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Abstract— State-of-the-art robotic perception systems have
achieved sufficiently good performance using Inertial Mea-
surement Units (IMUs), cameras, and nonlinear optimization
techniques, that they are now being deployed as technologies.
However, many of these methods rely significantly on vision
and often fail when visual tracking is lost due to lighting
or scarcity of features. This paper presents a state-estimation
technique for legged robots that takes into account the robot’s
kinematic model as well as its contact with the environment.
We introduce forward kinematic factors and preintegrated
contact factors into a factor graph framework that can be
incrementally solved in real-time. The forward kinematic factor
relates the robot’s base pose to a contact frame through
noisy encoder measurements. The preintegrated contact factor
provides odometry measurements of this contact frame while
accounting for possible foot slippage. Together, the two devel-
oped factors constrain the graph optimization problem allowing
the robot’s trajectory to be estimated. The paper evaluates the
method using simulated and real sensory IMU and kinematic
data from experiments with a Cassie-series robot designed
by Agility Robotics. These preliminary experiments show that
using the proposed method in addition to IMU decreases drift
and improves localization accuracy, suggesting that its use can
enable successful recovery from a loss of visual tracking.

I. INTRODUCTION AND RELATED WORK

Legged locomotion enables robots to adaptively operate
in unstructured and unknown environments with potentially
rough and discontinuous ground [1]. The state-of-the-art
control algorithms for dynamic biped locomotion are capable
of providing stabilizing feedback for a biped robot blindly
walking through sinusoidally varying [2] or discrete [3]
terrain; however, without perceiving the environment, the
application of legged robots remains extremely limited. Ac-
curate estimates of the robot’s state and environment are
essential prerequisites for both stable control and motion
planning [4], [5], [6]. In addition, real-time performance of
the state estimation and perception system is required to
enable online decision making [7], [8].

Legged robots, unlike ground, flying, and underwater plat-
forms, are in direct and switching contact with the environ-
ment. Leg odometry involves estimating relative transforma-
tions and velocity using kinematic and contact information,
which can be noisy due to the encoder noise and foot
slip [9]. Typically, legged robots are equipped with additional
sensors (IMUs, cameras, or LiDARs) which also provide in-
dependent, noisy odometry measurements (shown in Fig. 1).
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Fig. 1: Experiments were conducted on a Cassie-series robot designed by
Agility Robotics. The biped robot has 20 degrees of freedom, 10 actuators,
joint encoders, an IMU, and a Multisense S7 stereo camera.

Therefore, without a sound sensor fusion framework, the
estimated trajectory can quickly become inaccurate as a
consequence of significant drift over the traveled distance.

Filtering methods involve estimating the current state
using all measurements up to the current time [10]. Ex-
tended Kalman filters (EKFs) are often used to fuse high-
frequency inertial and contact measurements to provide ac-
curate velocity, and orientation estimates that are useful for
the stabilizing feedback controller [4], [11]. However, the
absolute position and yaw (rotation about gravity) have been
shown to be unobservable [4], which leads to the unbounded
drift in these states. Re-observing landmarks over time using
vision sensors allows for correcting the position and yaw
estimates. However, landmark positions are unknown and
have to be estimated alongside the robot’s state. Over time,
the accumulation of numerous landmarks can make the EKF
computationally intractable for long-term state estimation
and mapping [12].

In contrast, smoothing methods estimate a discrete tra-
jectory of states using all the available measurements [10].
Although the comparatively lower update rate may not be
useful for the feedback controller, absolute position and yaw
estimates can be corrected by relating the current pose to a
previous one through loop closures [13]. This allows for low-
drift long-term state-estimation and mapping solutions. State-
of-the-art visual-inertial odometry systems [14], and, gener-



ally, Simultaneous Localization and Mapping (SLAM) [15],
[16], use graphical models (factor graphs) and nonlinear
optimization techniques to achieve a probabilistically sound
sensor fusion framework and real-time performance by ex-
ploiting the sparse structure of the SLAM problem [17],
[13]. The high-dynamic motion and noise characterization
is captured using preintegration of high-frequency sensors
such as Inertial Measurement Units (IMUs) [18].

Although the factor graph framework has been successful,
most methods heavily rely on visual information and are
prone to failure when visual tracking is lost, often due to
lighting or scarcity of features. In these scenarios, leg odom-
etry is a way to reduce drift; and hereby, the incorporation
of contact and encoder measurements into the factor graph
framework are addressed. In this paper, we develop two
novel factors that integrate the use of multi-link Forward
Kinematics (FK) and the notion of contact between the
robotic system and the environment into the factor graph
smoothing framework. The forward kinematic factor relates
a sensor frame (such as a camera or IMU) to a contact frame
through noisy encoder measurements. On the other hand,
the contact factor preintegrates high-frequency foot contact
measurements to describe the contact frame’s movement
over time. When combined, these novel factors constrain the
robot’s net movement, leading to improved state estimation.
In particular, this work has the following contributions:

i. An FK factor that incorporates noisy encoder measure-
ments to estimate an end-effector pose at any time-step;

ii. rigid and point preintegrated contact factors that relate
the contact frame pose between successive time-steps
while accommodating noise from foot slip;

iii. integration of leg odometry into the factor graph smooth-
ing framework;

iv. real-time implementation of the proposed FK and prein-
tegrated contact measurement models on a Cassie-series
biped robot.

Section II provides the required preliminaries including
the notation and mathematical prerequisites. We formulate
the problem and our factor graph approach in Section III.
Section IV explains forward kinematic modeling. The for-
ward kinematic factor is developed in Section V. Rigid and
point contact factors are derived in Sections VI and VII,
respectively. Simulation and experimental evaluations of the
proposed methods on a 3D biped robot (Fig. 1) are presented
in Section VIII. Finally, Section IX concludes the paper and
provides future work suggestions.

II. PRELIMINARIES

In this section, we present preliminary materials necessary
for the developments in the following sections. We first
establish the mathematical notation where we assume readers
are already familiar with basics of Lie groups, Lie Algebra,
and optimization on matrix Lie groups [19], [20], [21]. Also,
as this work is partly motivated by on-manifold IMU prein-
tegration, we adopt the notation from [14], where possible,
so that readers can connect the two papers conveniently.

A. Mathematical Notation and Background

Matrices are capitalized in bold, such as in X, and vectors
are in lower case bold type, such as in x. Vectors are
column-wise and [n] means the set of integers from 1
to n, i.e. {1 : n}. The Euclidean norm is shown by ‖·‖.
‖e‖2Σ , eTΣ−1e. The n-by-n identity matrix and the n-by-
m matrix of zeros are denoted by In and 0n,m respectively.
The vector constructed by stacking xi, ∀ i ∈ [n] is denoted
by vec(x1, . . . , xn). The covariance of a random vector is
denoted by Cov(·). Finally, we denote the base frame of the
robot by B, the world frame by W, and contact frame by C.

The general linear group of degree n, denoted
by GLn(R), is the set of n × n invertible matrices,
where the group binary operation is the ordinary
matrix multiplication. The special orthogonal group,
denoted by SO(3) = {R ∈ GL3(R)|RRT = I, det R = 1},
contains valid three-dimensional (3D) rotation
matrices. The special Euclidean group, denoted by

SE(3) = {T =

[
R p
0T

3 1

]
∈ GL4(R)|R ∈ SO(3), p ∈ R3}, is

the 3D rigid body motion group. Let ω , vec(ω1, ω2, ω3).

The hat operator is defined as ω∧ ,

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
,

where the right hand side is known as the skew-symmetric
matrix.

The Lie algebra of SO(3) is its tangent space at the iden-
tity together with Lie bracket and canonically determined as
so(3) = {ω∧ ∈ GL3(R)| exp(tω∧) ∈ SO(3) and t ∈ R}. Con-
versely, the vee operator maps a skew symmetric matrix
to a vector in R3, that is (ω∧)∨ = ω . In addition,
∀a,b ∈ R3 we have a∧b = −b∧a. The exponential
map associates an element of the Lie Algebra around a
neighborhood of zero to a rotation matrix in SO(3) around
a neighborhood of the identity and can be derived as
exp(φ∧) = I +

sin(‖φ‖)
‖φ‖ φ∧ +

1− cos(‖φ‖)
‖φ‖2 (φ∧)2; and using

a first-order approximation reduces to exp(φ∧) ≈ I + φ∧. For
any ‖φ‖ < π, the logarithm map uniquely associates a rota-
tion matrix in SO(3) to an element of its Lie algebra so(3);

log(R) =
ϕ(R − RT)

2 sin(ϕ)
with ϕ = cos−1

(
tr(R)− 1

2

)
. We use

the following simplified notations from [14]:

Exp : R3 3 φ → exp(φ∧) ∈ SO(3)
Log : SO(3) 3 R → log(R)∨ ∈ R3.

The following first order approximations of above maps
allow for relating increments in the Lie Algebra to incre-
ments in the Lie group and vice versa [14]

Exp(φ + δφ) ≈ Exp(φ)Exp(Jr(φ)δφ) (1)

Log(Exp(φ)Exp(δφ)) ≈ φ + Jr
−1(φ)δφ (2)

where Jr(φ) = I − 1− cos(‖φ‖)
‖φ‖2 φ∧ +

‖φ‖ − sin(‖φ‖)
‖φ‖3 (φ∧)2

is the right Jacobian of SO(3) [20]. Finally, from the adjoint
representation of SO(3) we have

Exp(φ)R = RExp(RTφ). (3)



B. Modeling Noise and Optimization on Matrix Lie Groups

We model the uncertainty in SO(3) by defining a noise
distribution in the tangent space and then mapping it to
SO(3) via the exponential map [22], [14]; R̃ = RExp(ε)
and ε ∼ N (0,Σ), where R is a given noise-free ro-
tation (the mean) and ε is a small normally distributed
perturbation with zero mean and covariance Σ. Through
approximating the normalization factor as constant, the
negative log-likelihood of a rotation R given a measure-
ment R̃ distributed according to the defined perturbation
is L(R) ∝ 1

2
‖Log(R−1R̃)‖2Σ = 1

2
‖Log(R̃−1R)‖2Σ which is a

bi-invariant Riemannian metric. For the translation part of
SE(3), noise can be characterized using the usual additive
white Gaussian noise assumptions.

Solving an optimization problem where the cost function
is defined on a manifold is slightly different from the usual
problems in Rn. The tangent vectors lie in the tangent space.
As such, a retraction that maps a vector in the tangent
space to an element in the manifold is required [21]. Given
a retraction mapping and the associated manifold, we can
optimize over the manifold by iteratively lifting the cost
function of our optimization problem to the tangent space,
solving the reparameterized problem, and then mapping the
updated solution back to the manifold using the retraction.
For SO(3), the exponential map is this retraction. For SE(3)
we adopt the retraction used in [14]:

RT (δφ, δp) = (RExp(δφ),p + Rδp), vec(δφ, δp) ∈ R6. (4)

III. PROBLEM STATEMENT AND FORMULATION

In this section, we formulate the state estimation problem
of the legged robot. The biped robot is equipped with a stereo
camera, an IMU, joint encoders, and binary contact sensors
on the feet. Without loss of generality, we assume the IMU
and camera are collocated with the base frame of the robot.
In current state-of-the-art visual-inertial navigation systems,
the state includes the camera pose and velocity along with
system calibration parameters such as IMU bias [14]. In
the factor graph framework, independent measurements from
additional sensors can be incorporated by introducing addi-
tional factors based on the associated measurement models.
Foot slip is the major source of drift in leg odometry; as
such, to isolate the noise at the contact point we augment
the state at time-step i to include the contact frame pose
of both feet (in the world frame) Ci , {RWC,l(i)}2l=1 and
di , {WpWC,l(i)}

2
l=1. However, without loss of generality, all

following derivations are for a single contact frame. Thus,
the state at any time-step i is represented as:

Si , {Ri, pi, vi,Ci, di, bi} (5)

where Ri , RWB(i) is the base orientation, pi , WpWB(i) is the
base position, vi , WvB(i) is the base velocity, and bi , b(i)

is the IMU bias. In addition Xk ,
⋃k
i=1 Si denotes the state

up to time-step k.
Let Lij ∈ SE(3) be a perceptual loop closure measure-

ment relating poses at time-steps i and j (j > i) computed
from an independent sensor, e.g. using a point cloud match-

Fig. 2: An example factor graph for the proposed system. Forward kinematic
factors are added at each node and constrain the pose of the contact frames
on the feet of the robot with respect to the robot base. Contact factors are
added to the graph over time-steps where the given contact frame remained
in contact with the environment. This framework enables the system to
handle failures of the visual tracking or loop closure system (denoted here
by general pose constraints).

ing algorithm. The forward kinematic measurements at time-
step i are denoted by Fi. The IMU and contact sensors
provide measurements at higher frequencies. Between any
two time-steps i and j, we denote the set of all IMU and
contact measurements by Iij and Cij , respectively. Let Kk
be the index set of time-steps (or key-frames) up to time-step
k. We denote the set of all measurements up to time-step k
by Zk , {Lij , Iij ,Fi, Cij}i,j∈Kk

.
By assuming the measurements are conditionally indepen-

dent and are corrupted by additive zero mean white Gaussian
noise, the posterior probability of the full SLAM problem can
be written as p(Xk|Zk) ∝ p(X0)p(Zk|Xk), where

p(Zk|Xk) =
∏

i,j∈Kk

p(Lij |Xj)p(Iij |Xj)p(Fi|Xi)p(Cij |Xj). (6)

The Maximum-A-Posteriori (MAP) estimate of Xk can be
computed by solving the following optimization problem:

minimize
Xk

− log p(Xk|Zk) (7)

in which due to the noise assumption mentioned earlier is
equivalent to the following nonlinear least-squares problem:

minimize
Xk

‖r0‖2Σ0
+
∑

i,j∈Kk

‖rLij
‖2ΣLij

+
∑

i,j∈Kk

‖rIij‖
2
ΣIij

+
∑
i∈Kk

‖rFi
‖2ΣFi

+
∑

i,j∈Kk

‖rCij‖
2
ΣCij

(8)

where r0 and Σ0 represents the prior over the initial state
and serves to anchor the graph, rLij

, rIij , rFi
, rCij are the

residual terms associated with the loop closure, IMU, for-
ward kinematic, and contact measurements respectively, i.e.
the error between the measured and predicted values given
the state, and ΣLij

, ΣIij , ΣFi
, ΣCij are the corresponding

covariance matrices. A graphical example of this problem is
shown in Fig. 2.

IV. FORWARD KINEMATICS

Forward kinematics refers to the process of computing
the position and orientation of an end-effector frame using
measurements of the robot’s joint positions. This section
derives a representation of the forward kinematic functions
needed to compute the pose of a contact frame relative to
the base frame of the robot.

Let the contact frame be a coordinate frame on the robot
located at a point of contact with the environment. This



Fig. 3: The contact frame is separated from the robot’s base frame by N
links. Cassie (left) has 7 links between the base and the bottom of the
toe. A simpler, planar biped (right) is shown to demonstrate the forward
kinematics.

contact frame is separated from the robot’s base frame, by N
links. These N links are assumed to be connected by N − 1
revolute joints, each equipped with an encoder to measure
the joint angle. The vector of encoder angles is denoted
by α ∈ RN−1. In total, this amounts to N + 1 frames,
where frames 1 and N + 1 are the base and contact frame
respectively, as shown in Fig. 3. The forward kinematics can
be computed through a product of homogeneous transforms:

H(α) =

N∏
n=1

Hn,n+1(αn) ,

[
fR(α) fp(α)
01,3 1

]
∈ SE(3) (9)

where fR(α) and fp(α) denote the rotation and position of
the contact frame (relative to the base frame) as a function
of encoder angles. The relative transformation between link
frames n ∈ [N − 1] and n+ 1 is given by:

Hn,n+1(αn) ,

[
AnExp(α†n) tn

01,3 1

]
(10)

where An ∈ SO(3) and tn ∈ R3 are a constant rotation and
translation defined by the kinematic model of the robot. Each
joint is assumed to be revolute with an angle αn ∈ R. The
dagger operator maps a scalar to a vector in R3 based on
the joint’s axis of rotation:

α†n , vec(αn, 0, 0), vec(0, αn, 0), or vec(0, 0, αn). (11)

The final transformation between link frames N and N + 1

is constant and denoted by HN,N+1 ,

[
AN tN
0T

3 1

]
. When (9)

is multiplied out, the orientation and position of the contact
frame with respect to the base frame are:

fR(α) = A1N+1(α), and fp(α) =
N∑
n=1

A1n(α)tn (12)

where the relative rotation between link frames i and j is
given by:

Aij(α) ,


I for (i, j) ∈ [N ], i = j∏j−1
k=i AkExp(α†k) for (i, j) ∈ [N ], j > i

AiNAN for i ∈ [N − 1], j = N + 1.

Changes in joint angles affect the orientation of all link
frames further down the kinematic tree. The following

Lemma shows how the angle offsets propagate through the
FK functions which is important for dealing with encoder
noise.

Lemma 1 (Relative rotation between two frames [23]). Let
β ∈ RN be a vector of joint angle offsets. The relative
rotation between frames i and j can be factored into the
nominal rotation and an offset rotation:

Aij(α + β) = Aij(α)

j−1∏
k=i

Exp
(

AT
k+1,j(α)β†k

)
(13)

V. FORWARD KINEMATICS FACTOR

The goal of this section is to formulate a general forward
kinematic factor that accounts for uncertainty in joint en-
coder readings. This factor can be included in a factor graph
to allow estimation of end-effector poses. Here, the end-
effector coincides with the contact frame. We note that this
factor only constrains the relative transformation between the
base and contact frames; therefore, the full utility of this
factor depends on a separate measurement of the contact
frame described in Section VI.

A. Contact Pose through Encoder Measurements

The encoder measurements are assumed to be affected by
additive Gaussian noise, ηα ∼ N (0,Σα).

α̃(t) = α(t) + ηα(t) (14)

The orientation and position of the contact frame in the world
frame are given by:

RWC(t) = RWB(t)RBC(t)

WpC(t) = WpB(t) + RWB(t)BpC(t).
(15)

Rewriting (15) in terms of the state (5) and encoder mea-
surements yields:

C(t) = R(t) fR(α̃(t)− ηα(t))

d(t) = p(t) + R(t) fp(α̃(t)− ηα(t)).
(16)

The isolation of the noise terms in orientation and position
of the contact frame are derived in the following Lemmas.
The dependence on time is assumed, so t is omitted for
readability.

Lemma 2 (FK factor orientation noise isolation [23]). Using
(12), (13), and (3), the rotation term and the noise quantity
δ fR can be derived as:

RTC = fR(α̃ − ηα)

= fR(α̃)

N−1∏
k=1

Exp
(
−AT

k+1,N+1(α̃)ηα†k

)
, fR(α̃)Exp(−δ fR)

(17)

δ fR = −Log

(
N−1∏
k=1

Exp
(
−AT

k+1,N+1(α̃)ηα†k

))

≈
N−1∑
k=1

AT
k+1,N+1(α̃)ηα†k

(18)

Through repeated first order approximation, the noise quan-
tity δ fR is approximately zero mean and Gaussian.



Lemma 3 (FK factor position noise isolation [23]). Using
(12), (13), (1), and anticommutativity of skew-symmetric
matrices, the position term can be approximated as:

RT(d − p) = fp(α̃ − η
α)

≈ fp(α̃) +

N−1∑
k=1

N−1∑
n=k

A1,n+1(α̃)t∧n+1AT
k+1,n+1(α̃)ηα†k

, fp(α̃)− δ fp

(19)

The noise quantity δ fp is a linear combination of zero mean
Gaussians, and is therefore also zero mean and Gaussian.

Using these Lemmas, we can now write out the forward
kinematic measurement model:

fR(α̃) = RTC Exp(δ fR)

fp(α̃) = RT(d − p) + δ fp
(20)

where the forward kinematics noise characterized by
vec(δ fR, δ fp) ∼ N (0,ΣF ).

B. Unary Forward Kinematic Factor

The FK factor is a unary factor that relates the robot’s base
frame to an end-effector frame. Using (20), we can write the
residual errors, rFi

, vec(r fRi

, r fpi
) from (8), at time ti as

follows.

r fRi
= Log

(
fR(α̃i)

TRT
i Ci
)

r fpi
= RT

i (di − pi)− fp(α̃i)
(21)

The forward kinematics noise can be rewritten as a linear
system: [

δ fR
δ fp

]
=

[
Q(α̃i)
S(α̃i)

]
ηα† (22)

where ηα† , vec(ηα†1 ,ηα†2 , · · · ,ηα†N−1) and the columns of
the 3× 3(N − 1) matrices Q and S are given by:

Qi(α̃) = AT
i+1,N+1(α̃)

Si(α̃) = −
N−1∑
n=i

A1,n+1(α̃)t∧n+1AT
i+1,n+1(α̃).

(23)

The covariance can be computed using the linear noise model
and the sensor covariance matrix Σα† describing the encoder
noise ηα†:

ΣFi
=

[
Q(α̃i)
S(α̃i)

]
Σα†

[
QT(α̃i) ST(α̃i)

]
. (24)

The Jacobians for the forward kinematics factor are given in
the supplementary material [23].

VI. RIGID CONTACT FACTOR

This section formulates a contact factor based on the
assumption that the contact frame remains fixed with respect
to the world frame over time. Slip is accommodated by
incorporating noise on the contact frames’ velocities. When
combined with the forward kinematic factor introduced in
Section V, an additional odometry measurement of the
robot’s base frame is obtained, which can improve the MAP
estimate.

A. Rigid Contact Model

In addition to the encoders, it is assumed that a separate
binary sensor can measure when the robot is in contact with
the static world. If the contact is rigid (6-DOF constraint),
then both the angular and linear velocity of the contact frame
are zero; i.e CωWC(t) = WvC(t) = 03,1. Therefore,

ṘWC(t) = RWC(t)(CωWC(t) + ηω(t))∧ = RWC(t)ηω∧(t)

WṗC(t) = WvC(t) + RWC(t)ηv(t) = RWC(t)ηv(t)
(25)

where ηω ∼ N (03,1,Σω) and ηv ∼ N (03,1,Σv) are
additive Gaussian noise terms that capture contact slip. This
is similar to the EKF-based approach taken in [4]. Both noise
terms are represented in the contact frame and are rotated to
align with the world frame. Rewriting (25) in terms of the
state vector yields:

Ċ(t) = C(t)ηω∧(t)

ḋ(t) = C(t)ηv(t).
(26)

If the robot maintains rigid contact with the world from
t to t + ∆t, Euler integration can be applied to obtain the
pose of the contact frame at time t+ ∆t.

C(t+ ∆t) = C(t)Exp(ηωd(t)∆t)

d(t+ ∆t) = d(t) + C(t)ηvd(t)∆t
(27)

Integrating from the initial time of contact, ti, to the final
time of contact, tj , yields:

Cj = Ci
j−1∏
k=i

Exp(ηωdk ∆t)

dj = di +

j−1∑
k=i

Ckη
vd
k ∆t

(28)

where ηωd and ηvd are discrete time noise terms computed

using the sampling time; Cov(ηd(t)) =
1

∆t
Cov(η(t)).

B. Rigid Contact preintegration

We can now rearrange (28) to create relative increments
that are independent of the state at times ti and tj .

∆Cij = CT
i Cj =

j−1∏
k=i

Exp(ηωdk ∆t)

∆dij = CT
i (dj − di) =

j−1∑
k=i

∆Cikη
vd
k ∆t.

(29)

Next, we wish to isolate the noise terms. First, we will
deal with the rotation of the contact frame. The product of
multiple incremental rotations can be expressed as one larger
rotation. Therefore,

∆Cij , ∆C̃ijExp(−δθij) (30)

where ∆C̃ij = I due to the rigid contact assumption.
Furthermore, through repeated first order approximation,
δθij is approximately zero mean and Gaussian.

δθij = −Log(

j−1∏
k=i

−Exp(ηωdk ∆t)) ≈
j−1∑
k=i

ηωdk ∆t (31)



Now, we can isolate the noise in the position of the contact
frame by substituting (30) into ∆dij and dropping the higher
order noise terms.

∆dij
eq.(1)
≈

j−1∑
k=i

∆C̃ik(I − δθ∧ik)ηvdk ∆t ≈ −
j−1∑
k=i

ηvdk ∆t

, ∆d̃ij − δdij

(32)

where ∆d̃ij = 0. The noise term, δdij =
∑j−1
k=i η

vd
k ∆t, is

zero mean and Gaussian.
Finally, we arrive at the preintegrated contact measure-

ment model:

∆C̃ij = CT
i Cj Exp(δθij) = I3

∆d̃ij = CT
i (dj − di) + δdij = 03,1

(33)

where the rigid contact noise characterized by
vec(δθij , δdij) ∼ N (0,ΣCij ). More detailed derivations are
provided in the supplementary material [23].

C. Preintegrated Rigid Contact Factor

Once the noise terms are separated out, we can write down
the residual errors, rCij = vec(r∆Cij

, r∆dij
) from (8), as

follows.

r∆Cij
= Log(CT

i Cj)

r∆dij
= CT

i (dj − di)
(34)

Furthermore, since both noise terms are simply additive
Gaussians, the covariance can easily be computed. If the
contact noise is constant, the covariance is simply:

ΣCij =

[
Σω 03,3

03,3 Σv

]
∆tij (35)

where Σω and Σv are the continuous covariance matrices
of the contact frame’s angular and linear velocities, ηω and
ηv , and ∆tij =

∑j
k=i ∆t.

If the contact noise is time-varying, the covariance can
be computed iteratively. This would be particularly useful
if the noise were modeled to depend on contact pressure.
The iterative noise propagation and the Jacobians for the
rigid contact factor are fully derived in the supplementary
material [23].

VII. POINT CONTACT FACTOR

The rigid contact factor can be modified to support addi-
tional contact types. For a point contact, the contact frame
position remains fixed with respect to the world frame;
however, the orientation can change over time. Therefore,
∆C̃ij 6= I, and subsequently becomes unobservable using
only encoder and contact measurements. To track the contact
noise appropriately, a gyroscope can be used.

In the following section, the preintegrated contact factor is
formulated as an extension to the preintegrated IMU factor
described in [14]. This approach allows support for point
contacts in our factor graph formulation.

A. Point Contact Model

A point contact is defined as a 3-DOF constraint on
the position of the contact frame. All rotational degrees of

freedom are unconstrained. Since the relative orientation,
∆C̃ij , is unobservable without the use of a gyroscope, we
shall remove this term in the preintegrated contact factor by
utilizing the preintegrated IMU measurements. Replacing Ck
in (28) with its definition in (15), yields:

dj = di +

j−1∑
k=i

Rk fR(α̃k − ηαk )ηvdk ∆t. (36)

We can rewrite this equation to be independent of the state
at time ti and tj .

RT
i (dj − di) =

j−1∑
k=i

∆Rik fR(α̃k − ηαk )ηvdk ∆t (37)

where ∆Rij = RT
i Rj =

∏j−1
i=1 Exp

(
(ω̃k − bgk − η

gd
k )∆t

)
is the relative rotation increment from the IMU preintegration
model [14].

The encoder measurements at time ti are already being
used for the forward kinematic factor (Section V). Therefore,
to prevent information double counting, the first term in the
summation can be replaced with the state estimate at time ti.
After a first-order approximation of the forward kinematics
function, we arrive at the preintegrated point contact position
measurement ∆d̃ij and its noise δdij :

RT
i (dj − di) ≈ RT

i Ciη
vd
i ∆t+

j−1∑
k=i+1

∆R̃ik fR(α̃k)ηvdk ∆t

, ∆d̃ij − δdij

(38)

where, again, ∆d̃ij = 03,1. The full derivation is detailed in
the supplementary material [23].

Up to a first order approximation, δdij is zero mean,
Gaussian, and does not depend on the encoder or IMU noise,
i.e. it is decoupled [23]. Since the contact measurement is
uncorrelated to the IMU / forward kinematics measurements
and all are jointly Gaussian, the measurements are all inde-
pendent. Therefore, the point contact factor can be written
separately to the IMU factor.

B. Preintegrated Point Contact Factor

Once the noise terms are separated out, we can write down
the residual error:

rCij = r∆dij
= RT

i (dj − di). (39)

The noise propagation can be written in an iterative form:

δdik+1 =

{
δdik − RT

kCkηvdk ∆t for k = i

δdik −∆R̃ik fR(α̃k)ηvdk ∆t for k > i
(40)

which allows us to write the covariance propagation as a
linear system (starting with ΣCii = 03,3):

ΣCik+1
= ΣCik + BΣvdBT (41)

where,

B =

{
RT
kCk∆t for k = i

∆R̃ik fR(α̃k)∆t for k > i.
(42)



Fig. 4: The cumulative distribution function of the norm of the translation
and rotation errors for consecutive poses generated using a model of Cassie
in SimMechanics. Measuring error in this way allows us to evaluate the
drift of the different combinations of factors. Forward kinematics, contact,
and IMU significantly outperform IMU and even outperforms the local loop
closure (LC) and IMU in some cases.

The covariance of the discrete contact velocity noise ηvdk is
denoted by Σvd. These equations are derived in complete
detail in the supplementary material [23].

VIII. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method and
factors. We implemented both factors in GTSAM [24] using
iSAM2 as the solver [25]. To handle IMU preintegration we
used the implementation built into GTSAM 4 [14], [26]. Both
simulation and real-world experiments used the Cassie-series
robot developed by Agility Robotics (shown in Fig. 1).

A. Simulated Evaluation using SimMechanics

For initial evaluation, we used SimMechanics to simulate
a full model of Cassie walking along a curved path. The
simulator provided true acceleration, angular velocity, joint
angle, and contact values as well as ground-truth trajectory
position and velocity.

We generated IMU measurements by adding Gaussian
noise and bias according to the models described in [14].
We also simulated loop closure (LC) measurements using
the ground-truth trajectory and corrupted them using the
methods detailed in Section II-B. These (local) loop closure
factors were added to every other node in the graph in an
attempt to simulate the results of visual odometry or scan
matching algorithms. Finally, we added white Gaussian noise
to the contact and joint angle values to generate forward
kinematic and contact measurements. Table I shows the noise
parameters used. A new node in the graph was added every
time contact was made or broken with the environment
(approximately 3 per second).

In this experiment, we compared the following combina-
tions of factors: IMU, LC and IMU, IMU and Contact/FK,
LC and IMU and Contact/FK. Fig. 4 shows the cumulative
distribution function of the norm of the translation and
rotation errors computed by comparing the relative pose

TABLE I: Simulation Noise Parameters
Noise st. dev.

Acceleration 0.0307 m/s2
Angular Velocity 0.0014 rad/s
Accelerometer Bias 0.005 m/s2
Gyroscope Bias 0.0005 rad/s
Loop Closure Translation 0.1 m
Loop Closure Rotation 0.0873 rad
Contact Linear Velocity 0.1 m/s
Joint Encoders 0.00873 rad

Fig. 5: Estimated trajectory of Cassie experiment data using IMU, forward
kinematic, and contact factors. The robot walked in a loop around the lab,
starting and ending at approximately the same pose. The video of the ex-
periment is shown at https://youtu.be/QnFoMR47OBI. Compared
to the IMU only estimation (dashed red line), the addition of contact and
forward kinematic factors significantly improves the state estimate. The end-
to-end translation error was approximately 1.3 m.

between consecutive time-steps of the trajectory estimated
by each combination of methods to the ground-truth. This
metric allows for evaluating the drift of the different com-
binations of factors. The translational error is computed
in the usual manner. The rotation error is computed using
‖Log(R>trueRest)‖.

Forward kinematic, contact and IMU combined, signif-
icantly outperform IMU alone. This is partly because the
contact and forward kinematic factors constrain the graph
enabling the estimator to solve for the IMU bias. Also, we
note that in translation about 20% of the time the combina-
tion of our proposed factors and the IMU outperforms the
combination of the camera and the IMU. Finally, we note
that the combination of all factors is the most successful.

These results suggest that the proposed method can be
used to increase the overall localization accuracy of the
system as well as to handle drop-outs in visual tracking.

B. Real-world

We evaluated our factor graph implementation using real
measurement data collected from a Cassie-series robot. This
data included IMU measurements and joint encoders values.
Cassie has two springs, located on each leg, that are com-
pressed when the robot is standing on the ground. The binary
contact measurement was computed using measurements of
these spring deflections. The data was collected at 2KHz.

Using a controller provided by Agility Robotics, we
walked Cassie for about 100 seconds in a loop around a 4.5-
meter section of our lab, starting and ending in approximately
the same location. Figure 5 compares the estimated trajectory
computed using IMU, contact and forward kinematic factors

https://youtu.be/QnFoMR47OBI


with using only IMU factors. Due to noisy measurements,
integration errors, and IMU bias, the IMU only estimate
quickly drifts far away from the actual trajectory. After
including the contact and kinematic factors, the state estimate
is significantly improved resulting in a final translation error
of approximately 1.3 m.

Although the improved performance over IMU alone
may appear trivial, this preliminary experiment validates
the primary motivation of this work. Our novel forward
kinematic and contact factors (in addition to IMU) can be
used to improve odometry in factor graphs when vision
systems fail. In this experiment, no visual odometry or
loop closures were added, yet the addition of leg odometry
enables the estimation of biases and reduces drift. In the
future, we are working to incorporate visual odometry and
loop closure constraints from the attached Multisense S7
camera (developed by Carnegie Robotics). We also plan to
extensively test these new factors over a range of walking
gaits and terrains in addition to collecting motion capture
data to provide a proxy for ground truth.

IX. CONCLUSION

We developed two novel factors within the factor graph
framework to provide reliable leg odometry for bipedal loco-
motion. In particular, the forward kinematic factor computes
measurements in the form of relative 3D transformation
between the base and contact frames, while the preinte-
grated contact factor incorporates high-frequency contact
measurements as constraints between any two successive
contact frames in the graph. The evaluation showed that in
the absence of accurate sensory data such as those from
a stereo camera, the probabilistic fusion of IMU, FK, and
contact factors enable the robot to track its trajectory while
estimating IMU biases.

We are currently in the process of developing the open
source implementation of the proposed techniques and per-
forming additional evaluations in real experiments. In the
future, we plan to use these techniques to build up both local
and global maps that can be used for path planning as well as
to inform the robot controller about the surrounding terrain.
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