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Abstract

This paper explores interpolation and numerical di�er-

entiation as a basis for constructing a new approach to

the design of nonlinear observers.

1 Introduction.

Observer design is a fundamental problem in system

theory and control practice. The speci�c problem ad-

dressed herein concerns the situation where one seeks to

\estimate" the states of a continuous-time model from

observations collected at discrete instants in time. To

date, this problem has been addressed only in the con-

text of sampled data systems [4, 5], where the procedure

has been to �rst compute a discrete-time model from the

continuous-time model, and then to design an observer on

the basis of the discretized system model. Of course, the

discretization process sometimes can be quite non-trivial,

from a numerical or computational point of view; also, it

is usually quite important to assume that the observed

data has been collected at regular intervals of time, and

thus dealing with problems where event driven sampling

is necessary can be di�cult.

This paper arises from the observation that on the one

hand, the numerical analysis literature contains a sub-

stantial body of results on numerical di�erentiation, while

on the other hand, one of the very basic problems in sys-

tem theory turns out to be that of obtaining the time

derivatives of a continuous system variable, which is usu-

ally known only through the di�erential equations of the

system, and time samples of this variable. We present

some initial results on applying numerical di�erentiation

to the observer design problem; this is done mainly by

working out some speci�c examples, though the presen-

tation is done in such a way as to suggest a number of
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formal \convergence results" which will be investigated

in a future publication.

To see how numerical di�erentiation and observer de-

sign may tie together, consider the following simple ob-

server design problem. Let a system be given by(
_x1 = x2
_x2 = �ux31
y = x1

(1.1)

and let the question be to build an observer for (1.1); that

is, to reconstruct the states of the system on the basis of

the available measurements. It is clear that the variable

x1 need not be computed since it is directly given by the

measurement: x1 = y. From the equations of (1.1), we

see that x2 = _y. If, as is usually the case, we have no

access to _y then we need to compute _y from the measure-

ment y. This is where numerical di�erentiation comes into

play: we explore the feasibility of numerically di�erenti-

ating y in order to obtain x2. If y is known only through

its time samples, then numerical di�erentiation yields an

approximation of _y at the current sampling time tk by

some number _̂y(tk). An algorithm for the computation of

_̂y(tk) from the samples of y, and estimates of the error

bounds should thus be worked out 1. Usually, not only _y,

but, also, �nitely many higher derivatives of y should be

approximated at time tk in order to be able to compute

all of the desired state components.

To our knowledge, the work most closely related to that

presented here is [6].

2 An observability property.

Given a system described by the state equations�
_xi = gi(x; u) (1 � i � n)
yj = hj(x; u) (1 � j � p)

(2.1)

we will adopt the following speci�c observability property

(see [4, 5]): system (2.1) is observable if there is an

integer N such that the map H
�
u; _u; � � � ; u(N�1); �

�
of the

1An extensive review of the numerical di�erentiation and
interpolation literature is given in [3].



state space into some space of output values, de�ned by

H
�
u; _u; � � � ; u(N�1); x

�
=

0BB@
y

_y
...

y(N�1)

1CCA ; (2.2)

is injective for any �xed universal input. It is easiest at

this stage to assume that there is actually no input in

(2.1), or that all inputs are universal in the sense that the

above map is injective for any input.

For an observable system (2.1), we then may write

x = L
�
u; _u; � � � ; u(N�1); y; _y; � � � ; y(N�1)

�
:

The existence of the map L is guaranteed by our de�ni-

tion of observability, but an explicit expression for L may

not be easy to obtain so that numerical equation solving

methods, such as Newton's algorithm, may be required

in order to obtain L. When (2.1) is a rational system in

the sense that the gi's and the hj 's are rational functions

of their arguments, then the type of observability we just

de�ned corresponds to rational observability of [2, 1], and

then the explicit expression of L may be constructively

derived through the use of certain di�erential algebraic

techniques.

For observable systems, the observer design problem

may thus be seen as a problem of numerical di�erentia-

tion: once estimates of the derivatives of y and u can be

determined from the available measurements, then x can

be determined from H or L.

3 Illustrative examples.

In order to better understand some of the issues in-

volved in the use of numerical di�erentiation and inter-

polation as a basis for an observer design method, three

academic examples have been studied. The �rst exam-

ple involves the estimation of a time function and a few

of its derivatives from noisy samples collected at discrete

instants of time. The second example builds upon the

�rst one by showing that if the signal is generated by a

known, continuous-time linear model, then the model's

dynamics can be incorporated into the estimation process

with advantage. This will bring us into contact with more

classical observer theory. The third example is intended

to illustrate that the techniques sketched in the �rst two

examples are also applicable to nonlinear system models,

which is of course, the main point.

In each case, polynomials are used as the interpolating

functions, total least squares at the interpolating points

is the metric to be minimized, and the discrete data will

be gathered at a uniform rate. These simpli�cations are

made so that the discussion can be focused on other issues.

It is emphasized that no theorems are formulated and

thus no proofs of validity are o�ered for any of the \al-

gorithms" proposed herein. This paper is meant to be an

exploration of a set of ideas. Formalization of these ideas

into a rigorous design methodology will be pursued in a

later publication.

3.1 Sum of two sinusoids.

The purpose of this example is to illustrate the use of

numerical di�erentiation, alone and in combination with

standard system theoretic notions, to recover or estimate

several derivatives of a signal in noise. The key param-

eters of interest are: N , the order of the interpolating

polynomial; �t, the time interval between data points;

W � �t, the length in time of the moving window used

for data interpolation (note that W + 1 is the number of

data points in the window); K, the data node or \knot"

within the moving window where the derivative is to be

estimated (counted from the left, with the �rst node in

the window numbered zero); and �2, the \intensity" of

the noise process corrupting the measurements.

Let an analog signal be given by the sum of two sinu-

soids of frequencies 1 Hz. and 5 Hz., respectively:

y(t) = sin(2�t) + sin(10�t): (3.1)
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Figure 1: Time plots of y(t), y(t) + w(t), ymk and
ymk + wk, respectively.

Assume that the measured signal, ym, is the sum of y

and w, where w is a Gaussian white noise process, with

standard deviation �. It is further supposed that ym is to

be sampled at discrete instants of time, k�t, k = 0; 1; :::.

In the absence of noise, the minimum sampling rate to

reconstruct y from sampled data would be the Nyquist

rate, 10 Hz.; with noise, at least four times this rate is

warranted (an anti-aliasing �lter is not being used though

it would be standard practice to do so). Discrete samples

of y + w will be collected therefore at 40 Hz.:

ym(t) := y(t) +w(t) (3.2)

y
m
k := y

m(k�t):

The time signals discussed are depicted in Figure 1. The

noise intensity was selected to provide a (numerically com-

puted) signal to noise ratio of 20/1, and corresponded to

� = 0:22. This should provide a feel for the sample rate

and noise intensity being used in all later simulations.



Let the interpolating polynomial for the window of data

fymk�W ; : : : ; ymk g be denoted by

ŷk(t) = a0 + a1(t� tk�W ) + : : :+ aN(t� tk�W )N ; (3.3)

where tk := k�t. The coe�cients fa0; a1; : : : ; aNg are

determined from the least squares solution of24 1 0 : : : 0

1 �t : : : (�t)N

.
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;

(3.4)
with respect to the Euclidean norm. The estimates of the

derivatives of y at time �t are determined byddj
dtj

yk(�t) :=
dj

dtj
ŷk(t)jt=�t ; (3.5)

for simplicity of notation, this is written as dj

dtj
ŷk(�t).

A number of numerical experiments or simulations were

conducted to ascertain the e�ects of the parameters N ,

�t, W , K and � on the ability to estimate the derivatives

of y. The general trends of these experiments are sum-

marized here; quantifying these observations analytically

would be a worthy goal:

� The order of the interpolating polynomial should be

selected as low as possible in order to average out the

noise in the signal. On the other hand, for the esti-

mation of the 3rd derivative of a signal, for example,

at least a 3rd order polynomial is required.

� The window length W�t must be chosen large

enough to capture the variations of the signal so

that the interpolating polymomial can reproduce its

derivatives. However, larger W�t require higher or-

der polynomials to be chosen.

� Estimates of the derivatives made at the end-points

of the window W�t are considerably less accurate

than those made in the interior. However, selecting

K < W introduces a time delay of (W�K)�t in the

estimates of the signal and its derivatives.

� For �xed N and W�t, decreasing the time between

samples, �t, or increasing the number of points in

the window, W , allows a higher noise intensity �2 to

be tolerated.

� For a �xed �t, though increasing W can produce

more accurate results, it must be considered that it

requires more on line compuation and a larger delay

must be introduced (i.e., (W �K)�t is increased) in

order to retain the accuracy of the estimates.

Figure 2 compares the true and estimated values of

y; dy

dt
; d2y

dt2
; and d3y

dt3
when N = 4, �t = :025, W = 8 and

K = 5. Figure 3 displays the normalized errors in the

estimates: the errors in the estimates for (y; : : : ; d
3

dt3
y) are

normalized by

limT!1
1

T

Z T

0

j
dj

dtj
y(t)jdt: (3.6)
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Figure 2: Comparison of the true and estimated (�) val-

ues of y; dy

dt
; d2y

dt2
; and d3y

dt3
, respectively using interpola-

tion/numerical di�erentiation.

Thus, the error in y is divided by 0.796, dy

dt
by 19.3, d2y

dt2

by 650, and d3y

dt3
by 22,700. The wide range in the magni-

tudes of y and its derivatives makes the estimation prob-

lem quite challenging.

-.6

-.3

0

.3

.6

-.5

0

.5

-1

-.5

0

.5

1

0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2
-1

-.5

0

.5

1

N
o

rm
al

iz
ed

 E
rr

o
r

Time in Seconds

Figure 3: Normalized estimation errors in y; dy

dt
; d2y

dt2

and d3y

dt3
, respectively using interpolation/numerical dif-

ferentiation ( eq. (3.4)).

Estimating the signal and its derivatives on the basis of

the W +1 data points in the moving window corresponds

to using an FIR (�nite impulse response) �lter. By intro-

ducing a simple modi�cation to the above, a sort of IIR

(in�nite impulse response) �lter can be achieved. The

modi�cation is somewhat analogous to what is done in

spline approximations, but to a systems person, it would

be called a state.

The idea is to append to (3.4) the estimates of y and

its derivatives at node K from the previous window, that

is, one appends the relations

dj

dtj
ŷk(tk�1�W+K) =

dj

dtj
ŷk�1(tk�1�W+K); (3.7)



for j = 0; : : : ; J , for some 0 � J � N .

The right-hand side of (3.7) must be initialized to start

the interpolation process, and thus becomes a state. This

state allows derivative information to be passed from one

window of data to the next. Weights can be added to

trade-o� errors in interpolating the measured data points

versus errors in interpolating the derivatives in (3.7). Due

to space limitations, no simulations employing this mod-

i�cation are presented; a related idea is explored in the

next subsection.

3.2 Including a system model in the interpo-

lation process.

The goal of this example is to demonstrate two meth-

ods for incorporating a dynamic model of a system into

the interpolation/numerical di�erentiation process, when-

ever the signal in question is generated by a �nite set of

ordinary di�erential equations. This will bring us into

more direct contact with observer design because we will

tightly connect estimating the derivatives of a system's

output with estimating the states of the model.

The signal (3.1) can obviously be generated by an ini-

tialized, uncontrolled, linear model with four states. Let

dx
dt

= Ax

y = Cx
(3.8)

be such a model; it will be observable. This means that

x can be recovered from estimates of y and its derivatives

through 2664
y

d
dt
y
...

d�

dt�
y

3775 =

2664
C

CA
...
CA�

3775x (3.9)

for � large enough, which in the particular case of (3.8) is

� = 3.

The �rst way to include the model in the estimation

process is now explained. Suppose that in general the

model (3.8) has dimension n, and for simplicity, assume

that it has a single output. As before, let26664
ŷk�1(tk�1�W+K)
d
dt
ŷk�1(tk�1�W+K)

...
dn�1

dtn�1
ŷk�1(tk�1�W+K)

37775 (3.10)

be estimates of y and its �rst n � 1 derivatives from the

previous window. By substituting (3.10) for the right-

hand side of (3.9) with � = n � 1, one can determine

x̂k�1(tk�1�W+K). If the resulting estimate of x is \ac-

curate", then it satis�es (3.9) for any �; if not, choosing

� � n introduces constraints whose errors can be mini-

mized in order for x to be more closely compatible with

the dynamics (3.8). Thus, in place of (3.7), one augments

(3.4) with

dj

dtj
ŷk(tk�1�W+K) = CAj x̂k�1(tk�1�W+K); (3.11)

For j = 0; : : : ; �, and proceeds as indicated previously.

Note that taking � = J � n� 1 reduces (3.11) to (3.7).
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Figure 4: Normalized estimation errors in y; dy

dt
; d2y

dt2
,

and d3y

dt3
, respectively using interpolation/numerical dif-

ferentiation (3.4) and � = 5 in (3.11). Note the reduced
error with respect to Figure 3.

Figure 4 shows the e�ect of this modi�cation on the

estimation process for N = 6, �t = :025, W = 8, J = 6

and K = 5. The weight on the constraints was chosen

as Q =diagf1.26, 5.19 10�2, 1.54 10�3, 4.4 10�5, 1.3

10�6, 4.4 10�8g. The rationale for selecting the entries

of the weight Q is that the magnitude of each succes-

sive derivative grows by a approximatley 30 (recall (3.6),

or see (3.1)), and thus Q corresponds to equal \relative

weighting" on y and its derivatives; this same rationale

will be applied to subsequent examples. Including the

model interpolation constraints allowed the same window

size and delay as in Figure 3 to be used with an increased

polynomial order, without \tracking" the noise.

The method just outlined for estimating x from y and

its derivatives is akin to a \dead-beat" observer for x,

though, as explained earlier, there is smoothing in the in-

terpolation of y, which is \IIR". Some additional smooth-

ing from the model can be obtained, and this constitutes

the second method for introducing the model into the in-

terpolation/numerical di�erentiation process. This tech-

nique, which is reminiscent of [4, 5], will be directly ap-

plicable to nonlinear systems.

Let Ad denote the discretization of the linear model,

(3.8), and let x̂+k�1(tk�1�W+K) be the previous estimate

of x. Update x based on the latest estimate of y and its

derivatives through a damped Newton method:

x̂
�
k (tk�W+K) = Adx̂

+
k�1(tk�1�W+K)

x̂
+
k (tk�W+K) = x̂

�
k (tk�W+K) + �P

�1 �

(

26664
ŷk(tk�W+K)
d
dt
ŷk(tk�W+K)

...
dn�1

dtn�1
ŷk(tk�W+K)

37775 � P x̂
�
k (tk�W+K)); (3.12)



where P = col(C;CA; : : : ; CAn�1) and 0 < � < 1; using

� = 1 reduces the above to a \dead-beat" estimator for x.

The damped Newton update can be used with (3.4) alone

or with any of the additions to (3.4) discussed previously.

Selected simulations of the above estimation methods

are now discussed. In what follows, the state in (3.8) was

chosen as

x = col(y;
d

dt
y;

d2

dt2
y;

d3

dt3
y):

It was properly initialized so that its output is precisely

given by (3.1). The same noise sequence used in Figure 3

was added to the output of (3.8).
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Figure 5: Normalized estimation errors in y; dy

dt
; d2y

dt2

and d3y

dt3
, respectively, incorporating \spline method" and

Newton update in interpolation/numerical di�erentiation
(equations (3.4), (3.7) and (3.11)).

Figure 5 shows the normalized estimation error result-

ing from the application of (3.4) in combination with (3.7)

and (3.12). The parameter values were chosen as: N = 5,

�t = 0:025 sec., W = 6 and K = 3 in (3.4), � = 4

in (3.11) with J = 4 and a weight on (3.7) selected as

Q =diagf1.26 10�1, 5.19 10�2, 1.54 10�3, 4.4 10�5g and

� = 0:03 in (3.12). For comparison purposes, a steady

state, discrete-time, Kalman �lter was designed with state

noise covariance equal to 0:01 �2 Q�1 and output noise

variance equal to �2; even though (3.8) does not have any

process noise per se, the pair consisting of the matrix A

and the state noise convariance matrix had to be made

stabilizable for a stable Kalman �lter to exist. The mag-

nitudes of the steady state errors were essentially identical

to those in Figure 5.

The normalized estimation errors resulting from the ap-

plication of (3.4) in combination with (3.11) and (3.12)

with the parameter values chosen as: N = 5, �t = 0:025

sec.,W = 6 andK = 3 in (3.4), � = 4 in (3.11), J = 5 and

a weight selected as Q =diagf1.26, 5.19 10�2, 1.54 10�3,

4.4 10�5, 1.3 10�6g were, again, essentially identical to

those in Figure 5.

3.3 Third order, nonlinear dynamical sys-

tem.

Consider the following system which is a \convex com-

bination" of an unstable linear dynamics and a stable lin-

ear dynamics:24 dx1
dt
dx2
dt
dx3
dt

35 = f(x) =

"
x2
x3

f3(x)

#
(3.13)

y = h(x) = x1;

where,

f3(x) = �(x)gs(x) + (1 � �(x))gu(x);

�(x) = 2
x0x

1 + x0x

gs(x) = �54x1 � 36x2 � 9x3

gu(x) = 54x1 � 36x2 + 9x3:

A state estimator was constructed using the inter-

polation/numerical di�erentiation method of (3.4) using

N = 6, W = 8, K = 4, and a nonlinear version of (3.12).

The sample rate was set at 4 Hz. As before, a noise pro-

cess with a 20/1 signal to noise ratio was added to the

measurement. Very encouraging results were obtained de-

spite the fact that the system exhibits \complicated be-

haviour", that is, there appear to be multiple locally at-

tractive limit cycles near the origin. The interested reader

is referred to [3].
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