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Abstract— This paper addresses the control of a planar, biped
robot with one degree of underactuation. Previous work has
designed controllers that induce provably, exponentially stable,
periodic walking motions at fixed, pre-determined walking rates.
These controllers operate in continuous time during the single
support phase of the robot. The present paper shows how to
design an event-based PI controller that provides an additional
control feature: the ability to regulate the average walking rate
to a continuum of values. The PI controller is active only in the
(instantaneous) double support phase and achieves regulation by
adjusting key parameters of the within-stride controller.

I. I NTRODUCTION

The robots treated in this paper consist ofN -links connected
in a planar tree structure to form at least two identical legs,
with the legs connected at a common point called the hips.
All links have mass, are rigid, and are connected in revolute
joints (see Fig. 1(a)). Furthermore, no actuation is applied
between the stance leg and the ground, while all other joints
are actuated. A rigid impact is used to model the contact of
the swing leg with the ground.

Addressing the control of robots without actuation between
the stance leg and ground is an important step in designing
natural and efficient walking motions. To date, the control
of robots with feet has been based on the zero moment
point (ZMP) principle [4] which explicitly seeks to avoid the
underactuation that occurs when the stance foot naturally roles
up on the toe prior to heel strike by the swing leg. In a robot
without feet, the ZMP heuristic is not applicable, and thus
underactuation must be explicitly addressed in the feedback
control design, leading to the development of new feedback
stabilization methods. Moreover, it is anticipated that these
results will lead to a control theory for walking with feet that
will allow anthropomorphic foot action.

This paper builds on the results in [11] and [10]. The
notion of the hybrid zero dynamics for the walking motion
of a class of planar biped robots with point feet was treated
in [11]. The hybrid zero dynamics is a two-dimensional,
invariant sub-dynamics of the complete hybrid model of the
biped robot. It was shown to be key to designing exponen-
tially stabilizing controllers for walking motions. In particu-
lar, exponentially stable orbits of the hybrid zero dynamics
can be rendered exponentially stable in the complete hybrid
model. The Poincaré map of the hybrid zero dynamics was

(a) A representative exam-
ple of the class ofN -link
biped robot models considered.
Cartesian coordinates are indi-
cated at the hips and the leg
ends.
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(b) Schematic of the ex-
ample 5-link biped con-
sidered with measure-
ment conventions.

Fig. 1. Example bipeds. No actuation is applied between the stance leg and
the ground, while all other joints are actuated; the two legs are symmetric.
In single support, the stance leg is assumed to be at the origin of the world
coordinate frame. Consequently, at impact,ph

2 measures step length.

proven to be diffeomorphic to a scalar, LTI system, rendering
transparent the existence and stability properties of periodic
orbits of the hybrid zero dynamics. A special class of output
functions based on B́ezier polynomials was used to simplify
the computation of the hybrid zero dynamics, while at the
same time inducing a convenient, finite parameterization of
these dynamics. Parameter optimization was then applied to
the hybrid zero dynamics to directly design a stable, closed-
loop system that satisfied design constraints, such as walking
at a given average walking rate and the forces on the support
leg lying in the allowed friction cone. Stability of the closed-
loop system was established with a Poincaré analysis and not
by appealing to heuristics, such as the ZMP. All of the results
were illustrated on a five-link walker (see Fig. 1(b)).



The present paper provides an additional feature: the ability
to regulate the robot’s average walking rate to a continuum
of values via event-based PI control. The PI controller is
active only in the (instantaneous) double support phase and
achieves regulation by adjusting key parameters of the in-stride
controller. A special case of the results presented here has
appeared in [10]. In particular, [10] assumed that the param-
eters used for event-based control affected the linearization
of the restricted Poincaré map of the hybrid zero dynamics
but did not directly affect the linearization of the function
that computes average walking rate. The more general case of
when the parameters used for event-based control affect both
quantities in a non-trivial way is addressed here. In addition,
considerably more detail concerning the stability proof of the
controller is provided in this communication.

Section II summarizes some pertinent notation and results
from [11]. Section III develops an event-based PI controller to
regulate walking rate to a continuum of values. The controller
uses integral action to adjust the parameters in a controller that,
for fixed parameter values, induces an exponentially stable,
periodic orbit. Parameter adjustment takes place just after
impact (swing leg touching the ground). The analysis and
design of the controller are based on the restricted Poincaré
map of the hybrid zero dynamics.

Section IV illustrates the application of the event-based PI
controller of Section III on the five-link biped model studied in
[3], [8], [9], [11] (see Fig. 1(b)). Here, simulation will be used
to demonstrate the controller’s performance under a variety of
errors between the control design model and the actual model.
Robustness to disturbances is illustrated by application of an
external force acting on the hips. Robustness to parameter
mismatch is demonstrated through variation of masses and
inertias. Robustness to structural mismatch is illustrated by
walking on acompliant walking surface[8]. Animations of
the resulting walking motions are available at [5]. Experiments
employing event-based PI control have been conducted on
RABBIT [1] and will be reported elsewhere; see [5] for videos
and further information.

II. N OTATION AND BASIC FACTS

This section summarizes some notation and results from
[11] that are used extensively in this communication. The
reader is encouraged to read [11] for further interpretation,
context and supporting diagrams, and [2] for a less technical
overview of the control design methodology.

The configuration coordinates of the robot in single support
(also commonly called the swing phase) are denoted byq =
(q1, · · · , qN )′ ∈ Q, the state space is denoted byTQ, and a
control is applied at each connection of two links, but not at
the contact point with the ground (i.e., no ankle torque), for
a total of (N − 1) controls. The detailed assumptions on the
robot (bipedal, planar and one less degree of actuation than
degrees of freedom, point feet, rigid contact model) and the
walking gait (instantaneous double support phase, no slipping
nor rebound at impact, motion from left to right, symmetric
gait) are given in [11, Sec. II].

The hybrid model of the robot (single support phase
Lagrangian dynamics plus impact map) is expressed as a
nonlinear system with impulse effects

ẋ = f(x) + g(x)u x− /∈ S
x+ = ∆(x−) x− ∈ S.

(1)

The impact or walking surface,S, is defined as

S := {(q, q̇) ∈ TQ | pv
2(q) = 0, ph

2 (q) > 0}, (2)

wherepv
2 andph

2 are the Cartesian coordinates of the swing leg
end (see Fig. 1(a)). The impact map∆ : S → TQ computes
the value of the state just after impact withS, x+ = (q+, q̇+),
from the value of the state just before impact,x− = (q−, q̇−).
Since the configuration coordinates necessarily involve the
specification of which of the two the legs is in contact with the
ground, the coordinates must be relabeled after each step to
take into account the successive changing of the support leg.
This is reflected in the impact map via a constant, invertible
matrix R, q+ := Rq−.

The control design involves the choice of a set of holonomic
constraints that are asymptotically imposed on the robot via
feedback control. This is accomplished by interpreting the
constraints as output functions depending only on the config-
uration variables of the robot, and then combining ideas from
finite-time stabilization and computed torque. The outputs
y ∈ IRN−1 are chosen as

y = h(q, α) = H0q − hd(θ(q), α), (3)

with terms defined as follows.
1) H0 is an (N − 1) × N matrix of real coefficients

specifying what is to be controlled.
2) θ(q) := cq, where c is a 1 × N row vector of real

coefficients, is a scalar function of the configuration vari-
ables and should be chosen so that it is monotonically
increasing along a step of the robot (θ(q) is playing the
role of time). Defineθ+ = cq+ andθ− = cq− to be the
initial and final values ofθ, respectively, along a step.

3) Normalization ofθ to take values between zero and one,

s(q) :=
θ(q) − θ+

θ− − θ+
. (4)

4) Bézier polynomials of orderM ≥ 3

bi(s) :=
M∑

k=0

αi
k

M !
k!(M − k)!

sk(1 − s)M−k. (5)

5) For αi
k as above, define the(N − 1)× 1 column vector

αk := (α1
k, · · · , αN−1

k )′ and the(N − 1) × (M + 1)
matrix α := [α0, · · · , αM ].

6)

hd(θ(q), α) :=




b1 ◦ s(q)
...

bN−1 ◦ s(q)


 . (6)

The matrix of parametersα is said to be a regular parameter
of output (3) if the output satisfies [11, Sec. III.A, HH1–
HH4] and [11, Sec. III.B, HH5], which together imply the



invertibility of the decoupling matrix and the existence of
a two-dimensional, smooth, zero dynamics associated with
the single support phase of the robot. LetZα be the (swing
phase) zero dynamics manifold. LetΓα be any feedback
satisfying [11, Sec. III.C, CH2–CH5] so thatZα is invariant
under the swing phase dynamics in closed loop withΓα and
is locally finite-time attractive otherwise. Note that standard
results imply thatΓα|Zα

= −(LgLfh)−1L2
fh [7], and thus

(i) Γα|Zα
is uniquely determined by the choice of parameters

used in the output and is completely independent of the choice
of feedback used to drive the constraints to zero in finite time;
and (ii) even thoughΓα is necessarily not smooth,Γα|Zα

is
as smooth as the robot model.

For a regular parameter valueα of output (3), the definition
of the outputs and basic properties of Bézier polynomials yield
a very simple characterization ofS∩Zα, the configuration and
velocity of the robot at the end of a phase of single support.
Define

q−α = H−1

[
αM

θ−α

]
(7)

ω−
α = H−1




M

θ−α − θ+
α

(αM − αM−1)

1


 , (8)

where H := [H ′
0 c]′, and the initial and final values ofθ

corresponding to this output are denoted byθ+
α andθ−α , respec-

tively. ThenS∩Zα = {(q−α , q̇−α ) | q̇−α = aω−
α , a ∈ IR} and is

determined by thelast two columnsof the parameter matrix
α. In a similar fashion∆(S ∩Zα), the configuration,q+

α , and
velocity, q̇+

α , of the robot at the beginning of a subsequent
phase of single support, may be simply characterized and are
determined by thefirst two columnsof the parameter matrix
α. By [11, Th. 4] it follows that[

α0

θ+
α

]
= HRH−1

[
aM

θ−α

]
(9)

implies h(·, α) ◦ ∆|(S∩Zα) = 0, while, if q̇+
α := ∆q̇(q−α )ω−

α ,
results incq̇+

α 6= 0, then

α1 =
θ−α − θ+

α

Mcq̇+
α

H0 q̇+
α + α0 (10)

implies Lfh(·, α) ◦ ∆|(S∩Zα) = 0. The key thing to note is
that these two conditions involve, once again, only thefirst
two columnsof the parameter matrixα. In a similar fashion
the last two columnsof the parameter matrixα may be chosen
so thath(·, α)|(S∩Zα) = 0, andLfh(·, α)|(S∩Zα) = 0.

Conditions (9) and (10) imply that∆(S ∩ Zα) ⊂ Zα,
in which caseZα is then controlled-invariant for the full
hybrid model of the robot. The resulting restriction dynamics
is called thehybrid zero dynamics. Necessary and sufficient
conditions can be given for the hybrid zero dynamics to admit
an exponentially1 stable, periodic orbit,Oα, [11]. When these

1Note that finite-time stabilization is used only to constrain(N −1) of the
N degrees of freedom while the stability properties of the unactuated degree
of freedom is determined by the hybrid zero dynamics.

conditions are met, the matrix of parametersα is said to
give rise to an exponentially stable walking motion. Under
controllerΓα, the exponentially stable orbit in the hybrid zero
dynamics is also exponentially stable in the full order model,
(1). The domain of attraction ofOα in the full dimensional
model cannot be easily estimated; however, its domain of
attraction intersected withS ∩ Zα, that is, the domain of at-
traction of the associated fixed-point of the restricted Poincaré
map,ρα : S ∩Zα → S ∩Zα, is computed analytically in [11,
Sec. IV].

III. E VENT-BASED PI CONTROL OF THEAVERAGE

WALKING RATE

The goal of this section is to design an event-based con-
troller2 that adjusts the parameters in the output (3) to achieve
walking at acontinuumof rates. The controller design and
analysis are based on the hybrid zero dynamics. A one-
parameter curve will be defined in the set of parameters
appearing in (3). Conditions will be identified so that this
one-parameter curve will yield an effective control for the
associated Poincaré map. Updating this control at each impact
event of the walking cycle will yield a means to control
average walking rate.

Define the average walking rate over a step3 to be step
length (m) divided by the elapsed time of a step (s). For a
given controllerΓα satisfying the hypotheses of Section II,
the average walking rate is computed from the model (1) as
follows. Let Pα : S → S be the Poincaré return map4 and
let TI,α : TQ → IR≥0 ∪ {∞} be the time to impact function.
The average walking rate is formally defined as a (partial) map
ν̄α : S → IR≥0 by

ν̄α :=
ph
2 ◦ Pα

TI,α ◦ ∆
, (11)

where,ph
2 , when evaluated onS, computes step length (see

Fig. 1(a)). On the open subset̃S ⊂ S where 0 < TI,α ◦
∆ < ∞ and the associated impacts are transversal toS, both
Pα and TI,α ◦ ∆ are well-defined and continuous (see [6,
Sec. III.B] ). It follows thatν̄α restricted toS̃ is continuous.
SinceΓα is continuous but not Lipschitz continuous,ν̄α is not
smooth on any open subset ofS. However, if α is a regular
parameter value of output (3) giving rise to a hybrid zero
dynamics,∆(S ∩ Zα) ⊂ Zα, then ν̄α restricted toS̃ ∩ Zα

depends smoothly on the states and the parameter valuesα
used to define the outputs, (3).

Let α be a regular parameter value of output (3) for which
there exists a exponentially stable periodic orbit. Letz∗α be
the corresponding fixed point of the restricted Poincaré map,
ρα : S ∩ Zα → S ∩ Zα. To emphasize the dependence on
the parameter value, forz ∈ S ∩ Zα, let ρ(z, α) := ρα(z);
similarly, ν̄(z, α) := ν̄α(z).

2That is, one that acts step-to-step with updates occurring at impacts.
3A step starts with the swing leg on the ground and behind the robot and

ends with the swing leg on the ground and in front of the robot.
4In general it is a partial map because not every point inS results in a

solution of the model that has an impact withS.



Suppose thatδα ∈ IR(N−1)×(M+1) is such thatδα 6= 0 and

(δα)0 = (δα)1 = (δα)M−1 = (δα)M = 0. (12)

Then, forw ∈ IR sufficiently small in magnitude,α + wδα is
also regular. From (12)

S ∩ Zα+wδα = S ∩ Zα

∆(S ∩ Zα+wδα) = ∆(S ∩ Zα). (13)

Thus,ρα+wδα : S ∩ Zα → S ∩ Zα, and the following single-
input, single-output dynamic system can be defined,

z(k + 1) = ρ(z(k), α + w(k)δα)
η(k + 1) = ν̄(z(k), α + w(k)δα)

y(k) = η(k),
(14)

with two-dimensional state spaceS∩Zα×IR, inputw ∈ IR and
output equal to average walking rate,y ∈ IR. It’s linearization
is

δz(k + 1) = a11δz(k) + b1δw(k)
δη(k + 1) = a21δz(k) + b2δw(k)

δy(k) = δη(k),
(15)

where5

a11 :=
∂ρ

∂z
(z, α + wδα)

∣∣∣∣z=z∗
α

w=0

b1 :=
∂ρ

∂w
(z, α + wδα)

∣∣∣∣z=z∗
α

w=0

a21 :=
∂ν̄

∂z
(z, α + wδα)

∣∣∣∣z=z∗
α

w=0

b2 :=
∂ν̄

∂w
(z, α + wδα)

∣∣∣∣z=z∗
α

w=0

.

(16)

The linearized system (15) is clearly exponentially stable if,
and only if, |a11| < 1. An easy computation shows that its
DC-gain is non-zero if, and only if,

a21b1 + b2(1 − a11) 6= 0. (17)

Theorem 1: (Event-based PI control applied to the hybrid
zero dynamics)Let α be a regular parameter value for which
there exists an exponentially stable periodic orbit inZα.
Denote the corresponding fixed point of the Poincaré return
map byz∗α. Assume there existsδα satisfying (12) and such
that the non-zero DC-gain condition, (17), holds. Then average
walking rate can be regulated via PI control. In particular, there
exist ε > 0, and scalarsKp andKI such that for allη∗ such
that |η∗ − ν̄(z∗α)| < ε, the system consisting of (14) in closed
loop with the proportional plus integral controller

e(k + 1) = e(k) + (η∗ − η(k))
w(k) = Kp(η∗ − η(k)) + KIe(k) (18)

has an exponentially stable equilibrium, and thus, when initial-
ized sufficiently near the equilibrium,limk→∞(η∗−η(k)) = 0.
¤

5We have abused notation and not made the distinction betweenz as a
point in TQ that lies inS ∩ Zα andz as a coordinate onS ∩ Zα.

Proof: The linear system (15) is exponentially stable
because the exponential stability of the fixed-pointz∗α implies
that |a11| < 1. This, combined with the DC-gain being non-
zero, implies the existence of a PI controller of the form

δe(k + 1) = δe(k) + (δη∗ − δη(k))
δw(k) = Kp(δη∗ − δη(k)) + KIδe(k) (19)

such that the closed-loop system (15) with (19) is exponen-
tially stable and satisfieslimk→∞(δη∗ − δη(k)) = 0, where
δη∗ := η∗ − ν̄(z∗α, α). Since the closed loop of (15) with (19)
is the linearization of (14) in closed loop with (18), the result
follows.

The PI controller in (18) is realized on the full-hybrid model
of the robot as

ẋ = f(x) + g(x)Γα+wδα

ė = 0
ẇ = 0
η̇ = 0




x− 6∈ S

x+ = ∆(x−)
e+ = e− + (η∗ − η−)
w+ = Kp(η∗ − η−) + KIe

−

η+ = ν̄(x−, α + w+δα)




x− ∈ S

(20)

where the extra states are used to store past values ofν̄ andw,
and to implement the difference equation in the PI controller.
The existence of an asymptotically stable orbit is analyzed
next.

Theorem 2: (Event-based PI control applied to the full
model)Assume the hypotheses of Theorem 1 and letΓα be
any feedback satisfying [11, Sec. IV.C, CH2–CH5] (see also,
[6, Sec. IV.B, CH2–CH5]) so thatZα is invariant under the
swing phase dynamics in closed loop withΓα and is locally
finite-time attractive otherwise. Assume thatKp andKI have
been chosen so that (14) in closed loop with (18) has an
exponentially stable equilibrium. Then the hybrid model (20)
possesses an asymptotically stable orbit andlimt→∞(η∗ −
η(t)) = 0. ¤

Proof: By the proof of [6, Th. 2], it is enough to check
that the restricted Poincaré map of (20) has an asymptotically
stable fixed point. An easy computation gives that (14) in
closed loop with (18) realizes the restricted Poincaré map,
and thus the result follows.

Remark 1: Theorems 1 and 2 of [6] only addresses asymp-
totic stability of orbits. However, under the assumptions of
Theorem 2 of [6], exponential stability can be shown. The
key point is thatd ◦ ∆ in [6, Eqn. (55)] is differentiable
on S̃ ∩ Z, and hence is Lipschitz continuous. Sinced ◦ ∆
vanishes at a fixed point of the restricted Poincaré map, say
z∗, it follows that for a given coordinate chart oñS ∩Z there
exists L < ∞ such thatd ◦ ∆(z) ≤ L||z − z∗||, and thus
by [6, Eqn. (55)], exponential stability of the fixed point of
the restricted Poincaré map implies the exponential stability of
the orbit in the full state space. Since the converse is clear, it
follows that under the assumptions of [6, Thm. 2], exponential
stability of the fixed point of the restricted Poincaré map is
equivalent to the exponential stability of the orbit in the full
state space. 4



Remark 2: An alternative realization of (20) can be given.
Since from (12) the step length is fixed for all values ofw,
the average walking rate can be computed directly from its
definition: step length divided by elapsed time for a step. This
leads to

ẋ = f(x) + g(x)Γα+wδα

ṫ = 1
ė = 0
ẇ = 0




x− 6∈ S

x+ = ∆(x−)
t+ = 0
e+ = e− + (η∗ − ph

2 (q−
α )

t− )
w+ = Kp(η∗ − ph

2 (q−
α )

t− ) + KIe
−




x− ∈ S

(21)

whereph
2 (q−α ) computes step length; this is what is done in

the simulations. 4
Remark 3: Exponential stability of the nominal orbit gives

|a11| < 1, which implies that1 − a11 > 0. From [11, Eqns
(81) and (85)],a21 > 0. Hence, a sufficient condition for the
DC-gain (17) to be non-zero isb1 > 0 and b2 > 0. Thus, PI
control of average walking speed is possible if one can find
δα satisfying (12) and

N−1∑
i=1

M−2∑
k=2

δαi
k

∂ρ(z, α)
∂αi

k

∣∣∣∣∣
z∗

α

> 0

N−1∑
i=1

M−2∑
k=2

δαi
k

∂ν̄(z, α)
∂αi

k

∣∣∣∣∣
z∗

α

> 0.

(22)

Therefore, it is enough to find one pair of indices(k, i), with
2 ≤ k ≤ M − 2, and1 ≤ i ≤ N − 1, such that

∂ρ(z, α)
∂αi

k

∣∣∣∣
z∗

α

and
∂ν̄(z, α)

∂αi
k

∣∣∣∣
z∗

α

(23)

are both non-zero and have the same sign. This condition will
be verified on the example. 4

Remark 4: The relation to the result in [10, Sec. IV] is
established as follows. Suppose that there exist two pairs of
indices (kj , ij), 2 ≤ kj ≤ M − 2, and 1 ≤ ij ≤ N − 1,
j = 1, 2, such that∣∣∣∣∣∣∣∣

∂ρ(z,α)

∂α
i1
k1

∣∣∣∣
z∗

α

∂ρ(z,α)

∂α
i2
k2

∣∣∣∣
z∗

α

∂ν̄(z,α)

∂α
i1
k1

∣∣∣∣
z∗

α

∂ν̄(z,α)

∂α
i2
k2

∣∣∣∣
z∗

α

∣∣∣∣∣∣∣∣
6= 0. (24)

Then there existsδα satisfying (12) and
N−1∑
i=1

M−2∑
k=2

δαi
k

∂ρ(z, α)
∂αi

k

∣∣∣∣∣
z∗

α

> 0

N−1∑
i=1

M−2∑
k=2

δαi
k

∂ν̄(z, α)
∂αi

k

∣∣∣∣∣
z∗

α

= 0,

(25)

for which b2 in (16) is then equal to zero. In this case, (17)
reduces toa21b1 6= 0, which is equivalent to the condition
given in [10, Eqn (16)]. 4

Remark 5: What if the nominal orbit is not exponentially
stable (i.e.,|a11| ≥ 1)? If (15) is stabilizable, then the non-zero
DC-gain condition (17) is equivalent to stabilizability of (15)
augmented with the integrator of (19). Exponentially stable
regulation can be achieved therefore with a slight extension to
the PI controller:

e(k + 1) = e(k) + (η∗ − η(k)) (26)

w(k) = Kp(η∗ − η(k)) + KIe(k) + K3(z(k) − z∗(k))

4
IV. I LLUSTRATION OF THE RESULT

This section illustrates how the presented technique affords
the construction of a feedback controller that induces walking
at a continuum of rates while providing stabilization and a
modest amount of robustness to disturbances, to parameter
mismatch between the design model and the actual robot,
and to structural mismatch between the design model and the
actual robot. The results are illustrated via three simulations on
the five-link model (see Fig. 1(b)) studied in [3], [8], [9], [11].
For reasons of space, the details of the model are omitted and
the reader is referred to [11]. Animations of the three examples
as well as additional supporting plots may be found at [5].

For the following three examples finite differences were
used to verify the sufficient condition shown in (22) for several
values ofi andk. In this way, it was determined that adjusting
the angle of the swing leg femur during mid-step would have
a sufficiently strong effect on the average walking speed (this
corresponded toi = 2 andk = 3). Hence,δα was chosen to
be all zeros with the exception ofδα2

3 which was set to 1.

A. Robustness to disturbances

This example will illustrate robustness to disturbances by
simulation of the robot with an external force acting on the
hips. Event-based PI control is used to reject a 3 N external
force acting horizontally at the robot’s hip opposite to the
direction of walking.

The robot is initialized at the fixed point of a controller
with average walking rate equal to 0.50 m/s. Event-based PI
control with gainsKp = 5 and KI = 2 and set-pointη∗ =
0.5 is applied starting on the second step coincident with the
application of a constant 3 N force acting at the hips. Fig. 2(a)
depicts the actual walking rate versus the commanded value
of 0.50 m/s. The peak torque for this example is 70.1 Nm,
about half of the 150 Nm that is possible with the motors and
gearing of the robot studied in [3], [8], [11].

Without application of event-based PI control, the 3 N force
slows the robot to a stop; i.e., the average walking rate slows
from 0.50 m/s to 0 m/s.

B. Robustness to parameter mismatch

For this example, event-based PI control is used to maintain
the designed average walking rate in the presence of parameter
mismatch between the design model and the actual model. The
actual model’s torso mass, torso inertia, tibia mass and tibia
inertia were set to 110 percent of the design model’s values
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(a) Illustration of the ability of the event-
based PI control to reject a disturbance
force acting on the robot’s hips.
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(b) Illustration of the ability of the event-
based PI control to maintain the designed
average walking rate in the presence of
parameter mismatch.
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(c) Illustration of the ability of the event-
based PI control to track a walking rate
profile and to stop the robot on a compliant
walking surface.

Fig. 2. Command (dashed) versus actual (solid) average walking rate.

while the actual model’s femur mass and femur inertia were
set to 90 percent of those of the design model. The robot
is initialized at the fixed point of a controller whose average
walking rate corresponds to 0.50 m/s. Event-based PI control
with gains Kp = 5 and KI = 2 and set-pointη∗ = 0.5
is applied starting on the first step. Fig. 2(b) illustrates the
actual walking rate versus the commanded rate of 0.50 m/s.
The peak torque for this example is 53.8 Nm, about one third
of the 150 Nm possible.

Without application of event-based PI control, the parameter
mismatch changes the robot’s average walking rate from 0.50
m/s to 0.54 m/s.

C. Robustness to structural mismatch

This example will illustrate robustness to structural mis-
match between the design model and the evaluation model.
In addition, the robot will be commanded to track a walking
rate profile and then slow to a stop using a single within-stride
controller in conjunction with event-based PI control.

The robot model of the previous two examples is used,
except that instead of assuming a rigid impact, the compliant
model with dynamic friction of [8] is used. A nominal con-
troller was designed on the basis of the rigid contact model to
have an average walking rate of 0.30 m/s. When implemented
on the robot with the compliant model, this yielded an average
walking rate of 0.35 m/s.

In the simulation, the robot is initialized near a periodic orbit
of the compliant model. Event-based PI control with gains
Kp = 0.3 andKI = 0.03 is applied starting on the sixth step
with set-pointη∗ = 0.40. On the twenty-first step the set-point
is changed toη∗ = 0.30. To transition from walking to a stable
standing position, on the thirty-sixth step the set-point of the
event-based PI control was set toη∗ = 0. Using this technique
slowed the robot until it did not have enough energy to make
a step, thus stopping the robot6.

6The robot will, in fact, continue to rock back and forth, alternating impacts
with each leg, and decreasing the kinetic energy of the robot with each impact.

The peak torque for this example is 52 Nm, about one third
of the 150 Nm possible. Fig. 2(c) gives the commanded versus
actual average walking rate.
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