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Nonlinear Control of Mechanical Systems with an
Unactuated Cyclic Variable

J.W. Grizzle+, C.H. Moog§, and C. Chevallereau§

Abstract

Numerous robotic tasks associated with underactuation have been studied in the literature. For a large number
of these in the plane, the mechanical models have a cyclic variable, the cyclic variable is unactuated, and all shape
variables are independently actuated. This paper formulates and solves two control problems for this class of models.
If the generalized momentum conjugate to the cyclic variable is not conserved, conditions are found for the existence
of a set of outputs that yields an exponentially minimum-phase system with a one-dimensional zero dynamics, along
with a dynamic extension that renders the system locally input-output decouplable. If the generalized momentum
conjugate to the cyclic variable is conserved, a reduced system is constructed and conditions are found for the existence
of a set of outputs that yields an empty zero dynamics, along with a dynamic extension that renders the system
feedback linearizable. A common element in these two feedback problems is the construction of a scalar function of the
configuration variables that has relative degree three with respect to one of the input components after an appropriate
static feedback. The function arises by partially integrating the conjugate momentum. The results are illustrated on
two balancing tasks and on a ballistic flip motion.

I. Introduction

Underactuated mechanical systems have fewer actuators than degrees of freedom. Underactuation is

naturally associated with dexterity. For example, the act of standing with one foot flat on the ground

is not viewed as particulary dexterous, whereas a headstand or sur les pointes (ballet) are considered

dexterous. In the first case, since the foot is not in rotation with respect to the ground, the point

of rotation is the ankle, which is actuated, as are each of the joints further up the tree; that is to

say, normal standing involves a fully actuated system. On the other hand, in headstands or when on

pointe, the contact point between the body and ground is acting as a pivot without actuation. These

are underactuated systems. Similar arguments can be made for standing on a high wire, brachiation, a

handstand on the rings, etc. In these examples, a typical control task would be to hold an equilibrium

pose with (asymptotic) stability, or to execute a motion (e.g., a relevé lent, battement) without falling

over (i.e., with internally bounded states).

Motions that include a ballistic phase are also often viewed as dexterous. Examples include dis-

mounting from a highbar or platform diving. In these cases, the underactuation is manifest in the

lack of contact with any surface. The ballistic phase is normally of short duration since reestablishing

contact with a surface (e.g., ground, mat, water, ...) is an objective of the maneuver. A typical control

problem would be to execute a predefined motion, with emphasis on achieving a final state that is

compatible with an elegant landing on a mat (no rebounding or slipping), or re-entry into the water

(no splash). Similar things can be said for back flips, tumbling, and somersaults.
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The objective of this paper is to contribute to the control of a special class of mechanical systems

that are capable of executing such dexterous maneuvers in the plane. The literature on underactuated

(a.k.a. super-articulated) systems and nonholonomic systems is vast. A few representative control

works include the study of accessibility in [24], stabilization of equilibria through passivity techniques

in [36] and energy shaping in [3], stabilization and tracking via backstepping in [46], the use of virtual

constraints to achieve stabilization of orbits in [47], and path planning in [4]. Representative works in

the robotics area are cited in Section II. One of the novelties of the present paper is to recognize that

balancing on a pivot while executing a motion and planning a back flip share a common mathematical

problem: designing a set of outputs that result in a minimal zero dynamics: exponentially minimum

phase and one dimensional in the first case, and empty, in the second. In part, this is of course

related to the maximal feedback linearization problem, which has been solved completely when static

state feedback is considered [28], while only partial results are known when dynamic state feedback is

allowed, c.f. [13], [26] and references therein. The additional requirement being achieved here is that

the “non-feedback linearizable part” of the system is exponentially stable, and no general results are

available on this aspect.

Section II identifies a special class of simple mechanical systems with one degree of underactuation

that underlies the study of dexterous maneuvers in the plane as discussed previously. The key feature

is that the systems possess a cyclic variable and this variable is unactuated [34]. Section III formulates

and solves two related control problems. If the generalized momentum conjugate to the cyclic variable

is not conserved, conditions are found for the existence of a set of outputs that yield an exponentially

minimum phase system with a one-dimensional zero dynamics, along with a dynamic extension that

renders the system locally input-output decouplable. When these two properties are met, it is well

known that asymptotic tracking of an open set of output trajectories is possible, with all internal states

remaining bounded [22]. If the generalized momentum conjugate to the cyclic variable is conserved,

a reduced system is constructed and conditions are found for the existence of a set of outputs that

yields an empty zero dynamics, along with a dynamic extension that renders the system input-output

decouplable. When these two properties are met, is well known that local dynamic state feedback

linearization is possible [22]. In both of these feedback problems, the principal contribution is the

construction of a scalar function of the configuration variables that has relative degree three with respect

to one of the input components after an appropriate static state feedback [5]. The theoretical results are

illustrated on three simple examples in Section IV. The purpose of the first example is to emphasize

the role of the potential energy in determining whether generalized momentum is conserved, and

to demonstrate the computations needed to apply the results of the paper in the simplest possible

setting. The Acrobot is turned on its side. This removes gravity and induces conservation of angular

momentum about the pivot point, which is an obstacle to stabilization of any equilibrium by a smooth



NONLINEAR CONTROL OF MECHANICAL SYSTEMS WITH AN UNACTUATED CYCLIC VARIABLE 3

feedback. Stabilizability is restored through the attachment of a spring between the first link and

the reference frame. The second example provides a non-trivial illustration of the principal results

for a system with multiple inputs. Asymptotic stabilization about an equilibrium is achieved for a

serial, three-link, planar mechanism attached to a pivot in a vertical plane. Asymptotic tracking is

also illustrated through deep knee bends while balancing on the pivot (equivalently, press handstands

on a highbar). The last example illustrates how locally linearizing coordinates can simplify the path

planning problem for a ballistic flip motion [17]. The paper is wrapped up with some additional

discussion of the results in Section V and concluding remarks in Section VI.

II. Motivating Classes of Systems

This section uses two classes of systems to set the stage for the mathematical and control de-

velopments that follow. The first class consists of N ≥ 2 planar rigid bodies connected in a tree

structure—no closed kinematic chains—with the base attached to an inertial reference frame via a

pivot, that is, an unactuated revolute joint. It is supposed that each link has nonzero mass, and

that each connection of two links is independently actuated so that the system has one degree of

underactuation (N degrees of freedom with N − 1 independent actuators). It is further supposed that

all joints are frictionless, but this assumption is really only important at the pivot. Figure 1 shows

an example of such a system. Though not indicated in the figure, massless springs may be attached

between links and between links and the inertial reference frame; prismatic joints between links are

also allowed. This class of systems clearly includes the Acrobot [48], [2], [33], the brachiating robots

of [42], [16], [31], [32], the gymnast robots of [29], [35], [53] when pivoting on a highbar, and the stance

phase models of Raibert’s one-legged hopper [38], [23], [1], [6], [15], [30] as well as RABBIT [11], [9],

[10], [37], [8]. The control objectives will be to stabilize the system about an equilibrium point or

to track a set of reference trajectories with internal stability. The second class of systems consists

of N ≥ 2 planar rigid bodies, once again connected in a tree structure, but this time, it is assumed

that the mechanism is undergoing ballistic motion. As before, it is supposed that that each link has

nonzero mass and each connection of two links is independently actuated. In addition, it is assumed

that there are no springs between any link and an inertial reference frame. Such a system has three

degrees of underactuation: N +2 degrees of freedom and N −1 independent actuators. Figure 2 shows

an example of such a system. This class of systems clearly includes the gymnast robot of [29] when

dismounting from the highbar, the planar diver of [18], the flip gait of the robot in [17], the ballistic

phase of the 4-link planar robot in [43], and the ballistic phase of running in planar biped robots [9]

and Raibert’s hopper [38], [23], [1], [6], [15]. The control objective will be to maximally linearize the

system so as to facilitate the construction of a trajectory that transfers the state of the system from

one point to another in finite time.

Consider the N -link system shown in Figure 1, along with the indicated coordinates, q = (q0, q1, · · · ,
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qN−1), where, for convenience, the reference frame has been attached at the pivot point. The kinetic

energy is quadratic, K = 1
2
q̇T D(q)q̇, with D positive definite. Since the kinetic energy is independent

of the orientation of the reference frame, D is independent of q0; that is ∂D(q)
∂q0

≡ 0. The coordinate q0

is said to be cyclic [19]. The form of the potential energy V depends on whether the system is evolving

under the action of gravity (for example, in a vertical plane versus a horizontal plane) and whether or

not springs have been attached at the joints. Electromagnetic and electrostatic forces are excluded,

and hence, the potential energy depends only on the configuration variables. Denote the Lagrangian

by L = K − V , and assume that the system is actuated such that

d

dt

∂L

∂q̇k

− ∂L

∂qk

=
{

0 k = 0
uk k = 1, · · · , N − 1

, (1)

with uk ∈ IR. The model thus takes the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (2)

where B =
[

0
I

]
.

Consider next the N -link system shown in Figure 2, along with the indicated coordinates, qe =

(q, xc, yc), where (xc, yc) are the Cartesian coordinates of the center of mass. Suppose further that

there are no springs between a link and an inertial reference frame. Then the equations of motion

decompose as
D̄(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = Bu

ẍc = 0
ÿc = g0,

(3)

where in a vertical plane g0 is the gravitational constant and if the system is evolving on a horizontal

plane without friction, then g0 = 0. As in the first class of systems considered, q0 is also a cyclic variable

of D̄ because the kinetic energy is independent of the chosen orientation of the inertial reference frame.

The important point is that the dynamics of the body coordinates, q, and the Cartesian coordinates

of the center of mass, (xc, yc), are decoupled. Since the center of mass coordinates are unactuated, the

control of the system (3) can be reduced to the control of a system having one degree of underactuation

as in (2) by eliminating the trivial dynamics ẍc = 0, ÿc = g0. In this sense, the two systems in Figures

1 and 2 are very similar: they give rise to control problems for systems with N ≥ 2 DOF, (N − 1)

actuators, and the cyclic coordinate is unactuated. One way in which the systems are often different

is that angular momentum about the center of mass of (3) is always conserved, whereas whether or

not (2) has a conserved quantity depends heavily on the potential energy. For example, consider a

system as in Figure 1 in a horizontal plane without friction; suppose furthermore there are no springs

between any link and the inertial reference frame. Then the angular momentum about the pivot point

is a conserved quantity, and thus this feature—conservation of angular momentum—is possible in (2)

as well. Conservation of angular momentum gives rise to a nonholonomic constraint [24] and changes

fundamentally the nature of the control problem.
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In summary, the models of the systems represented by Figures 1 and 2 present the common feature

of an unactuated, cyclic variable. The system (2) has one degree of underactuation whereas even

though the system (3) has three degrees of underactuation, in the proper coordinates, the control

problem decouples into the control of a system of the form (2) plus keeping track of the free evolution

of the center of mass variables. These observations are used in the next section to motivate the class

of models analyzed. As a final remark, it is worth noting that [34] has shown quite clearly that even

for systems with two degrees of freedom, if the cyclic coordinate and the unactuated coordinate do

not coincide—such as in the inverted pendulum on a cart—then the system possesses quite different

properties from a control point of view.

III. Control of Simple Mechanical Systems with an Unactuated Cyclic Variable

Consider the classes of mechanical systems motivated in Section II. Roughly speaking, the goal is to

determine a set of outputs that give rise to a zero dynamics of “smallest possible” dimension, and if this

dimension is non-zero, also to assure that the zero dynamics is stable [5]. More precisely, in the case of

a system where the generalized momentum conjugate to the cyclic variable is not conserved, a set of

outputs will be found that leads to local dynamic input-output decouplability and a one-dimensional

exponentially stable zero dynamics, and for systems where the conjugate momentum is conserved, a

set of flat outputs [41], [14] will be determined; that is, a set of outputs will be found that leads to the

construction of a regular dynamic feedback and a local change of coordinates in which the system is

linear.

Before proceeding, it is worth noting that if outputs are chosen to correspond to the actuated

variables, that is, yi = qi , for i = 1, · · · , N − 1, then each component has relative degree two and

the associated decoupling matrix is clearly invertible (one says the system has vector relative degree

(2, · · · , 2) [22]). Such a choice leads to a two-dimensional zero dynamics, which, moreover, can be

shown to be once again a Lagrangian system [52], and thus can never have an asymptotically stable

equilibrium. One way to get around this problem is to construct a set of outputs such that the

associated zero dynamics has dimension one, and hence is not Lagrangian. For special cases, [5] shows

how to construct an output component that has relative degree three with respect to one of the input

components after an appropriate static feedback. This idea is developed in much more generality here.

A. Partial integration of a one-form

This subsection presents a key result that will lead to the construction of outputs for the system

(2) so that the associated zero dynamics has dimension one, and hence may admit an asymptotically

stable equilibrium point. As will be seen in the next subsection, the abstract one-form considered here

naturally arises from consideration of momentum. The result formalizes and extends previous work of

[34] and [5].
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Lemma 1: Consider a smooth N-dimensional manifold Q. Let ω̃ ∈ T ∗Q be a smooth one-form on

Q and suppose there is a set of local coordinates (q0, q1, · · · , qN−1) defined in an open neighborhood O
of a point (q∗0, q

∗
1 · · · , q∗N−1) in which ω̃ has the form

ω̃ = dq0 +
N−1∑
k=1

αk(q1, · · · , qN−1)dqk. (4)

Then for any choice of 1 ≤ m ≤ N − 1, there exists a function pm : O → IR such that

ω̃ = dpm mod span {dqi|1 ≤ i ≤ N − 1, i 6= m} . (5)

Moreover, one such function is

pm = q0 − q∗0 +
∫ qm

q∗m
αm(q1, · · · , qm−1, τ, qm+1, · · · , qN−1)dτ (6)

Proof: The integral in (6) is well-defined at each point in O because the integrand is smooth and

the integral is evaluated over a closed and bounded interval. Since

dpm = dq0 + αm(q1, · · · , qN−1)dqm +
N−1∑

k=1,k 6=m

∫ qm

q∗m

∂αm(q1, · · · , qm−1, τ, qm+1, · · · , qN−1)

∂qk

dτ dqk,

it follows immediately that, at each point in O,

ω̃ − dpm ∈ span {dqi|1 ≤ i ≤ N − 1, i 6= m} . (7)

Remark 1: Given a collection of smooth real-valued functions {fi|1 ≤ i ≤ k}, span {dfi|1 ≤ i ≤ k}
denotes the corresponding codistribution [22]; that is, the span is computed point-wise over IR. This

applies to (5) and elsewhere in the paper. In (5), (7), and elsewhere, the modulo operation is interpreted

to hold pointwise.

Remark 2: (pm, q1, · · · , qN−1) is a valid set of coordinates on O. Indeed,

q0 = q∗0 + pm −
∫ qm

q∗m
αm(q1, · · · , qm−1, τ, qm+1, · · · , qN−1)dτ.

Said another way, the map that takes (q0, q1, · · · , qN−1) to (pm, q1, · · · , qN−1) is a diffeomorphism on O.

Remark 3: If pm : O → IR satisfies (5) and γ : O → IR satisfies dγ ∈ span {dqi|1 ≤ i ≤ N − 1, i 6= m} ,

then obviously p̃m := pm +γ also satisfies (5). This observation can be useful for simplifying the choice

of pm.

B. Model class and a normal form

Consider a (simple1) N-DOF Lagrangian system with (N − 1) ≥ 1 independent actuators, where

the unactuated variable is a cyclic coordinate of the kinetic energy. Specifically, let the configuration

1Simple means that the kinetic energy is quadratic and the potential energy depends only on the configuration variables.
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space be Q, an open connected subset of IRN , with local coordinates denoted by q = (q0, q1, · · · , qN−1),

and take canonical coordinates (q, q̇) on TQ. Let the kinetic energy be given by K = 1
2
q̇T D(q)q̇,

where D is positive definite and smooth everywhere on Q, and satisfies ∂D(q)
∂q0

≡ 0 (i.e., q0 is cyclic).

Let the potential energy, V, depend only on the configuration variables and be smooth. Denote the

Lagrangian by L = K − V and assume that the system is actuated according to (1). The model can

then be written as in (2). Subsequent analysis and feedback design are more easily accomplished if

the system is first transformed into the Spong normal form [49], [40]

q̈0 =
∑N−1

k=1 Jk(q1, · · · , qN−1)vk + R(q, q̇)
q̈1 = v1

...
q̈N−1 = vN−1,

(8)

where Jk = −d0,k

d0,0
, d0,k, k = 0, · · · , N − 1 are the entries in the first row of D. See the Appendix for the

required (regular) static state feedback transformation. Note that everywhere D is positive definite,

d0,0 is never zero. Note also that Jk does not depend on q0 because q0 is cyclic.

Denote the generalized momentum conjugate to q0 [19] by σ = ∂L
∂q̇0

. Because the kinetic energy is

quadratic and the potential energy depends only on the configuration variables, it follows that

σ =
N−1∑
k=0

d0,k(q1, · · · , qN−1)q̇k. (9)

From the assumption on the actuation and the assumption that q0 is cyclic,

σ̇ = −∂V

∂q0

(q). (10)

For later use, note that (10) implies that the relative degree of σ is at least three2. Using (9) and (10)

to express the Spong normal form in terms of the state variables q0, q1, . . . , qN , σ, q̇1 . . . q̇N , instead of

q0, · · · , qN , q̇0 · · · q̇N , shows that (2) is (globally) static state feedback equivalent to

q̇0 = σ
d0,0(q1,···,qN−1)

+
∑N−1

k=1 Jk(q1, · · · , qN−1)q̇k

σ̇ = − ∂V
∂q0

(q)
q̈j = vj j = 1, · · · , N − 1,

(11)

which will be called the modified Spong normal form. Since only a change of state variables has been

made, the feedback required to go from (2) to (11) is the same as that used in (8).

Associate to σ the one-form ω =
∑N−1

k=0 d0,k(q1, · · · , qN−1)dqk, and the normalized one-form ωnorm =

dq0 +
∑N−1

k=1
d0,k

d0,0
(q1, · · · , qN−1)dqk. Applying Lemma 1 for m = 1, define the function

p1 = q0 − q∗0 +
∫ q1

q∗1

d0,1

d0,0

(τ, q2, · · · , qN−1)dτ. (12)

2If friction were allowed at the unactuated joint, then the relative degree would in general be only one.
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Direct computation then leads to

dp1

dt
=

σ

d0,0(q1, · · · , qN−1)
+

N−1∑
k=2

βk(q1, · · · , qN−1)q̇k, (13)

where,

βk(q1, · · · , qN−1) =
∫ q1

q∗1

∂

∂qk

d0,1

d0,0

(τ, q2, · · · , qN−1)dτ − d0,k

d0,0

(q1, · · · , qN−1).

Note that since ṗ1 does not depend on q̇1, it must be differentiated at least twice more before v1

appears; in other words, p1 has at least relative degree three with respect to v1.

This concludes the preliminary analysis required for subsequent feedback design.

C. Systems where the generalized momentum conjugate to the cyclic variable is not conserved

It is first assumed that σ, the generalized momentum conjugate to q0, is not constant along solutions

of the model (1); that is

G0(q) := −∂V

∂q0

(q) 6≡ 0. (14)

It is also assumed that there exists a static equilibrium point (qe, 0) corresponding to some constant

value of the control, and that when defining p1 via (12), q∗ is taken as qe so that p1 vanishes3 at the

equilibrium point. In this case, conditions will be identified under which the set of outputs,

y1 = Kp1 + σ
y2 = q2 − qe

2
...

yN−1 = qN−1 − qe
N−1,

(15)

K ∈ IR a constant, yields an exponentially minimum phase system. More precisely, conditions will be

given such that the zero dynamics is well defined in a neighborhood of the given equilibrium point,

has dimension one, and is exponentially stable for all K > 0, and moreover, the system is dynamically

input-output decouplable (equivalently, invertible).

Before proceeding with the analysis, the intuition behind this choice of outputs is discussed. As

stated earlier, a more standard choice of outputs would be yi = qi − qe
i , for i = 1, · · · , N − 1, where

each component has relative degree two. Such a choice leads to a two-dimensional zero dynamics, which

can be shown to be once again a Lagrangian system [52], and thus can never have an asymptotically

stable equilibrium. By seeking an output component with a relative degree higher than two, the

dimension of the zero dynamics can be reduced, opening up the possibility of either having no zero

dynamics at all, or, of creating one that is scalar and asymptotically stable. For the class of systems

being studied, no output function of relative degree four has been found (see Section V-B for more

discussion on this point). The most obvious relative degree three function available is the conjugate

3Alternatively, let q∗ be arbitrary, for example, zero, and define y1 = K(p1 − pe
1) + σ, where pe

1 is the value at the equilibrium
point, qe.
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momentum, σ, which is a linear combination of the velocity components. If the first component of the

outputs were modified to y1 = σ, the resulting zero dynamics manifold would include a one-dimensional

submanifold of equilibria associated with G0(q0, q1, q
e
2, · · · , qe

N−1) = 0, and thus asymptotic stability

of the zero dynamics would be impossible. Inspired by [5], by associating σ to a one-form and then

partially integrating it, a function p1 was determined that depends only on the configuration variables

and has at least relative degree three with respect to one of the input components (after a static

feedback was used to put the system in Spong normal form). Hence any function of p1 and σ has at

least relative degree three with respect to that input component. Moreover, by (13), if q̇i = 0 , for

i = 2, · · · , N − 1, then σ is proportional to ṗ1 through the strictly positive quantity d0,0. Thus the

choice y1 = Kp1 + σ, K > 0, and yi = qi − qe
i , for 2 = 1, · · · , N − 1, should lead to the asymptotically

stable zero dynamics ṗ1 = −Kp1/d0,0.

To continue with the control law design, apply a dynamic extension to (11) via

v1 = w1

v̇2 = w2
...

v̇N−1 = wN−1.

(16)

Note that an integrator has not been added on v1, and this is because p1 is designed to have relative

degree three with respect to v1, while it only has relative degree two with respect to v2, · · · , vN−1. With

the dynamic extension, p1 will have relative degree three with respect to w.

Clearly, y
(3)
k = wk, for 2 ≤ k ≤ N − 1. It remains to differentiate the first output component. Using

(13), yields

dy1

dt
= K

[
σ

d0,0(q1, · · · , qN−1)
+

N−1∑
k=2

βk(q1, · · · , qN−1)q̇k

]
− ∂V (q)

∂q0

. (17)

The arguments (q1, · · · , qN−1) will now be dropped so that the formulas remain compact and readable.

Differentiating (17) again yields

d2y1

dt2
= K

[
σ̇

d0,0

− σ

d2
0,0

ḋ0,0 +
N−1∑
k=2

(
β̇kq̇k + βkq̈k

)]
− ∂2V (q)

∂q∂q0

q̇. (18)

Due to the dynamic extension (16), (q2, · · · , qN−1) have relative degree three while q1 only has relative

degree two, thus the inputs do not appear in d2y1

dt2
. Differentiating once more and keeping track only

of the terms where the inputs appear yield

d3y1

dt3
= (∗) + M1,1w1 +

N−1∑
k=2

Kβkwk (19)

M1,1 = −K
σ

d2
0,0

∂d0,0

∂q1

+ K
N−1∑
k=2

(
∂βk

∂q1

q̇k

)
− ∂2V

∂q2
0

J1 − ∂2V

∂q1∂q0

(20)

and therefore the decoupling matrix is

M :=
[

M1,1 K [β2, · · · , βN−1]
0 I(N−2)×(N−2)

]
. (21)
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The decoupling matrix is thus invertible at a given point if, and only if, M1,1 is non-zero at that point.

In a neighborhood of an equilibrium point (qe, 0), M1,1 is non-zero if, and only if,(
∂2V

∂q2
0

d0,1

d0,0

− ∂2V

∂q1∂q0

)∣∣∣∣∣
qe

6= 0. (22)

Wherever the decoupling matrix is invertible, the zero dynamics is locally well defined and the set

of differentials, {dy
(j)
k , j = 0, 1, 2; 1 ≤ k ≤ N − 1}, is independent [22], and hence has dimension

3N − 3. The system (11) with the dynamic extension (16) has dimension 3N − 2, and thus the zero

dynamics has dimension one.

To determine the zero dynamics, it is enough to find a function whose differential is independent

of {dy
(j)
k , j = 0, 1, 2, 1 ≤ k ≤ N − 1}. In the Appendix, it is shown that p1 is an appropriate

choice. On the zero dynamics manifold (that is, when y ≡ 0), σ = −Kp1, q1 = q1(p1, q
e), and

qk − qe
k = q̇k = 0, 2 ≤ k ≤ N − 1. Thus, from (13) (see also (78) in the Appendix), in a neighborhood

of an equilibrium point where M1,1 6= 0, the zero dynamics is

ṗ1 = − K

d0,0(q1(p1, qe), qe
2, · · · , qe

N−1)
p1. (23)

Since d0,0 is positive, the zero dynamics is exponentially stable for all K > 0.

The main result is now summarized in the following theorem.

Theorem 1: Consider the simple mechanical system (2) with N ≥ 2 DOF, N − 1 independent

actuators, and the unactuated coordinate is cyclic. Associate to the system the outputs defined in

(15), for K > 0. Then at any equilibrium point at which M1,1 in (20) is non-zero, the system is

i) exponentially minimum phase and

ii) dynamically input-output decouplable.

Moreover, once the system is transformed into Spong normal form as in (8), or into the modified Spong

normal form as in (11), then the dynamic extension (16) renders it statically input-output decouplable.

Remark 4: From [22], exponential minimum phase plus static input-output decouplability after

a dynamic extension implies the existence of a feedback that induces asymptotic tracking of output

trajectories with internally bounded states. See the three-link robot in Section IV-C.2 for an example.

Remark 5: If pm in (12) is selected with m 6= 1, then the dynamic extension becomes

vm = wm

v̇k = wk, 1 ≤ k ≤ N − 1, k 6= m,
(24)

d3y1

dt3
= (∗) +


−K

σ

d2
0,0

∂d0,0

∂qm

+ K
N−1∑

k=1,k 6=m

∂βk

∂qm

q̇k − ∂2V

∂q2
0

Jm − ∂2V

∂qm∂q0


 wm +

N−1∑
k=1,k 6=m

Kβkwk,

and the decoupling matrix is invertible in a neighborhood of an equilibrium point (qe, 0) if, and only

if, (
∂2V

∂q2
0

d0,m

d0,0

− ∂2V

∂qm∂q0

)∣∣∣∣∣
qe

6= 0. (25)

Choosing different values of m may be useful for avoiding singularities.
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D. Systems where the generalized momentum conjugate to the cyclic variable is conserved

It is now assumed that σ, the generalized momentum conjugate to q0, is constant along solutions of

the model; that is

G0(q) := −∂V

∂q0

(q) ≡ 0, (26)

which is equivalent to σ̇ ≡ 0. In (11), σ can be treated as a constant, yielding the reduced order model

q̇0 = σ
d0,0(q1,···,qN−1)

+
∑N−1

k=1 Jk(q1, · · · , qN−1)q̇k

q̈j = vj j = 1 . . . N − 1.
(27)

Let q∗ ∈ Q be given and define p1 as in (12). In this case, conditions will be found such that the

system (27) with outputs
y1 = p1

y2 = q2 − q∗2
...

yN−1 = qN−1 − q∗N−1,

(28)

is locally, dynamically, feedback linearizable. Note that (28) is a simplification of (15) arising from

σ̇ ≡ 0.

As in Section III-C, apply the dynamic extension (16) to (27). Once again, y
(3)
k = wk, for 2 ≤ k ≤

N − 1 and it remains to differentiate the first output component. From (17)-(19), by taking K = 1

and ∂V
∂q0

(q) ≡ 0, it follows that

dy1

dt
=

σ

d0,0

+
N−1∑
k=2

βkq̇k (29)

d2y1

dt2
= − σ

d2
0,0

ḋ0,0 +
N−1∑
k=2

(
β̇kq̇k + βkq̈k

)
(30)

d3y1

dt3
= (∗) + M1,1w1 +

N−1∑
k=2

βkwk, (31)

where

M1,1 = − σ

d2
0,0

∂d0,0

∂q1

+
N−1∑
k=2

(
∂βk

∂q1

q̇k

)
. (32)

Thus, the decoupling matrix is

M :=
[

M1,1 [β2, · · · , βN−1]
0 I(N−2)×(N−2)

]
(33)

and is invertible in a neighborhood of a given point if, and only if, M1,1 is non-zero at that point. In

a neighborhood of a point where the decoupling matrix is invertible, the sum of the relative degrees

of the outputs is 3(N − 1), which equals the sum of the dimensions of (27) and (16). It follows

that (27) with outputs (28) has no zero dynamics [22], and thus any regular static feedback that

input-output linearizes (27), (28) and (16), also renders the closed-loop system input-to-state linear

in the coordinates (y
(j)
k |1 ≤ k ≤ N − 1, 0 ≤ j ≤ 2); the associated Brunovsky canonical form is

y
(3)
k = w̄k, 1 ≤ k ≤ N − 1.
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Theorem 2: Consider a simple mechanical system (2) with N ≥ 2 DOF, N − 1 independent

actuators, and the unactuated coordinate is cyclic. Suppose that the generalized momentum conjugate

to the cyclic coordinate is conserved along the motions of the system, so that the reduced system (27)

can be defined. Associate to (27) the outputs defined in (28). Then in a neighborhood of any point at

which M1,1 in (32) is non-zero, the following hold:

i) the system (27) is dynamically feedback equivalent to a controllable linear system;

ii) the system (27) is the strongly accessible part of (2), and σ̇ = 0 can be viewed as a representation

of the uncontrollable part;

iii) the system (2) is dynamically feedback equivalent to a linear system with a one-dimensional un-

controllable part; and

iv) the system (27) with outputs (28) is dynamically input-output decouplable and has no zero dy-

namics.

Moreover, the dynamic extension (16) renders (27) statically feedback linearizable.

Corollary 1: The same results hold for (3) with the exception that the uncontrollable part has

dimension five:

σ̇ = 0

ẍc = 0 (34)

ÿc = g0,

where g0 is a constant.

IV. Examples

This section will illustrate the theoretical results of Section III on systems of the type depicted in

Figures 1 and 2. The systems are chosen to be simple enough that the calculations are straightforward

and sufficiently complex to illustrate a range of possible applications of the main theorems. The first

example treats a robot with two rigid links connected via an actuated revolute joint and attached at

one end to a pivot; that is, the acrobot. A novel feature is that the robot is placed on a frictionless

horizontal plane to remove gravity. If nothing else were done, the angular momentum about the

attachment point would be conserved, so stabilization about an equilibrium would not be possible. A

spring is therefore added between the world frame and the first link, and a stabilizing controller is

then designed through the use of Theorem 1. The second example treats a robot consisting of three

serial links connected by independently actuated revolute joints, attached to a pivot, and constrained

to evolve in a vertical plane. For this system, the results of [5], [34] are not applicable for designing

a stabilizing controller. Theorem 1 is applied to design a controller that achieves stabilization about

an equilibrium point and asymptotic tracking of trajectories. The last problem studied focuses on
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ballistic motion in a vertical plane, which is a key part of a model of running. The model assumes a

robot with two rigid links connected via an actuated revolute joint. The angular momentum about

the center of mass is conserved, creating a nonholonomic constraint. Corollary 1 is applied to feedback

linearize the accessible part of the system. The linear representation of the dynamics is shown to

be advantageous for path planning. The singularities that prevent the system from being globally

linearized are explicitly noted and how to plan a path through such a singularity is illustrated.

A. Computing the outputs

The key to applying the results of Section III is the explicit computation of the function p1 in (12)

used to define the outputs. For all of the examples treated here, plus a wide range of other examples,

the computation of this function is handled by the following lemma. The proof by direct symbolic

integration is not given.

Lemma 2: Consider a simple mechanical system of the form (2), with N ≥ 2 DOF and mass inertia

matrix D. Suppose that d0,0 and d0,1 can be expressed as

d0,0 = a00 + a01 cos(q1) + a02 sin(q1)
d0,1 = a10 + a11 cos(q1) + a12 sin(q1),

(35)

where aij = aij(q2, · · · , qN−1). Then for q∗ = 0 and −π < q1 < π, (12) can be evaluated explicitly as

p1 = q0 +
c1

c2

q1 + ϕ1 ◦ tan(
q1

2
) + ϕ2 ◦ tan(

q1

2
), (36)

where,

ϕ1(x) = 2(a10

c3
− a00c1

c2c3
) arctan

(
(a00−a01)x+a02

c3

)
ϕ2(x) = (a02a11−a01a12)

c2
ln (a00(1 + x2) + a01(1 − x2) + 2a02x) − a02a11

c2
ln(1 + x2)

c1 = a01a11 + a12a02

c2 = a2
01 + a2

02

c3 =
√

a2
00 − a2

01 − a2
02.

(37)

Remark 6: If N = 2 and either a02 = a12 = 0 or a01 = a11 = 0, then ϕ2 ≡ 0. In this case, the

results simplify to [34].

Remark 7: For a general point of interest q∗ 6= 0, (12) can be evaluated as

p1 = (q0 − q∗0) +
c1

c2

(q1 − q∗1) + ϕ1 ◦ tan(
q1

2
) + ϕ2 ◦ tan(

q1

2
) − ϕ1 ◦ tan(

q∗1
2

) − ϕ2 ◦ tan(
q∗1
2

),

which is just p1 in (36) minus the same function evaluated at q∗.

B. Planar Two-link Structure Attached to a Pivot

The purpose of the example is to emphasize the role of the potential energy in determining whether

generalized momentum is conserved, and to demonstrate in the simplest possible setting the computa-

tions needed to apply Theorem 1 in order to achieve asymptotic stabilization of an equilibrium. The
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robot consists of two point masses connected by two rigid, massless links, with the links joined by an

actuated revolute joint (the use of a distributed mass model would not change any of the following

analysis). The connection to the pivot is unactuated and frictionless.

The configuration variables are chosen as q0 and q1, where q0 is the angle of the first link referenced

to a world frame attached to the pivot point and q1 is the relative angle between links one and two. A

linear spring of stiffness Ks is introduced between the first link and the world frame, with rest position

q0 = 0. The plane of movement is assumed to be horizontal, and thus the acceleration due to gravity

is g0 = 0.

B.1 Mathematical representation

The dynamic model is easily obtained with the method of Lagrange and verifies that q0 is a cyclic

variable. The complete dynamic model is not given; instead, the system is immediately written in

modified Spong normal form (11) as

q̇0 = σ
d0,0

− d0,1

d0,0
q̇1

σ̇ = G0

q̈1 = v1

(38)

where,
d0,0 = a00 + a01 cos(q1)
d0,1 = a10 + a11 cos(q1)
a00 = (m1 + m2)L

2
1 + m2L

2
2

a01 = 2a11

a10 = m2L
2
2

a11 = m2L1L2

G0 = − ∂V
∂q0

= −Ksq0.

(39)

In the above, note that σ, given by (9), is the usual angular momentum of the robot about the

attachment point. Since the robot is constrained to a horizontal plane, if the spring constant were

zero, then angular momentum would be conserved and asymptotic stabilization to an equilibrium point

would be impossible with a smooth static state feedback.

B.2 Control Law Design

The control law design consists of the preliminary feedback needed to place the system in (modified)

Spong normal form (as explained in the Appendix), the definition of an output, and a second static

state feedback used to linearize and stabilize the resulting input-output map. For the two-link robot,

the output was selected as

y = K(p1 − pe
1) + σ, (40)

where K > 0 is to be chosen,

p1 = q0 + a11

a01
q1 + 2

(
a10√

a2
00−a2

01

− a00a11

a01

√
a2
00−a2

01

)
arctan

(
a00−a01√
a2
00−a2

01

tan( q1

2
)
)
, (41)
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and pe
1 is the value of p1 at the equilibrium of interest, qe.

For single input systems, the dynamic extension (16) is trivial: v1 = w1. Since it only amounts to

relabelling the input, it is dropped. Direct calculation confirms that y has relative degree three:

ẏ = K σ
d0,0

+ Ksq0

ÿ = K
[

Ksq0

d0,0
− σ

d2
0,0

∂d0,0

∂q1
q̇1

]
+ Ks

[
σ−d0,1q̇1

d0,0

]
y(3) = Mv + N,

(42)

where,
M = −K σ

d2
0,0

∂d0,0

∂q1
− Ks

d0,1

d0,0

N = K
[
Ks

q̇0

d0,0
− 2Ksq0

d2
0,0

∂d0,0

∂q1
q̇1 + σ

d3
0,0

(∂d0,0

∂q1
q̇1)

2 − σ
d2
0,0

∂2d0,0

∂2q1
q̇2
1

]
+

Ks

[
Ksq0

d0,0
− ∂d0,1

∂q1

q̇2
1

d0,0
− (σ−d0,1q̇1

d2
0,0

)∂d0,0

∂q1
q̇1

]
.

(43)

Suppose that M(qe) 6= 0. Let real scalars K̄2, K̄1 and K̄0 be chosen such that y(3) +
∑2

j=0 K̄jy
(j) = 0

is exponentially stable. Then (43) leads to the locally input-output linearizing and exponentially

stabilizing control law [22]

v =
1

M(q)

[
−N(q, q̇) − K̄2ÿ − K̄1ẏ − K̄0y

]
. (44)

The actual torque applied to the actuated joint is computed from (75) of the Appendix.

B.3 Simulation

For the simulations, the robot is assumed constrained to a horizontal plane (g0 = 0), the spring

attaching the first link to the reference frame is assumed linear with stiffness Ks = 5, and the model

parameters are selected as L1 = 0.5, L2 = 0.75, m1 = 7, and m2 = 7. The equilibrium point was

chosen as qe
0 = 0, qe

1 = −π/4, which corresponds to pe
1 = −0.4068, and satisfies M(qe) 6= 0. The scalars

K̄j were arbitrarily chosen to place the eigenvalues of the error equation at −1.3. The free parameter

in the output was arbitrarily set to K = 4. Since d0,0(q
e) ≈ 5, the zero dynamics has a slightly slower

speed of convergence than the output error equation.

The state feedback controller (44) was simulated for the initial condition q0 = π/4, q1 = π/4, q̇0 =

0, q̇1 = 0. Figure 4 shows the evolution of the commanded output and its derivatives along with

the evolution of the configuration variables of the robot. The output rapidly converges to zero and

the configuration variables converge to the desired equilibrium point. An animation of the motion is

available at [20].

C. Planar Three-Link Serial Structure Attached to a Pivot

This example treats the planar three-link robot depicted in Figure 5. The robot consists of three

point masses connected by three rigid, massless links, with the links joined by an actuated revolute

joint. The connection to the pivot is unactuated and frictionless. The links are labelled L1 through L3
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starting from the pivot and the masses are similarly labelled m1 through m3. The parameter values

given in Table I were selected to approximate the biped robot RABBIT with the legs held together [8].

The configuration variables are chosen as q0 through q2, where q0 is the angle of the first link referenced

to a world frame attached to the pivot point, q1 is the relative angle between links one and two, and

q2 is the relative angle between links two and three. No springs are used. The plane of movement is

assumed to be vertical, and thus the acceleration due to gravity is g0 = 9.81.

The example further illustrates the application of Theorem 1 through the use of an output component

that has relative degree three with respect to only one of the input components and the use of a non-

trivial dynamic extension in the design of the feedback controller. Both local asymptotic tracking and

exponential stabilization to an equilibrium point are demonstrated.

C.1 Mathematical representation

The complete dynamic model is easily obtained using the method of Lagrange and yields immediately

the modified Spong normal form (11) as

q̇0 = σ
d0,0

− d0,1

d0,0
q̇1 − d0,2

d0,0
q̇2

σ̇ = G0

q̈1 = v1

q̈2 = v2,

(45)

where,

a00 = (m1 + m2 + m3)L
2
1 + (m2 + m3)L

2
2 + m3L

2
3 + 2m3L2L3 cos(q2)

a01 = 2(m2 + m3)L1L2 + 2m3L1L3 cos(q2)
a02 = −2m3L1L3 sin(q2)
a10 = (m2 + m3)L

2
2 + m3L

2
3 + m3L

2
3 + 2m3L2L3 cos(q2)

a11 = (m2 + m3)L1L2 + m3L1L3 cos(q2)
a12 = −m3L1L3 sin(q2)
d0,2 = m3L3(L2 cos(q2) + L1cos(q1 + q2))
G0 = − ∂V

∂q0
(q) = g0(m1 + m2 + m3)L1 cos(q0) + g0(m2 + m3)L2 cos(q0 + q1) + g0m3L3 cos(q0 + q1 + q2),

(46)

with d0,0, d0,1 as given in Lemma 2, (35). Note that σ is the angular momentum of the robot about

the attachment point and is computed from the above data via (9).

C.2 Control Law Design

The goal is to demonstrate local exponential stability and asymptotic tracking about an equilibrium

point. An equilibrium point (qe, 0) was found from ∂V
∂q0

(q)(qe) = 0, qe
0 = π/3, and qe

0 + qe
1 + qe

2 = π/3,

resulting in qe = (1.0472, 1.4522,−1.4522); see Figure 5 (a).

The control law design consists of the preliminary feedback needed to place the system in (modified)

Spong normal form (as explained in the Appendix), the selection of two outputs, the dynamic extension

that renders the system statically decouplable (and hence statically input-output linearizable), and a
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second static state feedback used to linearize and stabilize the input-output map. For the three-link

robot, the outputs have been selected as

y1 = Kp1 + σ
y2 = q2 − qe

2,
(47)

where K > 0 is to be chosen, and the function p1 is determined this time via Remark 7. The dynamic

extension is
v1 = w1

v̇2 = w2,
(48)

which consists of adding a single integrator on v2. Introduce a state vector x = (q0, σ, q1, q̇1, q2, q̇2, v2),

and express the composition of (45), (47), and (48) as

ẋ = f(x) + g(x)w
y = h(x).

(49)

Direct calculation confirms that y has (vector) relative degree three [22] with respect to w. Indeed,

using Lie derivative notation, the output derivatives are

ẏ = Lfh(x)
ÿ = L2

fh(x)
y(3) = L3

fh(x) + LgL
2
fh(x)w,

(50)

where LgL
2
fh corresponds to the decoupling matrix M in (21). Evaluating the right hand side of (22)

at the equilibrium point gives −2.35, and thus the decoupling matrix is invertible in a neighborhood

of this point. It follows that a feedback law that provides asymptotic tracking is [22]

w =
[
LgL

2
fh

]−1


y(3)

r − L3
fh +

2∑
j=0

K̄j

(
y(j)

r − Lj
fh

)
 , (51)

for any choice of constant matrices K̄j that renders the error equation exponentially stable: e(3) +∑2
j=0 K̄je

(j) = 0, for e := (yr − y) .

For the simulation, the matrices K̄j were arbitrarily chosen to be diagonal and to place all of the

eigenvalues of the error equation at −1. The free parameter in the output was arbitrarily chosen as

K = 5. Since d0,0(q
e) ≈ 14.5, the zero dynamics is about one third as fast as the output error equation.

C.3 Simulation results

The simulation demonstrates asymptotic tracking and exponential stabilization. The initial condi-

tion was taken as (1.1, 1.42,−1.80, 0, 0, 0), and is depicted in Figure 5 (b). For the first forty seconds,

the robot is commanded to track sinusoidal references that cause it to execute a form of calisthenics,

namely, deep knee bends; at forty seconds, the references are abruptly set to constant values corre-

sponding to the equilibrium point qe in order to demonstrate convergence to a constant set point.

The asymptotic convergence of the outputs to the commanded references is shown in Figure 6. The

evolution of the configuration variables and the applied joint torques is shown in Figure 7; this same

figure also shows the evolution of p1 and M1,1. An animation of the motion is available at [20].
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D. Planar Two-Link Structure in Ballistic Motion

This examples illustrates how the locally linearizing coordinates of Theorem 2 can be used to advan-

tage in planning a flip gait in a planar two link structure undergoing ballistic motion. The boundary

constraints chosen in the flip gait are motivated by bipedal running [9]. The singularities in the

decoupling matrix will be explicitly computed and related to configuration changes of the mechanism.

As shown in Figure 8, the mechanism consists of three point masses joined by two massless bars in

an actuated, revolute joint. The four configuration variables are selected as q0, q1, xc, and yc, where

q0 relates the orientation of the mechanism to a world frame and q1 is the relative angle between the

two links. The mechanism’s position with respect to a world frame is represented by the Cartesian

coordinates of its center of mass. The point masses are given by m0, m1, m2; the bar connecting m0

to m1 has length L1 and that connecting m1 to m2 has length L2.

D.1 Mathematical representation

The complete dynamic model is easily obtained using the method of Lagrange and yields immediately

the modified Spong normal form (11)

q̇0 = σ−d0,1(q1)q̇1

d0,0(q1)

σ̇ = 0
q̈1 = v
ẍc = 0
ÿc = g0,

(52)

with control v and
d0,0(q1) = a00 + a01cos(q1)
d0,1(q1) = a10 + a11cos(q1)

a00 =
m0(m1+m2)L2

1+m2(m0+m1)L2
2

m0+m1+m2

a01 = 2a11

a10 =
m2(m0+m1)L2

2

m0+m1+m2

a11 = m0m2L1L2

m0+m1+m2
.

(53)

The strongly accessible portion of the model has dimension three, and involves q0, q1, q̇1. Due to ballistic

motion, there is a five dimensional uncontrollable subsystem that is completely decoupled from the

actuated portion of the model, and this is given by xc, yc, σ, ẋc, ẏc. How these two parts interact in a

path planning problem is explained next.

D.2 Interaction through boundary conditions

The flight phases of a gymnastic robot, such as a tumbler or a bipedal runner, are typically short-

term motions that alternate with single support phases4. The creation of an overall satisfactory motion

is closely tied to achieving correct boundary conditions at the interfaces of the flight and single support

4That is, one end of the mechanism is in contact with a rigid surface, and the contact point is neither slipping nor rebounding;
in other words the contact point is acting as a pivot.



NONLINEAR CONTROL OF MECHANICAL SYSTEMS WITH AN UNACTUATED CYCLIC VARIABLE 19

phases. The state of the robot at the end of a flight phase determines the initial conditions for the

single support phase, and consequently the state of the robot at the end of a flight phase is typically

more important than the exact trajectory followed during the flight phase.

At the beginning and end of a flight phase, the robot is in contact with a surface, assumed here to

be identified with the horizontal component of the world frame. Assume furthermore that the robot

is in single support, with the contact point being either the mass m0 or m2. In single support, there

are two holonomic constraints that tie the position and velocity of the center of mass to those of the

angular coordinates; in other words, there is a loss of two degrees of freedom. Conservation of angular

momentum through σ̇ = 0 yields an additional (nonholonomic) constraint on the angular velocities.

In particular, the desired final joint velocities must be chosen to satisfy this constraint.

The duration of the flight phase, T, is determined from ÿc = g0, with the initial conditions coming

from the initial positions and velocities of the angular coordinates at lift-off, and the end condition of

the height of the center mass coming from the desired final configuration of the angular coordinates

at touch-down. Once the flight time is known, determining whether or not there exists a solution of

the reduced model,

q̇0 = σ−d0,1(q1)q̇1

d0,0(q1)

q̈1 = v,
(54)

that is compatible with a given set of initial and final conditions is a difficult problem: once a trajectory

for q1(t) is chosen, q̇0 must be numerically integrated, and if q0(T ) does not have the desired value,

then q1(t) must be altered. Such an iterative procedure is poorly adapted to on-line computations.

Theorem 2 will be applied to simplify this task. It should be noted that the value of the momentum

σ is unknown before the start of the flight phase, and thus it is not even possible to determine the

reduced model (54) before the initial condition of the robot is known at lift-off.

D.3 Determining a ballistic motion trajectory in linearizing coordinates

Local, input-output linearizing coordinates for the reduced model (54) are constructed from y = p1

and its first two derivatives. Define p1 by (41). Direct computation leads to

ṗ1 =
σ

d0,0(q1)
=

σ

a00 + a01 cos(q1)
(55)

p̈1 =
σ d

dq1
d0,0(q1)

d0,0(q1)2
q̇1 =

σa01 sin(q1)

(a00 + a01 cos(q1))2
q̇1. (56)

To determine the linearizing control, one more derivative is needed

p
(3)
1 = σa01

(2a01 + a00 cos(q1) − a01 cos2(q1))

(a00 + a01 cos(q1))3
q̇2
1 + M1,1v (57)

M1,1 =
σ d

dq1
d0,0(q1)

d0,0(q1)2
=

σa01 sin(q1)

(a00 + a01 cos(q1))2
. (58)
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Wherever M1,1 6= 0, a linearizing feedback can be constructed such that

p
(3)
1 = w. (59)

For arbitrary initial and final conditions of the linear model (59), it is trivial to define a feasible

trajectory. Indeed, it suffices to define a three-times continuously differentiable function passing from

given initial values to given final values. One could even use a polynomial of order five or greater.

Since the change of coordinates going from (54) to (59) is local, not every solution of (59) can be

mapped back onto a solution of (54). From (55), p1, the “global” orientation of the robot, can only

be changed through modification of the inertia parameter, d0,0, because the angular momentum is

constant. The inertia term d0,0 can only be changed through variation of the internal angle, q1. Since

d0,0 is bounded, so is ṗ1. These kinds of constraints, which must be applied point-wise in time on the

trajectories of (59), are made explicit by computing the inverse of the coordinate change.

D.4 Constraints point-wise in time associated with the linearizing coordinates

The calculation of q0, q1, q̇1 in terms of p1, ṗ1, p̈1 yields

q1 = arccos(
σ
ṗ1

− a00

a01

) (60)

q0 = p1 − a11

a01

q1 − 2


 a10√

a2
00 − a2

01

− a00a11

a01

√
a2

00 − a2
01


 arctan


 a00 − a11√

a2
00 − a2

01

tan(
q1

2
)


 (61)

q̇1 =
p̈1(a00 + a01 cos(q1))

2

σa01 sin(q1)
(62)

The first equation only admits a solution for σ
a00−a01

≤ ṗ1 ≤ σ
a00+a01

, and then has two solutions:

one for 0 ≤ q1 < π and another for −π ≤ q1 < 0. These two domains for the cosine define two

“configuration classes” of the robot, with the extreme points of the domains corresponding to the links

being completely folded or unfolded. At the extreme points of the domains, ṗ1 attains an extremum

and consequently, p̈1 is zero. At an extreme point of q1, q̇1 cannot be determined from (62), which

takes the form q̇1 = 0
0
. Since M1,1 vanishes at an extreme point, (57) is used with M1,1 = 0 to obtain

q̇1 = ±
√√√√p

(3)
1

(a00 + a01 cos(q1))3

σa01(2a01 − a01 cos2(q1) + a00 cos(q1))
, (63)

with the sign of q̇1 being determined by continuity (with torque control, there cannot be discontinuities

in the velocity). The robot will then pass through the singularity, and change configuration classes.

Consequently, when generating a motion, two cases can present themselves, according to whether the

motion stays always in the same configuration class or not. If the initial and final configuration are in

the same configuration class, then a trajectory can be generated by imposing σ
a00−a01

< ṗ1(t) < σ
a00+a01

.

Both open-loop and feedback controls are equally easily computed starting from the linear model. If
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the initial and final configurations are in different configuration classes, a trajectory can be computed

that passes through a singularity at a single time instance, 0 ≤ t0 ≤ T, where M1,1 vanishes. An

open-loop control can be determined as before. On the other hand, a feedback implementation is not

possible based on inverting M1,1 in (58). However, since the flight phase is typically of short duration

and the input is calculated as a function of the initial conditions, an open-loop control is probably

sufficient.

D.5 Simulation without passing through a singularity

The model parameters were selected as L1 = 1.0, L2 = 1.0, m0 = 1.0, m1 = 2.0, m2 = 1.0 For this

simulation, the mass m0 of the robot is supposed initially in contact with the ground, with configuration

defined by q0 = 3π/4, q1 = −π/4, and angular velocities q̇0 = −5, q̇1 = 0. The objective is to transfer

the robot at the end of a flight phase so that when the mass m2 of the robot touches the ground, its

configuration is q0 = −0.5, q1 = −π/4 with angular velocity proportional to q̇0 = 1, q̇1 = 0. The initial

and final configurations are depicted in Figure (9); they belong to the same configuration class. From

the initial conditions of the robot and the desired final configuration, the flight time is computed as

T = 0.5173. Conservation of angular momentum implies that q̇0(T ) = −5.

The initial and final values of p1 and its first two derivatives were computed from (41), (55), and

(56). A fifth-order polynomial of t was defined that satisfied these boundary conditions. The resulting

trajectories of p1, ṗ1, p̈1 are depicted in Figure 10; the point-wise in time constraints associated with

(60), (61) and (62) are met. The input torque u for the system was computed using (57) and (75) of

the Appendix. The resulting trajectories in terms of q and q̇ are shown in Figure 11 and the evolution

of the robot in the vertical plane is presented in Figure 9. An animation of the motion is available at

[20].

D.6 Simulation with passage through a singularity

For this simulation, the mass m0 of the robot is supposed initially in contact with the ground, with

configuration defined by q0 = 3π/4, q1 = π/4 and angular velocities q̇0 = −5, q̇1 = 0. The objective is

to transfer the robot at the end of a flight phase so that when the mass m2 of the robot touches the

ground, its configuration is q0 = −0.5, q1 = −π/4 with angular velocity proportional to q̇0 = 0, q̇1 = 1.

The initial and final configurations are depicted in Figure (12); they do not belong to the same

configuration class. From the initial conditions of the robot and the desired final configuration, the

flight time is computed as T = 0.7062s. Conservation of angular momentum implies that q̇0(T ) = −5.

The initial and final values of p1 and its first two derivatives were computed as before. So that the

robot changes configuration class, at ts = T/2, the trajectory was forced to pass through a singularity

corresponding to q1 = 0, that is, p̈1 = 0 and ṗ1 = σ/(a00 + a01). A seventh-order polynomial in t

was defined that satisfied the six boundary conditions, plus p̈1(ts) = 0, ṗ1(ts) = σ/(a00 + a01). The
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resulting trajectories of p1, ṗ1, p̈1 are depicted in Figure 13. The corresponding trajectories in terms of

q and q̇ are shown in Figure 14 and the evolution of the robot in the plane is presented in Figure 12.

An animation of the motion is available at [20].

V. Additional Technical Points

This section provides additional discussion on a few points that would have broken the flow of the

main developments.

A. A cascade structure

The feedback designs of Section III-C that have been illustrated on the two-link and three-link

models have singularities where the decoupling matrix looses rank. Results in [21] show that (within the

category of analytic systems and compensators) achieving an invertible decoupling matrix via dynamic

compensation is a necessary condition for the existence of a compensator that achieves asymptotic

tracking of an open set of reference trajectories. Hence, while it is not necessary that the particular

decoupling matrix constructed in (21) be invertible, at least some other decoupling matrix would have

to be invertible for asymptotic tracking to be possible on a larger set.

If one is only trying to accomplish stabilization on a large set and not asymptotic tracking, it is then

interesting to consider feedback designs that avoid the requirement of an invertible decoupling matrix.

One way that this may be approached for the systems studied in Section III-C is the following. First,

use (13) to rewrite (11) in the coordinates (p1, σ, q1, · · · , qN−1, q̇1 . . . q̇N−1) as

ṗ1 = σ
d0,0(q1,···,qN−1)

+
∑N−1

k=2 Jk(q1, · · · , qN−1)q̇k

σ̇ = Ḡ0(p1, q1, · · · , qN−1)
q̈j = vj j = 1, · · · , N − 1,

(64)

where

Ḡ0(p1, q1, · · · , qN−1) := −∂V

∂q0

(q0, q1, · · · , qN−1)

∣∣∣∣∣
q0=p1+qe

0−
∫ q1

qe
1

d0,1
d0,0

(τ,q2,···,qN−1)dτ

. (65)

Define x1 = (p1, σ)′, x2 = q1, x3 = q̇1, x4 = (q2, · · · , qN−1)
′, x5 = (q̇2, · · · , q̇N−1)

′, v̄1 = v1 and

v̄2 = (v2, · · · , vN−1)
′. Then (64) takes the form of a feedforward nonlinear system

ẋ1 = f1(x1, x2, x4) + g1(x2, x4)x5

ẋ2 = x3

ẋ3 = v̄1

ẋ4 = x5

ẋ5 = v̄2,

(66)

for which various feedback stabilization methods have been developed [51], [45], [44], [27]. Backstepping

suggests considering x2 and x5 as virtual controls [25], leading to the simpler (block-)feedforward system

ẋ1 = f1(x1, x2, x4) + g1(x2, x4)x5

ẋ4 = x5.
(67)
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For a two-link system, x4 and x5 are empty, leading to the two dimensional system ẋ1 = f1(x1, x2),

the global asymptotic stabilization5 of which has been studied in [33]. The problem of asymptotically

stabilizing (67) on large sets is open for systems with three or more links.

B. Checking feedback linearizability

This subsection offers a few observations on the generic non-feedback linearizability of the model

class studied here when generalized conjugate momentum is not conserved. The reason to check this

property is that if the systems were feedback linearizable, then it always would be possible to achieve

an empty zero dynamics instead of one with dimension one. Recall that for single-input systems, it

is known that a system is dynamically feedback linearizable if, and only if, it is statically feedback

linearizable. For multi-input systems, dynamic feedback does enlarge the class of linearizable systems,

but necessary and sufficient conditions for dynamic feedback linearizability are not known. If one

restricts the outputs used to achieve dynamic feedback linearizability (often called flat outputs) to

being only functions of the configuration variables, however, then for mechanical systems with one

degree of underactuation, necessary and sufficient conditions for dynamic feedback linearization are

known [39]; in particular, for the class of systems being studied in this paper, the conclusion is that

there do not generally exist flat outputs depending only on the configuration variables.

Consider first a 2-DOF system written in the form of (64), and suppose that Ḡ0 6= 0. Such a

system has a single input and thus necessary and sufficient conditions for feedback linearizability can

be checked. Applying the method of [12], the system is feedback linearizable if, and only if,

• either d
dq1

(d0,0) ≡ 0, in which case p1 is a linearizing (or flat) output,

• or, d
dq1

(d0,0) 6≡ 0 and d
dq1

(β) ≡ 0, where β =
(

d2
0,0

d
dq1

(d0,0)
∂Ḡ0

∂q1

)
, in which case σ2 + 2βp1 is a linearizing

(or flat) output.

These conditions are not generally satisfied for the class of systems being studied; in particular, ap-

plying them to the two link example of Section IV-B proves that it is not feedback linearizable.

Consider next a system with 3-DOF written either in the form (11) or (64). Applying once again

the method in [12], the system is statically feedback linearizable only if

∂J2

∂q1

≡ 0; (68)

moreover, the same obstruction persists if an integrator is added on v2 so the dynamic extension used

in the paper does not render the system static feedback linearizable. The obstruction (68) is present

in the three link example of Section IV-C.

The only example known at this time to be feedback linearizable is the inertia wheel pendulum [50],

which satisfies the condition d
dq1

(d0,0) ≡ 0, and thus p1 is a linearizing output. The method of this

5The Lyapunov function used in [33] was not shown to be proper or radially unbounded. For the Acrobot, a periodicity property
of Ḡ0 can be used to fill this lacuna when the dynamic model is extended in the obvious way to IR4.
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paper also finds locally linearizing coordinates. In the coordinates of Figure 1, the modified Spong

normal form of the inertia wheel pendulum is

q̇0 = σ
d0,0

− d0,1

d0,0
q̇1

σ̇ = G0

q̈1 = v1,

(69)

where
d0,0 = m1l

2
c1 + m2l

2
1 + I1 + I2

d0,1 = I1

G0 = m̄g0 cos(q0)
m̄ = m1lc1 + m2l1,

(70)

and the parameters are as defined in [50]. Since d0,0 and d0,1 are constant, (6) is trivially integrated

about the equilibrium point qe = (π/2, 0, 0, 0) to obtain

p1 = (q0 − π/2) +
d0,1

d0,0

q1. (71)

Defining the output as y = Kp1 + σ and using (13) and (17)-(19), the model (69) in the coordinates

(x1, x2, x3, x4) = (y, ẏ, ÿ, p1) becomes

ẋ1 = x2

ẋ2 = x3

ẋ3 = ∗ + M1,1v1

ẋ4 = 1
d0,0

x1 − K
d0,0

x4.

(72)

At the upright equilibrium, M1,1 = m̄g0
d0,1

d0,0
6= 0, and hence (72) is linear in the coordinates (x1, x2, x3, x4)

after the application of a static state feedback.

Remark 8: More generally, the underlying reason for the static feedback linearizability of the inertia

wheel pendulum can be tied to be the following result, which applies to N DOF mechanisms (2).

Consider again the one-form ω =
∑N−1

k=0 d0,k(q1, · · · , qN−1)dqk associated with the generalized conjugate

momentum (9) and suppose that ω is closed. Let dθ = ω. Then a simple computation shows that: (a)

θ has at least relative degree four; (b) the outputs y1 = θ(q) − θ(qe), yi = qi − qe
i , i = 2, · · · , N − 1

have decoupling matrix (21) with K = 0; (c) when the decoupling matrix is invertible, these outputs

have vector relative degree (4, 2, · · · , 2) and thus the system is static feedback linearizable; and (d) the

coordinate transformation required to linearize the system is canonical and given by q̄ = Φ(q), ˙̄q = ∂Φ
∂q

q̇,

where Φ(q) = (y1,− ∂V
∂q0

, y2, · · · , yN−1)
′. For the inertia wheel pendulum ω is closed because the first

row of the inertia matrix is constant; moreover, the relative degree four function θ is proportional to

p1.

VI. Conclusions

Motivated by a large number of dexterous robots that have been introduced in the literature over

the past fifteen years, this paper has analyzed simple planar mechanical systems with an unactuated
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cyclic variable and an independent actuator for each shape variable. This class of models is naturally

associated with balancing tasks and includes N -link extensions of the Acrobot, the stance phase of

Raibert’s hopper and many other robots. Typical control objectives include stabilizing an equilibrium

and asymptotically tracking a pre-defined motion. Through a simple decomposition procedure, models

with an unactuated cyclic variable and an independent actuator for each shape variable also arise

for certain systems executing a ballistic motion, such as diving, dismounting from a highbar, and

tumbling. For these systems, since momentum is conserved, since the initial conditions are usually

determined by the end of a single support phase, and since the ballistic phase is usually of short

duration, asymptotically tracking a pre-defined motion is not a reasonable objective. Instead, the

main problem is to determine if a set of initial and final conditions is compatible, and if so, to generate

on-line a trajectory that joins them.

The paper presented two novel control results. When the generalized momentum conjugate to the

cyclic variable was not conserved, conditions were found for the existence of a set of outputs that

yielded a one-dimensional, exponentially stable zero dynamics, along with a dynamic extension that

rendered the system locally input-output decouplable. By existing results, a controller that achieves

asymptotic stabilization and tracking is then easily constructed. When the generalized momentum

conjugate to the cyclic variable was conserved, a reduced system was constructed and conditions

were found for the existence of a set of outputs that yielded an empty zero dynamics, along with a

dynamic extension that rendered the system locally input-output decouplable. By existing results, a

local coordinate transformation and dynamic feedback controller that linearize the input-to-state map

are then easily constructed. The solutions to these two control problems had a common underlying

element: the computation of a function of the configuration variables that had relative degree three

with respect to one of the input components after an appropriate static feedback. It was interesting

that this function arose by partially integrating a physical quantity, the conjugate momentum.

The theoretical results were illustrated on three simple examples. Stabilization of an equilibrium

was demonstrated on a variant of the Acrobot without the influence of gravity. The purpose of

the example was to emphasize the role of the potential energy in determining whether generalized

momentum is conserved, and to demonstrate the computations needed to apply the results of the

paper in the simplest possible setting. Asymptotic stabilization about an equilibrium and asymptotic

tracking were both illustrated on a serial, three-link, mechanism attached to a pivot and constrained to

evolve in a vertical plane. This example provided a non-trivial illustration of the results for a system

with multiple inputs. The last example illustrated how locally linearizing coordinates can simplify the

path planning problem for a ballistic flip motion of a two-link mechanism. The singularities in the

decoupling matrix were explicitly computed and related to configuration changes of the mechanism.
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VII. Appendix

Spong Normal Form:

The Spong normal form is taken from [49], [40]. Let F (q, q̇) := C(q, q̇)q̇ + G and partition the

generalized coordinates into actuated and unactuated parts per q = (q0, q̄1), q̄1 = (q1, · · · , qN−1). This

induces a decomposition of the model (2)

d0,0q̈0 + D0,1¨̄q1 + F0 = 0
D1,0q̈0 + D1,1¨̄q1 + F1 = u.

(73)

Define
D̄ = D1,1 − D1,0D0,1/d0,0

F̄ = F1 − D1,0F0/d0,0

R = −F0/d0,0.
(74)

The static state feedback taking (2) into (8) is

u = D̄v + F̄ . (75)

The feedback is regular because (det D̄)d0,0 = det D and d0,0 6= 0.

Parameterization of the zero dynamics:

From the choice of outputs (15), dy
(j)
k = dq

(j)
k , j = 0, 1, 2; 2 ≤ k ≤ N − 1. Hence, to determine the

zero dynamics, it is enough to find a function whose differential is independent of {dy
(j)
1 , j = 0, 1, 2},

modulo

span{dq
(j)
k , j = 0, 1, 2; 2 ≤ k ≤ N − 1}. (76)

This is most easily done if the model is expressed in the coordinates q̃ := (p1, q1, · · · , qn). Then, the

condition (22) for the invertibility of the decoupling matrix at an equilibrium becomes

∂2Ṽ

∂q1∂p1

∣∣∣∣∣
q̃e

6= 0, (77)

where, in the new coordinates, q̃e is the equilibrium point and the potential energy is

Ṽ (p1, q1, · · · , qn) = V (q0, q1, · · · , qn)
∣∣∣
q0=p1−

∫ q1
qe
1

d0,1
d0,0

(τ,q2,···,qN−1)dτ.

The model (8) with the dynamic extension (16) can be rewritten as

ṗ1 = σ
d0,0(q1,···,qN−1)

+
∑N−1

k=2 βk(q1, · · · , qN−1)q̇k

σ̇ = − ∂Ṽ
∂p1

(p1, q1, · · · , qN−1)
q̈1 = w1

q
(3)
k = wk, 2 ≤ k ≤ N − 1.

(78)
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Computing (y1, ẏ1) and evaluating their differentials at the equilibrium point and modulo (76), results

in
dy1 = Kdp1 + dσ

dẏ1 = K
d0,0

dσ − ∂2Ṽ
∂p2

1
dp1 − ∂2Ṽ

∂q1∂p1
dq1

(79)

and hence span{dp1, dy1, dẏ1} = span{dp1, dσ, dq1} modulo (76). Next, computing ÿ1 and evaluating

its differential at the equilibrium point and modulo (76) and span{dp1, dσ, dq1, } yields

dÿ1 = − ∂2Ṽ

∂q1∂p1

dq̇1, (80)

and thus, span{dp1, dy1, dẏ1, dÿ1} = span{dp1, dσ, dq1, dq̇1} modulo (76), proving that p1 can be used

to parameterize the zero dynamics in a neighborhood of an equilibrium point.
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q0

q1

qk

qk+1

Fig. 1. A planar tree structure attached to an inertial frame via a freely acting pivot. All joints are actuated except
the attachment at the pivot. A coordinate convention is indicated. Though not shown, prismatic joints and springs
can also be included.

Link 1 Link 2 Link 3
length (m) 0.4 0.4 0.3
mass (kg) 6.4 13.6 12.0

TABLE I
Mass and length parameters for three-link mechanism.
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q0

q1

qk

qk+1

xc

yc

Fig. 2. A planar tree structure in ballistic motion. All joints are actuated. A coordinate convention is indicated.
Though not shown, prismatic joints can be included as can springs that act between links but not between a link
and the inertial frame.

Spring
q0

−q1

Fig. 3. A two-link robot attached to a pivot and constrained to move in a horizontal plane. The joint q1 is actuated,
while q0 is passive; a linear spring with stiffness Ks is attached with rest position q0 = 0. From left to right, the
links have length L1 and L2 and the masses are m1, m2.
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Fig. 4. Stabilization to an equilibrium. The figure shows the convergence of the commanded output, its first two
derivatives, and the configuration variables.

(a) (b)
Fig. 5. Three-link mechanism, connected at a pivot, consisting of point masses and massless bars. The links have

length L1 through L3 starting at the pivot; the masses are m1 through m3. (a) shows an equilibrium pose with the
center of gravity centered over the pivot; (b) shows the initial condition used in the simulation, with the equilibrium
position superimposed in the background.
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Fig. 6. Demonstration of asymptotic tracking and stabilization for the three-link mechanism. For the first forty seconds,
the motion consists of an initial transient, followed by tracking of sinusoidal trajectories that correspond to knee
bends. At forty seconds, the reference trajectory is abruptly set to zero, thereby commanding the system to an
equilibrium point.
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Fig. 7. Demonstration of asymptotic tracking and stabilization for the three-link mechanism; see Figure 6 for details.
The plots show the configuration variables (upper left), joint torques (upper right), coefficient that determines
invertibility of the decoupling matrix (lower left), and the function that is the key to designing the proper set of
outputs (lower right).
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−q1
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Fig. 8. A two-link robot undergoing ballistic motion in a vertical plane. Only the joint q1 is actuated. From left to
right, the links have length L1 and L2 and the masses are m0, m1, m2.
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Fig. 9. The motion of the robot passes from left to right without passing through a singularity. The initial configuration
(· − ·− green) and final configuration (· − ·− red) belong to the same configuration class. The center of gravity
follows a parabolic trajectory.
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Fig. 10. Based on the initial and final conditions of the flight phase, a trajectory for p1 and its derivatives is derived.
The plot shows that ṗ satisfies the constraint σ
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≤ ṗ1(t) ≤ σ
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Fig. 11. The computed open-loop control transfers the robot from its initial state to the desired final state (*).
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Fig. 12. The motion of the robot passes from left to right, with a singular position occurring when the two links are
aligned. The initial configuration (·− ·− green) and final configuration (·− ·− red) belong to different configuration
classes.
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Fig. 13. Based on the initial and final conditions of the flight phase, a trajectory for p1 and its derivatives is derived.
The plot shows that ṗ1 hits the constraint σ

a00+a01
in the middle of the flight phase, which allows the change in the

configuration class to occur.
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Fig. 14. The computed open-loop control transfers the robot from its initial state to the desired final state (*).


