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Abstract

This paper explores interpolation and numerical di�erentiation as a basis for constructing
a new approach to the design of nonlinear observers. Numerical di�erentiation is well known
to be an ill-conditioned problem in the sense that small perturbations on the function to be
di�erentiated may induce large changes in the derivatives. We illustrate through examples that
some speci�c methods may be able to overcome this di�culty, turning numerical di�erentiation
techniques into a possible challenger to existing observer design methods.
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1. Introduction.

Observer design is a fundamental problem in system theory and control practice. Indeed, many
feedback design techniques, especially for nonlinear system models, start with the assumption
that the full state is available for feedback and that the user will design separately a suitable
observer for the actual implementation. This in turn has motivated a great deal of research
into observer design.

The speci�c problem addressed herein involves the situation where one seeks to \esti-
mate" the states of a continuous-time model from observations collected at discrete instants in
time. To date, this problem has been addressed only in the context of sampled data systems
[23, 25, 24, 30], where the procedure has been to �rst compute a discrete-time model from the
continuous-time model, and then to design an observer on the basis of the discretized system
model. Of course, the discretization process sometimes can be quite non-trivial, from a nu-
merical or computational point of view; also, it is usually quite important to assume that the
observed data has been collected at regular intervals of time, and thus dealing with problems
where event driven sampling is necessary can be di�cult.

�Charg�e de Recherche CNRS - LAGEP, UCB Lyon I - 43 Bd. 11 Nov. 1918, 69622 Villeurbanne France; work
supported in part by a grant from NSF/CNRS and in part by the Control Systems Laboratory of the Dept. Elect.
Eng. and Comp. Sci., U. of Michigan.

yControl Systems Laboratory, Department of Electrical Engineering and Computer Science, University of Michi-
gan, Ann Arbor, MI 48109-2122; work supported in part by the National Science Foundation under contract NSF
ECS-92-13551; matching funds to this grant were provided by the FORD MO. CO.

1



This paper comes out of the observation that on the one hand, the numerical analysis
literature contains a substantial body of results on numerical di�erentiation, while on the
other hand, one of the very basic problems in system theory turns out to be that of obtaining
the time derivatives of a continuous system variable, which is usually known only through
the di�erential equations of the system, and time samples of this variable. We present a �rst
attempt in applying results on numerical di�erentiation to the observer design problem, mainly
by working out some speci�c examples.

To see how numerical di�erentiation and observer design may tie together, let us consider
the following simple observer design problem. Let a system be given as8><>:

_x1 = x2
_x2 = �ux31
y = x1

(1.1)

and let the question be to build an observer for (1.1); that is, to reconstruct the states of the
system on the basis of the available measurements. It is clear that the variable x1 need not
be computed since it is directly given by the measurement: x1 = y. From the equations of
(1.1), we see that x2 = _y. If, as is usually the case, we have no access to _y then we need to
compute _y from the measurement y. This is where numerical di�erentiation comes into play:
we explore the feasibility of numerically di�erentiating y in order to obtain x2. If y is known
only through its time samples then numerical di�erentiation yields an approximation of _y at
the current sampling time tk by some number _̂y(tk). An algorithm for the computation of _̂y(tk)
from the samples of y, and estimates of the error bounds should thus be worked out. Usually,
not only _y, but, also, �nitely many higher derivatives of y should be approximated at time tk
in order to be able to compute all of the desired state components.

The intent of this simple example is to illustrate our main objectives in applying numerical
di�erentiation techniques to the observer design problem. If e�cient numerical di�erentiation
algorithms are available, then they should be applicable to many other system theoretic prob-
lems that require the computation of the derivatives of continuous variables which are known
only through their time samples and the di�erential equations they satisfy. The inversion
problem is among other potential applications that come to mind.

Our investigation led us directly to interpolation theory, and more generally, to approx-
imation theory. As is well known, there is a considerable number of di�erent ways for ap-
proximating the value of an unknown function at some point. One commonly chooses among
polynomial, rational, periodic, or exponential functions as basis elements. (See also methods
stemming from the Shannon sampling theorem [6, 7, 45, 46, 5, 4, 36, 40].) The optimality of
any approximation process is, of course, relative to the assumed basis functions. Approxima-
tion methods based on polynomials are the simplest ones, but spline approximations seem to
have some interesting fundamental properties.

The paper is organized as follows. Section 2. brie
y reviews the notion of observability we
are using. Section 3. provides a considerable review of the numerical analysis literature on nu-
merical di�erentiation. Section 4. illustrates on speci�c examples how numerical di�erentiation
may be integrated into an overall observer design strategy.
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2. An observability property.

Given a system described by the state equations(
_xi = gi(x; u) (1 � i � n)
yj = hj(x; u) (1 � j � p)

(2.1)

we will adopt the following speci�c observability property (see [8, 23, 24, 25, 30, 44, 31, 32]):
system (2.1) is observable if there is an integer N such that the map H

�
u; _u; � � � ; u(N�2); �

�
of the state space into some space of output values, de�ned by

H
�
u; _u; � � � ; u(N�1); x

�
=

0BBBB@
y

_y
...

y(N�1)

1CCCCA ; (2.2)

is injective for any �xed universal input. It is easiest at this stage to assume that there is
actually no input in (2.1), or that all inputs are universal in the sense that the above map is
injective for any input.

For an observable system (2.1), we then may write

x = L
�
u; _u; � � � ; u(N�2); y; _y; � � � ; y(N�1)

�
:

The existence of the map L is guaranteed by our de�nition of observability, but an explicit
expression of L may not be easy to obtain so that numerical equation solving methods such
as Newton's algorithm may be required in order to obtain L. When (2.1) is a rational system
in the sense that the gi's and the hj's are rational functions of their arguments, then the type
of observability we just de�ned corresponds to rational observability of [19, 18], and then the
explicit expression of L may be constructively derived through the use of certain di�erential
algebraic techniques.

For these observable systems, the observer design problem may thus be seen as a problem
of numerical di�erentiation: once estimates of the derivatives of y and u can be determined
from the available measurements, then x can be determined from L.

3. On numerical di�erentiation.

The basic problem we are facing may be roughly stated as follows:
Problem P. A real valued function f of one real variable (called the time, t) de�ned on
an interval I is known only through the di�erential equations it satis�es and through the
values it takes at some instants t0; t1; � � � ; tk 2 I , with t0 < t1 < � � � < tk. The question is
to provide estimates of the �rst q derivatives f (1)(tk), f

(2)(tk); � � �, f
(q)(tk) of f at time tj , for

some 0 � j � k. The di�culty of the problem may be increased by the presence of noise in
the samples of f , in which case, the approximation technique should provide smoothing, and
even the values of f would need to be estimated.
Remarks:

� The more general problem we should end up facing in system theory is actually a multi-
variable one in that f is a vector valued function instead of scalar valued as in the latter
statement.
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� If r is the order of the di�erential equations de�ning f then only at most the �rst q = r�1
derivatives of f need be estimated, the succeeding derivatives being computable from the
previous ones by means of these di�erential equations de�ning f .

� Problem P is a particular case of the general problem of approximation of functions
on the basis of partial knowledge of these functions. Its seems that there is not yet a
complete solution with expressions of the error bounds in the literature. One partial
solution consists in taking the derivatives of the interpolant f̂ for those of f . On this
approach, there is a substantial amount of literature. Another possible direction consists
in trying to overcome the ill-conditionedness of the numerical di�erentiation problem by
using some regularization techniques. The only known works are the one by Cullum [13],
and those in the Russian literature (cited in the latter paper) to which we do not yet
have access.

3.1. Generalities on approximation theory.

The basic problem that approximation theory addresses is the following: Assume that the
unknown object to be approximated is an element x of a given metric space E, and �nd a best
estimate x̂ of x in an (also given) subspace F of E subject to

d(x; x̂) = d(x; F ) = min
y2F

d(x; y);

where d denotes the distance on E. The word best is of course relative to the distance used
in E and to the choice of F . For example, for a �xed distance, the larger F is, the �ner the
approximation will be. This problem has at least one solution if the subspace F is compact,
or if E is a normed vector space and F is a linear subspace of �nite dimension, or if E is a
Hilbert space and F is a closed subspace.

In our case, the object to be approximated is the set of derivatives f (1), f (2); � � �, f (q) of
a real valued function f de�ned on, say a compact interval I of lR, so that the space E may
be taken as the set of real valued functions which are q � 1 times di�erentiable with f (q�1)

absolutely continuous and f (q) square integrable on I , or which are in�nitely di�erentiable, or,
even, which are analytic on I . E is thus endowed with its usual lR-algebra structure and may
be converted into a real normed vector space by one of the following

kgkp =

�Z
I

jg(t)jpdt

�1=p

; g 2 E; p 2 lR; p � 1;

kgk1 = sup
t2I

jg(t)j; g 2 E;

kgk(q) = kgk2 + kg(1)k2 + � � �+ kg(q)k2; g 2 E;

etc.

The norm k k2 corresponds to the Hilbert space structure onE, the corresponding inner product
being

(g; h) =

Z
I
g(t)h(t)dt; g; h 2 E:

The norm k k1 is usually called the in�nity or uniform norm.
Whenever F is a �nite dimensional subspace of E and the norm k k2 is used, the least

squares approximation process results in the existence and uniqueness of the best estimate of
any given f in E.

The subset F of E is usually taken as a subspace of one of the following linear subspaces:
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� lR [t], the subspace of polynomial functions,

� lR (t), the subspace of rational functions,

� lR [cos t; sin t], the subspace of lR-linear combinations of cos(it) and sin(it), i 2 lN .

Assume that F is �nite dimensional, with dimension N 0 + 1, and norm k k. We then know
that, given any f0 in E, there is at least one best estimate f̂ of f0 in the sense of minimizing
kf � f0k over f 2 F . When k k = k k1, f̂ is called a best uniform estimate. A base (�0, �1; : : :,
�N 0) of F is said to satisfy the Haar condition if any real linear combination

c1�1(t) + � � �+ cN�N 0(t)

vanishes at less than N 0 + 1 distinct points in I .

Theorem 3.1 ((Haar), [17]) . A necessary and su�cient condition for the best uniform

estimate to be unique is that the base (�0, �1; : : :, �N 0) of F satis�es the Haar condition.

3.2. Di�erentiating the interpolant.

Since the interpolation problem has been given a large number of elegant and practical solu-
tions, the easiest way to approach Problem P is to take the derivatives of the interpolant f̂ for
those of f . Let us make the following remark at this stage even if we have not yet introduced
the material which makes it clear: There might be, due the reality of a particular physical
problem, no freedom in the choice of the sampling instants ti, but the error bounds for the
estimated derivatives are reasonably expected to depend on both the number of samples and
their distribution on the time interval I as apparent from the Tchebychev theorem. Our study
should address this issue, as well, but for now, we shall suppose that the current time is tN ;
later on, we shall discuss how we should deal with the succeeding sampling instants tN+1; : : :

as time evolves.
Let FN 0 be a linear subspace of E of �nite dimension N 0 + 1, and with base (�0, �1; : : :,

�N 0). An element
�̂N 0(t) = c0�0(t) + � � �+ cN 0�N 0(t)

of FN 0 interpolates f if
�̂N 0(ti) = f(ti) (0 � i � N);

that is, if
N 0X
j=1

cj�j(ti) = f(ti) (0 � i � N):

Therefore,

Theorem 3.2 There is one and only one function in FN 0 interpolating f if and only if the

previous set of equations in the cj's has one and only one solution, that is, the existence and

uniqueness in FN 0 of an interpolant of f is equivalent to N 0 = N and the determinant of the

following matrix 0B@ �0(t0) : : : �N(t0)
...

...

�0(tN ) : : : �N(tN )

1CA
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is nonsingular; in this case, we may use the well-known Cramer formula to compute the inter-

polant, and write it in the form

�̂N(t) =
NX
i=1

f(ti)si(t) (t 2 I);

with si(tj) = �ij, where �ij is the Kronecker symbol.

Note that the Haar condition guarantees that the latter square matrix is nonsingular. Note
also that this previous result shows that, when interpolating linearly a function at N points,
the subspace of projection, F , should be of dimension precisely N .

Among the well-established results on interpolation theory, we will now discuss those due
to Lagrange, those based on splines, etc.

3.2.1. Di�erentiating the Lagrange interpolant.

It is clear that there are in�nitely many polynomials of arbitrary degree interpolating f , but,
according to the previous general result, there is one and only one of degree at most N

which interpolates f . This unique polynomial LN is known as the Lagrange (or polynomial)
interpolant of f .

Assuming

`i(t) =
NY
j=0
j 6=i

t� tj

ti � tj
;

we have

LN(t) =
NX
i=0

f(ti)`i(t) (t 2 I);

with `i(tj) = �ij. This is not the most interesting form for the computation of the Lagrange
interpolant. The Newton formulae lead to more e�cient computations, see [47, 26, 34] for
example.

If the only knowledge we have on f is the set of its samples, then being able to estimate
the error bounds is hopeless. Given more information, the following result is known: If f is
N times continuously di�erentiable in I , then for any t in I , there is a point �t in [t0; tN ] such
that

"(t) = f(t)� �̂N (t) =
1

(N + 1)!
`(t)f (N+1)(�t) (t 2 I);

where `(t) =
QN

i=0(t� ti).
This follows mainly from the Rolle theorem. In general, given t, we do not know �t nor

f (N+1)(�t). This is the reason why we shall need to know a bound for the higher derivatives of
f :

k"k1 �
�N

(N + 1)!
kf (N+1)k1;

where � is max1�i�N(ti � ti�1). This bound depends both on the number N + 1 of samples
and on their distribution. If it is possible to choose freely the sampling instants, then we would
be able to decrease the latter error bound by sampling according to the Tchebychev theorem,
see [34]. Now, the error when taking �̂

(j)
N (t) for f (j)(t) is given by

"(j)(t) = f (j)(t)� �̂
(j)
N (t) =

jX
�=0

1

(N + �+ 1)!

 
j

�

!
`(j��)(t)f (N+�+1)(��) (t 2 I);
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where the ��'s are t dependent and in [t0; tN ]. Therefore, we have

k"(j)k1 � c�N+1�j max
0���j

kf (N+1+�)k1;

where c is an absolute constant (it does not depend on f nor the samples), see [38].
Remark: Though simple and elegant, Lagrangian interpolation su�ers from the Runge phe-
nomenon which is the fact that a small change to the data points in the middle of the data
set may produce a very large excursion in the end points, t0; tN , see x3.2.3 of [34]. Accord-
ing to the latter book, Lagrangian interpolation is thus not recommended for large set of
equispaced data. Nevertheless, there are some improvements of the Lagrangian interpolation
in the literature: [38] addresses the problem of numerical di�erentiation with application to
computer-aided-design (the basic assumption that we know the range of f made in that paper
makes it unrealistic in control theory, but still deserves some attention), [11, 12, 9, 10] propose
an osculatory alternative by assuming available some extra data points which represent values
of the higher derivatives of f at the sampling instants.

3.2.2. Di�erentiating the spline interpolant.

Excellent introductions to spline theory may be found in [22, 34]; x3 of the latter book is
particularly recommended for a motivated step by step introduction of splines in the theory
of interpolation.

A natural spline of degree 2l � 1; l 2 lN; l � 1 with knots t0; t1; � � � ; tN is a real valued
function, s, de�ned on lR, and such that:

(i) s has 2l� 2 �rst derivatives de�ned and continuous on lR,

(ii) In each interval [ti; ti+1] ; i = 0; 1; � � � ; N � 1, s is polynomial and with degree at most
2l � 1,

(iii) In each interval ]1; t0] ; [tN ;1[ s is polynomial with degree at most l � 1.

The set of natural splines of degree 2l � 1 with knots t0, t1; � � �, tN is classically denoted
by N2l�1(t0; t1; : : :, tN ). It is clear that N2l�1(t0; t1; : : : ; tN) contains the set of real coe�cient
polynomials in t with degree less than l.

The �ne points of spline interpolation theory are the following fundamental properties, see
[39, 16, 22], for example, for more properties and proofs.
Interpolation property. Let f be in E. For any natural integer l such that l � N + 1
there is one and only one natural spline ŝ in N2l�1(t0; t1; : : : tN ) which interpolates f . When
l = N + 1 then, of course, ŝ is the Lagrange polynomial which is the unique polynomial of
degree less than N+1 interpolating f . For l � N+1, there are in�nitely many natural splines
which interpolate f .
Smoothing properties. Given f in E, and l � N + 1 thenZ

I

�
s(l)(t)

�2
dt �

Z
I

�
f (l)(t)

�2
dt

for any s in N2l�1(t0; t1; : : : ; tN), and equality holds only if f is the unique natural spline ŝ

interpolating f .
The reason why this last property is called smoothing is explained very clearly in x3.4 of

[34]. It refers to cubic splines where the above integrals may be interpreted in terms of energy.
Note that this minimum property may be generalized a bit farther as is done in Sard's linear
approximation theory [37], see also [22], and [27, 29, 28]. Roughly speaking, the generalization
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consists in substituting a general linear functional for f (l)(t) in the above integrals. We need
the theory of Peano kernels, or more generally, of reproducing kernels in Hilbert spaces in
order to understand and use these generalizations of spline interpolation. One may ask if an
ultimate generalization to the nonlinear case would not be a de�nite solution to Problem P;see
[28] and the references therein, for what seems to be a step towards this idea.

We postpone to the next draft of this paper the summary of the results on error bounds
of spline based, numerical di�erentiation. Let us just mention some papers containing partial
results: [21, 48, 3, 41, 37, 22, 20]. We have not yet consulted [15] which is reported to
be an excellent source for spline interpolation. This last paper contains an innovative idea
which consists in improving the spline interpolation by iterating the basic process of spline
interpolation as many times as desired. It is claimed that arbitrary precision may thus be
obtained.

Spline interpolation certainly provides better estimation, and constitutes the most elaborate
method of interpolation when one restricts oneself to linear approximation with polynomial
base functions. Beyond that method, one has to enter the theory of nonlinear approximation

(see [35]) with its simplest form being rational approximation. But then, caution is recom-
mended in the literature, and, anyway, results are far less simple and clear.

The error bounds, say "0, "1; : : :, on the respective derivatives f (0), f (1); : : : of a function
f , no matter what the interpolation process is, are reasonably expected to be such that "0 <
"1 < : : :, see [14].

Finally, let us note that we do yet not have at hand the references [33, 2] which seem to be
very interesting1.

3.3. Numerical di�erentiation by regularization.

As we said earlier, the only reference on this approach that we yet have at hand is the paper by
Cullum [13]. This paper mentions some other works by Russian numerical analysts. Further
bibliographic research is also due since there might be other works which have been completed
since 1971.

4. Illustrative examples.

In order to better understand some of the issues involved in the use of numerical di�erentiation
and interpolation as a basis for an observer design method, three academic examples are
currently being pursued. The �rst example involves the estimation of a time function and a few
of its derivatives from noisy samples collected at discrete instants of time. The second example
builds upon the �rst one by showing that if the signal is generated by a known, continuous-
time linear model, then the model's dynamcis can be incorporated into the estimation process
with advantage. This will bring us into contact with more classical observer theory. The
third example will illustrate that the techniques sketched in the �rst two examples are also
applicable to nonlinear system models, which is of course, the main point.

In each case, polynomials are used as the interpolating funtions, total least squares at the
interpolating points is the metric to be minimized, and the discrete data will be gathered at

1It is remarkable that these researchers were with engineering departments such as the IBM Research Center at
Yorktown Heights, NY; some other contributors on numerical di�erentiation used to be with Ford Mo. Co., Dearborn,
MI.

8



a uniform rate. These simpli�cations are made so that the discussion can be focused on other
issues.

It is emphasized that no theorems are formulated and thus no proofs of validity are o�ered
for any of the algorithms proposed herein. This paper is meant to be an exploration of a set of
ideas. Formalization of these ideas into a rigorous design methodology will be pursued when
su�cient numerical evidence exists suggesting that it is useful to do so.

4.1. Sum of two sinusoids.

The purpose of this example is to illustrate the use of numerical di�erentiation, alone and in
combination with standard system theoretic notions, to recover or estimate several derivatives
of a signal in noise. The key parameters of interest are: N , the order of the interpolating
polynomial; �t, the time interval between data points; W � �t, the length in time of the
moving window used for data interpolation (note that W + 1 is the number of data points in
the window); K, the data node or \knot" within the moving window where the derivative is
to be estimated (counted from the left, with the �rst node in the window numbered zero); and
�, the \intensity" of the noise process corrupting the measurements.

Let an analog signal be given by the sum of two sinusoids of frequencies 1 Hz. and 5 Hz.,
respectively:

y(t) = sin(2�t) + sin(10�t): (4.1)
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Figure 1: Time plots of y(t), y(t) + w(t), ymk and ymk + wk, respectively.

Assume that the measured signal, ym, is the sum of y and w, where w is a Gaussian white
noise process, with standard deviation �. It is further supposed that ym is to be sampled at
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discrete instants of time, k�t, k = 0; 1; :::. In the absence of noise, the minimum sampling
rate to reconstruct y from sampled data would be the Nyquist rate, 10 Hz.; with noise, at least
four times this rate is warranted (an anti-aliasing �lter is not being used though it would be
standard practice to do so). Discrete samples of y + w will be collected therefore at 40 Hz.:

ym(t) := y(t) + w(t) (4.2)

ymk := ym(k�t):

The time signals discussed are depicted in Figure 1. The noise intensity was selected to provide
a (numerically computed) signal to noise ratio of 20/1, and corresponded to � = 0:22. This
should provide a feel for the sample rate and noise intensity being used in all later simulations.

Let the interpolating polynomial for the window of data fymk�W ; : : : ; ymk g be denoted by

ŷk(t) = a0 + a1(t� tk�W ) + : : :+ aN (t� tk�W )N ; (4.3)

where tk := k�t. The coe�cients fa0; a1; : : : ; aNg are determined from the least squares
solution of 266664

1 0 : : : 0
1 �t : : : (�t)N

...
...

...
...

1 W�t : : : (W�t)N

377775
266664
a0
a1
...
aN

377775 =

266664
ymk�W
ymk�W+1
...
ymk

377775 ; (4.4)

with respect to the Euclidean norm. The estimates of the derivatives of y at time �t are
determined by ddj

dtj
yk(�t) :=

dj

dtj
ŷk(t)jt=�t ; (4.5)

for simplicity of notation, this is written as dj

dtj
ŷk(�t).

A number of numerical experiments or simulations were conducted to ascertain the e�ects of
the parametersN , �t, W , K and � on the ability to estimate the derivatives of y. The general
trends of these experiments are summarized here; quantifying these observations analytically
would be a worthy goal:

� The order of the interpolating polynomial should be selected as low as possible in order
to smooth the noise in the signal. On the other hand, for the estimation of the 3rd
derivative of a signal, for example, at least a 3rd order polynomial is required.

� The window length W�t must be chosen large enough to capture the variations of the
signal so that the interpolating polymomial can reproduce its derivatives. However, larger
W�t require higher order polynomials to be chosen.

� Estimates of the derivatives made at the end-points of the window W�t are considerably
less accurate than those made in the interior. However, selecting K < W introduces a
time delay of (W �K)�t in the estimates of the signal and its derivatives.

� For �xed N and W�t, decreasing the time between samples �t or increasing the number
of points in the window W , allows a higher noise intensity � to be tolerated.

� For a �xed �t, though increasing W can produce more accurate results, it must be
considered that it requires more on line compuation and a larger delay must be introduced
(i.e., (W �K)�t increased) in order to retain the accuracy of the estimates.
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Figure 2: Comparison of the true and estimated (�) values of y; dy
dt
; d2y

dt2
; and d3y

dt3
, respectively using

interpolation/numerical di�erentiation.

Figure 2 compares the true and estimated values of y; dy
dt
; d2y

dt2
; and d3y

dt3
when N = 4,

�t = :025, W = 8 and K = 5. Figure 3 displays the normalized errors in the estimates: the
errors in the estimates for (y; : : : ; d3

dt3
y) are normalized by

limT!1

1

T

Z T

0
j
dj

dtj
y(t)jdt: (4.6)

Thus, the error in y is divided by 0.796, dy
dt

by 19.3, d2y
dt2

by 650, and d3y
dt3

by 22,700. The wide
range in the magnitudes makes the estimation problem quite challenging.

Estimating the signal and its derivatives on the basis of theW+1 data points in the moving
window corresponds to using an FIR (�nite impulse response) �lter. By introducing a simple
modi�cation to the above, a sort of IIR (in�nite impulse response) �lter can be achieved. The
modi�cation is somewhat analogous to what is done in spline approximations, but to a systems
person, it would be called a state.

The idea is to append to (4.4), the estimates of y and its derivatives at node K from the
previous window, that is, one appends the relations

dj

dtj
ŷk(tk�1�W+K) =

dj

dtj
ŷk�1(tk�1�W+K); (4.7)
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Figure 3: Normalized estimation errors in y; dy
dt
; d2y

dt2
; and d3y

dt3
, respectively using interpolation/numerical

di�erentiation.

for j = 0; : : : ; J , for some 0 � J � N . This is equivalent to264 1 (K � 1)�t ((K � 1)�t)2 : : : ((K � 1)�t)J : : : ((K � 1)�t)N

0 1 2(K � 1)�t : : : J((K � 1)�t)J�1 : : : N((K � 1)�t)N�1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : : : : J! : : : N(N � 1) : : : (N � J + 1)((K � 1)�t)N�J

375�
266664
a0
a1
...
aN

377775 =

266664
ŷk�1(tk�1�W+K)

d
dt
ŷk�1(tk�1�W+K)

...
dJ

dtJ
ŷk�1(tk�1�W+K)

377775 :(4.8)

The right-hand side of (4.7) must be initialized to start the interpolation process, and thus
becomes a state. This state allows derivative information to be passed from one window of
data to the next. Weights can be added to trade-o� errors in interpolating the measured data
points versus errors in interpolating the derivatives in (4.7).

4.2. Including a system model in the interpolation process.

The goal of this example is to demonstrate two methods for incorporating a dynamic model
of a system into the interpolation/numerical di�erentiation process, whenever the signal in
question is generated by a �nite set of ordinary di�erential equations. This will bring us
into more direct contact with observer design because we will tightly connect estimating the
derivatives of a system's output with estimating the states of the model.
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The signal (4.1) can obviously be generated by an initialized, uncontrolled, linear model
with four states. Let

dx
dt

= Ax

y = Cx
(4.9)

be such a model; it will be observable. This means that x can be recovered from estimates of
y and its derivatives through 266664

y
d
dt
y
...

d�

dt�
y

377775 =

266664
C

CA
...
CA�

377775x (4.10)

for � large enough, which in the particular case of (4.9) is � = 3.
The �rst way to include the model in the estimation process is now explained. Suppose

that in general the model (4.9) has dimension n, and for simplicity, assume that it has a single
output. As before, let 266664

ŷk�1(tk�1�W+K)
d
dt
ŷk�1(tk�1�W+K)

...
dn�1

dtn�1
ŷk�1(tk�1�W+K)

377775 (4.11)

be estimates of y and its �rst n � 1 derivatives from the previous window. By substituting
(4.11) for the right-hand side of (4.10) with � = n � 1, one can determine x̂k�1(tk�1�W+K).
If the resulting estimate of x is \accurate", then it satis�es (4.10) for any �; if not, choosing
� � n introduces constraints whose errors can be minimized in order for x to be more closely
compatible with the dynamics (4.9). Thus, in place of (4.7), one augments (4.4) with

dj

dtj
ŷk(tk�1�W+K) = CAj x̂k�1(tk�1�W+K); (4.12)

For j = 0; : : : ; �, and proceeds as indicated previously. Note that taking � = J � n�1 reduces
(4.12) to (4.7).

Figure 4 shows the e�ect of this modi�cation on the estimation process for N = 6, �t =
:025, W = 8 and K = 5. The weight on the constraints was chosen as

Q =

266666664

1:26 0 0 0 0 0
0 5:19 10�2 0 0 0 0
0 0 1:54 10�3 0 0 0
0 0 0 4:4 10�5 0 0
0 0 0 0 1:3 10�6 0
0 0 0 0 0 4:4 10�8

377777775
: (4.13)

The rationale for selecting the entries of the weight Q is that the magnitude of each successive
derivative grows by a approximatley 30 (recall (4.6), or see (4.1)), and thus Q corresponds
to equal \relative weighting" on y and its derivatives; this same rationale will be applied to
subsequent examples. Including the model interpolation constraints allowed the same window
size and delay as in Figure 3 to be used with an increased polynomial order, without \following"
the noise.

The method just outlined for estimating x from y and its derivatives is akin to a \dead-beat"
observer for x, though, as explained earlier, there is smoothing in the interpolation of y, which
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Figure 4: Normalized estimation errors in y; dy
dt
; d2y

dt2
; and d3y

dt3
, respectively using interpolation/numerical

di�erentiation and � = 5 in (4.12). Note the reduced error with respect to Figure 3.

is \IIR". Some additional smoothing from the model can be obtained, and this constitutes
the second method for introducing the model into the interpolation/numerical di�erentiation
process. This technique, which is reminiscent of [23, 25, 24, 30], will be directly applicable to
nonlinear systems.

Let Ad denote the discretization of the linear model, (4.9), and let x̂+k�1(tk�1�W+K) be the
previous estimate of x. Update x based on the latest estimate of y and its derivatives through
a damped Newton method:

x̂�k (tk�W+K) = Adx̂
+
k�1(tk�1�W+K)

x̂+k (tk�W+K) = x̂�k (tk�W+K) + (4.14)

�

266664
C

CA
...
CAn�1

377775
�1

(

266664
ŷk(tk�W+K)
d
dt
ŷk(tk�W+K)

...
dn�1

dtn�1
ŷk(tk�W+K)

377775�
266664
C

CA
...
CAn�1

377775 x̂�k (tk�W+K));

where 0 < � < 1; using � = 1 reduces the above to a \dead-beat" estimator for x. The damped
Newton update can be used with (4.4) alone or with any of the additions to (4.4) discussed
previously.

Selected simulations of the above estimation methods are now presented. In what follows,
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the state in (4.9) was chosen as

x =

26664
y

d
dt
y

d2

dt2
y

d3

dt3
y

37775 :
It was properly initialized so that its output is precisely given by (4.1). The same noise
sequence used in Figure 3 was added to the output of (4.9).
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Figure 5: Normalized estimation errors in y; dy
dt
; d2y

dt2
and d3y

dt3
, respectively, incorporating \spline method"

and Newton update in interpolation/numerical di�erentiation.

Figure 5 shows the normalized estimation error resulting from the application of (4.4) in
combination with (4.7) and (4.14). The parameter values were chosen as: N = 5, �t = 0:025
sec., W = 6 and K = 3 in (4.4), � = 4 in (4.12) with a weight on (4.7) selected as

Q = 0:1�

26664
1:26 10�1 0 0 0

0 5:19 10�3 0 0
0 0 1:54 10�4 0
0 0 0 4:4 10�5

37775 ; (4.15)

and � = 0:03 in (4.14). For comparison purposes, a steady state, discrete-time, Kalman �lter
was designed with state noise covariance equal to 0:01 �2 Q�1 and output noise variance equal
to �2; even though (4.9) does not have any process noise per se, the pair consisting of the
matrix A and the state noise convariance matrix had to be made stabilizable for a stable
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Figure 6: Normalized estimation errors in y; dy
dt
; d2y

dt2
and d3y

dt3
, respectively, incorporating model derivative

constraints and damped Newton updates with interpolation/numerical di�erentiation.

Kalman �lter to exist. The magnitudes of the steady state errors were essentially identical to
those in Figure 5.

The normalized estimation errors resulting from the application of (4.4) in combination
with (4.12) and (4.14) are shown in Figure 6. The parameter values were chosen as: N = 5,
�t = 0:025 sec., W = 6 and K = 3 in (4.4), � = 4 in (4.12) with a weight selected as

Q =

2666664
1:26 10�1 0 0 0 0

0 5:19 10�3 0 0 0
0 0 1:54 10�4 0 0
0 0 0 4:4 10�5 0
0 0 0 0 1:33 10�6

3777775 ; (4.16)

� in (4.14) was set at 0:03.

4.3. Third order, nonlinear dynamical system.

The goal of this example is to show that the method illustrated on the linear example above
is also applicable to nonlinear models. For this purpose, consider the following system which
is a \convex combination" of an unstable linear dynamics and a stable linear dynamics:264 dx1

dt
dx2
dt
dx3
dt

375 = f(x) =

264 x2
x3

f3(x)

375 (4.17)
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y = h(x) = x1;

where,

f3(x) = �(x)gs(x) + (1� �(x))gu(x);

�(x) = �
x0x

1 + x0x

gs(x) = �54x1 � 36x2 � 9x3

gu(x) = 54x1 � 36x2 + 9x3:

The parameter � will be �xed at 2 for now; in the �nal version of the paper, it will be assumed
unknown.
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Figure 7: Time plots of y(t), y(t) + w(t), ymk and ymk + wk, respectively.

The output of system (4.18) has a fundamental frequency of about 1 Hz., so the sample
rate for the system was selected as 4 Hz.; this is probably a little too slow, but will challenge
the observers to be designed. Figure 7 shows the output of the system (4.18), y, y + w, ymk
and ymk + wk, respectively, for �t = 0:25 sec. and � = 0:0168 (which corresponds once again
to a 20/1 signal to noise ratio). Figure 8 shows the e�ectiveness of estimating the states on
the basis of (4.4) with N = 6, W = 8, K = 4. The performance seems quite good.

A state estimator was also constructed using the interpolation/numerical di�erentiation
method of (4.4), with (4.14) replaced by

x̂�k (tk�W+K) = F�t(x̂
+
k�1(tk�1�W+K))
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Figure 8: Comparison of estimated signals (�)'s and true signals using interpolation/numerical di�erenti-
ation.

x̂+k (tk�W+K) = x̂�k (tk�W+K) + (4.18)

� (
@

@x

264 h

Lfh

L2
fh

375)�1
jx̂�
k
(tk�W+K)

(

264 ŷk(tk�W+K)
d
dt
ŷk(tk�W+K)

d2

dt2
ŷk(tk�W+K)

375�
264 h

Lfh

L2
fh

375
jx̂�
k
(tk�W+K)

):

In the above, F�t(x) is the sampled-data representation of (4.17) for t = �t; for the estimator
results which follow, it was computed by Euler integration with step size 0:0125 (i.e., 80 Hz.
updates). The parameter � was selected as

� =

264 0:6 0
0 0:12 0
0 0 0:03

375 ;
to re
ect scaling in the magnitudes of the estimates of the derivatives and uncertainty due to
noise. Figure 9 compares the estimated values of x1; x2 and x3 to the true values.

One could explore replacing the model constraints (4.12) by

dj

dtj
ŷk(tk�1�W+K) = Lj

fh(x̂k�1(tk�1�W+K)); (4.19)

for j = 0; : : : ; J , but this was not done.
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