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Hybrid Zero Dynamics of Planar Biped Walkers

E.R. Westervelt∗, J.W. Grizzle+, D.E. Koditschek†

Abstract— Planar, underactuated, biped walkers form an
important domain of applications for hybrid dynamical sys-
tems. This paper presents the design of exponentially sta-
ble walking controllers for general planar bipedal systems
that have one degree of freedom greater than the number of
available actuators. The within-step control action creates
an attracting invariant set—a two dimensional zero dynam-
ics submanifold of the full hybrid model—whose restriction
dynamics admits a scalar LTI return map. Exponentially
stable periodic orbits of the zero dynamics correspond to
exponentially stabilizable orbits of the full model. A conve-
nient parameterization of the hybrid zero dynamics is im-
posed through the choice of a class of output functions. Pa-
rameter optimization is used to tune the hybrid zero dy-
namics in order to achieve closed-loop, exponentially stable
walking with low energy consumption, while meeting natu-
ral kinematic and dynamic constraints. The general theory
developed in the paper is illustrated on a five link walker,
consisting of a torso and two legs with knees.

Keywords. Bipeds, hybrid systems, zero dynamics, underactu-

ated system, Poincaré sections

I. Introduction

A PLANAR biped walker is a robot that locomotes via
alternation of two legs in the sagittal plane (see Fig-

ure 1). The models for such robots are necessarily hybrid,
consisting of ordinary differential equations to describe the
motion of the robot when only one leg is in contact with
the ground (single support or swing phase of the walking
motion), and a discrete map to model the impact when the
second leg touches the ground [30] (double support phase).
The complexity of controlling such a system is a function
of the number of degrees of freedom of the model as well as
the degree of actuation or, more precisely, underactuation
of the system.

For planar, biped walkers with a torso and one degree of
underactuation, it was shown for the first time in [24] for
a 3-link model, and in [45] for a 5-link model, that these
systems admit control designs with provable stability prop-
erties. The control designs involved the judicious choice of
a set of holonomic constraints that were asymptotically im-
posed on the robot via feedback control. This was accom-
plished by interpreting the constraints as output functions,
and then combining ideas from computed torque and finite-
time stabilization. The latter property was used to reduce
the stability analysis of the resulting walking motions to the
computation and analysis of a one dimensional Poincaré
map. In these control designs, it was observed that various
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parameters appearing in the holonomic constraints would
affect the walking speed, the torques required to achieve
walking, etc., but no systematic method for adjusting the
parameters was presented.

This paper introduces an important improvement on
the previous design methodology by affording a common
framework for stability analysis and performance enhance-
ment. The framework provides systematic design of feed-
back controllers that achieve exponentially stable walking
motions in N -link, one degree of underactuation, planar
biped models, while affording adjustment of additional fig-
ures of merit—for example, energy consumption—as well.
Specifically, a within-step controller is devised whose closed
loop incorporates a two dimensional submanifold—the zero
set of an appropriately parameterized output map—that
is an attracting invariant set with respect to the full hy-
brid model. The selection of this zero dynamics through
the choice of output map parameters affords the choice of
practicable kinematic, torque, and power ranges, all while
respecting the guarantee of an exponentially stable step.

In the broader spectrum of dynamically dexterous ma-
chines, this work builds on the ideas of Koditschek et al.
[11,37,41,49] where the goal is not to prescribe the dynam-
ics of systems via reference trajectories, as is often done in
the control of legged locomotion (see [15, 29, 34, 35, 48] for
example) but rather to encode the dynamic task via a lower
dimensional target, itself represented by a set of differential
equations. Given the demonstrated appearance of inter-
nal dynamical models in the animal nervous system [36],
and the emerging evidence that these models incorporate a
state-event based (as opposed to explicit time-based) rep-
resentations of the plant [18], it seems plausible to hypoth-
esize that task encoding via internal target dynamics may
also play a significant role in animal motor control [21].
Previous work on legged locomotion has touched on this
concept without clearly articulating or exploiting its full
potential. Sano and Furusho [56] regulated angular mo-
mentum as a means of inducing locomotion; Goswami et
al. [22] regulated total energy; and Kajita and Tani [34] ap-
proximated the robot as an inverted pendulum, regulating
its center of mass. Ono et al. [43] slave the control to one of
the states of the system, instead of time (see also [44] where
this idea is applied to the acrobot). Pratt et al. [46, 47]
achieved a reduction in complexity through a proposed set
of walking principles, such as maintaining the torso at a
constant angle and the hips at a constant height above the
ground while moving one foot in front of the other. Al-
though in that work, the “target” is first order (gradient)
dynamics, the leg transitions are imposed by event driven
logic, and it is unclear over what range of initial conditions
and perturbations the physical second order hybrid closed
loop system may ultimately succeed in maintaining a sta-
ble gait. In all such approaches, mechanisms comparable
to those developed here impose kinematic or dynamic con-
straints, enforcing, over the Lagrangian (i.e., away from
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impact conditions) portion of the state space, low dimen-
sional attracting submanifolds. Here, in contrast, as in
[11, 41, 49], the attracting submanifold is also designed to
be an invariant set of the Lagrangian portion of the closed-
loop system whose restriction dynamics (the zero dynamics
in this paper) emerges from the robot’s motion itself. How-
ever, unlike any previous work, in the present paper, the
full hybrid zero dynamics (i.e., the entire reduced order
motion of the mechanism including both the Lagrangian
and the impact portions) is rendered invariant. In this
sense, our present results combine the analytical machin-
ery developed in [24, 45] with the notion of a dynamically
targeted postural prescription [41, 57] to provide the first
rigorous methodology for a lower-dimensional hybrid tar-
get dynamics. Note that [60] can be interpreted as provid-
ing a similar result for fully actuated systems and a target
dynamics having the same dimension as the system being
controlled.

The notion of hybrid zero dynamics is an extension of
the notion of zero dynamics for systems described by ordi-
nary differential equations. While the zero dynamics for a
system modeled by ordinary differential equations is a well
known [31] and increasingly used concept, [5, 33, 51, 59],
the hybrid zero dynamics is a novel notion developed in
this paper to deal with the impact map that is common in
legged locomotion models. The hybrid zero dynamics may
be defined analogously to the zero dynamics: the largest
internal dynamics compatible with the output being identi-
cally zero. The central concern of the paper is to establish
a constructive approach to the definition of hybrid zero dy-
namics resulting in useful controllers for robotic walking.
The zero dynamics of the swing phase portion of the model
have been previously studied in [39] in the context of tra-
jectory planning and tracking for an underactuated biped.

The paper is structured as follows. Section II delineates
the class of robot models treated here, in particular, sub-
suming those introduced in [24, 45]. Section III first de-
velops the zero dynamics of the swing phase of the model
[24,39] using general results in [31]. This establishes a foun-
dation for defining the zero dynamics of a hybrid dynamical
system along with a general statement of existence condi-
tions.

In Section IV it is demonstrated that the Poincaré map
associated with the hybrid zero dynamics is diffeomorphic
to a scalar, LTI system. This renders the stability proper-
ties of the zero dynamics transparent. A means for com-
puting the exact upper and lower bounds of the domain of
definition of the Poincaré map is also given. The section
is closed with a summary of the feedback methodology of
[24] which is shown to take exponentially stable orbits of
the hybrid zero dynamics to exponentially stable orbits of
the full model.

Section V addresses issues associated with computing the
hybrid zero dynamics in closed form so that they may be
effectively exploited for design via parameter optimization.
This is accomplished by specializing to a class of outputs
defined by a linear function of the state plus a nonlinear
function of a scalar variable. The nonlinear function is fur-
ther specialized to Bézier polynomials [6], which provide a
very convenient parameterization for imposing a variety of
constraints associated with the existence of the hybrid zero

dynamics and the periodicity of desired walking motions,
among others.

In Section VI a framework for the creation of exponen-
tially stable fixed points through optimization is given. Op-
timization allows the shaping of the hybrid zero dynam-
ics while satisfying natural kinematic and dynamic con-
straints. The result of the optimization process is not an
optimal trajectory but rather a provably stable, closed-loop
system with satisfied design constraints.

Section VII illustrates the presented framework for sta-
bility analysis and performance enhancement on a 5-link
biped model which is under construction by the French
project Commande de Robots à Pattes of the CNRS - GdR
Automatique [1].

II. Robot Model and Modeling Assumptions

This section introduces the class of biped walking mod-
els, the central concern of the paper. The model consid-
ered is a planar open kinematic chain connected at a sin-
gle joint called the “hip”, comprising two identical open
chains called the “legs” and a third called the “torso”. As
depicted in Figure 1, intentionally suggestive of a human
figure, conditions that guarantee the torso remains free in
the air, while the legs alternate in ground contact will be
imposed. All motions will be assumed to take place in
the sagittal plane and consist of successive phases of sin-
gle support (meaning the stance leg is touching the walking
surface and the swing leg is not) and double support (the
swing leg and the stance leg are both in contact with the
walking surface).

The two phases of the walking cycle naturally lead to a
mathematical model of the biped consisting of two parts:
the differential equations describing the dynamics during
the single support phase, and a model of the dynamics of
the double support phase. In order to avoid the “stiffness”
associated with including a second differential equation to
model the rapid evolution of the robot’s state at the impact
time [10,38,54], it will be assumed that the transition from
one leg to another takes place in an infinitesimal length
of time [20, 58]; this assumption entails the use of a rigid
contact model to describe the impulsive nature of the im-
pact of the swing leg with the ground. The rigid contact
model effectively collapses the double support phase to an
instant in time, and allows a discontinuity in the velocity
component of the state, with the configuration remaining
continuous. The biped model is thus hybrid in nature, con-
sisting of a continuous dynamics and a re-initialization rule
at the contact event.

An important source of complexity in a biped system is
the degree of actuation of the system, or more precisely, the
degree of underactuation of the system. It will be assumed
that there is no actuation at the end of the stance leg. Thus
the system is underactuated during walking, as opposed to
fully actuated (a control at each joint and the contact point
with the ground).

A complete list of hypotheses assumed for the robot
model and the desired walking gaits is now enumerated.
Robot hypotheses: The robot is assumed to be:
RH1) comprised of N rigid links with mass, connected by

revolute joints with no closed kinematic chains;
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RH2) planar, with motion constrained to the sagittal
plane;

RH3) bipedal, with identical legs connected at a common
point called the hips;

RH4) actuated at each joint; and
RH5) unactuated at the point of contact between the

stance leg and ground.
Gait hypotheses: Conditions on the controller will be
imposed and shown to insure that the robot’s consequent
motion satisfies the following properties consistent with the
intuitive notion of a simple walking gait:
GH1) there are alternating phases of single support and

double support;
GH2) during the single support phase, the stance leg acts

as a pivot joint, that is, throughout the contact, it
can be guaranteed that the vertical component of the
ground reaction force is positive and that the ratio of
the horizontal component to the vertical component
does not exceed the coefficient of static friction;

GH3) the double support phase is instantaneous and can
be modeled as a rigid contact [30];

GH4) at impact, the swing leg neither slips nor rebounds;
GH5) in steady state, successive phases of single support

are symmetric with respect to the two legs;
GH6) walking is from left to right, so that the swing leg

starts from behind the stance leg and is placed strictly
in front of the stance leg at impact.

RH1 and RH2 imply the robot has (N + 2)-degrees of
freedom (DOF) (N joint angles plus the Cartesian coordi-
nates of the hips, for example). RH4, RH5 and GH2 imply
that when walking the robot has one degree of underactua-
tion, i.e., one less control than DOF. It is worth noting that
even if there were actuation between the stance leg end and
ground, it would be worthwhile to first design a controller
under hypothesis RH5 and then add an outer control loop
to exploit the torque available at the ankle in order to im-
prove the convergence rate of walking to a desired average
forward walking rate or to enlarge the region of attraction
of the inner controller.

A. Swing phase model

Under GH2 the dynamic model of the robot during the
swing phase has N -DOF. Let q := (q1, · · · , qN )′ be a set
of angular coordinates describing the configuration of the
robot with world reference frame W . Since only symmet-
ric gaits are of interest here, the same model can be used
irrespective of which leg is the stance leg if the coordinates
are re-labeled after each phase of double support. Using
the method of Lagrange, the model is written in the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu. (1)

In accordance with RH4 and RH5, torques ui, i = 1 to N−
1 are applied between each connection of two links, but not
between the stance leg and ground. The model is written in
state space form by defining

ẋ =
[

q̇
D−1(q) [−C(q, q̇)q̇ − G(q) + Bu]

]
(2)

=: f(x) + g(x)u (3)

where x := (q′, q̇′)′. The state space of the model is taken
as TQ := {x := (q′, q̇′)′ | q ∈ Q, q̇ ∈ IRN}, where Q is

a simply-connected, open subset of [0, 2π)N corresponding
to physically reasonable configurations of the robot (for
example, with the exception of the end of the stance leg,
all points of the robot being above the walking surface; one
could also impose that the knees are not bent backward,
etc.). An alternate approach, not used here, would be to
define the admissible states through viability constraints
[3, 10].

B. Impact model

An impact occurs when the swing leg touches the walk-
ing surface, also called the ground. The impact between
the swing leg and the ground is modeled as a contact be-
tween two rigid bodies. In addition to modeling the change
in state of the robot, the impact model accounts for the re-
labeling of the robot’s coordinates that occurs after each
phase of double support. The development of the im-
pact model requires the full (N + 2)-DOF of the robot.
By adding Cartesian coordinates (ph

H , pv
H) to the hips (see

Figure 1), the following extended model is easily obtained
through the method of Lagrange,

De(qe)q̈e + Ce(qe, q̇e)q̇e + Ge(qe) = Beu + δFext, (4)

with qe := (q1, q2, . . . , qN , ph
H , pv

H)′ and where δFext repre-
sents the vector of external forces acting on the robot at
the contact point. If the stance leg end is in contact with
the ground and not slipping, the extended coordinates qe

and their velocities q̇e are related to q and q̇ by

qe = Υ(q) and q̇e =
∂Υ(q)

∂q
q̇, (5)

where Υ(q) := (q′, ph
H(q), pv

H(q))′, and ph
H(q) and pv

H(q) are
the horizontal and vertical positions of the hip, respectively.
Impact model hypotheses: The impact model of [30] is
used under the following assumptions:
IH1) the contact of the swing leg with the ground results

in no rebound and no slipping of the swing leg;
IH2) at the moment of impact, the stance leg lifts from the

ground without interaction;
IH3) the impact is instantaneous;
IH4) the external forces during the impact can be repre-

sented by impulses;
IH5) the impulsive forces may result in an instantaneous

change in the velocities, but there is no instantaneous
change in the configuration; and

IH6) the actuators cannot generate impulses and hence can
be ignored during impact.

IH1–IH6 imply total angular momentum is conserved [30].
Following an identical development as in [24], the expres-
sion relating the velocity of the robot just before impact,
q̇−e , to the velocity just after (without relabeling), q̇+

e , may
be written as

Π−1(q−e )


 q̇+

e

FT
2

FN
2


 =

[
De(q−e )q̇−e

0

]
(6)

where

Π(qe) :=


 De(qe) −

(
∂E(qe)

∂qe

)′

∂E(qe)
∂qe

0



−1

, (7)
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E(qe) = (ph
2 (qe), pv

2(qe))′ are the Cartesian coordinates of
the end of the swing leg (see Figure 1), and FT

2 and FN
2 are

the integrals of the tangential and normal contact impulsive
forces. The existence of the matrix inverse indicated in (6)
and (7) is easily verified. Solving (6) yields


q̇+
e

FT
2

FN
2


 = Π(q−e )

[
De(q−e )q̇−e

0

]
. (8)

The map from q̇−e to q̇+
e , that is, the map from velocities

just prior to impact to just after impact (without relabel-
ing), is obtained by partitioning Π(q−e ) as

q̇+
e = Π11(q−e )De(q−e )q̇−e (9)[

FT
2

FN
2

]
= Π21(q−e )De(q−e )q̇−e . (10)

Combining (5) with (9) and (10) results in an expression
for the velocities of the robot just after impact and the
integral of the forces experienced by the end of the swing
leg at impact. At impact, it is assumed that the swing
leg becomes the new stance leg, so the coordinates must
be relabeled. Express the relabeling of the states as a lin-
ear, invertible transformation matrix, R. The result of the
impact and relabeling of the states is then an expression

x+ = ∆(x−) (11)

where x+ := (q+, q̇+) (resp. x− := (q−, q̇−)) is state value
just after (resp. just before) impact and

∆(x−) :=
[

∆q q−

∆q̇(q−) q̇−

]
(12)

where ∆q := R and ∆q̇(q−) := [R 0 ]Π11 ◦ Υ(q−)De ◦
Υ(q−) (∂Υ(q)/∂q)|q=q− .

C. The Plant Model: a Hybrid Nonlinear Underactuated
Control System

The overall biped robot model can be expressed as a
nonlinear system with impulse effects [64]

ẋ = f(x) + g(x)u x− /∈ S
x+ = ∆(x−) x− ∈ S,

(13)

where,

S := {(q, q̇) ∈ TQ | pv
2(q) = 0, ph

2 (q) > 0}, (14)

and x−(t) := limτ↗t x(τ). The value of ph
2 (q) is taken to

be positive so that for x ∈ S the swing leg end is in front
of the stance leg as per GH6. Solutions are taken to be
right continuous and must have finite left and right limits
at each impact event (see [23] for details).

Informally, a step of the robot is a solution of (13) that
starts with the robot in double support, ends in double
support with the configurations of the legs swapped, and
contains only one impact event. This is more precisely
defined as follows. Let ϕ(t, x0) be a maximal solution of
the swing phase dynamics (3) with initial condition x0 at

time t0 = 0, and define the time to impact function, TI :
TQ → IR ∪ {∞}, by

TI(x0) :=




inf{t ≥ 0 | ϕ(t, x0) ∈ S} if ∃ t s.t.
ϕ(t, x0) ∈ S

∞ otherwise
(15)

Let x0 ∈ S be such that TI◦∆(x0) < ∞. A step of the robot
is the solution of (13) defined on the half-open interval
[0, TI ◦∆(x0)) with initial point x0. Any point x0 ∈ S such
that TI ◦∆(x0) < ∞ is said to result in the robot taking a
step.

III. The Zero Dynamics of Walking

The method of computed torque or inverse dynamics is
ubiquitous in the field of robotics [19,40,61]. It consists of
defining a set of outputs, equal in number to the inputs,
and then designing a feedback controller that asymptoti-
cally drives the outputs to zero. The task that the robot is
to achieve is encoded into the set of outputs in a such a way
that the nulling of the outputs is (asymptotically) equiva-
lent to achieving the task, whether the task be asymptotic
convergence to an equilibrium point, a surface, or a time
trajectory. For a system modeled by ordinary differential
equations (in particular, no impact dynamics), the maximal
internal dynamics of the system that are compatible with
the output being identically zero is called the zero dynamics
[31, 32, 42]. Hence, the method of computed torque, which
is asymptotically driving a set of outputs to zero, is indi-
rectly designing a set of zero dynamics for the robot. Since
in general the dimension of the zero dynamics is consider-
ably less than the dimension of the model itself, the task to
be achieved by the robot has been implicitly encoded into
a lower dimensional system.

One of the main points of this paper is that this pro-
cess can be explicitly exploited in the design of feedback
controllers for walking mechanisms, even in the presence
of impacts. Section III-A will introduce a class of outputs
for which the swing phase zero dynamics can be readily
identified and analyzed. Section III-B will derive natural
conditions under which the swing phase zero dynamics be-
come compatible with the impact model, thereby leading
to the notion of a hybrid zero dynamics for the complete
model of the biped.

A. Swing phase zero dynamics

This section identifies the swing phase zero dynamics for
a particular class of outputs that have proven useful in
constructing feedback controllers for bipedal walkers [24,
45]. Since no impact dynamics are involved, the work here
is simply a specialization of the general results in [31] to the
model (3). The results summarized here will form the basis
for defining a zero dynamics of the complete hybrid model
of the planar biped walker, which is the desired object for
study.

Note that if an output y = h(q) depends only on the con-
figuration variables, then, due to the second order nature
of the robot model, the derivative of the output along solu-
tions of (3) does not depend directly on the inputs. Hence
its relative degree is at least two. Differentiating the output
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once again computes the accelerations, resulting in

d2y

dt2
=: L2

fh(q, q̇) + LgLfh(q)u. (16)

The matrix LgLfh(q) is called the decoupling matrix and
depends only on the configuration variables. A conse-
quence of the general results in [31] is that the invertibility
of this matrix at a given point assures the existence and
uniqueness of the zero dynamics in a neighborhood of that
point. With a few extra hypotheses, these properties can
be assured on a given open set.

Lemma 1: (Swing phase zero dynamics) Suppose
that a smooth function h is selected so that
HH1) h is a function of only the configuration coordinates;
HH2) there exists an open set Q̃ ⊂ Q such that for

each point q ∈ Q̃, the decoupling matrix LgLfh(q) is
square and invertible (i.e., the dimension of u equals
the dimension of y, and h has vector relative degree
(2, . . . , 2)′);

HH3) there exists a smooth real valued function θ(q) such
that (h(q)′, θ(q))′ : Q̃ → IRN is a diffeomorphism onto
its image (see Figure 3 for an example θ(q));

HH4) there exists at least one point in Q̃ where h vanishes.
Then,
1. Z := {x ∈ T Q̃ | h(x) = 0, Lfh(x) = 0} is a smooth two
dimensional submanifold of TQ; and
2. the feedback control

u∗(x) = −(LgLfh(x))−1L2
fh(x) (17)

renders Z invariant under the swing dynamics; that is, for
every z ∈ Z, fzero(z) := f(z) + g(z)u∗(z) ∈ TzZ.
Z is called the zero dynamics manifold and ż = fzero(z) is
called the zero dynamics. 2

Lemma 1 follows immediately from general results in
[31]; a few of the details are outlined here for later use.
From hypotheses HH1 and HH3, Φ(q) := [h′, θ(q)]′ is a
valid coordinate transformation on Q̃, and thus

η1 = h(q), η2 = Lfh(q, q̇),

ξ1 = θ(q), ξ2 = Lfθ(q, q̇),
(18)

is a coordinate transformation on T Q̃. In these coordi-
nates, the system takes the form

η̇1 = η2, η̇2 = L2
fh + LgLfhu,

ξ̇1 = ξ2, ξ̇2 = L2
fθ + LgLfθu,

y = η1

(19)

where (q, q̇) is evaluated at

q = Φ−1(η1, ξ1) (20)

q̇ =
(

∂Φ
∂q

)−1 [
η2

ξ2

]
. (21)

Enforcing y ≡ 0 results in (η1 = h = 0, η2 = Lfh = 0), u∗
as in (17), and the zero dynamics becoming

ξ̇1 = ξ2

ξ̇2 = L2
fθ + LgLfθu∗.

(22)

While it is useful to know that the zero dynamics can be ex-
pressed as a second order system, this form of the equations
is very difficult to compute directly due to the need to in-
vert the decoupling matrix. However, this can be avoided.
Indeed, since the columns of g in (3) are involutive, by
[31], page 222, in a neighborhood of any point where the
decoupling matrix is invertible, there exists a smooth scalar
function γ such that

η1 = h(q), η2 = Lfh(q, q̇),

ξ1 = θ(q), ξ2 = γ(q, q̇),
(23)

is a valid coordinate transformation and

Lgγ = 0. (24)

Moreover, by applying the constructive proof of the Frobe-
nius theorem of [31], page 23, in a set of coordinates for
the robot such that
RH6) the model is expressed in N − 1 relative angular co-

ordinates, (q1, · · · , qN−1), plus one absolute angular co-
ordinate, qN ,

one obtains that γ can be explicitly computed to be the last
entry of D(q)q̇, and hence it can be assumed that γ(q, q̇) has
the form γ0(q) q̇; it follows that (23) is a valid coordinate
change on all of T Q̃.

In the coordinates (23), the zero dynamics become

ξ̇1 = Lfθ

ξ̇2 = Lfγ
(25)

where there right hand side is evaluated at

q = Φ−1(0, ξ1) (26)

q̇ =
[

∂h
∂q

γ0

]−1 [
0
ξ2

]
. (27)

Theorem 1: (Swing phase zero dynamics form)
Under the hypotheses of Lemma 1, (ξ1, ξ2) = (θ(q), γ0(q) q̇)
is a valid set of coordinates on Z, and in these coordinates
the zero dynamics take the form

ξ̇1 = κ1(ξ1)ξ2 (28)

ξ̇2 = κ2(ξ1). (29)

Moreover, if the model (3) is expressed in coordinates sat-
isfying RH6, the following interpretations can be given for
the various functions appearing in the zero dynamics:

ξ1 = θ|Z (30)

ξ2 =
∂K

∂q̇N

∣∣∣∣
Z

(31)

κ1(ξ1) =
∂θ

∂q

[
∂h
∂q

γ0

]−1 [
0
1

]∣∣∣∣∣
Z

(32)

κ2(ξ1) = − ∂V

∂qN

∣∣∣∣
Z

, (33)

where K(q, q̇) = 1
2 q̇′D(q)q̇ is the kinetic energy of the

robot, V (q) is its potential energy, and γ0 is the last row
of D, the inertia matrix. 2
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Proof: The form of (28) is immediate by the form of
(25) and (27) since both h and γ0 are functions of q, and
hence when restricted to Z, are functions of ξ1 only.

Suppose now that the model (3) is expressed in coordi-
nates satisfying RH6. Since the kinetic energy of the robot,
K(q, q̇), is independent of the choice of world coordinate
frame [61, page 140], and since qN fixes this choice, K(q, q̇)
is independent of qN . Since D := ∂ [(∂K/∂q̇)′] /∂q̇ [61,
page 141], it follows that ∂D/∂qN = 0. Let DN , CN , and
GN be the last rows of D, C, and G, respectively. Then
ξ2 = γ0(q) q̇ is equal to DN (q) q̇ [24], and thus is equal to
∂K/∂q̇N since K = 1

2 q̇′Dq̇. Continuing, ξ̇2 := Lfγ be-
comes

Lfγ =
[

q̇′
∂D′

N

∂q
DN

] [
q̇

−D−1 [Cq̇ + G]

]
(34)

= q̇′
∂D′

N

∂q
q̇ − CN q̇ − GN . (35)

Noting that (see [61, page 142])

CN = q̇′
∂D′

N

∂q
− 1

2
q̇′

∂D

∂qN
, (36)

(35) becomes Lfγ = −GN = −∂V/∂qN , which, when eval-
uated on Z, is a function of ξ1 only. 2

B. Hybrid zero dynamics

The goal of this subsection is to incorporate the impact
model into the notion of the maximal internal dynamics
compatible with the output being identically zero, in order
to obtain a zero dynamics of the complete model of the
biped walker, (13). Towards this goal, let y = h(q) be an
output satisfying the hypotheses of Lemma 1 and suppose
there exists a trajectory, x(t), of the hybrid model (13)
along which the output is identically zero. If the trajectory
contains no impacts with S, then x(t) is a solution of the
swing phase dynamics and also of its zero dynamics. If the
trajectory does contain impact events, then let (t0, tf ) be
an open interval of time containing exactly one impact at
te. By definition, on the intervals (t0, te) and (te, tf ), x(t)
is a solution of the swing phase dynamics and hence also
of its zero dynamics, so x(t) ∈ Z; since also by definition
of a solution, x− := limt↗te

x(t) exists, is finite, and lies
in S, it follows that x− ∈ S ∩ Z. Moreover, by definition
of a solution of (13), x(te) := x+ := ∆(x−), from which it
follows that ∆(x−) ∈ Z. On the other hand, if ∆(S∩Z) ⊂
Z, then from solutions of the swing phase zero dynamics
it is clearly possible to construct solutions to the complete
model of the biped walker along which the output y = h(q)
is identically zero. This leads to the following definition.

Definition 1: Let y = h(q) be an output satisfying the
hypotheses of Lemma 1, and let Z and ż = fzero(z) be the
associated zero dynamics manifold and zero dynamics of
the swing phase model. Suppose that S ∩ Z is a smooth,
one-dimensional, embedded submanifold of TQ. If ∆(S ∩
Z) ⊂ Z, then the nonlinear system with impulse effects,

ż = fzero(z) z− /∈ S ∩ Z
z+ = ∆(z−) z− ∈ S ∩ Z,

(37)

with z ∈ Z, is the hybrid zero dynamics of the model (13).
¢

Remark 1: From standard results in [9], S∩Z will be a
smooth one-dimensional embedded submanifold if S ∩Z 6=
∅ and the map [h′ (Lfh)′ pv

2]
′ has constant rank equal to

2N − 1 on S ∩ Z. A simple argument shows that this
rank condition is equivalent to rank of [h′ pv

2]
′ = N , and

under this rank condition, S∩Z∩Q̃ consists of the isolated
zeros of [h′ pv

2]
′
. Let q−0 be a solution of (h(q), pv

2(q)) =
(0, 0), ph

2 (q) > 0. Then the connected component of S ∩Z
containing q−0 is diffeomorphic to IR per σ : IR → S ∩ Z,
where

σ(ω) :=
[

σq

σq̇ ω

]
(38)

σq := q−0 , and

σq̇ =
[

∂h
∂q (q−0 )
γ0(q−0 )

]−1 [
0
1

]
. (39)

In view of this, the following additional assumption is made
about the output h and the open set Q̃
HH5) there exists a unique point q−0 ∈ Q̃ such that

(h(q−0 ), pv
2(q

−
0 )) = (0, 0), ph

2 (q−0 ) > 0 and the rank of
[h′ pv

2]
′ at q−0 equals N .

¢

The next result characterizes when the swing phase zero
dynamics are compatible with the impact model, leading
to a non-trivial hybrid zero dynamics.

Theorem 2: (Hybrid zero dynamics existence)
Consider the robot model (13) satisfying RH1–RH6 and
IH1–IH6 with a smooth function h satisfying HH1–HH5.
Then, the following statements are equivalent:
(a) ∆(S ∩ Z) ⊂ Z;
(b) h ◦ ∆|(S∩Z) = 0 and Lfh ◦ ∆|(S∩Z) = 0;
(c) there exists at least one point (q−0 , q̇−0 ) ∈ S∩Z such that
γ0(q−0 ) q̇−0 6= 0, h ◦ ∆q(q−0 ) = 0, and Lfh ◦ ∆(q−0 , q̇−0 ) = 0.

2

Proof: The equivalence of (a) and (b) is immediate
from the definition of Z as the zero set of h and Lfh. The
equivalence of (b) and (c) follows from Remark 1 once it is
noted from (12) that Lfh ◦ ∆ is linear in q̇. 2

Under the hypotheses of Theorem 2, the hybrid zero dy-
namics are well-defined. Let z− ∈ S ∩Z, and suppose that
TI ◦ ∆(z−) < ∞. Set z+ = ∆(z−) and let ϕ : [0, tf ] → Z,
tf = TI(z+), be a solution of the zero dynamics, (22), such

that ϕ(0) = z+. Define θ̂(t) := θ ◦ ϕ(t) and ˙̂
θ := dθ̂(t)/dt.

Proposition 1: Assume the hypotheses of Theorem 2.
Then over any step of the robot, ˙̂

θ : [0, tf ] → IR is never
zero. In particular, θ̂ : [0, tf ] → IR is strictly monotonic
and thus achieves its maximum and minimum values at
the end points. 2

The proof is given in the appendix. By Remark 1, it
follows that θ̂(0) = θ ◦ ∆q(q−0 ) and θ̂(tf ) = θ(q−0 ), that is,
the extrema can be computed a priori. Denote these by

θ− := θ(q−0 ) (40)
θ+ := θ ◦ ∆q(q−0 ). (41)
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Without loss of generality, it is assumed that θ+ < θ−;
that is, along any step of the hybrid zero dynamics, θ is
monotonically increasing.

Remark 2: The fact that θ evaluated along a step of
the zero dynamics must be monotonic implies that there
are restrictions on the walking gaits that can be achieved
through computed-torque control based on an output that
depends only on the configuration variables. ¢

IV. Stability Analysis of the Zero Dynamics

Now, an explicit expression for the Poincaré map of the
hybrid zero dynamics will be derived, along with a precise
determination of its domain of definition. Fixed points of
the Poincaré return map of the hybrid zero dynamics cor-
respond to periodic orbits of the hybrid zero dynamics.
When the hybrid zero dynamics admit an exponentially
stable periodic orbit, the general feedback approach de-
veloped in [24, 45] can be immediately applied to create
a provably, exponentially stable periodic orbit in the full
hybrid model.

A. Poincaré analysis of the zero dynamics

It is shown here that the Poincaré map associated with
(37) is diffeomorphic to a scalar LTI system, reducing de-
termination of the local stability properties of its fixed
point to a simple explicit computation.

Assume the hypotheses of Theorem 2. Take the Poincaré
section to be S ∩ Z so that the Poincaré map is the par-
tial map ρ : S ∩ Z → S ∩ Z defined as follows [24]:
let ϕ(t, z0) be a solution of the zero dynamics fzero and
consider the time to impact function, (15), restricted to
Z. Since both fzero(z) and Z are smooth, a solution
of (28)–(29) from a given initial condition, z0, is unique
and depends smoothly on z0. Then by [24, Lemma 3],
Z̃ := {z ∈ Z | 0 < TI(z) < ∞ and Lfpv

2(ϕ(TI(z), z)) 6= 0}
is open. Define the Poincaré return map for the hybrid zero
dynamics as

ρ(z) := ϕ(TI ◦ ∆(z),∆(z)). (42)

In a special set of local coordinates, the return map
can be explicitly computed. Indeed, express the hybrid
zero dynamics in the coordinates of Theorem 1, namely,
(ξ1, ξ2) = (θ, γ). In these coordinates, S ∩ Z and ∆ :
(ξ−1 , ξ−2 ) → (ξ+

1 , ξ+
2 ) simplify to

S ∩ Z =
{
(ξ−1 , ξ−2 ) | ξ−1 = θ−, ξ−2 ∈ IR

}
(43)

ξ+
1 = θ+ (44)

ξ+
2 = δzero ξ−2 , (45)

where δzero := γ0(q+)∆q̇(q−0 )σq̇(q−0 ), a constant that may
be computed a priori. The hybrid zero dynamics are thus
given by (28)–(29) during the swing phase, and at impact
with S ∩ Z, the re-initialization rules (44) and (45) are
applied. By Proposition 1, over any step ξ̇1 is non-zero,
and thus (28)–(29) are equivalent to

dξ2

dξ1
=

κ2(ξ1)
κ1(ξ1)ξ2

. (46)

From (30), ξ̇1 6= 0 implies ξ2 6= 0, and thus ζ2 := 1
2 (ξ2)2 is

a valid change of coordinates on (46). In these coordinates,
(46) becomes

dζ2

dξ1
=

κ2(ξ1)
κ1(ξ1)

. (47)

For θ+ ≤ ξ1 ≤ θ−, define1

Vzero(ξ1) := −
∫ ξ1

θ+

κ2(ξ)
κ1(ξ)

dξ (48)

ζ−2 :=
1
2
(ξ−2 )2 (49)

ζ+
2 := δ2

zero ζ−2 . (50)

Then (47) may be integrated over a step to obtain

ζ−2 = ζ+
2 − Vzero(θ−), (51)

as long as2 ζ+
2 − K > 0, where,

K := max
θ+≤ξ1≤θ−

Vzero(ξ1). (52)

Theorem 3: (Poincaré map for hybrid zero dy-
namics) Assume the hypotheses of Theorem 2 and let
(θ, γ) be as in Theorem 1. Then in the coordinates
(ζ1, ζ2) = (θ, 1

2γ2), the Poincaré return map of the hybrid
zero dynamics, ρ : S ∩ Z → S ∩ Z, is given by

ρ(ζ−2 ) = δ2
zero ζ−2 − Vzero(θ−), (53)

with domain of definition{
ζ−2 > 0

∣∣ δ2
zero ζ−2 − K ≥ 0

}
. (54)

If δ2
zero 6= 1 and

ζ∗2 := −Vzero(θ−)
1 − δ2

zero

(55)

is in the domain of definition of ρ, then it is the fixed point
of ρ. Moreover, if ζ∗2 is a fixed point, then ζ∗2 is an expo-
nentially stable equilibrium point of

ζ2(k + 1) = ρ(ζ2(k)) (56)

if, and only if, 0 < δ2
zero < 1, and in this case, its domain

of attraction is (54), the entire domain of definition of ρ. 2

Proof: This follows directly from the above results. 2

These stability results can be reformulated in the follow-
ing way:

Corollary 1: a) There exists a non-trivial periodic orbit
of the hybrid zero dynamics if, and only if, δ2

zero 6= 1 and

δ2
zero

1 − δ2
zero

Vzero(θ−) + K < 0. (57)

b) There exists an exponentially stable periodic orbit of the
hybrid zero dynamics if, and only if, (57) holds and

0 < δ2
zero < 1. (58)

1In general, Vzero must be computed numerically.
2By definition, ζ2 := 1

2
(ξ2)2 must be positive along any solution.
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2

Remark 3: The Lagrangian of the zero dynamics (28)–
(29) can be shown to be Lzero := Kzero −Vzero, where Vzero

is given by (48) and

Kzero =
1
2

(
ξ̇1

κ1(ξ1)

)2

. (59)

The interpretation of this result will be presented else-
where. ¢

B. Imposing modeling hypotheses on the zero dynamics

While the domain of definition of the Poincaré map is
given in (54), not all solutions of the zero dynamics satisfy
the modeling hypotheses; in particular, walking hypothesis
GH2 limits the ratio and sign of the ground reaction forces
of the stance leg end during phases of single support. This
limit is reflected as an upper bound on the domain of defi-
nition of ρ. Let FT

1 and FN
1 be the tangential and normal

forces experienced at the end of the stance leg. The upper
bound will be the largest ζ−2 such that at some point during
the associated phase of single support either FN

1 becomes
negative, or |FT

1 /FN
1 | exceeds the maximum allowed static

Coulomb friction coefficient.
Calculation of FT

1 and FN
1 requires the full (N +2)-DOF

model. Consider the model (4) and apply the feedback u∗
from (17). Let ẋe = fe(xe)+ge(xe)(FT

1 , FN
1 )′ be the result-

ing closed-loop system written in state space form, where,
xe := (q′e, q̇

′
e)

′ and ye = he(qe) := (ph
1 (qe), pv

1(qe))′ is the 2-
vector of outputs corresponding to the position of the end
of the stance leg. It is easily checked that the decoupling
matrix Lge

Lfe
he is invertible, and thus the forces FT

1 and
FN

1 may be calculated as[
FT

1

FN
1

]
= −(Lge

Lfe
he)−1L2

fe
he. (60)

The above expression is quadratic in q̇e, and, when re-
stricted to Z, is affine in ζ2. Combining this with (47)
results in an expression for the forces over a step of the
robot that depends only on ξ1 and ζ−2 . Express this as[

FN
1 (ξ1, ζ

−
2 )

FT
1 (ξ1, ζ

−
2 )

]
= Λ1(ξ1) ζ−2 + Λ0(ξ1), (61)

where Λ0 and Λ1 are smooth functions of ξ1. Thus, an
upper bound on ζ−2 so that the pivot assumption holds is
given by

ζmax
2,F N

1
:= sup

ζ−
2

[
min

θ+≤ξ1≤θ−
FN

1 (ξ1, ζ
−
2 )

]
≥ 0 (62)

ζmax
2,|F T

1 /F N
1 | := sup

ζ−
2 ≤ζmax

2,F N
1

[
max

θ+≤ξ1≤θ−

∣∣∣∣ FT
1 (ξ1, ζ

−
2 )

FN
1 (ξ1, ζ

−
2 )

∣∣∣∣
]
≤ µs,

(63)
where µs is the static Coulomb friction coefficient of the
walking surface [30], and the domain of definition of the
Poincaré return map should thus be restricted to{

ζ−2 > 0
∣∣∣ δ2

zero ζ−2 − K ≥ 0, ζ−2 ≤ ζmax
2,|F T

1 /F N
1 |

}
. (64)

On a practical note, if the modeling hypotheses included
bounds on the maximum actuator torque, these bounds
could also be explicitly included in the domain of definition
of the Poincaré map in the same manner.

C. Creating exponentially stable, periodic orbits in the full
model

Fixed points of the Poincaré return map of the hybrid
zero dynamics correspond to periodic orbits of the hybrid
zero dynamics. By construction of the hybrid zero dynam-
ics, these are also periodic orbits of the full model, (13).
Moreover, exponentially stable orbits of the hybrid zero dy-
namics correspond to exponentially stabilizable orbits of the
full model. This is developed next.

Suppose that hypotheses HH1–HH5 hold and that, in
addition, there exists a fixed point, z∗ ∈ S ∩ Z, of the
Poincaré return map for the hybrid zero dynamics. Let O
be the periodic orbit in Z corresponding to z∗; that is,

O := {z ∈ Z | z = ϕ(t,∆(z∗)), 0 ≤ t < TI ◦ ∆(z∗)} ,
(65)

where ϕ is a solution of the hybrid zero dynamics, (37). O is
then a periodic orbit of the full model corresponding to ini-
tial condition z∗ and control input u(t) = u∗ ◦ ϕ(t,∆(z∗)),
for 0 ≤ t < TI ◦ ∆(z∗), where u∗ is given by (17).

The application of the pre-feedback

u(x) = (LgLfh(x))−1(v − L2
fh(x)) (66)

to (3) with an output satisfying HH1–HH4 results in the
chain of N − 1 double integrators,

d2y

dt2
= v; (67)

see (16). Let v(y, ẏ) be any feedback controller on (67)
satisfying conditions CH2–CH5 of [24], that is,
Controller Hypotheses: for the closed-loop chain of
double integrators, ÿ = v(y, ẏ),
CH2) solutions globally exist on IR2N−2, and are unique;
CH3) solutions depend continuously on the initial condi-
tions;
CH4) the origin is globally asymptotically stable, and con-
vergence is achieved in finite time;
CH5) the settling time function3, Tset : IR2N−2 → IR by

Tset(y0, ẏ0) := inf{t > 0 | (y(t), ẏ(t)) = (0, 0),
(y(0), ẏ(0)) = (y0, ẏ0)}

depends continuously on the initial condition, (y0, ẏ0).
Hypotheses CH2–CH4 correspond to the definition of
finite-time stability [7, 25]; CH5 is also needed, but is not
implied by CH2–CH4 [8]. These requirements rule out tra-
ditional sliding mode control, with its well-known discon-
tinuous action.

Consider now the full-model (13) in closed loop with the
feedback

u(x) = (LgLfh(x))−1(v(h(x), Lfh(x)) − L2
fh(x)). (68)

3That is, the time it takes for a solution initialized at (y0, ẏ0) to
converge to the origin. The terminology is taken from [7].
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Take the Poincaré section as S, the walking surface, and let
P : S → S be Poincaré return map. A simple computation
shows that the invariance condition, ∆(S∩Z) ⊂ Z, implies
that P has a well-defined restriction to S ∩ Z, and that
P |S∩Z = ρ, the Poincaré return map of the hybrid zero
dynamics. By Theorem 2 of [24], it therefore follows that
O is exponentially stable for the full model (13) under the
feedback (68) if, and only if, it is exponentially stable for
the hybrid zero dynamics.

Hence, if an output can be selected so that the resulting
1-DOF hybrid zero dynamics admits an exponentially sta-
ble orbit, then an exponentially stable walking motion can
be achieved under feedback control for the full dynamical
model of the robot. Moreover, by the results of Section
IV-B, it can be assured that key modeling assumptions are
met for the steady state walking motion. The next parts of
the paper look at a means of systematically selecting the
output function.

V. Computing and Parameterizing the Hybrid

Zero Dynamics

The previous section has provided the conditions for the
existence of a zero dynamics for the complete robot model
with impacts, and established a number of its properties.
However, in a concrete manner, the results are not yet
practicable for feedback design because the explicit com-
putation of the zero dynamics involves the inversion of a
coordinate transformation. This section has two principal
objectives. The first is to present a class of output func-
tions that leads to computable, closed-form representations
of the zero dynamics. The second objective is to introduce
a finite parameterization of the outputs in a convenient
form that will permit the shaping of the zero dynamics by
parameter optimization.

A. An almost linear output function structure

Consider the following output function

y = h(q) := h0(q) − hd ◦ θ(q) (69)

where h0(q) specifies (N − 1) independent quantities that
are to be controlled and hd ◦ θ(q) specifies the desired evo-
lution of these quantities as a function of the monotonic
quantity θ(q). Driving y to zero will force h0(q) to track
hd ◦ θ(q). Intuitively, the posture of the robot is being con-
trolled as a holonomic constraint parameterized by θ(q).

Choosing

h0(q) := H0q (70)
θ(q) := c q (71)

where H0 : IRN → IRN−1 is a linear map, c : IRN → IR is
a linear functional allows the hypotheses of Lemma 1 to be
easily satisfied. Concerning those hypotheses, the output
function structure (69) with h0(q) and θ(q) as in (70) and
(71), respectively, satisfies HH1 (the output only depends
on the configuration variables) and will satisfy HH3 (in-
vertibility) if, and only if, H := [H ′

0 c]′ is full rank. Hence,
if HH2 and HH4 hold, the swing phase zero dynamics can
be computed in closed form. Indeed, the coordinate inverse

required in (26) is given by

q = H−1

[
hd(ξ1)

ξ1

]
. (72)

In the next section hd will be specialized to a vector of
Bézier polynomials which will make it easy to achieve the
invariance condition, ∆(S ∩ Z) ⊂ S.

B. Specialization of hd by Bézier polynomials

A one-dimensional Bézier polynomial [6] of degree M is
a polynomial, bi : [0, 1] → IR, defined by M +1 coefficients,
αi

k, per

bi(s) :=
M∑

k=0

αi
k

M !
k!(M − k)!

sk(1 − s)M−k. (73)

Some particularly useful features of Bézier polynomials are
(see [50, page 291])
1. the image of the Bézier polynomial is contained in the
convex hull of the M + 1 coefficients (as viewed as points
in IR2, {(0, αi

0), (1/M,αi
1), (2/M,αi

2), . . ., (1, αi
M )}) (the

polynomial does not exhibit large oscillations with small
parameter variations);
2. bi(0) = αi

0 and bi(1) = αi
M ; and

3. (∂bi(s)/∂s)|s=0 = M
(
αi

1 − αi
0

)
and (∂bi(s)/∂s)|s=1 =

M
(
αi

M − αi
M−1

)
.

The first feature will be useful for numerical calculations
(such as approximating the gradient of a cost function)
where numerical stability is crucial. The second two fea-
tures are exactly those used to achieve ∆(S ∩ Z) ⊂ S.

A given function θ(q) of the generalized coordinates will
not, in general, take values in the unit interval over a phase
of single support. Therefore, to appropriately compose a
Bézier polynomial with θ(q), it is necessary to normalize θ
by

s(q) :=
θ(q) − θ+

θ− − θ+
, (74)

which takes values in [0, 1]. Define hd ◦ θ(q) as

hd ◦ θ(q) :=




b1 ◦ s(q)
b2 ◦ s(q)

...
bN−1 ◦ s(q)


 . (75)

Group the parameters αi
k into an (N−1)×(M +1) matrix,

α, and denote the columns of α by αk := (α1
k, . . . , αN−1

k )′.
Evaluating (75) and its derivative with respect to θ at the
beginning (resp. end) of a phase of single support, that is,
where θ(q) = θ+ (resp. θ(q) = θ−), leads to the following
result.

Theorem 4: (Achieving ∆(S ∩ Z) ⊂ Z) Assume the
hypotheses of Theorem 2 and an output h of the form (69)
with h0, hd, and θ as in (70), (75), and (71), respectively.
Then, h ◦ ∆(S ∩ Z) = 0 if, and only if,[

α0

θ+

]
= HRH−1

[
αM

θ−

]
. (76)
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Moreover, if δzero 6= 0, then Lfh◦∆(S∩Z) = 0 if, and only
if,

α1 =
θ− − θ+

Mcq̇+
H0q̇

+ + α0 (77)

where q̇− = σq̇(q−0 ) and q̇+ := ∆q̇(q−0 ) q̇−. That is, if (76)
and (77) hold, then ∆(S ∩ Z) ⊂ Z. 2

Proof: Using Theorem 2 it suffices to show that there
exists at least one point (q−0 , q̇−0 ) ∈ S ∩ Z such that
γ0(q−0 ) q̇−0 6= 0, h ◦ ∆q(q−0 ) = 0, and Lfh ◦ ∆(q−0 , q̇−0 ) = 0.
Evaluating (72) on S ∩ Z, h ◦ ∆(x−) = 0 means that
q|ξ1=θ+ = ∆q q|ξ1=θ− . This implies

H−1

[
α0

θ+

]
= RH−1

[
αM

θ−

]
, (78)

which may be solved for (α′
0, θ

+)′. Achieving Lfh ◦
∆(x−) = 0 means that q̇+ must fall in the null space of
∂h(q)/∂q. This can be achieved by choosing α1 such that

∂h(q)
∂q

∣∣∣∣
q=q+

q̇+ =
[
H0 − M

θ− − θ+
(α1 − α0) c

]
q̇+ = 0.

(79)
Since γ0(q−0 ) q̇−0 6= 0 by assumption it follows4 that cq̇+ 6= 0
and the solvability of (79) for α1 is ensured. 2

Remark 4: Theorem 4 constrains the coefficients α0

and α1 to be functions of αM . Hence, M must be chosen
to be three or greater to impose configuration and velocity
periodicity. ¢

VI. Creating Exponentially Stable Fixed Points

Through Optimization

The use of optimization in the analysis and design
of biped walking motions is not a new concept. Work
as early as the 1970’s can be found in the biomechan-
ics literature (see [17, 28], for example). In more recent
years, the design of optimal or approximately optimal
trajectories for biped robots has become a popular topic
[12, 14, 16, 26, 27, 52, 53, 55]. In each case the approach
has been to design time trajectories such that a defined
cost is minimized, or approximately minimized, subject
to a set of constraints. The optimization technique em-
ployed varies. Cabodevila and Abba [12] parameterized
the robot state as a finite Fourier series and compared the
performance of three algorithms: Nelder and Mead, Ge-
netic, and Simulated Annealing. Chevallereau and Aoustin
[14], and Chevallereau and Sardain [16] rewrote the actu-
ated dynamics of the robot as a polynomial function of the
unactuated dynamics and used Sequential Quadratic Pro-
gramming (SQP). Hasegawa, Arakawa, and Fukuda [27]
used a modified genetic algorithm to generate reference
trajectories parameterized as cubic splines. Hardt [26] used

4First note that ξ+ = δzero ξ− 6= 0 where ξ− = γ0(q−0 ) q̇−0 since

δzero 6= 0 and ξ− 6= 0 by assumption. Next note that since both
(ξ1, Lf ξ1) and (ξ1, ξ2) are valid coordinates on Z the coordinate
transformation Ξ : (ξ1, ξ2) → (ξ1, Lf ξ1), Ξ = (ξ1, κ1(ξ1)ξ2), is a
full rank map. This implies κ1(ξ1) 6= 0 since

∂Ξ

∂(ξ1, ξ2)
=

[
1 0
? κ1(ξ1)

]
.

Hence, ξ2 6= 0 implies Lf ξ1 = cq̇ 6= 0.

an optimization package, DIRCOL [62], which implements
a sparse SQP algorithm and uses a variable number of
cubic splines to approximate the state and piecewise lin-
ear functions to approximate the control signals. Rostami
and Bessonnet [53] applied Pontryagin’s Maximum Princi-
ple. Roussel, Canudas-de-Wit, and Goswami [55] approxi-
mated the dynamics and used a direct shooting optimiza-
tion algorithm. While the approach presented here uses the
same optimization algorithm as in [26], the result of the
optimization is not an optimal or approximately optimal
open-loop trajectory, but rather a closed-loop system which
creates an exponentially stable orbit, and along this or-
bit energy consumption has been approximately minimized
while satisfying other natural kinematic and dynamic con-
straints.

Consider the system (13) with output (69) with h0, hd,
and θ as in (70), (75), and (71), respectively. Choosing
the parameters of (70), (75), and (71) to satisfy the as-
sumptions of Theorem 4 guarantees that the hybrid zero
dynamics exist and the unique control associated with the
single support phase of model (13) is given by (17). The
goal of the approximate optimization will be to minimize
an appropriate cost function while simultaneously satisfy-
ing a number of constraints.

Consider the hybrid zero dynamics (37) with cost func-
tion

J(α) :=
1

ph
2 (q−0 )

∫ TI(ξ−
2 )

0

N−1∑
i=1

(u∗
i (t))

2dt, (80)

where TI(ξ−2 ) is the step duration, ph
2 (q−0 ) corresponds to

step length, and u∗(t) is the result of evaluating (17) along
a solution of the hybrid zero dynamics. It is interesting to
note that TI(ξ−2 ) may be calculated from (28) as

TI(ξ−2 ) =
∫ θ−

θ+

1
κ1(ξ1)ξ2(ξ1, ξ

−
2 )

dξ1 (81)

where ξ2(ξ1, ξ
−
2 ) is a solution of (46) and is monotonic in

ξ−2 which implies that TI(ξ−2 ) is monotonic in ξ−2 .
The total number of parameters for optimization is (N−

1)(M − 1); M − 1 free parameters for each output5. The
optimization problem may be expressed in Mayer form [4,
page 332] as

ẋ1 = κ1(x1)x2 (82)
ẋ2 = κ2(x1) (83)

ẋ3 =
N−1∑
i=1

(u∗
i (x1, x2))2. (84)

The constraints may be divided into three classes: non-
linear inequality constraints (NIC’s), nonlinear boundary
equality constraints (NBEC’s), and explicit boundary con-
straints (EBC’s). The NIC’s must be satisfied at each point
in the time interval of optimization; the NBEC’s only need
to be satisfied at the beginning or end of the time inter-
val of optimization; and the EBC’s give the initial or final
state. The following constraints are typically required:

5By Theorem 4 two parameters per output can be calculated from
the other M − 1.
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Nonlinear Inequality Constraints: The following three
NIC’s enforce modeling assumptions per constraints on
NIC1) minimum normal ground reaction force experienced

by the stance leg end;
NIC2) maximum ratio of tangential to normal ground re-

action forces experienced by the stance leg end; and
NIC3) swing leg end height to ensure S intersects Z only

the end of the step.
Note that other NIC’s, such as a constraint on minimum
hip height, are in general required to achieve a desired walk-
ing style.
Nonlinear Boundary Equality Constraints: There
are five natural NBEC’s that enforce
NBEC1) the average forward walking rate, ν̄, defined as

step length divided by step duration

ν̄ :=
ph
2 (q−0 )

TI(ξ−2 )
; (85)

NBEC2) that the post-impact velocity of the swing leg is
positive;

NBEC3) the validity of the impact of the swing leg end
with the walking surface;

NBEC4) the existence of a fixed point, ζ∗2 > K/δ2
zero; and

NBEC5) the stability of the fixed point, 0 < δ2
zero < 1.

Explicit Boundary Constraints: There are five EBC’s
that give the state at t = 0 and t = TI(ξ−2 ),
EBC1) x1(0) = c∆q σq;
EBC2) x2(0) = γ ◦ ∆ ◦ σ(ζ∗2 );
EBC3) x3(0) = 0;
EBC4) x1(TI(ξ−2 )) = c σq; and
EBC5) x2(TI(ξ−2 )) = γ ◦ σ(ζ∗2 ).
Note that x3(TI(ξ−2 )) cannot be explicitly given as its cal-
culation requires knowledge of x1 and x2 over the entire
time interval of optimization.

Note that without use of the hybrid zero dynamics there
would be 2N states, the derivative of the cost, and N − 1
control signals to be included in the problem formulation,
while stability of the closed-loop system would be hard to
quantify and include as a simple optimization constraint.
After optimization, hypothesis HH2, the invertibility of the
decoupling matrix, must be checked. This condition is
essentially guaranteed whenever J(α) is finite, since sin-
gularities in LgLfh will normally result in u∗ taking on
unbounded values; however, a simply connected, open set
about the periodic orbit where the decoupling matrix is in-
vertible can be explicitly computed by a method developed
in [45].

VII. Example: 5-Link Biped Walker

The goal of this section is to illustrate the application
of the presented framework for stability analysis and per-
formance enhancement. This will be done on the 5-link
biped robot depicted in Figure 2 which satisfies hypothe-
ses RH1–RH5. For this robot GH1–GH6 will be satisfied
by restricting choice of walking gaits appropriately during
the optimization process.

A. Robot model

The 5-link model corresponds to the model of a proto-
type 5-link biped called RABBIT, which is under construc-
tion by the French project Commande de Robots à Pattes of

the CNRS - GdR Automatique [1]. Table I gives the model
parameters. Figures 4 and 5 detail the measurement con-
ventions. The equations of motion as well as particulars of
the impact model are omitted here for reasons of space but
can be found at [2] in various printable formats.

B. Almost linear output function choice

Choosing H0 = [I, 0] and c = (−1, 0, − 1/2, 0, − 1)
clearly guarantees that H is invertible and results in the
output

y = h0(q) − hd ◦ θ(q) =




q31

q32

q41

q42


 − hd ◦ θ(q). (86)

In light of Remark 4, M is chosen to be 6 which leaves five
free parameters to be chosen for each output. This implies
a total of 20 output function parameters to be optimized.

For particular choice of α, HH4 must be checked to en-
sure smoothness of S∩Z. This entails evaluating the rank6

of

∂

∂q

[
h(q)

pv
2(q)

]∣∣∣∣∣
x∈S∩Z

=


 H0 − M

θ−−θ+ (αM − αM−1) c

∂pv
2(q)
∂q

∣∣∣
q=q−

0


 .

(87)
where pv

2(q) is the height of the swing end. Hypothesis
HH2, the invertibility of the decoupling matrix, is checked
for choice of α by using the technique presented in [45].
If the optimization constraints are satisfied, as detailed in
Section VI, so will the remaining gait, impact model, and
output function hypotheses.

C. Parameter choice via approximate optimization

Three additional NIC’s are required for the example
robot model to walk with a human-like gait. The first
two, when satisfied, prevent the stance and swing leg knees
from hyper-extending. The third, when satisfied, prevents
the hips from dropping too low.

The optimization package DIRCOL was used to solve the
optimization problem. The implementation was straight-
forward with the exception that DIRCOL is unable to han-
dle non-constant initial EBC’s. For this reason EBC1 and
EBC2 must be converted into NBEC’s7.

Table II summarizes the result of optimizing for a de-
sired average forward walking rate of 1.05 m/s. The opti-
mization took 1240 sec (≈ 21 min) on a PC based com-
puter with a 1 GHz Pentium III processor. The walking
motion is exponentially stable since 0 < δ2

zero < 1 and
ζ∗2 > K/δ2

zero = 408.2. Figure 6 is a stick figure animation
of this result for a single step. The walking motion appears
to be natural. Figure 7 is a plot of the associated torques
at the fixed point. Of the four associated torques, the peak

6See Remark 1.
7This is accomplished for EBC1 by the construction

NBECEBC1 =

{
0, x1(0) − c ∆q σq = 0
|x1(0) − c ∆q σq |, otherwise

and similarly for EBC2.
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torque occurs at the stance leg hip and is approximately
47 Nm. Note that this is comparable to the torques as-
sociated with walking at 0.75 m/s as determined in [14].
The peak power is also associated with the stance leg hip
and is approximately 267 W . Figure 9 gives κ1 and κ2 as
functions of ξ1. Notice that κ1 is strictly positive while κ2

is sign-indefinite. Movies of the walking motion may be
found at [2].

VIII. Conclusion

The notion of the hybrid zero dynamics has been intro-
duced for a one degree of underactuation, planar, bipedal
walker with rigid impacts. This two-dimensional, invariant
sub-dynamics of the complete hybrid model of the biped
robot was shown to be key to designing exponentially sta-
bilizing controllers for walking motions. In particular, ex-
ponentially stable orbits of the hybrid zero dynamics can
be rendered exponentially stable in the complete hybrid
model. Since the Poincaré map of the hybrid zero dynamics
is diffeomorphic to a scalar, LTI system, the existence and
stability properties of orbits of the hybrid zero dynamics
are particularly easy to characterize. It was shown how a
special class of output functions can be used to simplify the
actual computation of the hybrid zero dynamics, while at
the same time inducing a convenient, finite parameteriza-
tion of the hybrid zero dynamics. Parameter optimization
was then applied to the hybrid zero dynamics to directly
design a provably stable, closed-loop system with satisfied
design constraints, such as walking at a given average speed
and the forces on the support leg lying in the allowed fric-
tion cone. All of the results were illustrated on a five-link
walker.

The key property permitting the above analysis is the
invariance of the swing-phase zero dynamics under the im-
pact map, thereby creating a two-dimensional invariant
surface in the full hybrid model. Without this property,
a “stability” analysis of the swing-phase zero dynamics
makes no sense. In [39], invariance of the swing-phase zero
dynamics was achieved only at a point, thereby creating
a one-dimensional invariant surface (i.e., a periodic orbit)
in the full order model. In [24], an even weaker form of
invariance was achieved: the swing-phase zero dynamics
became invariant under the impact map only in the limit
under high-gain feedback control. In work to be published,
it will be shown that the framework of the hybrid zero dy-
namics also allows the design of transition controllers for
switching with stability among controllers that achieve sta-
ble walking at discrete speeds, and for achieving walking
at a continuum of speeds [63].

Acknowledgments

J.W. Grizzle and E.R. Westervelt thank Christine
Chevallereau for insightful comments on this work and for
access to an advance copy of [13]. The work of J.W. Griz-
zle and E.R. Westervelt was supported in part by NSF
grants INT-9980227 and IIS-9988695, and in part by the
University of Michigan Center for Biomedical Engineering
Research (CBER). The work of D.E. Koditschek was sup-
ported in part by DARPA/ONR N00014-98-1-0747.

References

[1] http://www-lag.ensieg.inpg.fr/prc-bipedes/english/.
[2] http://www.eecs.umich.edu/∼grizzle/papers/robotics.html .
[3] V. I. Babitsky. Theory of Vibro-Impact Systems and Applica-

tions. Foundations of Engineering Mechanics. Springer, Berlin,
1998.

[4] S.P. Banks. Control systems engineering. Prentice Hall, Engle-
wood Cliffs, 1986.

[5] M.D. Berkemeier and R.S. Fearing. Tracking fast inverted tra-
jectories of the underactuated acrobot. IEEE Transactions on
Robotics and Automation, 15(4):740–750, August 1999.
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un robot bipède. PhD thesis, Institut National Polytechnique -
Grenoble - France, November 1998.

[55] L. Roussel, C. Canudas-de Wit, and A. Goswami. Generation of
energy optimal complete gait cycles for biped robots. In Proc.
of the IEEE International Conference on Robotics and Automa-
tion, Leuven, Belgium, pages 2036–2041, May 1998.

[56] A. Sano and J. Furusho. Realization of natural dynamic walk-
ing using the angular momentum information. In Proc. of the
IEEE International Conference on Robotics and Automation,
Cincinnati, OH., pages 1476–1481, May 1990.

[57] U. Saranli, W. Schwind, and D. Koditschek. Toward the con-
trol of a multi-jointed, monoped runner. In Proc. of the IEEE
International Conference on Robotics and Automation, Leuven,
Belgium, pages 2676–2682, May 1998.

[58] C.L. Shih and W.A. Gruver. Control of a biped robot in the
double-support phase. IEEE Transactions on Systems, Man,
and Cybernetics, 22(4):729–735, 1992.

[59] M.W. Spong. The swing up control problem for the acrobot.
IEEE Control Systems Magazine, 15(1):49–55, February 1995.

[60] M.W. Spong. Passivity based control of the compass gait biped.
In Proc. of IFAC World Congress, Beijing, China, July 1999.

[61] M.W. Spong and M. Vidyasagar. Robot Dynamics and Control.
John Wiley & Sons, New York, 1989.

[62] O. von Stryk. DIRCOL User’s Guide. Technische Universität
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Appendix

I. Proof of Proposition 1

Proof: Without loss of generality, assume θ̂(t0) < θ̂(tf ).

Then ˙̂
θ(t0) > 0. To show that θ̂(t) is monotonic it suffices

to show that ˙̂
θ(t) > 0 for all t0 < t < tf . Suppose there

exists some t2 (see Figure 8) such that t0 < t2 < tf and
˙̂
θ(t2) = 0. Let t2 be the smallest such t. The point (θ̂(t2), 0)
cannot be an equilibrium point of (22) because θ̂(t2) <

θ̂(tf ). Hence, there exits some t3 > t2 such that for all

t2 < t < t3,
˙̂
θ(t) < 0 and θ̂(t) < θ̂(t2). By the assumption

that θ̂(t) > θ̂(t0) for all t > t0 and because θ̂(tf ) > θ̂(t2),
there must exist a t4 > t3 such that θ̂(t4) = θ̂(t1) for some
t0 < t1 < t2. This contradicts the uniqueness of solutions
of (22). Hence, there can be no t2 such that ˙̂

θ(t2) = 0 and

thus ˙̂
θ(t) > 0 for all t0 < t < tf . Therefore, θ̂ : [t0, tf ] → IR

is strictly monotonic. 2

II. Tables and Figures
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Model Torso Femurs Tibias
parameters (T ) (f) (t)

Mass, M∗ (kg) 20 6.8 3.2
Length, L∗ (m) 0.625 0.4 0.4

Inertia, I∗ (m2kg) 2.22 1.08 0.93
Mass Center, pM

∗ (m) 0.2 0.163 0.128

TABLE I

Model parameters for example robot

J(α) ζ∗2 δ2
zero Vzero(θ−) K

(N2m) (kgm2/s)2 - (kgm2/s)2 (kgm2/s)2

36.79 979.0 0.638 −354.4 260.4

TABLE II

Optimization result statistics

Fig. 1. A higher DOF robot
model. Cartesian coordi-
nates are indicated at the
hips and the leg ends.

Fig. 2. Schematic of the 5-link
robot considered with mea-
surement conventions.

Fig. 3. Example θ(q) measured
between the vertical and the
line connecting the hips and
the stance leg end.

Fig. 4. Schematic of leg with
measurement conventions.

Fig. 5. Schematic of torso with
measurement conventions.

Fig. 6. Stick animation of robot
taking one step from left to
righ. Note that the stance
leg is dotted.

Fig. 7. Torque curves for three steps for the example.

Fig. 8. Impossible integral curve of the zero dynamics.
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Fig. 9. Constituent functions of the zero dynamics for the example.


