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Abstract

The competition to deliver fuel e�cient and environ-
mentally friendly vehicles is driving the automotive in-
dustry to consider ever more complex powertrain sys-
tems. Adequate performance of these new highly inter-
active systems can no longer be obtained through tra-
ditional approaches, which are intensive in hardware
use and �nal control software calibration. This pa-
per explores the use of dynamic programming to make
model-based design decisions for a lean burn, direct
injection spark ignition engine, in combination with a
three way catalyst and lean NOx trap aftertreatment
system. The primary contribution is the development
of a very rapid method to evaluate the tradeo�s in fuel
economy and emissions for this novel powertrain sys-
tem, as a function of design parameters and controller
structure, over a standard emission test cycle.

1 Introduction

Designing a powertrain system to meet drivability, fuel
economy and emissions performance requirements is
a complicated task. There are many tradeo�s to be
analyzed in terms of which components to use, such
as lean burn technology versus classical components,
characteristics of individual components, such as size
or temperature operating range, and the control poli-
cies to be employed. In addition, there are tradeo�s
to be analyzed among the performance metrics them-
selves, such as emissions versus fuel economy. In the
past, most of the powertrain design decisions were on
the basis of hardware, that is, on the basis of labori-
ously assembling and evaluating many possible system
con�gurations. Today, the time-line for vehicle design
is constantly shrinking, the number of possible power-
train con�gurations is expanding, and the cost of doing
hardware evaluations is growing. It is simply no longer
feasible, economically, nor time-wise, to make all (or
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even most) of the design decisions on the basis of hard-
ware alone. More and more of the decisions must be
made upon the basis of mathematical models and anal-
ysis.

This paper will describe the use of dynamic program-
ming to assist in making powertrain design decisions on
the basis of component models. The speci�c technology
con�guration analyzed here involves a direct injection
spark ignition (DISI) engine. In this type of engine, fuel
is directly injected into the combustion chamber during
the compression stroke, and the highly concentrated
fuel around the spark plug and extensive air motion en-
ables combustion of an overall lean mixture (the shape
of the piston is specially designed to enhance air mo-
tion (swirl or tumble), and it is further enhanced in the
compression process) [7]. The DISI engine studied here
can operate in either homogeneous or strati�ed mode.
In strati�ed mode, the engine can operate at air-to-fuel
ratios up to 40:1. At such lean air-to-fuel ratios, the
three-way catalyst (TWC) can e�ectively convert CO
and HC in the exhaust gas to CO2 and H2O. However
this is not the case for NOx, and as a result, it is nec-
essary to develop a technique for NOx removal. The
current technique is to place a Lean NOx Trap (LNT)
after the TWC in the exhaust system. NOx is trapped
in the LNT while the engine operates at a lean con-
dition. By periodically operating the engine at a rich
condition (in homogeneous mode), the trapped NOx is
purged and converted to N2 by reductants such as CO
and H2 [1, 2]. It follows that both emissions and fuel
consumption strongly depend upon the duration and
frequency of the purging mode (rich operation of the
engine), and obviously the control strategy for purging
the LNT should be well optimized to achieve high fuel
economy and low NOx emissions.

Section 2 sets up the fuel economy versus emissions
tradeo� problem in the context of a dynamic program-
ming problem. Section 3 explores solution times using
standard state space discretization methods; it will be
seen that computation times are too long for the engi-
neer to do case study analysis. Section 4 introduces a
method for rapidly generating suboptimal solutions; a
simple case is analyzed to show that the method can
potentially produce near optimal solutions. The com-
putation time is reduced by a factor of twenty. Section
5 points out how the computation speed can be fur-



ther enhanced through vectorization of the MATLAB
code. Section 6 looks at several case studies using this
optimization tool.

2 Mathematical Problem Formulation

A �nite horizon optimization problem for determining
a control strategy of the combined DISI engine and
exhaust aftertreatment system depicted in Figure 1 is
posed in this section. The LNT is a dynamic device
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Figure 1: Complete model for emission system.

in the sense that its capability to trap NOx dynami-
cally changes until it reaches saturation, and similarly,
the TWC dynamically stores and releases oxygen in
the feedgas. Control-oriented, temperature-dependent,
dynamic models of the TWC and LNT have been devel-
oped in [5, 6] and [4], respectively. A control-oriented
model of a 1.8L DISI engine is given in [8]. Due to
space limitations, these models are not reviewed here.

A model of the combined engine and emissions sys-
tems, discretized for numerical optimization, can be
expressed as:

x(k + 1) = f(x(k); u(k))
y(k) = h(x(k); u(k));

(1)

where u(k) is the vector of engine input parameters
such as throttle position, fuel mass 
ow rate, spark
timing, and EGR rate, x(k) is the vector of states of the
overall system and y(k) is the tailpipe NOx emissions
out of the LNT.

The objective of the study is to evaluate the tradeo� in
fuel economy and NOx emissions1. The instantaneous
cost is chosen as a weighted sum:

g(y(k); u(k)) = fuel(k) + � �NOx(k)
= fuel(k) + � � y(k):

(2)

In general, the emission performance of a vehicle is eval-
uated through a speci�c drive test cycle such as the US
FTP cycle, or the European Drive Cycle. Then the ob-
jective is to �nd the optimal control input, u(k), that
minimizes the cost functional

J(x) = min
u2U

N�1X
k=0

g(y(k); u(k))

1Since a DISI engine is mostly operated in a lean mode, it is
felt that CO and HC levels should not be problem. The only
exception would occur if the LNT is purged too often, which
would also show up as a fuel economy penalty

= min
u2U

N�1X
k=0

�g(x(k); u(k)) (3)

where U represent constraints for u imposed by meeting
the speed and load demands of the speci�c drive cycle,
plus things like intake manifold pressure being positive
and not exceeding one atmosphere (unless boosted); N
is the time length of the drive cycle. The cost (3) repre-
sents the cumulative weighted sum of fuel consumption
and NOx over the drive cycle. The objective will be to
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Figure 2: European drive cycle for emissions evaluation.

minimize the cost function (3), for a range of �. This
will provide information on the sensitivity of fuel econ-
omy to NOx emission levels, and is more useful than
just knowing the best fuel economy for a given emis-
sions constraint. A systematic solution to the above
problem can be determined recursively via Bellman's
Dynamic Programming (DP) Algorithm [3] as follows:

Step N � 1:

JN�1(x(N�1)) := min
u(N�1)2U(N�1)

[g(y(N � 1); u(N � 1))]

= min
u(N�1)2U(N�1)

[�g(x(N � 1); u(N � 1))] ; (4)

where �g(x; u) := g(h(x; u); u).

Step k, for N � 1 > k � 0:

Jk(x(k)) := min
u(k)2U(k)

[�g(x(k); u(k)) + Jk+1(f(x(k); u(k)))]

(5)

End.

The optimal control policy is then any minimizer of (5).

3 Numerical Dynamic Programming

It is well-known that the computation time of the DP
algorithm is exponential in the number of states. For



this reason, it is important to make a judicious choice
of the complexity of the dynamic models involved. In
addition, it is standard to discretize the state space
with a grid for numerical computation.

3.1 Model Simpli�cation

The NOx �ll time of the LNT is on the order of thirty
seconds to one minute, and its purge time is on the or-
der of a few seconds. The key dynamics of the TWC in
this context is its oxygen storage capability; the TWC
oxygen �ll time under very lean conditions can be as
short as a second, while its time to empty is several
seconds. The time constants of the temperature dy-
namics of the TWC and LNT are on the order of 10
seconds each. Finally, the most important dynamics of
the engine is the intake manifold �lling model, which
has a time constant on the order of a 100 milli-seconds.
It is concluded from this that the dominant dynam-
ics are in the emission system, and the engine can be
treated as a static device delivering torque and exhaust
feedgas (emissions concentrations, 
ow rates, tempera-
ture) as a function of throttle position, fuel 
ow, spark
and EGR.

3.2 Standard State Space Discretization

The standard method to convert a Dynamic Program
[3, 10] into a �nite computation problem is to use state
space quantization and function interpolation [3]. The
state space is quantized into a �nite grid

x 2 f�1; �2; : : : ; �Lg (6)

At each step of the DP algorithm, the function Jk(x(k))
is determined at a �nite number of points, f�1; : : : ; �Lg.
The function Jk(x(k)) at an arbitrary point is then ap-
proximated by linear interpolation. In general, a suc-
cessful approximation of this type of discretization de-
pends upon `consistency'. This means that a solution
closer to a continuous optimal solution can be achieved
as the discretization becomes �ner [3], which in turn
imposes increased computational burden.

Spatial discretization yields the following general step
of the DP algorithm:

Step k, for N � 1 > k � 0, and for 1 � i � L:

Jk(�i) := min
u(k)2U(k)

h
�g(�i; u(k)) + Ĵk+1(f(�i; u(k)))

i
;

(7)
where Ĵk is de�ned by interpolating
fJk(�1); : : : ; Jk(�L)g.

To check the computational complexity, the above pro-
gram was setup in MATLAB, with a static TWC model
and a one state (NOx storage level), temperature-
dependent, LNT model as the exhaust aftertreat-
ment system. The state was discretized as 0:15 �
f0; 0:05; : : : ; 0:45; 0:5; 0:7; 0:9; 1g (the maximum trap

capacity of the LNT was set to be 0.15 g). The Euro-
pean Drive Cycle (Euro-cycle), shown in Figure 2, was
used. The cycle was sampled at the rate of one sec-
ond. The engine speed and torque required to follow
the cycle at each time step were computed by consid-
ering a vehicle dynamics model, gear ratios and shift
strategy during the cycle. The optimal solution for
� 2 f0; 5; 10; 20; 40; 80g was obtained. The minimiza-
tion in (7) was performed with the MATLAB Opti-
mization Toolbox, using constr.

The total computation time on a Pentium II, 200
MHz PC was roughly 60 hours. This is unacceptable
because the engineer needs to be able to evaluate many
di�erent parameter values for the LNT model, for
example, and in addition, it was deemed important to
include the TWC oxygen storage dynamics. Including
a second state would result in approximately one
month of computation time. Hence, to reduce the
computation time, a new approximation is introduced.

4 Approximation via Local Engine

Calibrations

The biggest time sink in the optimization process is
the minimization operation performed by constr. The
DISI model is very nonlinear, and results in many local
minima. The idea of the following approximation is to
replace the DISI engine model with a �nite set of model
behaviors, called calibrations, parameterized by engine
speed and torque. More precisely, at each engine speed
and torque point, the engine model is replaced by a
�nite set of possible feedgas characteristics, chosen in
a way that they are likely to be useful in �nding an
approximate optimal policy. For the use of calibrations
to develop \�xed structure" policies for complex DISI
and hybrid diesel powertrains, see [9].

Quantize the engine speed and engine torque values by
a �nite grid:

RPM 2 f 1;  2; : : : ;  rg (RPM)
Torque 2 f'1; '2; : : : ; 'lg (Nm)

(8)

For each of the point ( i; 'j), a normal calibration is
generated by minimizing the cost that represents the
weighted sum of fuel consumption and NOx emissions

J = fuel + � �NOx; (9)

for � 2 f0; 2; 5; 10; 30; 60; 80; 150g ; over the engine
parameters throttle position, fuel 
ow, EGR percent
and spark. EGR percent is constrained to be be-
tween 0 and 30 for strati�ed, and 0 to 10 for homo-
geneous mode, and spark between 5 and 45 degrees
(BTDC). The strati�ed and homogeneous regimes are
treated separately during the optimization. Additional



constraints are imposed that limit the intake mani-
fold pressure between 5 and 100 kPa, torque equal
to be 'j , and engine speed equal to  i, where 'j 2
f0; 6:25; 15; 25; 35; 45; 55; 65; 75; 85; 95; 105g, and  i 2
f600; 1250; 1750; 2250; 2750; 3250g.

For rich operation, the DISI model is used to generate
a purge calibration. This is obtained by maximizing
CO emissions entering the LNT. Since purge can only
take place under rich conditions, the air-to-fuel ratio
is constrained to be less than stoichiometry, and the
combustion regime to be homogeneous.

Over the drive cycle, engine parameters are generated
by interpolating calibrations of grided operating points
(8) around the true operating point. Figure 3 com-
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Figure 3: Fuel economy versus NOx emissions of optimal
policy with calibration and from constrained
optimization, over the Euro-cycle. The DISI
engine and TWC models are quasi-static, and
LNT model is dynamically updated.

pares the results of performing the dynamic program-
ming with the engine calibrations versus the full opti-
mization over the engine input parameters. This �gure
plots NOx emissions in g/km versus fuel economy in
miles per gallon, over the Euro-cycle. It is seen that the
results are very close. The time taken for generating
the set of calibrations was roughly 4 hours (Pentium II,
200 MHz PC). However, once the calibration is done for
the static DISI engine, the dynamic programming with
di�erent aftertreatment system parameters, or with dif-
ferent system con�gurations, can be easily and quickly
done because a calibration can be repeatedly used due
to its independence of the aftertreatment system.

5 Vectorization for Multi-State Models

The next step in developing dynamic programming as a
realistic tool for tradeo� analysis was to consider mod-

els with more than one state. This would allow the
consideration of important physical phenomena such
as oxygen storage in the TWC and the temperature
evolution of the aftertreatment elements. Using the
method based on calibrations, and considering a one
state model consisting of static TWC and the dynamic
LNT NOx level studied in Sections 3 and 4, the dis-
cretized dynamic programming algorithm resulted in a
computation time of 3 hours. It was determined that
the major computation bottle neck during optimization
was the interpolation operation (recall (7)). However,
this can be remedied by interpolating on a vector scale.
The basic idea is to build up the look-up tables for dy-
namics update of x, and instant cost �g, as a function
of quantized state �k, control input u, weight �, and
operating point ( i; 'j). Once these tables are loaded,
they are `vectorized' and used to update (7) on a vec-
tor scale during the dynamic programming. The time
spent, based on calibrations generated in Section 4, is
summarized in the Table 1.

Table 1: Time consumption on dynamic programming
based on calibration. The Pentium II, 200 MHz
PC was used for computation. To obtain total
time consumption, time taken for calibration (4
hours) should be added.

aftertreatment time taken time taken
system model (pointwise) (vectorized)

one state
- static TWC 5 hours 20 minutes
- dynamic LNT
two state
- dynamic TWC 60 hours 40 minutes
- dynamic LNT

6 Case Studies

This section considers several practical case studies
that illustrate how design decisions can be made on
the basis of optimization. The optimization is based
on a static DISI model from [8], and a two state, dy-
namic model of the aftertreatment system. The dy-
namics of the TWC were limited to the oxygen stor-
age phenomenon [5] since this is crucial for purging.
The LNT model [4] is represented by the NOx stor-
age level. Since many of the LNT model's parame-
ters are quite temperature sensitive, a static model of
LNT temperature was developed as a function of engine
feedgas temperature. The state space is discretized as
xLNT � xTWC :

xLNT = LNT max� f0; 0:05; : : : ; 0:5; 0:7; 0:9; 1g
xTWC = TWC max� f0; 0:25; 0:5; 0:75; 1g

(10)



where LNT max and TWC max represent maximum
NOx trap capacity of LNT in grams and oxygen stor-
age capacity of TWC in grams, respectively. The op-
timization is done with the interpolated DISI engine
calibrations over the Euro-cycle.

6.1 Case Study 1: TWC and LNT Capacities

The capacity of the LNT to be used on a vehicle will be
determined by a tradeo� between manufacturing price
and system performance. To study this tradeo�, opti-
mal solutions are obtained with various maximum trap
capacities for the LNT:

LNT max 2 f0:035; 0:075; 0:15; 0:3; 0:5g ;
TWC max = 0:5

(11)

The fuel economy in miles per gallon, for the Stage
IV NOx Emission Standard for the Euro-cycle (0.08
g/km), is shown in Figure 4 as a function of maximum
trap capacity of LNT.
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Figure 4: Fuel economy satisfying stage IV NOx emission
standard of Euro-cycle with various maximum
trap capacity of LNT.

It is seen that fuel economy improvement rapidly rolls
o� as trap capacity increases, and is mostly improved
at low maximum trap capacity.

The e�ect of TWC oxygen storage capacity on fuel
economy is also evaluated. The maximum oxygen stor-
age capacity of TWC was varied over:

LNT max = 0:15;
TWC max 2 f0:125; 0:25; 0:5; 1; 2g

(12)

Figure 5 shows the fuel economy as a function of max-
imum capacity.

As can be seen, fuel economy decreases as maximum
capacity of TWC increases. This is because purging
is delayed until reductants, such as CO and H2, are
e�ectively delivered to the LNT, and the delay is pro-
portional to the emptying time of the oxygen stored in
the TWC.
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Figure 5: Fuel economy satisfying stage IV NOx emission
standard of Euro-cycle with various maximum
oxygen storage capacity of TWC.

6.2 Case Study 2: Removal of Homogeneous

Lean Mode

The homogeneous lean mode is limited to air-to-fuel
ratios from 15 to 20. In the study, the removal of ho-
mogeneous lean mode is considered in order to simplify
the engine operation and control strategy. The e�ect of
removal is evaluated by dynamic programming, and the
fuel economy and NOx emissions over the Euro-cycle
are shown in Figure 6.
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Figure 6: Fuel economy and NOx emissions over Euro-
cycle with, and without homogeneous lean
mode.

The �gure shows that the loss of fuel economy without
the homogeneous lean mode is 0.3 miles per gallon,
which corresponds to a 0.92 % loss, with Stage IV NOx

Emission Standard of Euro-cycle. However, for Stage
III NOx Emission Standard (0.15 g/km), the loss of
fuel economy is 1.4 miles per gallon. This is a 3.51 %
loss, which is not acceptable.



7 Conclusions

In this paper, we treated a problem of predicting the
best emission constrained fuel economy of a direct in-
jection spark ignition powertrain over a drive cycle.
This problem is di�cult because the search of the op-
timal trajectory has to be done over all possible tra-
jectories of the engine and the aftertreatment on a
drive cycle. The search procedure is based on the dy-
namic programming (DP) algorithm. The procedure is
made computationally tractable by combining several
ideas that involve (i) model simpli�cation; (ii) state
and control discretization; (iii) restricting the search to
a smaller set of trajectories that, based on engineering
judgment, are deemed likely to contain the optimal pol-
icy, and (iv) careful treatment of computer implemen-
tation details. Numerical results have demonstrated
signi�cant reduction in the computation time, while
near optimal solutions are generated.

The procedure has been used in several case studies
where the e�ect of adjusting hardware parameters or
control strategy on the fuel economy was evaluated.
The ability to conduct assessments of this kind is very
important early on during the development of an auto-
motive system and its control strategy.

This study resulted from a cooperative research project
between researchers from Ford Research Laboratory
and researchers from the University of Michigan. It
demonstrates how advanced optimization techniques
can be adapted to a realistic industrial problem.
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