
Abstract

This paper discusses the development of a high-accuracy endpointing algorithm for
the emitter etch of a heterojunction bipolar transistor (HBT). Fabrication of high-
performance HBT's using self-aligned base-emitter processes requires etching through
the emitter layer and stopping with very high accuracy on the base layer. The lack
of selectivity in dry etching coupled with the high etch rates possible in high density
plasmas render the use of a standard timed overetch impractical, especially as device
layers continue to become thinner. The etch process under study requires the com-
plete removal of an AlInAs emitter while etching no more than 5 nm of the underlying
GaInAs base layer. Etch products are monitored using optical emission spectroscopy
(OES) to determine etch endpoint. The process under study relies on the intensity of
the 417.2 nm Ga emission line. The detection of the Ga line indicates that the etch
has reached the GaInAs layer. However, the presence of a time-varying Ga baseline
signal before endpoint and signi�cant noise in the OES signal necessitate more than a
simple threshold scheme for critical endpoint detection. The algorithm presented here
is based on a generalized likelihood ratio (GLR) with a signature function. This algo-
rithm is robust to variance in the optical gains of the measurement equipment and is
applicable to other etch processes. Experimental results of automated endpointing us-
ing this algorithm are presented in the form of pre- and post-etch ex situ �lm thickness
measurements.
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1 Introduction

As device layers become thinner, the lack of selectivity in dry etching, coupled with the

high etch rates possible in high density plasmas, are rendering the use of a standard timed

overetch impractical. An endpoint detection scheme is necessary to stop the etch at the

correct time without unacceptable amounts of overetch of the underlying layer.

Several etch endpoint detection schemes are documented in the literature. Re
ectometry

[1], tunable diode laser spectroscopy [2], and neural nets [3] have been used successfully. A

slope-sensitive endpoint detector has also been used on a ratio of etch product and back-

ground optical emission signals [4]. The present work di�ers from these studies in that

no extensive modeling of the material is required, the single optical emission measurement

employed requires no complex alignment, the algorithm is based on a simple model of the

system, and the free parameters of the model can be tuned with a few experimental runs.

The goal of this research was to successfully detect the endpoint of the emitter etch for

a heterojunction bipolar transistor (HBT). During this etch, which takes about 4.5 minutes,

the unmasked portion of the AlInAs emitter layer must be completely removed while etching

no more than 5 nm of the underlying GaInAs base layer. These layers top an InP substrate.

Because both layers contain indium and arsenic and because the selectivity between layers

is nearly unity, the only appropriate emission signals to monitor for endpoint detection are

aluminum and gallium. Because the Ga emission rise at 417.2 nm is much more apparent

than the drop in the Al signal at 396.1 nm, the gallium signal is monitored for endpoint

detection using a monochromator, photomultiplier tube, and transimpedance ampli�er.
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During the �rst part of the etch, the emission at 417.2 nm represents background noise,

which we have observed to be fairly linear during the course of an etch. The slope of the

background trend, including its direction, changes with the state of the reactor walls. When

the etch reaches completion, the emission at 417.2 nm rises from the background level due

to the presence of Ga in the plasma, as shown in Figure 1. When the amount of excited

gallium reaches steady state, the signal 
attens.

2 Experimental Setup

These etches were performed in an ECR source etcher with an rf-powered stage described

previously [5] using 50 W microwave power, 100 W rf power, 3 sccm Cl2, 27 sccm Ar, and at

2 mTorr. The movable stage was set at 13 cm from the ECR source. The optical emission

signal was passed through an optical �ber to a SPEX 500 1/2-meter monochromator, where

the 417.2 nm emissions were isolated. A Hamamatsu R636 photomultiplier tube converted

the light to current pulses which were collected by a transimpedance ampli�er for conversion

to an analog voltage. A PC running LabVIEW and equipped with a National Instruments

MIO board collected the voltage signal at 2 Hz and ran the data through the algorithm in

real time. When the etch endpoint was detected, a digital signal was sent to the sequential

process controller, a Techware system, to automatically stop the etch.

Because the wafers required for these experiments were quite expensive, they were broken

into small squares, about 1.2 cm on each side, and one sample was used for each run. Due to

slight variations in sample size and run-to-run variations in optical gains of the measurement

2



system, the absolute signal intensity cannot be used in the design of an endpoint algorithm.

In other words, an algorithm which stops the etch when the intensity reaches a preset level

would be inappropriate.

3 State-Space Model for Endpoint Detection

As shown in Figure 1, the typical emission signal during the etch consists of a linear back-

ground trend with a rise when the interface is reached. When the background trend is

subtracted from the data, the endpoint detection problem can be described with a simple

discrete-time state-space model:

Ga(k + 1) = (1� 
� )Ga(k) +W (k) + v�x(k; t0)� (1)

Y (k) = Ga(k) + V (k); (2)

where Ga(k) is the amount of gallium in the plasma, in the same arbitrary units as the

measurement, at time k, 
 is the instantaneous rate of loss of Ga from the plasma, � is the

sample time,W (k) and V (k) are independent Gaussian white noise sequences with variances

Q0 and R0, respectively, and Y (k) is the emission measurement at time k. The variances

of the noise sequences are unknown and must be estimated during the etch from the data.

The change time, at which the interface is reached and gallium �rst starts coming from the

surface, is denoted t0. The function v�x is the instantaneous rate of gallium being etched
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from the surface and entering the plasma; it can be described as

v�x(k; t0) =

8>>>>>><
>>>>>>:

0 for k < t0

v k�t0
ts

for t0 � k < t0 + ts

v for k � t0

; (3)

where v is an unknown parameter depending on the exposed area, etch rate, and optical gain

of the system, and ts is an unknown parameter indicating the time needed to clear the AlInAs

layer once the GaInAs layer is reached. This \slope time," during which the amount of Ga

coming from the surface linearly increases, exists due to layer thickness or etch nonuniformity

or surface roughness which causes both layers to be etched simultaneously.

The loss coe�cient, 
, was experimentally determined to be 0.125 at the operating condi-

tions used for the etch. The background trend can be subtracted from the data in real time

by monitoring the emission signal for the �rst few minutes of the etch (not including the

time it takes for the emission signal to settle once the etch is started), �tting a line through

this data well before the endpoint is expected, and subtracting this line from subsequent

data points. An estimate R̂N of the measurement noise variance can be formed by summing

the squares of the di�erences between the data points and the estimated trend and dividing

this sum by the number of data points minus two [6]. If the data is �ltered to eliminate

measurement noise, the maximum error between the �ltered data and the background trend

will approximately represent a 3-sigma level for the state noise; the state noise variance can

thus be roughly estimated by dividing the maximum error by three and squaring the result.

Note that the gallium emission signal will start to rise before the AlInAs layer completely
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clears, as shown in Figure 2. Care must be taken not to stop the etch too soon.

4 Model Validation

Three emission signals are shown in Figure 3 along with their best �ts from the model. For

the �rst signal, the etch was stopped manually approximately three seconds after the rise in

the Ga emission signal was visually detected. In the second plot, the etch was stopped after

about 6 seconds, and in the third plot, 12 seconds. Table 1 shows the model parameters used

for the �ts, the times at which the etches ended according to the model, and the times at

which the etches were actually stopped. Note that for the �rst sample the etch was stopped

before the end of the slope time determined by the model, and it is therefore expected that

some of the AlInAs layer will remain on the surface. The other two samples should have no

aluminum left on the surface. X-ray photoelectron spectroscopy (XPS) was performed on

the post-etch samples to analyze the elements present on the surface, and the percentage of

aluminum detected is given in the table. As expected, there is a signi�cant amount of Al on

the �rst sample, whereas the amount measured on the other two samples is small enough to

be attributable to measurement noise. The plots in Figure 3 along with the data in Table 1

suggest that the model describes the process well enough for endpoint detection.

Uncorrelated Gaussian white noise on the measurement is a valid assumption under

certain conditions. Figure 4 shows the frequency components of the noise on a typical Ga

signal, collected at 500 Hz, while etching GaInAs. The drop near 20 Hz is due to the presence

of anti-aliasing �lters. Thus, if data is collected at a frequency su�ciently lower than this,
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the noise can indeed be considered white. Figure 5 shows a histogram of measured emission

levels while monitoring a GaInAs etch. The near-Gaussian shape of the histogram suggests

that Gaussian noise is a valid assumption. Figure 6 shows the autocorrelation of a detrended

background emission signal sampled at 4 Hz. Each sample is only correlated with itself, and

therefore uncorrelated noise is also a valid assumption.

5 Endpoint Algorithm Development

The endpoint algorithm discussed here assumes that the data forms an independent sequence.

To ensure the validity of this assumption despite possible detrending errors, the detrended

data is processed by a Kalman �lter to form a sequence of innovations [7]. The innovation

�(k) at time k is the di�erence between the detrended measurement and the estimate of the

state obtained from past data:

�(k) = Y (k)� Ĝa(kjk � 1) (4)

The estimate of the state is in this case initialized to zero because no gallium is expected in

the chamber at the start of the etch. That is, Ĝa(1j0) = 0. Future estimates are obtained by

using the variance of the innovation, �(k), and the state estimation error variance, P (kjk�1),

to calculate a Kalman gain, K(k). The Kalman gain, innovation, and past state estimate

are used to calculate a current estimate of the state, which is in turn used to predict what

the state will be on the next iteration. The state estimation error variance is also initialized
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to zero and updated at each iteration. The relevant equations are:

�k = Pkjk�1 + R̂N (5)

Kk =
Pkjk�1

�k

(6)

Pkjk = (1 �Kk)Pkjk�1 (7)

Pk+1jk = (1 � 
� )2Pkjk + Q̂N;f (8)

�k = Yk � Ĝakjk�1 (9)

Ĝakjk = Ĝakjk�1 +Kk�k (10)

Ĝak+1jk = (1 � 
� )Ĝakjk; (11)

where the time, k, has been moved into the subscript for easier notation.

A generalized likelihood ratio (GLR) algorithm with a signature function is used to detect

the initial increase in the innovations sequence which re
ects the Ga emissions signal rise

caused by the change v�x(k; t0)� on the state. The log-likelihood ratio is de�ned as [7]

si = ln
p�1(�i)

p�0(�i)
; (12)

where �i is the mean of the signal before or after the change, the parameter after change is

�1 = �, the parameter before change is �0 = 0, and �i is the innovation. Before the change,

the expected value of the log-likelihood ratio is negative, while after the change the expected

value is positive. For the general case of detecting a change in the mean of an independent

Gaussian signal, the probability density is

p�(�) =
1p
2��

e�
(���)2

2� ; (13)
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yielding, for the present model,

si =
�1 � �0
�i

�
�i � �1 + �0

2

�
(14)

=
�

�i

�
�i � �

2

�
: (15)

If a cumulative sum Sk
1 =

Pk

i=1 si is calculated, the sum will drift downward before the

change and back upward after the change. The current minimum is given as

mk = min
1�j�k

Sj
1; (16)

and thus a decision rule, gk, can be calculated as

gk = Sk
1 �mk (17)

= max
1�j�k

�
Sk
1 � Sj

1

�
(18)

= max
1�j�k

Sk
j ; (19)

where Sk
j =

Pk

i=j si. When gk exceeds a certain threshold h, it is likely that the change has

occurred and the etch should be stopped. Appropriate choices for h depend on the signal-

to-noise ratio, allowable mean time between the change and detection, and other parameters

discussed by Basseville and Nikiforov [7].

Of course, because of the system and Kalman �lter dynamics, a sudden step on the state

will generally not result in a step change on the innovations. In addition, even the state

does not change by a step in this endpoint application. To account for this, the �1 � �0 and

�1 + �0 terms in (14) are replaced by a time-varying signature term, �(k; t0), describing the

e�ect of the change on the innovations. The state, its estimate from the Kalman �lter, and
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the innovation can be decomposed as [7]

Gak = Ga0k + �(k; t0); (20)

Ĝakjk = Ĝa
0

kjk + �(k; t0); (21)

�k = �0k + �(k; t0); (22)

where the superscript denotes the values of the unchanged model and the �, �, and � terms

represent the e�ect of the change v�x(k; t0)� at time t0 � k. Using the initial conditions

�(t0; t0) = 0 and �(t0 � 1; t0) = 0, the functions are computed recursively as

�(k; t0) = (1 � 
� )�(k � 1; t0) + v�x(k � 1; t0)�; (23)

�(k; t0) = (1 �Kk)(1 � 
� )�(k � 1; t0) +Kk�(k; t0); (24)

�(k; t0) = �(k; t0)� (1� 
� )�(k � 1; t0): (25)

Because the signature takes into account the model and the Kalman �lter gains, the change

on the state, v, is used, rather than the change on the innovations, �.

The log-likelihood function computes whether it is likely that the mean shifted to �1 at

some time t0 � k. The idea now is to have the log-likelihood function compute whether it

is likely that the innovations started tracking the signature function �(k; t0) at some time

t0 � k. The function �(k; t0) is incorporated into the log-likelihood function in place of �1.

With �0 = 0, the decision function thus becomes

g(k) = max
1�j�k

Sk
j ; (26)

Sk
j =

kX
i=j

�(i; j)�i
�i

� 1

2

kX
i=j

�(i; j)2

�i

: (27)
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Because the change magnitude is not known, a double maximization must be performed

to calculate the decision function gk:

gk = max
1�j�k

sup
�1

Sk
j (�1): (28)

Because this algorithm considers the most likely value of �1, it is often referred to as the

maximum likelihood ratio (MLR) or generalized likelihood ratio (GLR). With the unknown

change magnitude, the signature function is decomposed as v~�(k; t0), where ~�(k; t0) is the

signature resulting from a unit change on the state (i.e. v = 1), yielding

sup
v

Sk
j = v̂k(j)

kX
i=j

~�(i; j)�i
�i

� v̂2k(j)

2

kX
i=j

~�2(i; j)

�i

; (29)

v̂k(j) = sign

"Pk

i=j ~�(i; j)�i=�iPk

i=j ~�
2(i; j)=�i

# 
sup

"
0;

�����
Pk

i=j ~�(i; j)�i=�iPk

i=j ~�
2(i; j)=�i

������ vm

#
+ vm

!
: (30)

6 Monte Carlo Analysis

Because of the expense involved in etching the samples, it would be prohibitively expensive

to tune all of the parameters in the algorithm on the basis of data alone. Therefore, simulated

data sequences were created using the model and uniformly distributed parameters whose

upper and lower bounds were determined on the basis of a few etches; see Table 2. The

ranges were chosen to be somewhat wider than values observed in the actual data sequences,

and a sampling rate of 4 Hz was assumed. Each data sequence was formed by summing the

state value obtained from the model for the chosen parameters, a Gaussian noise sequence

formed by choosing normally distributed numbers with zero mean and chosen measurement

noise variance, and a background trend created from the chosen slope and intercept.
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The GLR algorithm with the signature function was tested on 25 simulated sequences

using a slope time of 8 seconds to calculate the signature function and a minimum change

magnitude of 0.005. The resulting decision functions are shown in Figure 7. The decision

functions have been shifted in time so that in each sequence, the change on the state occurs

at a time of zero seconds. The appropriate time to stop the etches thus occurs at about

ten seconds, the maximum slope time. For the sequences with the minimum slope time, six

seconds, this would result in an overetch of about 4 nm, assuming the fastest observed etch

rate of 48 nm/min. This overetch is within the 5 nm limit.

To choose the threshold, h, for a particular algorithm, one must draw a horizontal line

through the decision functions in such a way that most of the decision functions cross the

horizontal line at approximately ten seconds. This is obviously impossible because the deci-

sion functions have widely varying slopes. Fortunately, there are a few seconds between the

change time and when the etch must be stopped. The change time can be estimated as [7]

t̂0k = arg max
1�j�k

Sk
j ; (31)

where arg max is the value of j (the sample index) which maximizes Sk
j . Therefore a low

threshold can be set, and whenever the decision function exceeds the threshold, the change

time is estimated. If the change occurred approximately ten seconds ago (or some other

selected \lag time"), the etch is stopped.

For a given threshold and lag time, the etch stop time can be determined for each decision

function. The overetch time is then calculated as the di�erence between the stop time and

the sum of the change and slope times for each sequence. A range of overetch depths is then
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calculated from the overetch time and the minimum and maximum etch rates. The optimum

threshold and lag time can be determined by calculating a cost function for various thresholds

and lag times and minimizing this cost. The cost for each sequence was calculated twice,

once using the maximum overetch depth and once using the minimum, from the following,

somewhat arbitrary, cost function:

cost =

8>>>>>><
>>>>>>:

0 if 0 nm � depth < 3 nm

5(depth�3)
3 if 3 nm � depth < 6 nm

5 if depth < 0 nm or depth � 6 nm

: (32)

The cost for a given threshold and lag time is obtained by summing the costs of each of the

sequences, and the optimumparameters will minimize this cost. For the simulated sequences,

the optimum threshold was 1.1 and the optimum lag time was 11.5 seconds.

Further testing was done on 250 new simulated sequences using the same threshold and

lag. The overetch depths are shown in Figure 8. This algorithm has a failure rate of only

5.2%, where a failure is de�ned as any etch where either the slowest or fastest etch rate

result in an overetch not between 0 and 5 nm. Note that there are several etches very close

to the 5 nm limit, and these devices may meet the performance speci�cations, so the failure

rate may be closer to 3.6%. When the data collection rate is slowed to 2 Hz, the maximum

rate at which the computer attached to the ECR can process the data using this algorithm

in real time, the failure rate rises to 10%.
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7 Experimental Results

The GLR algorithm using the precomputed signature function was tested during three

AlInAs/ GaInAs etches. The measurement was �ltered at 1 Hz using a low-pass �lter in the

transimpedance ampli�er. This gave a higher signal-to-noise ratio [8], but simulations showed

no signi�cant e�ect on the cost. Due to the time needed to calculate the signature function,

several of these functions were precomputed for various noise levels, and once the noise level

was determined for a particular run, the correct �le was read from disk. Simulations showed

that this also had no signi�cant e�ect on the cost.

The day-to-day variation in change and slope times for the etch process under study

is currently too great to use the same endpoint algorithm parameters on every batch of

runs. Therefore, to test this algorithm, two calibration runs were done at the beginning of

the day. Monitoring the gallium emission line during the complete removal of the AlInAs

layer and �tting the model parameters to these two runs showed that the change times were

371.6 seconds and 377.2 seconds, the slope times were 13.6 seconds and 11.8 seconds, and the

noise variances were 0.005 and 0.003. Both runs had change magnitudes of about 0.12 and

took about 150 seconds for the signal to settle before data could be collected to determine

the background trend. The average etch rates for the AlInAs layer during these runs were

30.8 and 30.4 nm/min.

The threshold and lag time were optimized using 25 sequences at 2 Hz with random noise

variances between 0.002 and 0.005, change times between 359.2 and 389.2 seconds, change

magnitudes between 0.06 and 0.24, and slope times between 10.5 and 14.5 seconds. When
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calculating the cost, the minimum and maximum etch rates were assumed to be 25 nm/min

and 35 nm/min. The optimum lag time was found to be 15.5 seconds, and the cost was

minimized when the threshold was between 4.0 and 8.5.

Three endpoint experiments were performed with a lag time of 15.5 seconds and threshold

of 6.0. For the �rst 150 seconds of the etch, no action was taken, and data taken between

150 seconds and 359 seconds was used for the background trend calculation. Based on the

calculated noise levels, an appropriate signature function matrix was read from a �le. The

size of the matrix allowed for the endpoint to be detected between 359 and 404 seconds, and

if the endpoint did not occur in this window, the etch would not automatically stop.

The algorithm stopped the three etches at 398.0 seconds, 398.5 seconds, and 391.0 sec-

onds, respectively. In the third run, the argon 
ow was set to 8 sccm instead of 27 sccm

for the �rst 31 seconds of the run. This disturbance was corrected at 31 seconds and the

gallium emission signal settled by 150 seconds into the run.

For each of the three samples, ex situ spectroscopic re
ectometry measurements were

taken at �ve positions on the sample before and after the etch so that the thickness of the

GaInAs layer could be calculated. With spectroscopic re
ectometry, white light is shone

onto the surface of the wafer, usually at normal incidence. The re
ectance is measured as a

function of wavelength, and if a model relating these measurements to the optical properties

of the layers is known, the thicknesses of the layers can be calculated [9]. The post-etch

samples also have some surface roughness, calculated using a Beckman-Kircho� model. The

thickness of the roughness layer can be added to the thickness of the GaInAs layer to give
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an indication of the total thickness. The results are shown in Table 3.

For all three samples, the nonuniformity before the etch was less than 2 nm and the

nonuniformity after the etch was greater than 4 nm. Considering the 5 nm overetch speci-

�cation, the post-etch nonuniformity is quite high. The roughness layer after the etch also

exceeded the overetch speci�cation in most cases, and therefore, although some of this rough-

ness can be removed by rinsing the etched sample in water, the roughness during the etch

should be reduced if possible. Considering these problems, the endpoint algorithm performed

very well, with overetches ranging from �0.9 to 4.7 nm, where negative overetches probably

indicate that the AlInAs was not thoroughly cleared.

After the samples were rinsed in DI water to remove soluble chloride compounds, the

thicknesses were again measured and are tabulated in Table 4. Except where there are severe

uniformity problems, the GaInAs overetch amounts are well within the 5 nm speci�cation.

The average etch time required in the calibration runs was 387.1 seconds. Had a timed

etch based on the calibration been used for the other three samples, the samples would have

been etched 10.9, 11.4, and 3.9 seconds less, respectively. This would have resulted in average

underetches of 0.4 nm and 1.8 nm for the �rst two runs and an average overetch of 1.9 nm for

the third run. That is, two of the three etches would have failed due to insu�cient clearing

of the AlInAs layer.
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8 Summary

An endpoint detection algorithm has been developed for etching AlInAs on GaInAs using

intensity measurements of a gallium emission line. Preliminary etch results show that this

algorithm is capable of stopping the etch with less than 5 nm overetch into the GaInAs

layer when the etch does not have uniformity problems. Overetches well within the 5 nm

speci�cation were obtained on three di�erent runs despite a disturbance on the argon 
ow in

the third run. If the surface roughness and etch nonuniformity can be reduced, this algorithm

shows great promise of being able to meet the overetch speci�cations.
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Figure 1: Typical Ga emission signal while etching through the emitter and base. Data

collection was started approximately 3 minutes into the etch.
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Figure 2: Gallium coming from the surface and the resulting emission intensity signal.
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Figure 3: Actual data and �ts with modi�ed model for etches stopped approximately 3, 6,

and 12 seconds after the rise in Ga
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Table 1: Comparison of model �t to actual data with XPS results. For each data sequence,

the change magnitude, change time, and slope time are chosen to minimize the least squared

error between the model and actual signals. The etch end time is the sum of the change and

slope times, and the etch stop time is the time at which the etch was manually stopped. The

% aluminum on the surface was measured with XPS. When the etch was stopped before the

etch end time, the % Al is higher.

Approx. Delay v t0 ts Etch End Time Etch Stop Time % Al
3 0.12 281.6 6.0 287.6 286.8 7.31
6 0.11 293.4 9.9 303.3 304.6 3.52
12 0.11 290.4 10.6 301.0 305.0 3.17
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Figure 5: Histogram of values of the background noise signal. The values have an approxi-

mately Gaussian distribution.
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Figure 6: Autocorrelation of detrended background emission signal
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Table 2: Parameters and ranges used to create simulated data sequences

Parameter Minimum Maximum
Noise variance, Rn 2� 10�3 8� 10�3

Background trend slope �5� 10�4 5 � 104

Background trend intercept 0.5 5
Change magnitude, v 0.01 .2
Change time, t0 (s) 255 285
Slope time, ts (s) 6 10
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Figure 7: Decision function using GLR algorithm with signature function on all 25 data

sequences
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Table 3: Pre- and post-etch GaInAs thicknesses obtained using the endpoint algorithm. All

thicknesses are given in nm and are accurate to within 1 nm.
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Table 4: Pre-etch and post-rinse GaInAs thicknesses obtained using the endpoint algorithm.

All thicknesses are given in nm and are accurate to within 1 nm.
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