIP flight flow map, defined analogously with the sa(@s) = fs(ws) + gs(xs)TE(2s) (24)
ASLIP flight flow map;AM is an open subset &6f, containing '

physically reasonable values for the the touchdown angle Satisfies:

A.1) the vector field

Remark 2
To explain (19) and (20), the liftoff condition is assumed to fe (z) = <3_(I’ € 1(xs)> (25)
occur when the leg length obtains a particular value, namely > Oy " ™° o= B (x)
rg, as is the case for the conservative SLIP. O has the form

In order to study the stability properties of periodic osbit .
of M, the method of Poincaré is used. The Poincaré section e () = foei2(m) ) (26)
is selected to be the surfacg’,; defined by (19). Let}, : s,cl Focrze (m,2) )’

[0, +00) x XM — XM be the flow generated by, and

define the time-to-liftoff functior™ : XM — RU {0}, in a
similar fashion as (10), by

A.2) the setZ := {z € RS | » = 0} is a smooth four-
dimensionalC" embedded submanifold & that is invariant
under the stance flow, i.e. € Z implies f¢ ,(z) € T;, 2, and

inf { € [0, +00) | M, (t,2}) € S;”Lf} ’ the setS;_.+NZ, whereS,_; is given by (8), is a co-dimension
TM(pMY.— . M M M oneC' submanifold ofZ;
> (7o) It 3¢ such thatg,o (t, 257), € 5=t A.3) the transverse dynamig¥ , .,(n) takes the form

oo, otherwise .
o o (22) Feaaan) = A(e)n, (27)
Then, the Poincaré map™ : SM ; — SM ; is defined by
and it exponentially contracts as— 0, i.e.lim.\ o e4(©) = 0;
PM =gy o [(T2" o AY) x AY]. (23)  A.4) the restriction dynamics

Remark 3 foa@)|z = fsa,3:6(0,2) (28)
Feedback control laws similar to (13) and (14) exist in the ,

literature; the particular ones used here are for illusteat 'S dlffelom?\;pm.c to the ES-SLIP stance phase closed-loop
purposes only. It is emphasized that many other in-stride @namicsf;, given by (16).

event-based controllers could have been used to stabilze B- Event-based Discrete Control R ,

SLIP. For instance, energy stabilization in nonconsereati ' N€ closed-loop reset mafi.; : S, — T'Qs defined by
monopedal models has been demonstrated using linear (leg) Aq = Arg0 Fro (Mg x T), (29)
and rotational (hip) actuation in [2] and [10], respectivédn

the other hand, a large variety of event-based controlkess e Where the mapsi¢_.;, As—.; and F; have been defined in
for the SLIP e.g. [3], [35], [38], [42], which are known toSection IlI-C, satisfies

have very appealing properties. In the next section, weldpveB-1) Aa(Ss—r N 2) C Z, i.e. Ss—¢ N Z is hybrid invariant;
formally a controller for the ASLIP that affords the directeu B.2) the restricted reset mafi.|z is diffeomorphic to the

of control laws available for the SLIP. 00 ES-SLIP closed-loop reset ma)j defined by (21). O
Fore > 0 a given constant, the closed-loop hybrid dynamics

of the ASLIP under the continuous and event-based feedback
control laws of Theorem 1 takes the form
As was mentioned in Section 1V, the control action takes { z

VI. MAIN RESULT: THE SLIP EMBEDDING CONTROLLER

. Fe _
place on two hierarchical levels. On the first level, conbinsi YASLIP . T =Fal@), 27 &S

: - 30
l ZCJF :Acl ('ri) ’ T € Ss~>f7 ( )

in-stride control is exerted during the stance phase tdlab
the torso at a desired posture, and to create an invariarht

. . < L _1
manifold on which the ES-SLIP dynamics can be imposel. ereS;¢ was defined in (8), and\,) := ¢ o Aq o &
On the second level, an event-based SLIP controller is us'gdthe. representation .(.)f the ClOS.Ed'IOOP resgt map m_a:the

: coordinates. The stability properties Bf;>“* will be studied

3Notation: Letf; : X — Y1 and fo : X — Y, and definef; x fo : via_the.corre.sponding Poincaré return MRIP: St — Ss—,
X — V1 x V2 by (f1 X f2)(z) = (f1(), f2(2)), = € X. which is defined analogously tB™ of Section V; see (23).
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As is described in detail in [30], the structure imposed ® thldynamics
ASLIP by the feedback laws of Theorem 1 resultsAf|z 2

d

being independent of, and P¢|z = PM. The following Eg = [L}.h(ws) + Ly, , Ly, h(gs)ur] + Ly, , Ly h(gs)us,
Corollary 1 is an immediate consequence of Theorem 1 in (33)
view of the results in [30]. where
Corollary 1 (Exponential Stability of SASLIF) L% h(xs) =0,
Let (zM)* be a fixed point ofPM and z* a fixed point of —Lcosp Lsing — 1
Pe<. There existe > 0 such that, for alle € (0,€), z* is Lg.. Ly.h(gs) = J Ly, oLy (as) = g
exponentially stable, if, and only ifiz™)* is exponentially ) ) _ (34)
stable. 0 Equation (33) shows that two inputs are available for

Before continuing with the proof of Theorem 1, which willZ€r0ing the (single) output (32). In what follows, the hipcoe
be given in Section VII, a few remarks are in order. uz is solely devoted to pitch control, while the leg input is

reserved for controlling the zero dynamics.
Remark 4 9 y

The conditions # L of Remark 1 and # Lsin ¢ of Theorem Lémma 1 (Stance Phase Zero Dynamics)
1 are both satisfied whenevier- I, which is the case of most Under the output functiorh defined by (32), and fog,
upright runners. O @s:={¢ € Qs |l # Lsiny},
1) the setZ := {x, € TQs | h(xs) =0, Ly h(zs) =0} is a
smooth four-dimensional embedded submanifolc?l”(fjs;

the feedback control law

Remark 5

Intuitively, the definition ofS;_.¢ as in Theorem 1 means tha
liftoff occurs when the distance between the foot and the CO
becomes equal to the nominal length of the ES-SLIPrled] k= _Lgs,lLfsh(qs)
Remark 6 ? Ly, . Ly N(gs)
The importance of Corollary 1 is that, for given controllérat rendersZ invariant under the stance dynamics; that is, for
create an exponentially stable periodic orbit of the ESFSLIz, € Z, u; € R,

the feedback laws = I'é(zs) anday = I'¢(x; ) of Theorem

Uy (35)

1 render this orbit exponentially stable in the ASLIP. O Fs(@s) + g1 (zs)ur + gsp(s)us € T 25
3) there exjst smooth functiong (z5) and~s(zs) so that the
VII. PROOF OF THESLIP EMBEDDING THEOREM map® : TQs — R,
In this section, Theorem 1 is proved through a sequence P(xy) =: (7717772&1725)/ =z, (36)

of Lemmas. The procedure is constructive, and results in a

control law satisfying the requirements of Theorem 1. where
m = h’(QS)a e = Lfsh’('rs)a

A. In-stride Continuous Control z1:= (L), 22 = (11(s),72(xs))’, (37)

The purpose of the in-stride control action during the stanés a valid coordinate transformation, i®.is a diffeomorphism
phase is twofold. First, it ensures that the torso remains @ito its image, and
a desired (constant and upright) pitch angle, and second, it
renders the translational stance dynamics of the ASLIRaliff Ly, .m1(xs) =0, Ly, ,72(xs) = 0;
morphic to the ES-SLIP closed-loop stance dynamics. In vie#) the setS,_;NZ with S,_; defined by (8) is a co-dimension
of the underactuated nature of the stance phase, the twmtorgne C'1-submanifold ofZ. O
objectives will be achieved in different time scales. Sitlte p;gof

.requiremen_t for the torso bging upright.throughout the owti  pypig 1) and 2) of Lemma 1 follow from general results
is more stringent, high-gain control will be imposed on thg, [24, pp. 169-170]. For part 3), consider the distribution

pitch rotational motion. Hence, the system will be deconegos . ._ span{gso}, which has constant dimensioh = 1

into fast and slow dynamics governing the rotational and thg, T0.. SinceyG is one dimensional. it is involutive. and
translational dynamics of the torso, respectively. thus, by the Frobenius theorem (Theorem 1.4.1, [24, p. 23]),

The continuous part aE45H4 in (12), can be written as integrable. As a result there exist—d = 6 — 1 = 5 real-
ds = fo(@s) + go.1(2s)Ur + gs.2 (7). (31) valueq functions defined off'(Qs such that thg annihilator

( ) @) 2(7s)u2 of G is G+ = span{dl,dp,df,dvy,dv:}. A straightforward

Define the output : ()s — R by application of the constructive proof of the sufficiency tpafr

= Frobenius theorem [24, pp. 24-28] results in
y = h(gs) =0 — 0, (32) [ PP ] .
v1(zs) =1+ (Lcosy)b, (38)

whered is a desired pitch angle, taken to be a conétaFiie

output defined by (32) results in the second-order inpuratut Lsingp J

+ :
l ml(Lsinp —1)
41t can formally be shown thaf being constant is aecessarycondition . . . . .
for the existence of an embedding control law. Due to limi&pdce, the proof It is straightforward to check tha® is a diffeomorphism

of this statement will not be presented here. onto its image inRS. Finally, for part 4), note that, in

Yo(zs) = @+ | -1+ 6. (39)



SUBMITTED TO THE IEEE TRANSACTIONS ON AUTOMATIC CONTROL AS AREGULAR PAPER 8

z-coordinates, H, () := (H,.; o ® ')(z) = ry — its unique solution. Hence, (48)-(49) is in standard siagul
VL2 + 22 — 2Lz sin 2y, i€, H,_ is a function ofz only. perturbation form, see [25, p. 424], and the corresponding
In particular, it does not depend ofi and §. The result reduced model is obtained by substituting: 0 and# = 0 in

now follows from the regular value theorem (Theorem (5.8he slow part of the dynamics (49), i.e.

[8, p. 78]), in view of Remark 1 and of the fact that

vank{(h, L h, Hy;)'} = 2 + rank{ Ho_¢} = 3. 0 2= 1:0,2) + ga(2)ua, (51)
It should be noted that, contrary to the HZD designed in [4Where direct calculation leads to

and [12], the zero dynamics manifolél is a four-dimensional 2

embedded submanifold of the six-dimensional stance state

spaceTQ,. This significantly complicates stability analysis £.(2) = 4 (52)

of the resulting HZD, which no longer is a one-DOF system ’ 212 —geos(f + z2) |

as in [47] and [12]. However, the presencewafin the zero —22324+gsin(0+22)

dynamics allows for further control action. A feedback law =

can be devised for; so that the zero dynamics associated 0

with the output (32) matches exactly the differential eourat 0

of the ES-SLIP stance phase dynamics. To do thise tet0 9.(2) = 1/m : (53)

and define the feedback L cos 2

_ 1€ mai(Lcosza—21)
UZ—FC_’Q(*TS) mz1(L cos zo—21)

1 o (40) The following lemma completes the continuous stance con-
= Ly L7 h(gs) v(0,8) = Ly, . L. h(gs)ur | troller design by providing a procedure for constructing
where Lemma 2 (Restriction dynamics)
U€(979-) _ —%Kf;(e —9) - EK{"/G, (41) If 6 is the desired pitch angle in (32), define
€ €
— 2 2 _ :
and K%, K are positive constants. Under this feedback law, r(2) = \/L +2 - 2zmsinz, (54)
the model (31) becomes 21 — Lsin 29 Lz cos 25
R 7‘(2) = zZ3 — 4, (55)
o = fi(@s) + gulas ), (42) r(z) r(z)
y.(2) := 21 cos(za + ) + Lsinf. (56)

where
Then, if E is the desired energy level, the feedback law

fs(@s) = fs(ws) + ve(8, 9) gs2(zs), (43)

Ly, , Ly h(gs ~ z1 — Lsinz
ge2 L 1. 1(gs) up =Teq(z) = #FES—SLIP(Z), (57)
Gs(xs) = gS,l(xS) - Lﬂh(%) gs,2(17s)- (44) ith
Lgs,ZLfsh(qS) wi

Under the coordinates of Lemma 1, (42) has the form  Fgs_spip(2) := k[ro+Ar—r(2)]| - KEi(2)[E(z)—E], (58)

= A(e)n, (45) E(z) := %m(zg + 2323) + mgy.(2) + %k[ro + Ar —r(2)]?,
= £, 2) + gu(2)un, (46) . | 59)
and K& > 0, renders the restriction dynamics (51) diffeomor-
where 0 ) phic to the ES-SLIP closed-loop dynami¢3! (™) defined
Ae) = . (47) by (16). O
< —Kp/e* —KY/e ) Proof
With the additional change of coordinatgs= I1(¢)7j, defined ~ Substitution of (57) into (51) gives
by m = 6’]7]1 and e = 77]2, the model (45)'(46) takes the form 5= fz(z) + gz(z)fc 1(2) —. fz CI(Z)- (60)
ef) = A, (48)  Define the mapb, : Z — R* by
z = f,(I(€)7], 2) + gz(2)ua, (49) —zysin(zz + ) + Lcos

and B,() = 21 cos(zz + 0) + Lsind (61)

1. . . 0 1 Sl —zgsin(zy 4 0) — 2124 cos(za + )

EA =1I""(e)A(e)Il(e) = A= K KD ) (50) 23c08(22 + 8) — z1z4sin(zo + 0)

. . . . . It is straightforward to check that, is a diffeomorphism onto
Since the gaing— K%, —K?} in (50) are strictly positive, the .~ g hus it describ Zl'd di P o

o A is Hurwitz ande>4 converdes to zero exponentiall its image, thus it describes a valid coordinate transfoionat
matrix 9 P Yon Z. Observe thath,(z) = 2M. The result

fastas — 0. Hencelim . o eA() = 0. This verifies condition
A.3) of Theorem 1. Moreover, setting = 0, (48) reduces (%f 1(2))
to the algebraic equatiods; = 0, which has the origin as oz " M°

_ M
— Js,cl

(™) (62)

2=, " (zM)
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- ; ; . - ; Remark 8
bt d after straightf d algeb legior] -
'S otained arter straightiorward algebraic manipuiao The proof of Lemma 3 depends only upon the restriction of

Remark 7 the functionsl'd and ' on S,_¢ N Z. Hence,!*d and 4
Combining (40)-(57), a feedback controller of the form= ¢4 pe replaced with any smooth functions whose restristion
¢ (x5, as) is obtained. The vectons = (6, k, 70, Ar)” cOr- on S, ;N 2 are equal to (64) and (65), respectively. [
responds to parameters introduced by the control law, and
includes the mechanical properties of the target model. The
nominal values of these parameters will be selected via &n Proof of Theorem 1
optimization procedure, which will be presented in Section The proof of Theorem 1 is an immediate consequence of
IX. As was mentioned in Section IV can be updated in Lemmas 1, 2 and 3.
an event-based manner through the inner-loop feedback law
T's of Fig. 2 to ach|e_ve_ hybrid invariance. However, Lemma_SV”l. ONE DOE HYBRID ZERO DYNAMICS: THE RIGID
below shows that this is not necessary for the SLIP embedding TARGET MODEL
controller, and thus,; need not be updated. This is the reason
why a, did not explicitly appear as one of the arguments of This section describes the second of the controllers pre-
the continuous-time controlldre. 0 sented in this paper. The design procedure provides the feed
back lawsT'., I'y and Iy, whose function was described in
Section IV. This controller, whose stability proof follorem
) ) _ revious results in [12] and [31], is included here becatse i

‘The purpose of the stride-to-stride controller is t""Of(’lcﬁomparison with the SLIP embedding controller will reveal

First, it ensures that the manifol .; N Z is invariant under gome peneficial aspects of designing the HZD to accommodate

the reset map\;. Second, it arranges the configuration of thgompjiance. Thus, the presentation will be terse: the ésted
ASLIP at liftoff so that the restriction of the ASLIP reset ma (oader is referred to [34] for particular details on the coint

onS,.tNZ is equal to the SLIP closed-loop reset map. Botfesign, and in [31] for the general framework. It is impottan
requirements can be satisfied through the outer-loop evegiphasize that this controller is fundamentally differizatn
based controlleF of Fig. 2, the design of which is the subjecthe S| |P embedding controller of Sections VI and VIl in that
of the following lemma. it results in a one-DOF HZD, a fact that greatly simplifies
Lemma 3 (Event-based controller) stability analysis, but leaves no room for compliance. Henc
Let 7. and+ be the forward running speed at liftoff and thave refer to this controller as the rigid target model corérol
touchdown angle, respectively, corresponding to a (ddpsire

fixed point of the ES-SLIP. Define

B. Event-Based Discrete Control

A. In-stride Continuous Control

V(s ) =+ K [37 (25) — Zc) (63) During the stance phase, the ASLIP exhibits one degree of
where i is the forward running speed of the AsLIpunderactuation. The two inputs = (u1,uz)" will be used
prior to liftoff. Then, the controlleray = T¢(z;) = (o asymptotically impose two virtual holonomic constraint
(1M9(z7 ), (27)), on two of the models’ three DOF, which are chosen to be

the leg length and the pitch angle, i@, = (,0)’. Other
1"(x7) = \/LQ + 12 + 2Lrosin (¢Y(zs) — 0), (64) choices are possible; however, this particular one allaws f
the direct comparison with the SLIP embedding controller of
o'4(z7) = arcsin [(ltd(xs))Q + L7 —rg (65) Sections VI and VII. Here, the virtual constraints are cimose
s 2L (xg) ’ to be polynomials parameterized by the monotonic quantity

_ . . . : = m/2—p—0, representing the angle of the leg with respect
gg?rgf%iégfe?ne?red pitch angle in (32), achieves B.1) "’Ir[(%c])l the ground, as shown in Fig. 1. The virtual constraints are
‘ ’ imposed through zeroing the output

Proof
Supposez; € S,—.¢ N Z. To show B.1), notice that this y = h(gs, os) = qa — ha(qu, o), (66)
implies 6~ = 0 and 6~ = 6 just prior to liftoff. Since

where hy are the polynomial functions af, describing the

during the flight phasé = 0, i.e. 6(t) = 0, at touchd _ ) _ ;
uring he Hight pnas e. 0(¢) &' “ouchdown desired evolution ofg,, and «ay includes the corresponding

we havedt = 0 andft = 6, which means that € Z. I | coefficiente: 34. Append
This establishes hybrid invariance, i8¢ (Ss—t N Z) C Z. polynomial coefficients; see [34, Appendix].

To show B.2), observe that, in coordinates (61), the SurfaceFollowing the procedure that was outlined in Section IV,
S._.; N Z with S._.; defined by (8), is equal t&™ ., given and is further detailed in [34, Section IlI-B], the contimugo

s—f1 : :
by (19), i.e. the domains of definition of the mafis;| > and feedback controllef’. is designed to render the surface

AM are equal._The rest of the proof is a consequence of thqgas = {25 € TQs | h(gs, ) =0, Ly h(zs,05) =0} (67)

fact that the flight flow of the ES-SLIP is the same as the

translational part of the flight flow of the ASLIP. Equationsnvariant under the flow of the continuous part of the ASLIP
(63)-(65) ensure that, not only the flight flows are identicatlynamics and attractive. It is emphasized here tivatvirtual

but also the corresponding closed-loop reset map$z and constraints are imposed by zeroing (66), thus resulting in a
AM are diffeomorphic. O one-DOFHZD evolving on a two-dimensional surfacg,, .

cl
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B. Event-Based Discrete Control Lemma 3 of Section VII-B achieves exponential stability of
The development of the event-based control law closéiffe ASLIP, letting the pitch angle in (64)-(65) off the zero
follows the structure outlined in Section IV. In this case, tdynamics be equal to its actual value, instead of its nominal
achieve hybrid invariance, it is necessary to include tmein Valued, enlarges the domain of attraction of the controller, i.e.
loop controllerT’s of Fig. 2 in the feedback design. Details on

how to construct’; can be found in [34, Section IlI-C]. 1" (2p,27) = \/L2 + 13 + 2Lrgsin (Y(zs ) — 0), (71)
The outer-loop control law's updatesay = (I', ')’ in

order to exponentially stabilize the HZD. In the rigid targe (ltd(x x,))z L2 g2

model controller, we do not explore the possibility of updgt o'z, 27 ) = arcsin [ b7 — o, (72)

the leg lengthi*? at touchdownj*! is assumed to be always 211 (g, w5

equal to its nominal valug. This leaves the touchdown angle -
o' as the only parameter available for control. The Poinca ose restrictions o, N Z are equal to (64) and (65),

map P associated with the hybrid system under the feedbar?épecuvely' By Remark 8, the stability conclusion of Tien

. . . . i lid. This modification is similar to what was done
lawsT. andT's gives rise to the discrete-time control s stemf, remains vaiid. . . . .
¢ =9 y ih [12], and it will be included in the simulations of the SLIP

zy (k+1) =P (x5 (k), " (k) (68) embedding controller without further comment.

To implement the rigid target model controller, a sixth arde
polynomial was used for the desired leg length, and a cohstan
Sl = {xs eXs|l-1p= 0,1 > 0} . (69) polynomial for the desired pitch angle; refer to [34, Appiehd

for details. Generally, the rigid target model controlléoas
wherez (k) is the state just prior to the k-th liftoff. Lineariz- for the desired pitch angié being any suitably parameterized
ing (68) and implementing a discrete LQR controller gives fynction of the unactuated variablg,, thus allowing for
(k) = Ty (x5 (k) = 4 K [z7(k) —27],  (70) pontrivial motions of the torso. However, this is not possib
in the SLIP embedding controller, due to the fact that cortsta
wherez; and ¢*! are the nominal values of the state juspitch angle throughout the nominal (steady-state) motsoa i
prior k-th liftoff and of the touchdown angle, respectivelynecessary condition for its implementation.
The feedback controller (70) guarantees that the eigeesalu Both controllers introduce a set of parameters whose
of the linearization of (68) are all within the unit circlena@ values along the nominal orbit can be selected using the
completes the control design. Note that instead of the fightimization technique developed in [47]. Consider therityb
model Poincaré map (68), the one-dimensional Poincaf® M@namics of the ASLIP in closed-loop with the feedback
associated with the HZD could have been used, affordingcgntrollers developed in Sections VI, and VII, and in Settio

defined on the surface

reduced-order stability test; see [47], [12], [31]. VIl with cost function
. 1[5
I.X. CO.NTROLLER EVA!_UATI(.)N VIA SIMULATION J(ag) = ?/ w2 (t) dt
This section presents simulation results that compare the sJ0 (73)
performance of the SLIP embedding controller presented in + max. {[ul(t) —ka (lnat — l(t))]Q},
t€[0,Ts

Sections VI and VII, with that of the rigid target model

controller of Section VIIl. Both the steady state and thgnerer, is the duration of the stance phasa, is the stiffness

transient behavior of the controllers are discussed. of the ASLIP leg, and,... its natural length; see Table I.
Append to (73) the constraint

A. Implementation Issues and Nominal Orbit Design

The mechanical properties of the ASLIP used in the sim- zg — Pz, a5, 1) = 0, (74)

ulations roughly correspond to a biped robot currently unde

construction, and are presented in Table | (see also Fig. 1)§o that the nominal orbit is periodic. One can also include

constraints that correspond to requirements such as tiredes

TABLE | nominal forward speed, or the normal ground force component
ASLIP MECHANICAL PARAMETERS be non-negative etc. Then, the problem of finding the nominal
values of the coefficienta, and a; reduces to a constrained
Parameter Value  Units minimization problem, which can be (numerically) solved
Torso Mass(m) 27 kg using MATLAB’s f mi ncon. It worth mentioning here, that
Torso Inertia(./) 1 kgm? the specific choice of performance index (73) reflects our
Hip-to-COM spacing(L) 0.25 m desire to find a nominal orbit for the ASLIP, on which the
Nominal Leg Length{lo) 0.9 m amount of work produced by the hip actuator and the peak
Uncompressed Spring Leng{at) 0.91 m

force developed by the leg actuator given by
ASLIP Spring Constantk ) 7578 N/m

. ) . ) ) UT =uy — kA(lnat - l)7 (75)
In implementing the SLIP embedding controller, simulation
shows that, while the event-based controller developed ane minimized.
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Fig. 4. Nominal orbits in physical space (a), and correspandiip torques Fig. 5. Ten strides showing convergence fréfh= —6deg, for the the SLIP

(b), total leg forces (c), and leg actuator forces (d) coraguty (75), for the embedding controller (a), (c), and the rigid target modeitaler (b),(d).
rigid target model controller (dashed lines) and the SLIPedding controller Dashed lines show desired values; the circles correspotitetmstant when

)
o

(solid lines). the perturbation occurs (liftoff of the second stride).
B. Steady-State Behavior Fig. 5 presents pitch angle and forward velocity as the
In order to compare the behavior of the two controller@SLIP recovers from a perturbatioit = —6deg using both

under perturbations, it would be ideal to have identical imain controllers. The perturbation occurs at the liftoff of treeend
orbits. Despite the fact that relatively low degree polymas Stride. Notice that in both cases, the response of the pitch
have been used in the rigid target model controller, an aim@hgle is similar; however, larger excursions from the nahin
exact match in the resulting nominal orbits was obtainefprward speed are observed in the rigid target model cdatrol
as Fig. 4 presents. Fig. 4 also shows that both controllers

take advantage of the leg spring on the nominal (steadg)stat Fig. 6 presents the total leg forces and the leg actuatoesorc
motion, since the leg actuator foreg is below6N while the ~corresponding to Fig. 5. Itis seen that, in the SLIP embegidin

total leg forces are on the order 80N in both cases. controller, the profile of the leg actuator force$ computed
by (75) remains close to that of a spring force, even during

) ) ) transients. On the contrary, in the rigid target model cullar,
C. Transient Behavior and Performance Evaluation the profile of the total leg force, significantly differs from
The gains used in the SLIP embedding controller are  that of the spring force, resulting in large actuator foreés
This means that the rigid target model controller in closed
Kj"g = 300, K{’/ =2 Kj‘;, e=1.2, K}? =2, and K; = 0.2, loop with the ASLIP effectively “cancels” the compliance of
the leg in the open-loop ASLIP. It is emphasized that, on the
nominal orbit, both controllers exploit the leg spring elijjua
well, since as shown in Fig. 4, the leg actuator force never
exceed$ NV, while the total forces are on the order @fON.

while the gains for the rigid target model controller are
K7}, = diag{100,100}, K{, =24/K}, e=1, and

K = (0.1839,0.4555, —0.0048, 0.0887, 0.1902). o S ,
These features have significant implications for the domain

Note thatK has been selected using MATLABE gr on the of attraction of the two controllers. This is demonstrateda-
discrete system (68) evolving on the Poincaré section. (69)ble I, which presents the number of strides until conveogen
Using these data, both controllers have been simulateithin 5% of the steady-state value (strides), the peakadotu

in MATLAB. It was observed that the rigid target modeforces(u¢,us)™** in N, and the total work Wy, Wy)tetal in
controller tends to violate the unilateral constraint kegwthe J, required to reject perturbationg in the pitch angle andi.
ground and the toe by developing control forces which “pulih the forward velocity using the SLIP embedding controller
against the ground (i.e. the normal force becomes negalige) (SLIP) and the Rigid Target Model controller (RTM). The
enlarge the domain of attraction, it was necessary to imclugerturbations reported in Table Il correspond to the marimu
saturation on the control forces so that the ground comésraivalues that can be rejected with the RTM controller, while
are respected. The SLIP embedding controller did not \golahe leg actuator force satisfie§ < 500N (almost double the
these constraints, except at very large perturbations. weight of the robot). As is shown in Table I, significantly
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legged robots. The control law proposed acts on two levels.
On the first level, continuous in-stride control asympiaitic
stabilizes the torso pitch, and creates an invariant seréac
which the closed-loop ASLIP dynamics is diffeomorphic to
the target SLIP dynamics. On the second level, an event-
based SLIP controller is used to stabilize the system along
a desired periodic orbit. An immediate practical consegaen
of this method is that it affords the direct use of a large body
of controller results that are available in the literatuve the
SLIP. Furthermore, it is deduced through comparisons of the
SLIP embedding controller with a rigid target model corgol
creating a one-degree-of-freedom non-compliant subsyste
that the underlying compliant nature of the SLIP enhances
performance through significantly improving the transiest
sponse and reducing actuator effort. This paper should be
viewed as a first step toward a general framework of controlle
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Fig. 6. Leg forces for the SLIP embedding controller (lehd the rigid In this appendix, the formulas for the stance-to-flight and
target model controller (right), and for the first four stegfsFig. 5. Upper flight-to-stance transition maps of the ASLIP are presem&ﬁd

plots show total leg forces; bottom plots show leg actuatoces computed

design exhibiting compliant hybrid zero dynamics.

APPENDIX

by (75). The dashed lines in the upper plots show spring &rce the transition maps correspond to coordinate transfoomsti

taking stance to flight and flight to stance coordinates.

lower peak leg actuator forces and total work are requirgAd
from the SLIP embedding controller. As a result, larger’
perturbations than those in Table Il can be rejected by tHe SL
embedding controller respecting the constraifit < 500N.

ASLIP stance-to-flight transition maps

Lcosf —Isin(p + 6)

This is due to the fact tha_t the SLIP embedding controller Lsin6 + 1 cos(p + 6)
acts in concert with the spring. These results demonstnate t g
significance of designing the HZD of running to respect the
com | . . Asﬂf(xs) = . . . ;
pliance available in the open-loop system. Otherwise, t J11 Ji2 Jis l
beneficial effects of the actual leg spring may be canceled by Jo1 jaz  jo3 @
the control inputs during transients. . . . .
Js1 J32 Js3 0
TABLE ||
CONTROL EFFORT. SLIP EMBEDDING AND RTM CONTROLLERS where
Perturbation | Control | Stride | (u$, ug)max | (W1, Wp)total | Jin = —sin(p +6), jiz = —lcos(p +0),
86 = +4deg SLIP 4 (54, 28) (24, 18) jis = —lcos(p + 6) — Lsin6,
RTM 6 (442, 15) (71, 24)
50 = —3deg SLIP 4 (50, 26) (16, 19) J21 = cos(¢ +0), jao = —lsin(p + 0),
RTM 4 (382, 21) (55, 19) . .
Sic =109 | SLP | 6 (418, 64) (110, 40) Jas = —lsin(¢ +0) + L cos,,
RTM 12 (448, 37) . (242, 76) a1 =0, jao =0, jag = 1.
0t = —1.47F SLIP Such a large perturbation could not be
rejected without input saturation.
RTM | 15 | (486,15 | (236, 47) B. ASLIP flight-to-stance transition map

X. CONCLUSION

In this paper, a framework for the systematic design of
control laws with provable properties for the ASLIP, an exte
sion of the SLIP that includes nontrivial torso pitch dynaspi
is proposed. The ASLIP can be envisioned as a “building
block” toward the construction of controllers for more elab
orate models that constitute more accurate represensation

Aps(x, o) =

V(L cos — x:)? + (Lsinf — y.)?

LcosO—xz. |\ _
arctan (m) 0

1 -1 .1 .
Jin Ji2 I3 Le
T . | .
Joim J22 Jos Ye
1 o1 a1 )
J31 J32 Js3 0
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where
T — Lcos _; Y — Lsin6
A,y 0) 72 7 Alwe,ye, 0)

1 Laxcsin — Ly cos®
T T A ye )

Jii

.y Lsin@-y. .1 xc— LcosO

20T (e, 0) 7 T A2 (e, e, 0)

1 xc(Lcosh —xc) + yo(Lsind — ye)
Joz = 3 )
A% (2¢, Y, 0)

Ja't =0, gt =0, ' =1,

with

A(e, Y, 0) = \/(Lcose —x)2 + (Lsinf — y.)2.
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