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ABSTRACT 

This paper proposes an asymptotically stabilizing feedback controller for an under actuated, 
walking 7-DOF biped robot. The controller is inspired by analytical work that was carried out 
previously on a 5-DOF walker. A key features is that a walking motion is created through the 
design of holonomic constraints that are imposed via feedback control instead of through the 
tracking of pre-planned trajectories. This theoretically motivated control design method is 
shown to yield a control law that will be practically implementable on a robot that is under 
construction.  
 
1. INTRODUCTION 
 
This paper considers a five-link planar biped robot consisting of a torso and two legs with 
knees (see Figure 1). The robot has four independent actuators: the axis between the torso and 
each thigh is actuated as is the axis of each knee. The dynamic model of this 7 DOF biped in 
conjunction with an impact model can be expressed as a nonlinear system with impulse 
effects [12]. This paper concentrates on issues related to the automatic control of this walking 
robot and is a first step toward the formal proof of the asymptotic stability of the walking 
motion of an under actuated biped robot with a torso and two knees. The work presented here 
is a natural continuation of [5,6] where the asymptotic stability of the walking motion of a 
robot with a torso and no knees was fully proved. 
A feedback controller is given for the biped robot. The goal of the controller design is to 
induce an asymptotically stable walking cycle. At its most basic level,  walking consists of 
posture control, that is, maintaining the torso in a semi-erect position, height control, that is, 
keeping the hips at a relatively constant height above the walking surface, and swing leg 
advancement, that is, causing the swing leg to come from behind the stance leg, pass it by a 
certain amount, and prepare for contact with the ground. As in [5,6], these objectives are built 
into a set of holonomic constraints on the generalized position coordinates, q. The objective of 
the feedback controller is then to impose these constraints on the system, by way of driving 
the constraints to zero. Of course, due to the perturbations from the impacts with the walking 
surface, the controller is unable in general to force the constraints to approach zero and remain 



at zero for all time. A general means of trying to “overcome” this can be observed in the 
literature: for experimental as well as simulation based studies, the feedback “gains” appear to 
be universally chosen large enough so that the time constant for driving the constraints to 
zero is much less than the time interval of a single step. 
On the other hand, the work in [5,6] for the biped model without knees achieved “rapid” 
convergence of the design constraints to zero without using high gain control. Continuous, but 
non-Lipschitz continuous, feedbacks were employed [1]. With such feedbacks, the trajectories 
of the stiff-legged biped were made to converge to a certain zero dynamics manifold, Z, in 
finite-time, while using a bounded input. By adjusting the time of convergence to be less than 
the time of a step,  the image of the Poincaré map was made to lie in a one dimensional 
submanifold, denoted S ∩ Z. For the stiff-legged model, it was then possible to introduce a 
map λ that was essentially the restriction of the Poincaré return map, P, to S ∩ Z, and to prove 
that the existence and stability properties of orbits of the closed-loop system can be 
established through the analysis of fixed points of λ. For a system with one less actuator than 
degrees of freedom, the dimension of S ∩ Z is one. This same method is illustrated here on 
the more general biped model. 
This paper does not provide a formal proof of the asymptotic stability for a biped robot with 
torso and knees. Rather, it shows that the theoretically motivated controller structure of [5,6] 
can be successfully applied to more complicated models. To the extent possible, the key 
hypotheses and tools which are needed to prove asymptotic stability are stated. Simulations 
results of the gait of the 7 DOF biped are given. 
The model employed is based upon a biped robot that is currently under construction (Site in 
French - www-lag.ensieg.inpg.fr/recherche/cser/PRC-Bipedes/Prototype/rabbit.html). The 
torques that are demanded by the controller developed here meet the constraints of the robot 
under construction.  

2. ROBOT MODEL 

The robot considered is planar and bipedal. It consists of a torso, hips and two legs of equal 
length, with knees but no ankles (see Figure 1). It thus has 7 degrees of freedom. A torque is 
applied between each leg and the torso, and a torque is applied at each knee. It is assumed that 
the walking cycle takes place in the sagittal  plane and consists of successive phases of single 
support. 
The complete model of the biped robot consists of two parts: the differential equations  
describing the dynamics of the robot during the swing phase (these equations are derived  
using the method of Lagrange [10]), and an impulse model of the contact event (the impact  
between the swing leg and the ground is modeled as a contact between two rigid bodies [7]). 
The contact between the stance leg and the ground is modeled as a pivot. As in [5,6], the 
complete model can be expressed as a nonlinear system with impulse effects [12]. 

2.1 Swing phase model 
The dynamic model of the robot between successive impacts is derived from the Lagrange 
formalism 

uBqGqqqCqqD ⋅=+⋅+⋅ )(),()( ����  (1) 
 
with q=(q1,q31,q41,q32,q42)' (see Figure 1) and u=(u1,u2,u3,u4)'. The torques u1, u2, u3 and u4 are 
applied between the torso and the stance leg, the torso and the swing leg, at the knee of the 



stance leg and at the knee of the swing leg, respectively. Then, the model can be written in 
state space form by defining 
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2.2 Impact model 
The impact between the swing leg and the ground is modeled as a contact between two rigid 
bodies. The contact model requires the full seven degrees of freedom of the robot. Let us add 
Cartesian coordinates (x1,z1) to the end of the stance leg (see Figure 1). One then obtains the 
following extended model 
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with qe=(q1,q31,q41,q32,q42,x1,z1)'. δFext represents the external forces acting on the robot at the 
contact point. The basic hypotheses are 
• The contact of the swing leg with the ground results in no rebound and no slipping of the 

swing leg. 
• At the moment of impact, the stance leg lifts from the ground without interaction. 
• The impact is instantaneous. 
• The external forces during the impact can be represented by impulses. 
• The impulsive forces may result in an instantaneous change in the velocities, but there is 

no instantaneous change in the positions. 
• The torques supplied by the actuators are not impulsional. 
From these hypotheses, the angular momentum is conserved. One deduces 
 

exteeee FqqqD =−⋅ −+ )()( ��  (4) 

 
where Fext is the result of the contact impulse forces. +

eq�  (resp. −
eq� ) is the velocity just after 

(resp. before) impact. An additional set of two equations is  obtained by supposing that the 
swing leg does not rebound nor slip at impact (note that these two equations are needed to be 
able to solve for the impact forces and the post-impact velocities, since there are seven 
unknowns). This yields 
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The result of solving (4) and (5) yields an expression for +

eq�  in term of −
eq� . The final result is 

an expression for ),(: +++ = ωqx  (state value just after the impact) in terms of ),(: −−− = ωqx  
(state value just before the impact), which is expressed as 
 

)( −+ ∆= xx  (6) 

2.3 Nonlinear system with impulse effects 
The overall biped robot model can be expressed as a nonlinear system with impulse effects 
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Where, letting (x2,z2) denote the Cartesian coordinates of the end of the swing leg (see Figure 

1), ( ){ }0, 2 =Χ∈= zqS ω  and ( ){ }55,),('',': ℜ∈−∈=Χ ωππω qq .  

3. ASYMPTOTICALLY STABILIZING CONTROLLER 

This section develops the extension of the controller of [5,6] for the 5 link biped with knees. 

3.1 Output definitions 
A set of outputs is defined as follows 
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The coordinates of the hips, (xH,zH), and the “foot” of the swing leg, (x2,z2) are expressed in 
the coordinate frame of the foot of the stance leg (x1,z1) (see Figure 1). 
 
The output y1 is chosen to maintain the angle of the torso at a desired constant value, say q1d. 
The output y2 ensures the advancement of the hips while the swing leg goes from behind the 
stance leg to in front of it (see Figure 1 for representation of d1 and d2). The output y3 controls 
the hip height and the flexing of the stance leg knee (zHd and qKd are constant values). The 
output y4 controls the trajectory of the end of the swing leg; the desired trajectory z2d is 
defined as a second order polynomial of d1 such that d1 ∈ [-sld/2,sld/2], where sld is the 
desired step length, z2MAX is the maximum desired value of z2 over a step and 
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The gains k1, k2, k31, k41 and k4 are constant values to be chosen later. Thus, with the same 
notation as in (7), the output vector reads as 
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3.2 Controller synthesis 
The control objective is to drive the outputs (10) to zero. Since the biped model comes from 
the second order model (2) and the outputs (10) only depend on functions of the generalized 



positions, q, the relative degree of each output component is either two or infinite. Direct 
calculation yields 
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For the purposes of this conference paper, it is supposed that the matrix LgLfh is invertible on 
the region of interest. This has in fact been confirmed by numerical computations. Define 
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The next step is to define a continuous feedback ),( yyvv �= on (11) so that the four pairs of 
double integrators vy =�� are (globally) finite-time stabilized. The feedback solution used here 
comes from [1]. 
 
Lemma 1 [1] Consider the double integrator 
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with ℜ∈v . Then, with 10 << α , the feedback 
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where the function ),( 21 xxαφ is defined by 
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satisfies the following     
• v is continuous, 
• the origin of (13) in closed-loop with (14) is globally finite-time stable, 
• the settling time function Tset depends continuously on the initial condition. 

♦ 
In the case of the biped robot, and with the notation of [1], a finite-time-stabilizing controller 
is given by  
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where each function ),( iii yy �ψ  (1 ≤ i ≤ 4) has the same form as (14). The reader is referred to 

[1,5,6] for more theoretical details. Then, define a feedback on (7) by 
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3.3 Checking asymptotic stability 
The asymptotic stability of the walking cycle of the biped robot (7) under the control law (17) 
should be verified by analysing fixed points of the associated Poincaré map. A key point 
developed in [5,6] is that the special feedback controllers used here allow the asymptotic 
stability of a walking motion to be checked on the basis of a reduced Poincaré map. Moreover, 
a convenient numerical procedure can be given to compute the reduced map. The numerical 
procedure is recalled here; for its theoretical underpinnings, the reader is referred to [5,6].  
 
Let −− = HH xv �  denote the horizontal velocity of the hips just before impact. Define the function 

σ  by 
 

)'0(:)( 42413231424132311
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where all the state components are computed by supposing that the outputs (10) are identically 
zero, and −− = HH xv � . 
 
Numerical Procedure 
• For a point 0>−

Hv  (which corresponds to the robot walking from left to right), compute 

)(: −− = Hvx σ . 

• Apply the impact model to −x , in order to compute )( −+ ∆= xx , the state of the biped just 
after impact. 

• Use +x  as the initial condition of the robot in closed loop with the feedback controller, 
and simulate until one of the following happens 
¾ There exists a time T > 0 where z2(T)=0, then, if T is greater than the settling time of the 

controller (i.e. the outputs are identically zero), define )()( Tvv HH =−λ ; else, )( −
Hvλ is 

undefined at this point. 
¾ There does not exist a time T > 0 such that z2(T)=0, in this case, )( −

Hvλ is undefined at 
this point. 

 
Analysis Result 
The essence of the theory developed in [5,6] is that a fixed point of λ, i.e 

** )()( −− == HHH vTvvλ , corresponds to a periodic orbit of the biped model. Moreover, if for−
Hv  

near *−
Hv , −−−− >⇒< HHHH vvvv )(* λ , then the fixed point corresponds to an asymptotically 

stable periodic orbit, or in other words, an asymptotically stable walking cycle. 

4. SIMULATIONS 

Consider the biped robot model (7) with the following parameter values 
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corresponding to the mass of the torso, the mass of the femur, the mass of the tibia, the length 
of the torso, the length of the femur and the length of the tibia, respectively. For the outputs 
defined in the previous section, the invertibility of the decoupling matrix can be numerically 
verified. Suppose that q1d=π/30rad, zHd=0.74m, qKd=π/18rad, sld=0.5m, z2MAX=1cm, k1=0.25, 
k2=k3=k4=100 and −

Hv =1.05ms-1. In the feedback (17), suppose 
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with ε=0.075 and α=0.9 (the parameter ε> 0 allows the settling time of the controller to be 
adjusted.) All the previous parameter and coefficient values have been chosen to minimize the 
required torques, a practical constraint. 
Figures 2-7 present representative simulation results over a few walking cycles near the stable 
orbit. Figures 2-3 display the state and the applied torques over a few walking cycles (about 
five steps); note that the peak torque magnitude is about 45 Nm. Figure 4 displays the outputs, 
which go to zero prior to impact. Figure 5 displays the function λ; it also displayed the 
function −− − HH vv )(λ  which represents the change in the hip velocity over successive cycles, 
from just before one impact to just before the next one. A fixed point, corresponding to an 
asymptotically stable walking cycle, occurs at approximately 1.16 ms-1. Figures 6-7 display 
the positions and velocities of the hips and the foot of the swing leg. 
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Fig. 1: Schematic indicating the definition of the coordinates of the biped robot. 
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Fig. 2: Plot of joint angles versus time; unit of radian 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Plot of applied torques versus time; unit of Newton-Meter. 
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Fig. 4: Plot of outputs versus time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: The top graph presents the function λ (bold line) and the identify function (thin 
line); the bottom graph presents the function λ - −

Hv  (bold line) and the zero line (thin 
line). 
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Fig. 6: Plot of positions of the hips and the swing leg end versus time; unit of meter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Plot of the horizontal velocities of the hips and the swing leg end versus time; unit 
of meter/second. 
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