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Abstract— This paper addresses the control of a planar, biped
robot with one degree of underactuation. Previous work has
designed controllers that induce provably, exponentially stable,
periodic walking motions at fixed, pre-determined walking rates.
These controllers operate in continuous time during the single
support phase of the robot. The present paper shows how to
design an event-based Pl controller that provides an additional
control feature: the ability to regulate the average walking rate
to a continuum of values. The PI controller is active only in the
(instantaneous) double support phase and achieves regulation by
adjusting key parameters of the within-stride controller.

I. INTRODUCTION

The robots treated in this paper consisi\odinks connected
in a planar tree structure to form at least two identical legs,
with the legs connected at a common point called the hips
All links have mass, are rigid, and are connected in revolute 2 >
joints (see Fig. 1(a)). Furthermore, no actuation is appli I
between the stance leg and the ground, while all other joints
are actuated. A rigid impact is used to model the contact of(® A representative exam- (b) Schematic of the ex-

>

. . ple of the class of N-link ample 5-link biped con-
the swing leg with the ground. biped robot models considered. sidered with measure-
Addressing the control of robots without actuation between Cartesian coordinates are indi- ment conventions.

the stance leg and ground is an important step in designingfat€d at the hips and the leg

natural and efficient walking motions. To date, the control nes:
of robots with feet has been based on the zero MomeRy 1. Example bipeds. No actuation is applied between the stance leg and
point (ZMP) principle [4] which explicitly seeks to avoid thethe ground, while all other joints are actuated; the two legs are symmetric.
underactuation that occurs when the stance foot naturally r0|%§i39'e support, the stance 'Tg is assumed to be at the °|”9i”h°f the world
up on the toe prior to heel strike by the swing leg. In a robGt inate frame. Consequently, at impa}, measures step length.
without feet, the ZMP heuristic is not applicable, and thus
underactuation must be explicitly addressed in the feedback
control design, leading to the development of new feedbapkoven to be diffeomorphic to a scalar, LTI system, rendering
stabilization methods. Moreover, it is anticipated that thes@nsparent the existence and stability properties of periodic
results will lead to a control theory for walking with feet thabrbits of the hybrid zero dynamics. A special class of output
will allow anthropomorphic foot action. functions based on &ier polynomials was used to simplify
This paper builds on the results in [11] and [10]. Théhe computation of the hybrid zero dynamics, while at the
notion of the hybrid zero dynamics for the walking motiorsame time inducing a convenient, finite parameterization of
of a class of planar biped robots with point feet was treat¢ddese dynamics. Parameter optimization was then applied to
in [11]. The hybrid zero dynamics is a two-dimensionathe hybrid zero dynamics to directly design a stable, closed-
invariant sub-dynamics of the complete hybrid model of tHeop system that satisfied design constraints, such as walking
biped robot. It was shown to be key to designing exponeat a given average walking rate and the forces on the support
tially stabilizing controllers for walking motions. In particu-leg lying in the allowed friction cone. Stability of the closed-
lar, exponentially stable orbits of the hybrid zero dynamidsop system was established with a Poigcanalysis and not
can be rendered exponentially stable in the complete hybhg appealing to heuristics, such as the ZMP. All of the results
model. The Poinc& map of the hybrid zero dynamics wasvere illustrated on a five-link walker (see Fig. 1(b)).



The present paper provides an additional feature: the abilityThe hybrid model of the robot (single support phase
to regulate the robot’s average walking rate to a continuubagrangian dynamics plus impact map) is expressed as a
of values via event-based Pl control. The PI controller isonlinear system with impulse effects
actiye only in th_e (instaqtangous) double support phfase gnd i = f@)+g(@)u ¢S
achieves regulation by adjusting key parameters of the in-stride ot = Alz7) e 1)
controller. A special case of the results presented here has
appeared in [10]. In particular, [10] assumed that the pararhbe impact or walking surface, is defined as
eters used _for even_t-bgsed control affec?ed the Ilnearlz_atlon S :={(q,4) € TQ | p3(q) =0, pl(q) > 0}, )
of the restricted Poincarmap of the hybrid zero dynamics
but did not directly affect the linearization of the functiowhereps andp} are the Cartesian coordinates of the swing leg
that computes average walking rate. The more general cas€ofl (see Fig. 1(a)). The impact mdp: S — T'QQ computes
when the parameters used for event-based control affect bt value of the state just after impact witha™ = (¢*, ¢"),
quantities in a non-trivial way is addressed here. In additioffom the value of the state just before impact, = (¢~,¢ ).
considerably more detail concerning the stability proof of theince the configuration coordinates necessarily involve the
controller is provided in this communication. specification of which of the two the legs is in contact with the

Section Il summarizes some pertinent notation and resu@und, the coordinates must be relabeled after each step to
from [11]. Section Il develops an event-based PI controller fake into account the successive changing of the support leg.
regulate walking rate to a continuum of values. The controlldhis is reflected in the impact map via a constant, invertible
uses integral action to adjust the parameters in a controller tHAgtrix £, q" = Rq".
for fixed parameter values, induces an exponentially stable,The control design involves the choice of a set of holonomic
periodic orbit. Parameter adjustment takes place just aff@nstraints that are asymptotically imposed on the robot via
impact (swing leg touching the ground). The analysis arfieédback control. This is accomplished by interpreting the
design of the controller are based on the restricted Pdnc&pnstraints as output functions depending only on the config-
map of the hybrid zero dynamics. uration variables of the robot, and then combining ideas from

Section IV illustrates the application of the event-based finite-time stabilization and computed torque. The outputs
controller of Section Il on the five-link biped model studied ir/ € RRN~! are chosen as
[31, [8], [9], [11] (see Fig. 1(b)’). Here, simulation will be qsed y = h(g,a) = Hoq — ha(8(q), ), 3)
to demonstrate the controller’s performance under a variety of
errors between the control design model and the actual modeth terms defined as follows.

Robustness to disturbances is illustrated by application of anl) Hy is an (N — 1) x N matrix of real coefficients
external force acting on the hips. Robustness to parameter specifying what is to be controlled.

mismatch is demonstrated through variation of masses an@®) 6(q) := cq, wherec is a1l x N row vector of real
inertias. Robustness to structural mismatch is illustrated by coefficients, is a scalar function of the configuration vari-
walking on acompliant walking surfacg8]. Animations of ables and should be chosen so that it is monotonically
the resulting walking motions are available at [5]. Experiments  increasing along a step of the robétq) is playing the
employing event-based Pl control have been conducted on role of time). Defined™ = cq™ andf~ = cqg~ to be the

RABBIT [1] and will be reported elsewhere; see [5] for videos initial and final values of), respectively, along a step.
and further information. 3) Normalization off to take values between zero and one,
Il. NOTATION AND BASIC FACTS _ 0lg) 07 4
S(Q) T 9_ _ 9_;’_ N ( )

This section summarizes some notation and results from . ]
[11] that are used extensively in this communication. The 4) Bézier polynomials of ordef/ > 3
reader is encouraged to read [11] for further interpretation, Mo M
context and supporting diagrams, and [2] for a less technical bi(s) := Zaz s (L= s)M . (5)

; ; EN(M — E)!

overview of the control design methodology. k=0

The configuration coordinates of the robot in single support ) For o, as above, define theV — 1) x 1 column vector
(also commonly called the swing phase) are denoted by a = (al,- ,akN—l)/ and the(N — 1) x (M + 1)
(q1,---,qn)" € Q, the state space is denoted B, and a matrix a := [ap, - - -, apgl.
control is applied at each connection of two links, but not at g
the contact point with the ground (i.e., no ankle torque), for by o s(q)
a total of (N — 1) controls. The detailed assumptions on the ha(8(q), Q) = : _ (6)
robot (bipedal, planar and one less degree of actuation than ’ ’ :
degrees of freedom, point feet, rigid contact model) and the bn-105(q)
walking gait (instantaneous double support phase, no slippingThe matrix of parameters is said to be a regular parameter
nor rebound at impact, motion from left to right, symmetriof output (3) if the output satisfies [11, Sec. lll.A, HH1-
gait) are given in [11, Sec. Il]. HH4] and [11, Sec. llIl.B, HH5], which together imply the



invertibility of the decoupling matrix and the existence o€onditions are met, the matrix of parametersis said to
a two-dimensional, smooth, zero dynamics associated wilve rise to an exponentially stable walking motion. Under
the single support phase of the robot. L&{ be the (swing controllerT’,, the exponentially stable orbit in the hybrid zero
phase) zero dynamics manifold. L&, be any feedback dynamics is also exponentially stable in the full order model,
satisfying [11, Sec. IIl.C, CH2—CH5] so that, is invariant (1). The domain of attraction o, in the full dimensional
under the swing phase dynamics in closed loop Withand model cannot be easily estimated; however, its domain of
is locally finite-time attractive otherwise. Note that standarattraction intersected witly N 7, that is, the domain of at-
results imply thatl', |z, = —(Lgth)*lL?eh [7], and thus traction of the associated fixed-point of the restricted Po@ncar
(i) Tw|z, is uniquely determined by the choice of parametersap,p, : SN Z, — SN Z,, is computed analytically in [11,
used in the output and is completely independent of the choigec. IV].
of feedback used to drive the constraints to zero in finite time;
and (ii) even thougiT',, is necessarily not smootft,, |z is
as smooth as the robot model.

For a regular parameter valaeof output (3), the definition ~ The goal of this section is to design an event-based con-
of the outputs and basic properties @fAer polynomials yield troller? that adjusts the parameters in the output (3) to achieve
a very simple characterization 61 Z,,, the configuration and walking at acontinuumof rates. The controller design and

velocity of the robot at the end of a phase of single suppognalysis are based on the hybrid zero dynamics. A one-
Define parameter curve will be defined in the set of parameters
appearing in (3). Conditions will be identified so that this
¢, = H! { %]_VI } (7) one-parameter curve will yield an effective control for the
@ associated Poincamap. Updating this control at each impact
L (oar — ang—1) event of the walking cycle will yield a means to control
wy H™'| 05 —6d ,  (8) average walking rate.
1 Define the average walking rate over a Stép be step
o ] length (m) divided by the elapsed time of a step (s). For a
where H := [H; c|', and the initial and final values o given controllerr,, satisfying the hypotheses of Section I,
corresponding to this output are denotediffyandd,, , respec- the average walking rate is computed from the model (1) as
tively. ThenSN Zy = {(¢q,da) | 4o = awg,a € R} andis goliows, Let P, : S — S be the Poincdr return map and
determined by thdast two columnsof the parameter matrix |g¢ T : TQ — Rso U {oc} be the time to impact function.

a. In a similar fashionA (SN Z,), the configurationg;, and  The average walking rate is formally defined as a (partial) map
velocity, ¢, of the robot at the beginning of a subsequeny . ¢ _, R, by

phase of single support, may be simply characterized and are

IlIl. EVENT-BASED PlI CONTROL OF THEAVERAGE
WALKING RATE

determined by thdirst two columnsof the parameter matrix 5= ph o Py (11)
. By [11, Th. 4] it follows that C TraoA’
Q0 | _ gpg-l| M ) where, p, when evaluated oy, computes step length (see
or | — 0, Fig. 1(a)). On the open subsét C S where0 < 17, o

A < oo and the associated impacts are transversal, tboth

implies .h(".ff) © Alsnz,) = 0, while, if 47 := Aq(da)war  p. and Tr.o o A are well-defined and continuous (see [6,
results ineg;, # 0, then Sec. 111.B] ). It follows thatz, restricted toS is continuous.
0, — 0+ . SinceT',, is continuous but not Lipschitz continuous, is not
ar = W Ho qq + 0 (20)  smooth on any open subset 6f However, ifa is a regular

o ) . parameter value of output (3) giving rise to a hybrid zero
implies Lyh(-,a) o A(snz,) = 0. The key thing to note is dynamics,A(S N Z,) C Za, then, restricted toS N Z,

that these two conditions involve, once again, only et o 0nd45 smoothly on the states and the parameter values
two columnsof the parameter matrix.. In a similar fashion used to define the outputs, (3)

thelast two column®f the parameter matrix may be chosen Let o be a regular parameter value of output (3) for which

so thath(:, a)|snz,) =0, andLyh(, a)l(snz,) =0. there exists a exponentially stable periodic orbit. k&tbe
_ Conditions (9) and (10) imply that\(S N Za) C Za, the corresponding fixed point of the restricted Poigcarap,
in whlch caseZ, is then controlledl—lnvarlan_t for the ful! po i SN Zo — SN Z,. To emphasize the dependence on
hybrid model of the robot. The resulting restriction dynamicg,o parameter value, for € S N Za, let p(z,a) = pa(2);
is called thehybrid zero dynamicsNecessary and sufficientgjiiary P(z, Q) = o (2). “ ’ «r
conditions can be given for the hybrid zero dynamics to admit ' ’ “
an exponentially stable, periodic orbitQ,,, [11]. When these  2That is, one that acts step-to-step with updates occurring at impacts.
3A step starts with the swing leg on the ground and behind the robot and
INote that finite-time stabilization is used only to constréi¥i— 1) of the ~ends with the swing leg on the ground and in front of the robot.

N degrees of freedom while the stability properties of the unactuated degreéin general it is a partial map because not every poinSinesults in a
of freedom is determined by the hybrid zero dynamics. solution of the model that has an impact with



Suppose thaia € RN -1D*(M+1) js sych thato # 0 and Proof: The linear system (15) is exponentially stable
_ _ _ _ because the exponential stability of the fixed-paifiimplies
(da)o = (d0)1 = (da)pr—1 = () = 0. 12)  that la11| < 1. This, combined with the DC-gain being non-
Then, forw € IR sufficiently small in magnitudey + wda is  zero, implies the existence of a Pl controller of the form
also regular. From (12) (56(1€ + 1) — (56(k) + (5,'7* _ 5n(k))
SN Zpswsa = SNZ, dw(k) = Kp(dn* —on(k)) + Krde(k)
A(SN Zatwsa) = A(SNZ,). such that the closed-loop system (15) with (19) is exponen-
Thus, patwse : SN Ze — SN Z,, and the following single- tially stable and satisfieBmy_...(6n* — dn(k)) = 0, where

(19)
13)

input, single-output dynamic system can be defined, on* == n" —v(z;, a). Since the closed loop of (15) with (19)
dh+1) = pla(k), a+ w(k)da) i%"tgisl’inearization of (14) in closed loop with (18), the r:sult
nk+1) = v(z(k),a+wk)a) (14) i

The PI controller in (18) is realized on the full-hybrid model

y(k) = n(k), of the robot as

with two-dimensional state spa®&Z,, x IR, inputw € IR and

. . L. €T = f(x) =+ g(x)ra—i-wéa
output equal to average walking raiec IR. It's linearization e = 0
S2(k+1) = a1162(k) + byow(k) v
Sk +1) = andz(k)+ badw(k) (15) oo _ (20)
T = A(z7)
oy(k) = on(k), P .
et = e+ (r—n) s
where wh = Ky(n*—n")+ Kre
dp 5 nt = plzT,a+wha)
o= &(z’ o+ wda) z=z, where the extra states are used to store past valuesiodw,
w=0 and to implement the difference equation in the PI controller.
by = %(z a + wéa) The existence of an asymptotically stable orbit is analyzed
o ow a=z next.
~ w=0 (16) Theorem 2: (Event-based Pl control applied to the full
Ay = @(Z,a + wéa) model) Assume the hypotheses of Theorem 1 andllgtbe
0z =z any feedback satisfying [11, Sec. IV.C, CH2—CH5] (see also,
B w=0 [6, Sec. IV.B, CH2-CH5]) so tha¥,, is invariant under the
by = ov (z,a + wdca) . swing phase dynamics in closed loop with and is locally
ow =2 finite-time attractive otherwise. Assume thid}, and K'; have
w=0

been chosen so that (14) in closed loop with (18) has an
The linearized system (15) is clearly exponentially stable iéxponentially stable equilibrium. Then the hybrid model (20)
and only if, |a11] < 1. An easy computation shows that itspossesses an asymptotically stable orbit &ing; ... (n* —
DC-gain is non-zero if, and only if, n(t)) = 0. O
Proof: By the proof of [6, Th. 2], it is enough to check
ag1by +ba(1 —ai1) # 0. A7) that the restricted Poindamap of (20) has an asymptotically
Theorem 1: (Event-based PI control applied to the hybrigtable fixed point. An easy computation gives that (14) in
zero dynamics) et a be a regular parameter value for whiclktlosed loop with (18) realizes the restricted Poigcamnap,
there exists an exponentially stable periodic orbit 4. and thus the result follows. [ ]
Denote the corresponding fixed point of the Poikcesturn Remark 1: Theorems 1 and 2 of [6] only addresses asymp-
map byz%. Assume there existda satisfying (12) and such totic stability of orbits. However, under the assumptions of
that the non-zero DC-gain condition, (17), holds. Then averagibeorem 2 of [6], exponential stability can be shown. The
walking rate can be regulated via Pl control. In particular, thekey point is thatd o A in [6, Eqgn. (55)] is differentiable
existe > 0, and scalarg<,, and K; such that for ally* such on SN Z, and hence is Lipschitz continuous. Sinée A
that |[n* — (2})| < ¢, the system consisting of (14) in closedvanishes at a fixed point of the restricted Poigcarap, say

loop with the proportional plus integral controller =*, it follows that for a given coordinate chart ¢hn Z there
. exists L < oo such thatd o A(z) < L||z — z*||, and thus
1 — — . ™ . .
e(kJ(kg _ %kgnt (—nn(k)’r)](i);(je(k) (18) by [6, Eqgn. (55)], exponential stability of the fixed point of
- p

the restricted Poincarmap implies the exponential stability of
has an exponentially stable equilibrium, and thus, when initiahe orbit in the full state space. Since the converse is clear, it
ized sufficiently near the equilibriuntimy, ... (7" —n(k)) = 0.  follows that under the assumptions of [6, Thm. 2], exponential
U stability of the fixed point of the restricted Poinéamap is

5We have abused notation and not made the distinction betweana €duivalent to the exponential stability of the orbit in the full
point in T'Q that lies inS N Z, andz as a coordinate o5 N Z,. state space. A



Remark 2: An alternative realization of (20) can be given. Remark 5: What if the nominal orbit is not exponentially
Since from (12) the step length is fixed for all valueswaf stable (i.e.ja;;| > 1)? If (15) is stabilizable, then the non-zero
the average walking rate can be computed directly from IBC-gain condition (17) is equivalent to stabilizability of (15)
definition: step length divided by elapsed time for a step. Thisigmented with the integrator of (19). Exponentially stable

leads to regulation can be achieved therefore with a slight extension to
i = f(2)+ 9@ atwsa the PI controller:
Lo v ¢S ek +1) = e(k)+ (" —n(k)) (26)
W = 0 w(k) Kp(n® —n(k)) + Kre(k) + K3(z(k) — 2" (k))
zt = A(z7) (21) A
tt =0
et = e+ (o pg(q;)) x- €S IV. ILLUSTRATION OF THE RESULT
wt = Ky — ph ( )) + Kre This section illustrates how the presented technique affords

the construction of a feedback controller that induces walking
where p(q;) computes step length; this is what is done iat a continuum of rates while providing stabilization and a
the simulations. A modest amount of robustness to disturbances, to parameter
Remark 3: Exponential stability of the nominal orbit givesmismatch between the design model and the actual robot,
la11| < 1, which implies thatl — a;; > 0. From [11, Eqns and to structural mismatch between the design model and the
(81) and (85)],a21 > 0. Hence, a sufficient condition for theactual robot. The results are illustrated via three simulations on
DC-gain (17) to be non-zero 5 > 0 andb, > 0. Thus, Pl the five-link model (see Fig. 1(b)) studied in [3], [8], [9], [11].
control of average walking speed is possible if one can fikbr reasons of space, the details of the model are omitted and

da satisfying (12) and the reader is referred to [11]. Animations of the three examples
N-1M-2 as well as additional supporting plots may be found at [5].
Z Z e >0 For the following three examples finite differences were
i=1 k=2 - used to verify the sufficient condition shown in (22) for several
,, (22) values ofi andk. In this way, it was determined that adjusting
N—-1M-2 . . .
sai. , 0v(z,a) -0 the angle of the swing leg femur during mid-step would have
= = aak ) ' a sufficiently strong effect on the average walking speed (this

« corresponded to = 2 and k = 3). Hence,da was chosen to

Therefore, it is enough to find one pair of indicés i), with  be all zeros with the exception éf2 which was set to 1.
2<k<M-2,and1 <i< N — 1, such that

Ip(z, @) ov(z, @) . o :
BN ool (23) This example will illustrate robustness to disturbances by
k k simulation of the robot with an external force acting on the
are both non-zero and have the same sign. This condition Wilps. Event-based Pl control is used to reject a 3 N external

be verified on the example. A force acting horizontally at the robot's hip opposite to the
Remark 4: The relation to the result in [10, Sec. IV] isdirection of walking.

established as follows. Suppose that there exist two pairs ofThe robot is initialized at the fixed point of a controller
indices (kj,7;), 2 < k; < M —2,and1 < i; < N —1, with average walking rate equal to 0.50 m/s. Event-based PI
J =1,2, such that control with gainsk, = 5 and K; = 2 and set-point)* =

A. Robustness to disturbances
and

* *
ZC( Z(l

Op(z.01) Op(z,0) 0.5 i_s applied starting on the second ;tep coincic_jent vyith the
dagl | W ) application of a constant 3 N force acting at the hips. Fig. 2(a)
) Za Fa | £0. (24) depicts the actual walking rate versus the commanded value
agi’i’f) agflf) of 0.50 m/s. The peak torque for this example is 70.1 Nm,
UERES b2 1z about half of the 150 Nm that is possible with the motors and
Then there existda satisfying (12) and gearing of the robot studied in [3], [8], [11].
Ne—1M—2 Without application of event-based PI control, the 3 N force
Z Z sal ap(z;a) >0 slows the robot to a stop; i.e., the average walking rate slows
im1 h—2 da, a from 0.50 m/s to 0 m/s.
N-1M-2 . 99(z, Q) (25) B. Robustness to parameter mismatch
Z; . oo, dal. =0, For this example, event-based PI control is used to maintain
i=1 k=2

25 the designed average walking rate in the presence of parameter
for which b, in (16) is then equal to zero. In this case, (17ismatch between the design model and the actual model. The
reduces toas1b; # 0, which is equivalent to the conditionactual model's torso mass, torso inertia, tibia mass and tibia
given in [10, Eqgn (16)]. A inertia were set to 110 percent of the design model's values



step time (s) step time (s) step time (s)
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(a) Nlustration of the ability of the event- (b) lllustration of the ability of the event- (c) lllustration of the ability of the event-
based PI control to reject a disturbance based PI control to maintain the designed based PI control to track a walking rate
force acting on the robot’s hips. average walking rate in the presence of profile and to stop the robot on a compliant
parameter mismatch. walking surface.

Fig. 2. Command (dashed) versus actual (solid) average walking rate.

while the actual model’'s femur mass and femur inertia were The peak torque for this example is 52 Nm, about one third
set to 90 percent of those of the design model. The robaitthe 150 Nm possible. Fig. 2(c) gives the commanded versus
is initialized at the fixed point of a controller whose averagactual average walking rate.

walking rate corresponds to 0.50 m/s. Event-based PI control
with gains K, = 5 and K; = 2 and set-pointy* = 0.5

is applied starting on the first step. Fig. 2(b) illustrates the This work was supported by NSF grants INT-9980227 and
actual walking rate versus the commanded rate of 0.50 mi§-9988695. The authors wish to thank Daniel Koditschek
The peak torque for this example is 53.8 Nm, about one thif@r insightful conversations regarding control via parameter
of the 150 Nm possible. adjustment.

Without application of event-based PI control, the parameter

mismatch changes the robot's average walking rate from 0.50 _
m/s to 0.54 m/s [1] G. Buche. ROBEA Home Page.http://www-lag.ensieg.
’ ’ inpg.fr/PRC-Bipedes/English/index.php .
. [2] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt,
C. Robustness to structural mismatch C. Canduas-de Wit, and J.W. Grizzle. RABBIT: a testbed for advanced

This example will illustrate robustness to structural mis- control theory. IEEE Control Systems Magazingio appear), October
2003. See [5] for a preprint.

match between the design model and the evaluation mod@dj c. chevallereau and Y. Aoustin. Optimal reference trajectories for
In addition, the robot will be commanded to track a walking  walking and running of a biped robot. Robotica 19(5):557-569,

- . . S September 2001.
rate proflle_ and then §IOW to a stop using a single within stndﬁq A. Goswami. Postural stability of biped robots and the foot-rotation
controller in conjunction with event-based PI control. indicator (FRI) point. International Journal of Robotics Research

The robot model of the previous two examples is used, 18(6):523-533, June 1999.

except that instead of assuming a rigid impact the compliar{ﬁ] J.W. Grizzle. Jessy Grizzle's publications, 200&p://www.eecs.
’ umich.edu/"grizzle/papers/robotics.html .

model with dyl?amic friction of [8] is Use_d-_ A nominal con- [6] J.W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking
troller was designed on the basis of the rigid contact model to for biped robots: Analysis via systems with impulse effectEEE
; ; Transactions on Automatic Control6:51-64, January 2001.
have an average walking ra}te 0f 0.30 m/.s' When mplementi A. Isidori. Nonlinear Control Systems: An IntroductioBpringer-Verlag,
on the robot with the compliant model, this yielded an average™ Beriin, third edition, 1995.
walking rate of 0.35 m/s. [8] F.Plestan, J.W. Grizzle, E.R. Westervelt, and G. Abba. Stable walking of

In the simulation, the robot is initialized near a periodic orbit ~ & 7-dof biped robot. MEEE Transactions on Robotics and Automaion
! 2003 (to appear). See [5] for a preprint.

of the compliant model. Event-based PI control with gainge] £ R. Westervelt and J.W. Grizzle. Design of asymptotically stable
Kp =0.3andK; =0.03 is applied starting on the sixth step walking for a 5-link planar biped walker via optimization. ICRA
; _nAint _fi N 2002, Washington D.CMay 2002.
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6The robot will, in fact, continue to rock back and forth, alternating impacts
with each leg, and decreasing the kinetic energy of the robot with each impact.



