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Abstract—Closed-loop, asymptotically stable walking
motions are designed for a 5-link, planar bipedal robot
model with one degree of underactuation. Parameter
optimization is applied to the hybrid zero dynamics, a
1-DOF invariant subdynamics of the full robot model,
in order to create asymptotically stable orbits. Tuning
the dynamics of this 1 DOF subsystem via optimization
is interesting because asymptotically stable orbits of the
zero dynamics correspond to asymptotically stabilizable
orbits of the full hybrid model of the walker. The opti-
mization process uses a sequential quadratic program-
ming (SQP) algorithm and is able to satisfy kinematic
and dynamic constraints while approximately minimiz-
ing energy consumption and ensuring stability. This is
in contrast with traditional approaches to the design of
walking controllers where approximately optimal walk-
ing (time-) trajectories are derived and then enforced
on the robot using a trajectory tracking controller.

I. Introduction

For planar, biped walkers with a torso and one de-
gree of under actuation, it was shown for the first time
in [1] for a 3-link model, and in [2] for a 5-link model,
that these systems admit feedback control designs that
induce walking motions with provable stability prop-
erties. The system models are hybrid, consisting of
ordinary differential equations to describe the motion
of the robot when only one leg is in contact with the
ground (single support or swing phase of the walk-
ing motion), and a discrete map to model the im-
pact when the second leg touches the ground (double
support phase). The control designs involved the ju-
dicious choice of a set of holonomic constraints that
were imposed on the robot via feedback control. This
was accomplished by interpreting the constraints as
output functions depending only on the configuration
variables of the robot, and then combining ideas from
finite-time stabilization and computed torque. The de-
sired posture of the robot was encoded into the set of
outputs in a such a way that the nulling of the out-
puts was equivalent to achieving the desired posture.
However, the choice of the outputs was ad hoc and did
not lead to energy efficient walking motions.

The contribution of this paper is to provide a sys-
tematic methodology for choosing outputs that achieve
stable walking motions that exploit as much as possi-

ble the natural dynamics of the system. The heart of
the method is the application of parameter optimiza-
tion to a 1-DOF subsystem of the full hybrid model
of the robot, recently developed in [3]. In that work,
it is shown that the zero dynamics of the swing phase
[1] can be made invariant under the impact map, re-
sulting in the definition of the hybrid zero dynamics,
whose stability properties are directly relatable to the
stabilizability of the orbits of the full hybrid system.
The associated Poincaré return map of the hybrid zero
dynamics was explicitly computed and shown to be
diffeomorphic to a scalar, linear-time invariant system,
thereby rendering transparent the existence and stabil-
ity properties of periodic orbits of the hybrid zero dy-
namics. By parameter optimization on the hybrid zero
dynamics, kinematic and dynamic constraints can be
met while approximately minimizing energy consump-
tion. The overall concept is similar to [4], with the
difference that, in conjunction with the general feed-
back approach developed in [1, 2], an asymptotically
stable orbit of the hybrid zero dynamics immediately
yields a provably, asymptotically stable orbit in the
full hybrid model.

The use of optimization in the analysis and design
of biped walking motions is not a new concept. Work
as early as the 1970’s can be found in the biomechan-
ics literature (see [5, 6], for example). In more recent
years, the design of optimal or approximately opti-
mal trajectories for biped robots has become a pop-
ular topic [4, 7–13]. In each case the approach has
been to design time-trajectories such that a defined
cost is minimized, or approximately minimized, sub-
ject to a set of constraints. The employed optimiza-
tion technique varies. Cabodevila and Abba [7] pa-
rameterized the robot state as a finite Fourier series
and compared the performance of three algorithms:
Nelder and Mead, Genetic, and Simulated Annealing.
Chevallereau and Aoustin [4], and Chevallereau and
Sardain [8] rewrote the controllable dynamics of the
robot as a polynomial function of the uncontrolled dy-
namics and used Sequential Quadratic Programming
(SQP). Hasegawa, Arakawa, and Fukuda [9] used a



modified genetic algorithm to generate reference tra-
jectories parameterized as cubic splines. Hardt [10]
used an optimization package, DIRCOL [14], which
implements a sparse SQP algorithm and uses a vari-
able number of cubic splines to approximate the state
and associated control signals. Rostami and Bessonnet
[12] applied Pontryagin’s Maximum Principle. Rous-
sel, Canudas-de-Wit, and Goswami [13] approximate
the dynamics and use a direct shooting optimization
algorithm. While the approach presented here uses
the same optimization package as in [10], the result of
the optimization is not an optimal or approximately
optimal open-loop trajectory, but rather a closed-loop
system which creates an asymptotically stable, invari-
ant orbit, and along this orbit, energy consumption has
been approximately minimized, while satisfying other
natural kinematic and dynamic constraints.

Section II reviews the 5-link robot model studied
here, though the results may be directly extended to
the class of N -link models described in [3, 4]. Sec-
tion III summarizes the work of [3] on the hybrid zero
dynamics. Section IV presents a new class of output
functions for which the hybrid zero dynamics may be
computed in closed-form and conveniently parameter-
ized. Section V uses optimization methods to shape
the parameterized, hybrid zero dynamics so as to cre-
ate asymptotically stable orbits.

II. Robot model and modeling assumptions

The robot, depicted in Figure 1, is assumed to be
planar and consist of a torso and two identical legs
with knees; furthermore, all links have mass, are rigid,
and are connected in revolute joints. All walking cycles
will be assumed to take place in the sagittal plane and
consist of successive phases of single support (meaning
the stance leg is touching the walking surface and the
swing leg is not) and double support (the swing leg and
the stance leg are both in contact with the walking sur-
face). During the single support phase, it is assumed
that the stance leg acts as a pivot. It is further sup-
posed that the walking gaits of interest are such that
successive phases of single support are symmetric, and
progress from left to right.

The two phases of the walking cycle naturally lead
to a mathematical model of the biped consisting of two
parts: the differential equations describing the dynam-
ics during the single support phase, and a model of the
contact event. The rigid contact model of [15] is as-
sumed, which collapses the double support phase to
an instant in time, and allows a discontinuity in the
velocity component of the state, with the position re-
maining continuous. The biped model is thus hybrid
in nature, consisting of a continuous dynamics and a
re-initialization rule at the contact event.

Model Torso Femurs Tibias
parameters (T ) (f) (t)

Mass (kg) 20 6.8 3.2
L∗ (m) 0.625 0.4 0.4

Inertia (m2kg) 2.22 1.08 0.93
pM
∗ (m) 0.2 0.163 0.128

TABLE I

Model parameters

Swing phase model: With 5-links, the dynamic
model of the robot during the swing phase has 5-DOF.
Let q = (q1, · · · , q5)′ be the set of coordinates depicted
in Figure 1, which describe the configuration of the
robot with respect to the world reference frame W .
Since only symmetric gaits are of interest, the same
model can be used irrespective of which leg is the
stance leg if the coordinates are relabeled after each
phase of double support. Using the method of La-
grange, the model is written in the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu. (1)

Table I lists the associated model parameters (see Fig-
ures 2 and 3 for details on the parameter definitions
used here; the inertias listed here include the rotor
inertia reflected through the gear reducer). Torques
ui, i = 1 to 4, are applied between each connection of
two links, but not between the stance leg and ground.
The model is written in state space form by

ẋ =
[

q̇
D−1(q) [−C(q, q̇)q̇ −G(q) + Bu]

]

=: f(x) + g(x)u. (2)

where x := (q′, q̇′)′. The state space of the model is
taken as TQ := {x := (q′, q̇′)′ | q ∈ Q, q̇ ∈ IR5},
where Q is a simply-connected, open subset of [0, 2π)5

corresponding to physically reasonable configurations
of the robot, as done in [2].
Impact model: An impact occurs when the swing leg
touches the walking surface, S := {(q, q̇) ∈ TQ | pv

2 =
0, ph

2 > 0}, also called the ground (see Figure 1 for def-
initions of ph

2 and pv
2). The impact between the swing

leg and the ground is modeled as a contact between
two rigid bodies. In addition to modeling the change
in state of the robot, the impact model accounts for the
relabeling of the robot’s coordinates that occurs after
each phase of double support. Let R be the constant
matrix such that R q accounts for relabeling of the co-
ordinates when the swing leg becomes the new stance
leg. Then the impact model of [15] under standard
hypotheses (see [1], for example), results in a smooth
map ∆ : S → TQ,

x+ = ∆(x−), (3)



where x+ := (q+, q̇+) (resp. x− := (q−, q̇−)) is the
state value just after (resp. just before) impact. For
later convenience, ∆ is expressed as

∆(x−) :=
[

∆q q−

∆q̇(q−) q̇−

]
(4)

where ∆q := R and ∆q̇(q) is a 5× 5 matrix of smooth
functions of q.
Nonlinear system with impulse effects: The over-
all biped robot model can be expressed as a nonlinear
system with impulse effects [16]

ẋ = f(x) + g(x)u x− /∈ S
x+ = ∆(x−) x− ∈ S,

(5)

where, x−(t) := limτ↗t x(τ). Solutions are taken to
be right continuous and must have finite left and right
limits at each impact event (see [1] for details).

A half-step of the robot is defined to be a solution
of (5) that starts with the robot in double support,
ends in double support with the positions of the legs
swapped, and contains no other impact event.

III. Summary of hybrid zero dynamics

In general, the maximal internal dynamics of a sys-
tem that are compatible with the output being iden-
tically zero is called the zero dynamics [17]. In [3],
this notion was extended to include the impact map
common in many biped models. This section briefly
summarizes the main results of [3], and due to space
limitations, assumes familiarity with the zero dynam-
ics of non-hybrid models.

Consider first the swing phase dynamics, (2), and
note that if an output y = h(q) depends only on the
position variables, then, due to the second order nature
of the robot model, the derivative of the output along
solutions of (2) does not depend directly on the inputs.
Hence its relative degree is at least two. Differentiat-
ing the output once again computes the accelerations,
resulting in

d2y

dt2
= L2

fh(q, q̇) + LgLfh(q)u, (6)

where the matrix LgLfh(q) is called the decoupling
matrix and depends only on the configuration vari-
ables. A consequence of the general results in [17] is
that the invertibility of this matrix at a given point
assures the existence and uniqueness of the zero dy-
namics in the neighborhood of that point. With a few
extra hypotheses, these properties can be assured on
a given open set.
Output function hypotheses: The output func-
tions considered are assumed to be smooth functions
satisfying the following hypotheses:

HH1) h is a function of only the position coordinates;
HH2) there exists an open set Q̃ ⊂ Q such that for

each point q ∈ Q̃, the decoupling matrix LgLfh(q)
is square and invertible (i.e., h has vector relative
degree (2, . . . , 2)′);

HH3) there exists a smooth real valued function θ(q)
such that Φ : Q̃ → IR5 by Φ(q) := (h(q)′, θ(q))′ is
a diffeomorphism onto its image;

HH4) there exists a unique point q− ∈ Q̃ such that
(h(q−), pv

2(q
−)) = (0, 0) and the rank of [h′, pv

2]
′

at q− equals 5.
Swing phase zero dynamics (cf. [3, Lemma 1]):
Hypotheses HH1–HH4 ensure that Z := {x ∈
T Q̃ | h(x) = 0, Lfh(x) = 0} is a smooth two dimen-
sional submanifold of TQ; moreover, the feedback con-
trol

u∗(x) = −(LgLfh(x))−1L2
fh(x) (7)

renders Z invariant under the swing phase dynamics
in the sense that, every z ∈ Z, fzero(z) := f(z) +
g(z)u∗(z) ∈ TzZ. Z is called the zero dynamics man-
ifold and ż = fzero(z) is called the (swing phase) zero
dynamics.
Hybrid zero dynamics (cf. [3, Theorem 2 and 5]):
Requiring that the swing phase dynamics be invariant
under the impact map, that is, ∆(S ∩ Z) ⊂ Z, results
in the hybrid zero dynamics,

ż = fzero(z) z− /∈ S ∩ Z
z+ = ∆(z−) z− ∈ S ∩ Z.

(8)

It is shown in [3] that along all solutions of (8), the
output h is identically zero, hence this is a valid zero
dynamics for the hybrid model. Let θ be as in HH3 and
let γ0 be the last row of D and γ(q, q̇) := γ0(q) q̇. Then
in the local coordinates, (ξ1, ξ2) := (θ(q), γ(q, q̇)), the
swing phase zero dynamics of (2) become

ξ̇1 = κ1(ξ1) ξ2

ξ̇2 = κ2(ξ1)
(9)

where κ1 and κ2 are smooth functions of ξ1. Further-
more, S ∩ Z can be shown to be diffeomorphic to IR
per σ : IR → S ∩ Z, where σ(ω) := [σ′q, (σq̇(q−)ω)′]′,
σq := q−,

σq̇(q−) :=
[

∂h
∂q (q−)
γ0(q−)

]−1 [
0
1

]
, (10)

and q− is given by HH4. In addition, θ, when eval-
uated along any half-step of the zero dynamics, is a
strictly monotonic function of time and thus achieves
its maximum and minimum values at the end points.
Thus, the extrema of θ(q) over a half-step are θ− :=
θ(q−) and θ+ := θ ◦ ∆q(q−). Without loss of gener-
ality, it is assumed that θ+ < θ−; that is, that along



any half-step of the hybrid zero dynamics, θ is mono-
tonically increasing.
Poincaré analysis of the zero dynamics (cf. [3,
Theorem 7]) Assume that a smooth output function
h on (5) satisfies HH1–HH4 function, and take the
Poincaré section to be S ∩Z so that the Poincaré map
is the partial map ρ : S ∩ Z → S ∩ Z defined as in
[1]. In local coordinates (ζ1, ζ2) := (θ(q), 1

2γ2(q, q̇)),
the Poincaré map can be explicitly computed. Indeed,
∆ : (ζ−1 , ζ−2 ) → (ζ+

1 , ζ+
2 ) is ζ+

1 = θ+ and ζ+
2 = δ2

zero ζ−2 ,
where δzero := γ0(q+)∆q̇(q−)σq̇(q−), a constant that
may be computed a priori. In these coordinates, the
hybrid zero dynamics (9) may be integrated to obtain

ρ(ζ−2 ) = δ2
zero ζ−2 + Vzero(θ−), (11)

where for θ+ ≤ ζ1 ≤ θ−,

Vzero(ζ1) :=
∫ ζ1

θ+

κ2(ζ)
κ1(ζ)

dζ. (12)

The domain of definition of (11) is
{
ζ−2 > 0 | δ2

zero ζ−2 + K ≥ 0
}

. (13)

where K := minθ+≤ξ1≤θ− Vzero(ζ1) ≤ 0.
If δ2

zero 6= 1 and ζ∗2 := Vzero(θ−)/(1− δ2
zero) is in the

domain of definition of ρ, then it is the unique fixed
point of ρ. Moreover, if ζ∗2 is a fixed point, then ζ∗2 is
an asymptotically stable equilibrium point of

ζ2(k + 1) = ρ(ζ2(k)) (14)

if, and only if, δ2
zero < 1, and in its domain of attraction

is (13), that is, the entire domain of definition of ρ.
While the domain of definition of the Poincaré map

is (13), not all solutions of the zero dynamics satisfy
the modeling assumptions. In particular, the assump-
tion that the stance leg acts as a pivot during the swing
phase limits the ratio and sign of the ground reaction
forces on the stance leg end. This limit can be reflected
as an upper bound on the mathematical domain of def-
inition of ρ; see [18]. In Section V, this will be taken
care of through the imposition of an appropriate con-
straint.

IV. An almost linear output structure

Consider the following output function and form for
θ(q)

y = h(q) := H0(q)− hd ◦ θ(q) (15)
θ(q) = c q (16)

where H0 : IR5 → IR4 is a linear map, c : IR5 → IR
is a linear functional, and hd : IR → IR4 is a to-be-
specified smooth function. Driving y to zero will force

the chosen linear combinations of the generalized co-
ordinates to track hd ◦ θ(q). Intuitively, the posture of
the robot is being controlled as a holonomic constraint
parameterized by the uncontrolled quantity θ(q).

By specializing hd as a vector of Bézier polynomials,
it turns out to be easy to enforce the invariance condi-
tion, ∆(S∩Z) ⊂ Z, which is required for the existence
of a non-trivial hybrid zero dynamics. This is devel-
oped next. A one-dimensional Bézier polynomial [19]
of degree M is a polynomial, bi : [0, 1] → IR, defined
by M + 1 coefficients, αi

k, per

bi(s) :=
M∑

k=0

αi
k

M !
k!(M − k)!

sk(1− s)M−k. (17)

Some particularly useful features of Bézier polynomials
are (see [20, page 291])
1. the image of the Bézier polynomial is contained in
the convex hull of the M +1 control points (as viewed
as points in IR2, {(0, αi

0), (1/M,αi
1), (2/M,αi

2), . . .,
(1, αi

M )}) (the polynomial does not exhibit large oscil-
lations with small parameter variations);
2. bi(0) = αi

0 and bi(1) = αi
M ; and

3. the two lines defined by the pairs of points

{(0, αi
0), (1/M,αi

1)} (18)

and
{(1− 1/M,αi

M−1), (1, α
i
M )} (19)

are tangent to bi(s) at (0, αi
0) and (1, αi

M ), respec-
tively.
The first feature will be useful for numerical calcula-
tions (such as approximating the gradient of a cost
function) where numerical stability is crucial. The
second two features are exactly those used to achieve
∆(S ∩ Z) ⊂ S.

The function θ(q) of the generalized coordinates will
not, in general, take values in the unit interval over a
phase of single support. Therefore, to appropriately
compose a Bézier polynomial with θ(q), it is necessary
to normalize θ(q) by

s(q) :=
θ(q)− θ+

θ− − θ+
, (20)

which takes values in [0, 1]. Define hd ◦ θ(q) as

hd ◦ θ(q) := (b1 ◦ s(q), · · · , b4 ◦ s(q))′ . (21)

Setting
α0 := (α1

0, . . . , α
4
0)
′

α1 := (α1
1, . . . , α

4
1)
′

αM := (α1
M , . . . , α4

M )′
(22)

and evaluating (21) and its derivative with respect to
θ at the beginning (resp. end) of a phase of single



support, when θ(q) = θ+ (resp. θ(q) = θ−), leads to
the following theorem.

Theorem 1: (See [18] for a proof of this theorem.)
Consider the model (5) and assume the existence of a
smooth output h of the form (15), with hd ◦ θ(q) given
by (21) and θ(q) given by (16), such that hypotheses
HH1–HH4 hold. Then, ∆(S ∩ Z) ⊂ Z if, and only if,

[
α0

θ+

]
= HRH−1

[
αM

θ−

]
(23)

and

α1 =
θ− − θ+

Mcq̇+
H0q̇

+ + α0 (24)

where q̇− = σq̇(q−) and q̇+ := ∆q̇(q−) q̇−. 2

V. Creating Asymptotically Stable Fixed

Points Through Optimization

Consider the system (5) with output (15), where
hd ◦ θ(q) is defined by (21), H0 = [I, 0] and c =
(0, 0, 1/2, 0, 1). Choosing M = 6 and imposing (23)
and (24) leaves five free parameters for each output
component. The goal now is to use optimization to
select the free parameters so as to create an asymptot-
ically stable fixed point of the hybrid zero dynamics,
while meeting other natural objectives, such as low en-
ergy consumption, a desired walking speed, etc. The
control torques needed to evolve along the zero dy-
namics manifold are given in closed-form by (7), and
to compute these it is only necessary to solve the 1-
DOF hybrid zero dynamics instead of the 5-DOF full
model of the robot.

The optimization will be implemented with
DIRCOL1, which is able to handle nonlinear inequality
constraints (NIC’s), nonlinear boundary equality con-
straints (NBEC’s), and explicit boundary constraints
(EBC’s). The NIC’s must be satisfied at each point
in the time interval of optimization; the NBEC’s only
need to be satisfied at the end of the interval of opti-
mization; and the EBC’s are always satisfied at the
end of the interval of optimization. Unfortunately,
DIRCOL does not handle EBC’s at the beginning of
the interval of optimization (see NBEC3 below).

Consider the hybrid zero dynamics (8) with cost
function

J(α) :=
1

ph
2 (q−0 )

∫ TI(ξ−2 )

0

4∑
i=1

(u∗i (t))
2dt, (25)

where TI(ξ−2 ) is the half-step duration, ph
2 (q−0 ) corre-

sponds to step length, and u∗(t) is the result of evalu-
ating (7) along a solution of the hybrid zero dynamics.
The total number of parameters for optimization is

1http://www.sim.informatik.tu-darmstadt.de/sw/dircol

(N − 1)(M − 1); M − 1 free parameters for each out-
put. DIRCOL requires the optimization problem be
expressed in Mayer form, yielding

ẋ1 = κ1(x1)x2 (26)
ẋ2 = κ2(x1) (27)

ẋ3 =
4∑

i=1

(u∗i (x1, x2))2. (28)

Nonlinear Inequality Constraints: There are six
NIC’s that describe the desired walking motion per
constraints on
NIC1) deflection of the stance leg knee;
NIC2) deflection of the swing leg knee;
NIC3) minimum hip height;
NIC4) minimum normal ground reaction force;
NIC5) maximum ratio of tangential to normal ground

reaction forces experienced by the stance leg end;
and

NIC6) swing foot height to ensure S intersects Z only
the end of the step.

Nonlinear Boundary Equality Constraints:
There are five natural NBEC’s that enforce
NBEC1) the average forward walking rate, ν̄, defined

as step length divided by half-step duration ν̄ :=
ph
2 (q−0 )/TI(ξ−2 );

NBEC2) that the post-impact velocity of the swing leg
is positive;

NBEC3) the validity of the impact of the swing leg
end with the walking surface;

NBEC4) the existence of a fixed point
δ2
zero

1− δ2
zero

Vzero(θ−) + K > 0; and (29)

NBEC5) the stability of the fixed point, 0 < δ2
zero < 1;

and two NBEC’s which give the state at t = 0 since
DIRCOL does not handle EBC’s at the initial opti-
mization time,
NBEC6) the optimization state is such that x1(0) =

c∆q σq; and
NBEC7) the optimization state is such that x2(0) =

γ ◦∆ ◦ σ(ζ∗2 ).
Explicit Boundary Constraints: There are three
EBC’s that partially give the state at t = 0 and t =
TI(ξ−2 ),
EBC1) x3(0) = 0;
EBC2) x1(TI(ξ−2 )) = c σq; and
EBC3) x2(TI(ξ−2 )) = γ ◦ σ(ζ∗2 ).

Note that without use of the hybrid zero dynam-
ics there would be ten states of the robot model, the
derivative of the cost, and four control signals to be
included in the problem formulation while stability
of the closed-loop system would be hard to quantify
and include as a simple optimization constraint. After
optimization, hypothesis HH2, the invertibility of the



J(a) ζ∗2 δ2
zero Vzero(θ−) K

(N2m) (kgm2/s)2 - (kgm2/s)2 (kgm2/s)2

36.79 978.8 0.638 354.4 −260.4

TABLE II

Optimization result statistics

decoupling matrix, is checked by using the technique
presented in [2].

Table II summarizes the result of optimization for
a desired rate of 1.05 m/s. The walking motion is
asymptotically stable since 0 < δ2

zero < 1 and δ2
zero/(1−

δ2
zero)Vzero(θ−) + K = 364.2 > 0. Figure 4 is a stick

figure animation of this result for a single half-step.
The walking motion appears to be natural.
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Fig. 4. Stick animation
of robot taking one half-step
from left to right. Note that
the stance leg is dotted.
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