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Abstract

The convergence aspects of the extended Kalman �lter, when used as a deterministic

observer for a nonlinear discrete-time system, are analyzed. To a certain extent, the

results parallel those of [1] for continuous-time systems. However, in addition to the

analysis done in [1], the case of systems with nonlinear output maps is treated and the

conditions needed to ensure the uniform boundedness of certain Riccati equations are

related to the observability properties of the underlying nonlinear system. Furthermore,

we show the convergence of the �lter without any a priori boundedness assumptions

on the error covariances whenever the states stay within a convex compact domain.
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1. Introduction

Designing an observer for a nonlinear system is quite a challenge. Thus, as a �rst step, it

is interesting to see how classical linearization techniques work with nonlinear systems and

what their limitations are. In [1], Baras et al. describe a method for constructing observers

for dynamic systems as asymptotic limits of �lters. They discuss the method as applied to

the linear case, and a class of nonlinear systems with linear observations, in continuous-time

domain. Essentially the extended Kalman �lter(EKF) is used as their observer[1,6].

Motivated by their work, we analyze the convergence aspects of the EKF when it is used

as a deterministic observer for a nonlinear discrete-time system. That is, we will consider

the system:

xk+1 = f(xk; uk); x0 given;

yk = h(xk; uk);
(1.1)

and the EKF for the associated \noisy" system:

zk+1 = f(zk; uk) +Nwk;

�k = h(zk; uk) +Rvk:
(1.2)

Throughout the paper x;w 2 IRn and y; v 2 IRp and f; h are assumed to be at least twice

di�erentiable. As usual, z0; vk; and wk are assumed jointly Gaussian and mutually independ-

ent. Furthermore z0 � N (�x0; �Q0); wk � N (0; In); and vk � N (0; Ip): We also assume that

N has rank n and R and �Q0 are positive de�nite.

We denote by j � j, the Euclidean norm of a vector, and by k � k and kj � kj, the induced

norms on matrices and tensors. The symbol \:=" means that the RHS is de�ned to be equal

to the LHS; the reverse holds for \ =: ".

Section 2 discusses the convergence of the Kalman �lter for the class of linear systems; it

is emphasized that, especially for time-invariant systems, it is not necessary to assume the

uniform boundedness of the error covariances (cf. condition (28) in [1]) since it is implied by

the usual detectability condition and the invertibility of the system matrix. In Section 3, we

consider the case of nonlinear systems with nonlinear output maps. The conditions needed to
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ensure the uniform boundedness of certain Riccati equations are related to the observability

properties of the underlying nonlinear system in Section 4. In Section 5, convergence of the

EKF without any boundedness assumption on the error covariances is proven whenever the

states stay within a convex compact set, which is not necessarily small. These results show

that the EKF is a quasi-local observer[14]. Conclusions are made in Section 6.

2. A global asymptotic observer for linear time-varying systems

In this Section we explicitly show that the Kalman �lter for linear systems with arti�cial

noises can be used as a global asymptotic observer for the underlying deterministic system.

The results summarized here are essential for setting up the analysis on nonlinear systems,

which is done in Section 3 through Section 5.

Consider the linear system:

xk+1 = Akxk +Bkuk; x0 given;

yk = Ckxk;
(2.1)

where Ak is assumed invertible, and consider also the associated \noisy" system:

zk+1 = Akzk +Bkuk +Nwk;

�k = Ckzk +Rvk;
(2.2)

where the design parameters N and R are assumed positive de�nite. Then the Kalman �lter

equations for (2.2) are given as follows[3].

Measurement update:

x̂k = x̂�k +Kk(�k � Ckx̂
�

k ); (2:3a)

Q�1k = (Q�k )
�1

+ CT
k (RR

T )�1Ck; (2:3b)

Time update:

x̂�k+1 = Akx̂k +Bkuk; (2:4a)

Q�k+1 = AkQkA
T
k +NNT ; (2:4b)
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where

Kk = QkC
T
k (RR

T )�1 = Q�k C
T
k (CkQ

�

k C
T
k +RRT )�1

and Q�k ; Qk are the a priori and a posteriori error covariances, respectively. The �lter is

initiated by setting x̂�0 = �x0 and Q�0 = �Q0 ; �Q0 is used as a design parameter, assumed also

positive de�nite.

To obtain an error dynamics, let's rewrite the Kalman �lter in terms of the a priori

variables. >From (2.3) and (2.4) we have, noting that we use yk instead of �k,

x̂�k+1 = Ak(I �KkCk)x̂
�

k +Bkuk +AkKkyk; (2.5)

Q�k+1 = Ak(I �KkCk)Q
�

kA
T
k +NNT : (2.6)

If we de�ne the error as ek = xk � x̂�k ; then the error dynamics is given as

ek+1 = Ak(I �KkCk)ek: (2.7)

The associated Riccati equations for the error covariances are

Q�k+1 = Ak[(Q
�

k )
�1 + CT

k (RR
T )�1Ck]

�1AT
k +NNT ; (2.8)

Q�1k+1 = [AkQkA
T
k +NNT ]�1 + CT

k (RR
T )�1Ck: (2.9)

We note that taking Q�0 = �Q0 > 0 and rank N = n implies Q�k > 0 and Qk > 0 for all

k � 0:

Since we are interested in the asymptotic behavior of the error, ek; it is necessary to

obtain bounds for kQ�k k and kQ
�1
k k.

Deyst and Price [11] obtained a su�cient condition which gives lower and upper bounds

of Qk. Consider the following \noisy" system:

xk+1 = Akxk +Nwk;

yk = Ckxk +Rvk;
(2.10)

Suppose that there are real numbers �1; �2; �1; �2 such that the following conditions hold for

all k �M and for some �nite M � 0 :

�1I �
k�1X

i=k�M

�(k; i+ 1)NNT�T (k; i+ 1) � �2I; 0 < �1; �2 <1; (2.11)
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�1I �
kX

k�M

�T (i; k)CT
k (RR

T )�1Ck�(i; k) � �2I; 0 < �1; �2 <1; (2.12)

then

1

�2 + 1=�2
I � Qk � (�1 + 1=�1)I;

where

�(k; i) = Ak�1Ak�2 � � �Ai:

Thus from (2.4b)

kQ�k k � (�1 + 1=�1)kAk
2 + kNk2:

The conditions (2.11) and (2.12) imply that the \noisy" system (2.10) is stochastically con-

trollable and observable[12]. The condition (2.11) is immediately satis�ed with nonsingular

design parameter N: On the other hand, let's take R = I, R being a design parameter;

then condition (2.12) is satis�ed if the deterministic part of the system (2.10), i.e., the pair

(Ak; Ck); is uniformly completely reconstructible[13].

Baras et al.[1] have also obtained bounds for the error covariances in continuous-time,

using dual optimal control problems. Similar methods yield bounds for the error covariances

in discrete-time. The bounds for the case of linear time invariant systems are explicitly shown

in the Appendix, and follow from the detectability of the pair (A;C) and the invertibility of

A. We will discuss how observability is related to the boundedness of the error covariances in

the extended Kalman �lter later in Section 4. For now, we make the following assumption,

which, we note, is implied by the uniform observability of (Ak; Ck):

Assumption 2.1 The error covariances of the Kalman �lter (2.3) and (2.4) are uniformly

bounded , i.e., there exists q < 1 and p < 1 such that kQ�k k � q and kQ�1k k � p for all

k � 0 .

Now with these bounds we can show that the error converges to zero asymptotically.

Before proceeding we need a lemma from Lyapunov stability theory [2, Theorem 4.8.3].

De�nition 2.2 A function � is said to be of class K if it is continuous in [0; a), strictly

increasing and �(0) = 0. Let IN+ be the set of nonnegative integers, IR+ the set of positive
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reals, and Ba the open ball having center at 0 and radius a.

Lemma 2.3 Assume for some a > 0 that there exists a function V such that

(1) V : IN+�Ba 7! IR+;V (k; 0) = 0;V is positive de�nite and continuous with respect to the

second argument;

(2) �V (k; ek) = V (k+1; ek+1)�V (k; ek) � ��(jekj), where � is of class K. Then the origin

of (2.7) is asymptotically stable.

Theorem 2.4 Consider the system (2.1) and the Kalman �lter equations (2.3) and (2.4)

for the associated system (2.2). Suppose that Ak is invertible for all k and that Assumption

2.1 holds. Suppose further that kAk := supfkAkk : k = 0; 1; � � �g and kCk := supfkCkk :

k = 0; 1; � � �g are bounded. Then the Kalman �lter for the noisy system (2.2) is a global

asymptotic observer for the deterministic system (2.1), as long as N has rank n and R and

�Q0 are positive de�nite.

Proof: Let P�K = (Q�k )
�1: From (2.4b)

A�1k Q�k+1A
�T
k = Qk +A�1k NNTA�Tk :

Inverting the above equation

AT
kP

�

k+1Ak = Q�1k �Q�1k (Q�1k +AT
k (NNT )�1Ak)

�1Q�1k :

If we note Qk = (I �KkCk)Q
�

k or Q�1k = (Q�k )
�1(I �KkCk)�1 then

AT
kP

�

k+1Ak = fP�k � P�k (I �KkCk)
�1(Q�1k + AT

k (NNT )�1Ak)
�1P�k g(I �KkCk)

�1 (2.13)

Thus, from (2.7) and (2.13)

eTk+1P
�

k+1ek+1 = eTk (I �KkCk)
TAT

kP
�

k+1Ak(I �KkCk)ek

= eTk (I �KkCk)
TfP�k � P�k (I �KkCk)

�1(Q�1k

+AT
k (NNT )�1Ak)

�1P�k gek:
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Since Qk = (I �KkCk)Q
�

k is symmetric, (I �KkCk)T = P�k (I �KkCk)Q
�

k : Therefore,

eTk+1P
�

k+1ek+1 = eTk fP
�

k (I �KkCk)� P�k (Q
�1
k +AT

k (NNT )�1Ak)
�1P�k gek

= eTkP
�

k ek � eTk fP
�

k KkCk + P�k (Q
�1
k +AT

k (NNT )�1Ak)
�1P�k gek:

Now if we let V (k; ek) = eTkP
�

k ek then V satis�es the conditions given in Lemma 2.3.

Moreover, noting P�k KkCk = CT
k (CkQ

�

k C
T
k +RRT )�1Ck;

�V (k; ek) = eTk+1P
�

k+1ek+1 � eTkP
�

k ek

= �eTk fC
T
k (CkQ

�

k C
T
k +RRT )�1Ck + P�k (Q

�1
k

+AT
k (NNT )�1Ak)

�1P�k gek

� �eTkP
�

k (Q
�1
k +AT

k (NNT )�1Ak)
�1P�k ek:

Since

kQ�1k +AT
k (NNT )�1Akk � kQ�1k k+ kN

�1Akk
2 � p+ kN�1k2kAk2 =: r;

eTkP
�

k (Q
�1
k +AT

k (NNT )�1Ak)
�1P�k ek �

1

r
jP�k ekj

2:

If we use jP�k ekj �
1
q
jekj

�V (k; ek) � �
1

rq2
jekj

2 � �
1

rq2p1
V (k; ek);

where we used the bounds given in Assumption 2.1 and p1 := p+ kR�1k2kCk2: Therefore by

Lemma 2.3, ek converges to zero asymptotically.

3. General Nonlinear Systems

In this Section the results for linear systems are extended to general nonlinear systems

of the form:

xk+1 = f(xk; uk); x0 given;

yk = h(xk; uk);
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where f and h are at least twice continuously di�erentiable. For simplicity of notation1, we

consider a system without controls:

xk+1 = f(xk); x0 given;

yk = h(xk);
(3.1)

and its associated \noisy" system:

zk+1 = f(zk) +Nwk;

�k = h(zk) +Rvk:
(3.2)

The extended Kalman �lter for the associated system is given as follows[3].

Measurement update:

x̂k = x̂�k +Kk(�k � h(x̂�k ));

Q�1k = (Q�k )
�1

+ CT
k (RR

T )�1Ck;
(3.3)

Time update:

x̂�k+1 = f(x̂k);

Q�k+1 = AkQkA
T
k +NNT ;

(3.4)

where

Kk = Q�k C
T
k (CkQ

�

k C
T
k +RRT )�1;

Ak :=
@f

@x
(x̂k);

Ck :=
@h

@x
(x̂�k ):

The Riccati equations for the error covariances are given as follows

Q�k+1 = Ak[(Q
�

k )
�1 +HT

k Hk]
�1AT

k +NNT ; (3.5)

Q�1k+1 = [AkQkA
T
k +NNT ]�1 +HT

k+1Hk+1; (3.6)

where Hk = R�1Ck:

1The modi�cations necessasry to handle inputs are indicated at the end of the Section.
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To begin with, we make the following assumptions for setting up the analysis; Section 4

addresses how Assumption 3.1.1 is implied by an observability property of (3.1).

Assumption 3.1

1. The error covariances of the extended Kalman �lter (3.3) and (3.4) are uniformly

bounded, i.e., there exist q < 1 and p1 < 1 such that, for all k � 0; kQ�k k � q and

kQ�1k k � p1:

2. A(x) := @f
@x
(x) is invertible at each x 2 IRn; and kAk := sup

x2Rn
kA(x)k and kA�1k :=

sup
x2Rn

kA�1(x)k are bounded.

3. kHk := sup
x2Rn

kR�1
@h

@x
(x)k is bounded.

4. Let g(x; y) := h(x) � h(y) � @h
@x
(y)(x � y); and suppose that there exists g < 1 such

that jg(x; y)j � gkjD2hkj jx� yj2 for all x; y 2 IRn:

For later use we derive a few more bounds. From (3.3)

P�M = (Q�M)
�1 = Q�1M �HT

k Hk;

thus giving

kP�Mk � kQ�1M k+ kHk
2 � p1 + kHk

2 := p:

Also from (3.3)

kQMk � kQ�Mk � q:

Furthermore,

kI �KMCMk = kQM(Q
�
M)

�1k � pq

and

kKMk = kQMC
T
M (RRT )�1k � qkHkkR�1k2 =: �:

Now to prove convergence, set

V (k; ek) = eTkP
�

k ek; kjD
2fkj = sup

x2Rn
kjD2f(x)kj; kjD2hkj = sup

x2Rn
kjD2h(x)kj;
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and

�(jekj; kjD
2fkj; kjD2hkj) = �gkjD2hkj kAk+

1

2
kjD2fkj(pq + �gkjD2hkj jekj)

2;

'(jekj; kjD
2fkj; kjD2hkj) = �

1

rq2
+ pjekj�(jekj; kjD

2fkj; kjD2hkj)f2pqkAk

+�(jekj; kjD
2fkj; kjD2hkj) jekjg:

Theorem 3.2 Consider the system (3.1) and the extended Kalman �lter equations (3.3)

and (3.4) for the associated system (3.2). Suppose that Assumption 3.1 holds. Then, if

je0j; kjD2fkj; andkjD2hkj are such that for some  > 0;

'(q
1

2V
1

2 (0; e0); kjD
2fkj; kjD2hkj) � �

the extended Kalman �lter for the noisy system (3.2) is a local asymptotic observer for the

deterministic system (3.1), as long as the design variables N;R and �Q0 have been chosen

such that N has rank n and R and �Q0 are positive de�nite.

Proof: Let ek = xk � x̂�k : Then

ek+1 = f(xk)� f(x̂k)

=
Z 1

0
Df(x̂k + s~ek)ds~ek

where

~ek = xk � x̂k = xk � x̂�k �Kk(h(xk)� h(x̂�k )):

Note also

~ek = ek �Kk(Ckek + gk)

= (I �KkCk)ek �Kkgk:

Thus, using the above equation,

ek+1 = [Ak +
Z 1

0
(Df(x̂k + s~ek)�Df(x̂k))ds]~ek
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= [Ak +
Z 1

0

Z 1

0
D2f(x̂k + rs~ek)s~ekdrds]~ek

= [Ak +Bk]~ek

= Ak[(I �KkCk)ek �Kkgk] +Bk~ek

= Ak(I �KkCk)ek + lk;

where

Bk =
Z 1

0

Z 1

0
D2f(x̂k + rs~ek)s~ekdrds

lk = �AkKkgk +Bk~ek:

Hence,

eTk+1P
�

k+1ek+1 = (eTk (I �KkCk)
TAT

k + lTk )P
�

k+1(Ak(I �KkCk)ek + lk)

= eTk (I �KkCk)
TAT

kP
�

k+1Ak(I �KkCk)ek + lTk P
�

k+1Ak

�(I �KkCk)ek + eTk (I �KkCk)
TAT

kP
�

k+1lk + lTk P
�

k+1lk:

Using the linear results,

�V (k; ek) = eTk+1P
�

k+1ek+1 � eTk P
�

k ek

� �eTkP
�

k (Q
�1
k +AT (NNT )�1A)�1P�k ek + lTk P

�

k+1Ak(I �KkCk)ek

+eTk (I �KkCk)
TAT

k P
�

k+1lk + lTk P
�

k+1lk:

With the de�nition of gk = g(xk; x̂
�

k ); since

j~ekj = j(I �KkCk)ek �Kkgkj

� kI �KkCkk jekj+ kKkk jgkj

� (pq + �gkjD2hkj jekj)jekj;

and

kBkk = k
Z 1

0

Z 1

0
D2f(x̂k + rs~ek)s~ekdrdsk

�
Z 1

0

Z 1

0
kjD2fkjsdrdsj~ekj =

1

2
kjD2fkj j~ekj;
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it follows that

jlkj = j �AkKkgk +Bk~ekj

� �(jekj; kjD
2fkj; kjD2hkj)jekj

2

and

lTk P
�

k+1Ak(I �KkCk)ek + eTk (I �KkCk)
TAT

k P
�

k+1lk + lTk P
�

k+1lk

� kP�l+1k jlkj(2kAk kI �KkCkk jekj+ jlkj)

� pjekj
3�(jekj; kjD

2fkj; kjD2hkj)f2pqkAk+ �(jekj; kjD
2fkj; kjD2hkj)jekjg:

Therefore,

�V (k; ek) � '(jekj; kjD
2fkj; kjD2hkj)jekj

2: (3.7)

A simple argument shows that if '(q
1

2V
1

2 (0; e0); kjD2fkj; kjD2hkj) � � then �V (k; ek) �

�jekj2 for all k � 0: Thus ek converges to zero asymptotically by Lemma 2.3.

Remark 3.3

(a) If the observation map is linear, i.e., h(x) = Cx; then D2h � 0: It follows that

'(jekj; kjD2fkj; kjD2hkj) = � 1
rq2

+ p4q3

2 jekj � kjD2fkj(2kAk+ pq
2 jekj � kjD

2fkj): Thus if we let

�+ be the real positive solution of the equation � 1
rq2

+ p4q3

2 �(2kAk+ pq
2 �) = �; 0 <  < 1

rq2
;

then �+ is a function of the design variables N;R; �Q0; : Therefore, under Assumption 3.1,

if

je0j � kjD
2fkj � max

N;R; �Q0;

�+

(pq)1=2
; (3.8)

the extended Kalman �lter (3.3) and (3.4) with �k = yk is a local asymptotic observer for

the deterministic system (3.1) with linear observations. We note that the condition (3.8) can

be satis�ed if either je0j or kjD2fkj is small enough, in other words, if either the estimate of

the initial state is close enough to the true value or f is only weakly nonlinear.

(b) If we know the controls we can construct in the same way a local asymptotic observer

for systems with inputs:

xk+1 = f(xk; uk); x0 given;

yk = h(xk; uk);
(3.9)
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using the extended Kalman �lter for the associated \noisy" system:

zk+1 = f(zk; uk) +Nwk;

�k = h(zk; uk) +Rvk:
(3.10)

The extended Kalman �lter equations and the Riccati equations for the covariances of the

associated system (3.10) are the same as (3.3), (3.4),(3.5),(3.6) with f(x̂k); h(x̂
�

k ) replaced

by f(x̂k; uk); h(x̂
�

k ; uk): For known u, let fu(x) := f(x; u) and hu(x) := h(x; u): Now suppose

that Assumption 3.1 holds with the following bounds:

kAk := supfk
@f

@x
(x; u)k : x 2 IRn; u 2 IRmg;

kA�1k := supfk[
@f

@x
(x; u)]�1k : x 2 IRn; u 2 IRmg;

kHk := supfkR�1
@h

@x
(x; u)k : x 2 IRn; u 2 IRmg:

Then Theorem 3.2 holds with the appropriate replacements.

4. Observability conditions of a nonlinear system and its lineariz-

ation

In this Section we discuss the observability condition in relation to the EKF. First,

consider the system (2.10). If we use R = I; the observability condition (2.12) becomes

�1I �
kX

k�M

�T (i; k)CT
k Ck�(i; k) � �2I; 0 < �1; �2 <1: (4.1)

If we assume further that AT
kAk � �I > 0 8k; then condition (4.1) is equivalent to the

following condition, for some 1; 2; 0 < 1 � 2 <1;

1I � OT (k �M;k)O(k �M;k) � 2I; (4.2)

where

O(k �M;k) :=

2
666666664

Ck�M

Ck�M+1Ak�M

...

CkAk�1 � � �Ak�M

3
777777775
:
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In order to apply this linear observability condition to the EKF (3.3) and (3.4) and, ulti-

mately, to relate this to observability properties of the underlying nonlinear system, let's

represent O(k �M;k) in terms of the EKF variables, i.e.,

Oe(k �M;k) :=

2
666666664

C(x̂�k�M )

C(x̂�k�M+1)A(x̂k�M)
...

C(x̂�k )A(x̂k�1) � � �A(x̂k�M )

3
777777775

(4.3)

=: Oe(x̂
�

k�M ; x̂k�M ; � � � ; x̂k�1; x̂
�

k ):

De�ne the map H : IRn ! (IRp)n by

H(x) := (h(x); h(f(x)); � � � ; h(fn�1(x))) (4.4)

The system is said to satisfy the observability rank condition at x0[15] if the rank2 of the

map H at x0 equals n; The system satis�es the observability rank condition on O if this is

true for every x 2 O; if O = IRn, then one says that the system sati�es the obsevability rank

condition. By the chain rule,

@H

@x
(x0) =

2
666666664

@h
@x
(x0)

@h
@x
(x1)

@f
@x
(x0)

...

@h
@x
(xn�1)

@f
@x
(xn�2) � � �

@f
@x
(x0)

3
777777775

(4.5)

=:
@H

@x
(x0; x1; � � � ; xn�1)

where xk+1 = f(xk); k = 0; 1; � � � ; n � 2: It follows that rank Oe = rank @H
@x

if x̂�k and x̂k

are equal to the true state xk; for k = 0; 1; � � � ; n � 1: By continuity we can argue that if

the system (3.1) satis�es the observability rank condition, then its associated EKF satis�es

the observability condition (4.2), for M = n � 1; whenever the estimates x̂�k and x̂k are

\su�ciently" close to the true state xk: The boundedness of the error covariances would

2Recall that the rank of H at x0 equals the rank of @H
@x

(x) evaluated at x0:
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then follow from Deyst and Price, [11]. This line of reasoning is made precise in Proposition

4.1 below and in Section 5.

Proposition 4.1 Suppose that the system (3.1) satis�es the observability rank condition on

a compact subset K � IRn: Then there exist 1; 2; 0 < 1 � 2 <1 and �1 > 0 such that

1I �
@H

@x
(x̂0; � � � ; x̂n�1)

T @H

@x
(x̂0; � � � ; x̂n�1) � 2I (4.6)

for all x̂l such that jx̂l � xlj � �1; l = 0; � � � ; n� 1; and for each x0 2 K:

Proof: By the observability rank condition,

@H

@x
(x0; x1; � � � ; xn�1)

T @H

@x
(x0; x1; � � � ; xn�1) > 0

for all x0 2 K: Since @H
@x

is continuous and K is compact, there exist �1 > 0; �2 > 0 such

that, for all x0 2 K;

�1I �
@H

@x
(x0; x1; � � � ; xn�1)

T @H

@x
(x0; x1; � � � ; xn�1) � �2I:

Then, once again invoking continuity and compactness, there exist 1; 2; 0 < 1 � �1 �

�2 � 2 <1 and �1 > 0 such that (4.6) holds.

Remark 4.2 If one assumes that [@f
@x
(x0)]�1 exists for each x0 2 K; K � IRn compact, then,

as long as @f
@x

is continuous, it follows that there exist �1; �2; 0 < �1 � �2 <1; such that

�1I �
@f

@x
(x0)

T @f

@x
(x0) � �2I:

Recall that this is important for linking (4.1) and (4.2).

Remark 4.3 Suppose that the system (3.1) satis�es the observability rank condition and

that the output y is scalar valued. Then �x = H(x) is a local di�eomorphism about the

origin. In the �x- coordinates, (3.1) is transformed into a local, observer canonical form:

�x1(k + 1) = �x2(k)
...

�xn�1(k + 1) = �xn(k)

�xn(k + 1) = �(�x1(k); � � � ; �xn(k))

y = �x1(k):

(4.7)
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A simple computation shows that the linearized observability condition (4.2) is always sat-

is�ed for a system in the form (4.7); indeed, O(k �M;k) � In for M = n � 1: This is a

marked contrast to the situation analyzed in Proposition 4.1, and underlines the coordinate

dependence of the Kalman �lter in general, and the linearized observability condition (4.2)

in particular.

5. Applicability of EKF as an observer for nonlinear systems

In this Section we seek to remove the boundedness assumption on the error covariances

that was used in Section 3. By applying the EKF on a convex compact subset of the state

space, this can be done. Before we begin, a few notations are mentioned. Let O be a convex

compact subset of IRn; � O the complement of O, and � > 0 be a positive constant. De�ne

d(x;� O) = inffjx� yj : y 2� Og; and O� = fx 2 O : d(x;� O) � �g: Since O is compact,

kAk := sup
x2O

k
@f

@x
(x)k and kDhk := sup

x2O
k
@h

@x
(x)k are bounded. Let a = max(1; kAk) and

bk = (1 + k �Q0kkDhk
2kR�1k2)ak

kY
l=1

f1 + kDhk2kR�1k2

�[kAk2lk �Q0k+ kNk
2(kAk2(l�1) + kAk2(l�2) + � � �+ 1)]g:

First we consider a su�cient condition for keeping the estimates x̂�k and x̂k near the true

state xk:

Theorem 5.1 Consider the system (3.1) and its associated EKF (3.3) and (3.4). Suppose

that the following conditions hold.

1. xk 2 O�; for some � > 0; 0 � k �M:

2. je0j = jx̂�0 � x0j �
�
bM

for some 0 < � � �=2:

Then for k = 0; 1; � � � ;M;

jx̂�k � xkj � � and jx̂k � xkj � �:

15



Proof: We show the closeness by induction. First, by assumption, jx̂�0 � x0j � �; thus

x̂�0 2 O�=2: Now

jx̂0 � x0j = jx̂�0 +K0(h(x0)� h(x̂�0 ))� x0j

� je0j+ kK0k � j
Z 1

0
Dh(x̂�0 + s(x0 � x̂�0 ))ds e0j

� (1 + kK0k kDhk)je0j;

where we used the fact that, by convexity, x̂�0 + s(x0 � x̂�0 ) 2 O for 0 � s � 1: Since

C0 =
@h
@x
(x̂�0 ); kK0k � k �Q0k kDhk kR�1k2: Thus

jx̂0 � x0j � (1 + k �Q0k kDhk
2kR�1k2)je0j � �:

For k = 1;

jx̂�1 � x1j = jf(x̂0) � f(x0)j

= j
Z 1

0
Df(x0 + s(x̂0 � x0))ds(x̂0 � x0)j

� kAk jx̂0 � x0j � kAk(1 + k �Q0k kDhk
2kR�1k2)je0j � �:

In the same way as for k = 0;

jx̂1 � x1j � (1 + kK1k kDhk)je1j:

Using the fact that kK1k � (kAk2k �Q0k+ kNk2)kDhk kR�1k2;

jx̂1 � x1j � b1je0j � �:

Now suppose that jx̂�l � xlj � �; and jx̂l � xlj � � for 0 � l � k � 1: Then

jx̂�k � xkj = jf(x̂k�1)� f(xk�1)j

� kAk jx̂k�1 � xk�1j

� kAk(1 + kKk�1k kDhk)jx̂
�

k�1 � xk�1j

� kAk(1 + kKk�1k kDhk)kAk(1 + kKk�2k kDhk)

� � � kAk(1 + kK0k kDhk)je0j:
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Note also that for 1 � l � k � 1;

kQlk = k[(Q�l )
�1 + CT

l (RR
T )�1Cl]

�1k � kQ�l k;

kQ�l k = kAl�1Ql�1A
T
l�1 +NNTk

� kAk2kQ�l�1k+ kNk
2

� kAk2lk �Q0k+ kNk
2(kAk2(l�1)+ kAk2(l�2) + � � �+ 1);

kKlk � kQ�l k kDhk kR
�1k2:

Therefore, for 2 � k �M;

jx̂�k � xkj � bk�1je0j � �:

Also,

jx̂k � xkj � (1 + kKkk � kDhk)jx̂
�

k � xkj

� bkje0j � �:

This completes the proof.

Since we have conditions which keep the EKF estimates close to the true state, we can now

use the results of Theorem 3.2, Proposition 4.1, and Theorem 5.1 to show the convergence

of the EKF on a convex compact set without Assumption 3.1.

Note that on a compact set O � IRn; kjD2fkj := sup
x2O

kj
@2f

@x2
(x)kj and kjD2hkj :=

sup
x2O

kj
@2h

@x2
(x)kj are bounded, and Assumption 3.1.4 holds for all x; y 2 O: Let �1 = kNk2(1+

kAk2+ kAk4+ � � �+ kAk2(n�2)); �2 = minimum eigenvalue of NNT ; a = max(1; kAk); and

�k = (1 + k �Q0k kDhk
2)ak

kY
l=1

f1 + kDhk2

�[kAk2lk �Q0k+ kNk
2(kAk2(l�1)+ kAk2(l�2) + � � �+ 1)]g:

Theorem 5.2 Suppose that the system (3.1) satis�es the observability rank condition on a

convex compact set O: Let �1 > 0 be a constant which satis�es the inequality (4.6) for some
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0 < 1 � 2: Let p = (2 + 1=�2); q = a2(�1 + 1=1) + kNk2: Let �2 > 0 be such that

'((pq)1=2�2; kjD2fkj; kjD2hkj) � � for some  > 0; where ' is de�ned in Section 3, M be

the smallest integer which satis�es

[1 + (qkAk2+ kNk2)kDhk2]kAk(1 + qkDhk2)(1�


p
)M=2(pq)1=2 < 1;

and � = min(�=2; �1; �2) for some � > 0: Suppose further that je0j �
�

�n+M�1
: Then we have

the following results:

1. jx̂�k � xkj � � and jx̂k � xkj � � 8k � 0:

2. The linearized system around x̂�k and x̂k, i.e., zk+1 = @f
@x
(x̂k)zk; yk = @h

@x
(x̂�k )zk;

satis�es the observability condition (4.2) for k � n�1: Thus there exist q <1; p <1

such that kQlk � q; and kQ�k k � p 8k � n� 1:

3. The error is bounded by � and after time step n � 1; converges to zero, i.e., for k �

n� 1; jekj � �; and for k > n� 1; jekj � min(�; (1� 
p
)(k�n+1)=2(pq)1=2�):

Proof: Since the assumptions satisfy the su�cient condition which bounds x̂�k and x̂k near

xk for k = 0; � � � ; n+M � 1; it follows that for k = 0; � � � ; n+M � 1;

jx̂�k � xkj � � � �=2 and jx̂k � xkj � � � �=2:

Therefore, the EKF (3.3), (3.4) satis�es the observability condition (4.2) with R = I; i.e.,

for n� 1 � k � n+M � 1;

1I �
k�1X

i=k�n+1

�T (i; k � n + 1)CT
i Ci�(i; k � n+ 1) � 2I: (5.1)

Since N is nonsingular and O is compact, it follows clearly that for n� 1 � k � n+M � 1;

�1I �
k�1X

i=k�M

�(k; i+ 1)NNT�T (k; i+ 1) � �2I: (5.2)

Hence by Deyst and Price[11], for n� 1 � k � n+M � 1;

kQkk � �1 + 1=1 and kQ�1k k � p;
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thereby giving the following bounds for n� 1 � k � n +M � 1;

1=p � kQkk � kQ�k k � q and 1=q � k(Q�k )
�1k � kQ�1k k � p:

Using jen�1j � �; we have

'((pq)1=2jen�1j; kjD
2fkj; kjD2hkj) � �:

Accordingly, though we apply EKF from k = 0; we have the convergence results only after

k = n� 1; i.e.,

jelj � (pq)1=2(1�


p
)(l�n+1)=2jen�1j; l � n� 1:

Now we show the remaining part by induction. That is,

jx̂�n+M � xn+M j � kAk jx̂n+M�1 � xn+M�1j

� kAk(1 + kKn+M�1k kDhk)jen+M�1j

� kAk(1 + qkDhk2)(pq)1=2(1�


p
)M=2jen�1j � �:

Note that R = I is used as a design variable. Also,

jx̂n+M � xn+M j � (1 + kKn+Mk kDhk)jen+M j

� [1 + (qkAk2 + kNk2)kDhk2]kAk(1 + qkDhk2)

�(1�


p
)M=2(pq)1=2jen�1j � �:

In addition, we have

x̂�n+M 2 O�=2 and x̂n+M 2 O�=2:

Thus the conditions (5.1) and (5.2) are also met for k = n+M . Hence kQn+Mk � �1+1=1

and kQ�1n+Mk � p: Therefore by induction it can be shown that for k � n+M;

1. jx̂�k � xkj � � � �=2; jx̂k � xkj � � � �=2:

2. kQ�k k � q; kQ�1k k � p:

3. jekj � �(pq)1=2(1 � 
p
)(k�n+1)=2:
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Remark 5.3

(a) In order to satisfy the observability condition, it was necessary to keep the estimates x̂�k

and x̂k near xk for 0 � k � n� 1; thus requiring a very good initial guess.

(b) We also needed to have an initializing period (n�1 � k � n+M�1) for the EKF in order

to build up the observability condition; after this, the recursions proceeded automatically.

6. Conclusion

We have analyzed in detail how the EKF works when it is applied to a deterministic

nonlinear system for the purpose of observation. With a priori bounded error covariances,

it can be shown that the EKF works as a quasi-local observer[14]. To obtain the convergence,

it is generally necessary either to have a very good initial guess or to have a weak nonlinearity

in the sense that kjD2fkj and kjD2hkj should be su�ciently small. This part of the analysis

was rather standard and followed the work of [1]. In order to estabilish the boundedness

of the error covariances in the EKF, an observability condition must be imposed on the

linearization of the nonlinear system along the estimated trajectory. Conditions under which

the observability of the underlying nonlinear system implied that of the linearized system

were identi�ed in Section 4. In Section 5, it was then shown how this could be used to prove

the boundedness of the error covariances.
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Appendix: Error covariance bounds for linear time invariant systems

Motivated by [1], we interpret Qk and Q�1k in terms of dual optimal control problems

which give the same Riccati equations as (2.8)and (2.9). Let H = R�1C and let M > 0 be

a �xed integer. Consider

�k = AT�k+1 +HTvk+1; k = 0; � � � ;M � 1; (A.1)

where �M is given and v is the control. The cost to minimize is

J1 =
1

2
�T0Q

�

0 �0 +
1

2

M�1X
k=0

(�Tk+1NNT�k+1 + vTk+1vk+1): (A.2)

Then the necessary conditions are given as follows in terms of a two-point boundary-value

problem:

�k = AT�k+1 +HTvK+1; �M given;

�k+1 = A�k +NNT�k+1; �0 = Q�0 �0;

and the optimal control is given as

vk+1 = �H�k:

If we set �k = Q�k �k then by the \sweep method "[8] it can be shown that Q�k satis�es the

Riccati equation (2.8). Moreover, the minimum cost is

J�1 =
1

2
�TMQ

�

M�M =
1

2
�TM�M

Similarly, set Pk = Q�1k and consider

�k+1 = A�k +Nvk; k = 0; � � � ;M � 1; (A.3)

where �M is given and v is the control. The cost to minimize is

J2 =
1

2
�T0 (P0 �HTH)�0 +

1

2

M�1X
k=0

(�TkH
TH�k + vTk vk): (A.4)
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Then the necessary conditions are again given as follows in terms of a two-point boundary-

value problem:

�k+1 = A�k +Nvk; �M given;

�k = AT�k+1 +HTH�k+1; �0 = �A�TP0�0;

where A�T = (A�1)T and the optimal control is given as

vk = �NT�k:

If we set �k = �A�TPk�k; then it can also be shown that Pk satis�es the Riccati equaiton

(2.9). Moreover, the minimum cost is

J�2 =
1

2
�TM (PM �HTH)�M :

Now we show that kQ�Mk and kPMk are bounded for all M. Since R is assumed positive

de�nite and N has rank n ,the pair (H;A) is detectable and the pair (A;N) is controllable.

Theorem A.1 Consider the system (2.1), the Kalman �lter equations (2.3) and (2.4)

for the associated system (2.2) and the above two optimal control problems. Suppose that

N has rank n and �Q0; R are positive de�nite. Then for any �;� chosen such that all the

eigenvalues of (A+ �H) and (A+N�)�1 are inside the unit disk and nonzero, let

�Q =
1X
k=0

(A+ �H)kf(A+ �H)Tgk;

�P =
1X
k=0

f(A+N�)�T gk(A+N�)�k:

Then �Q and �P are well-de�ned positive de�nite matrices. Moreover,

kQ�Mk � fk �Q0k �
�max(�Q)

�min(�Q)
+ (kNk2 + k�k2) � �max(�

Q)g =: q; (A.5)

kPMk � fkHk2 + (k �Q�10 k+ kHk
2 + k�k2) �

�max(�P )

�min(�P )
+

(kHk2 + k�k2) � �max(�
P )g =: p; (A.6)

where �min(�); �max(�) denote the minimum and maximum eigenvalues, respectively.
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Proof: First, consider in (A.1) a feedback control

vk = �T�k:

Then from (A.2)

2J�1 = �TMQ
�

M�M � �T0Q
�

0 �0 +
M�1X
k=0

�Tk+1(NNT + ��T )�k+1

� kQ�0 kj�0j
2 + (kNk2 + k�k2)

M�1X
k=0

j�k+1j
2: (A.7)

Now by �k = (A+ �H)T�k+1

�TM�Q�M =
M�1X
k=0

(�Tk+1�
Q�k+1 � �Tk �

Q�k) + �T0 �
Q�0

=
M�1X
k=0

�Tk+1[�
Q � (A+ �H)�Q(A+ �H)T ]�k+1 + �T0 �

Q�0:

Since the pair (H;A) is detectable, we can �nd � such that all the eigenvalues of (A+�H)

are inside the unit disk.Then there exists a unique positive de�nite matrix �Q that satis�es

the Liapunov equation

�Q � (A+ �H)�Q(A+ �H)T = I:

Indeed,the solution is given as

�Q =
1X
k=0

(A+ �H)kf(A+ �H)Tgk:

With this �Q;

�TM�
Q�M =

M�1X
k=0

j�k+1j
2 + �T0 �

Q�0:

Therefore,
M�1X
k=0

j�k+1j
2 � �TM�Q�M � �max(�

Q)j�M j
2 (A.8)

and

�min(�
Q)j�0j

2 � �T0 �
Q�0 � �max(�

Q)j�M j
2;

thus

j�0j
2 �

�max(�Q)

�min(�Q)
� j�M j

2: (A.9)
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Substituting (A.8) and (A.9) into (A.7) gives (A.5).

Similarly, consider in (A.3) a feedback control

vk = ��k :

Then from (A.4),

2J�2 = �TM (PM �HTH)�M � �T0 (P0 �HTH)�0 +
M�1X
k=0

(�TkH
TH�k + vTk vk)

or from (2.3b) noting P0 �HTH = �Q�10

�TMPM�M � �TMH
TH�M + �T0 ( �Q

�1
0 +HTH + �T�)�0 +

M�1X
k=1

�Tk (H
TH + �T�)�k

� kHk2j�M j
2 + (k �Q�10 k+ kHk

2 + k�k2)j�0j
2 (A.10)

+(kHk2 + k�k2)
M�1X
k=1

j�kj
2:

Now �k = (A+N�)�k�1; and thus �k�1 = (A+N�)�1�k; therefore

�TM�P�M =
MX
k=1

(�Tk�
P�k � �Tk�1�

P�k�1) + �T0�
P�0

=
MX
k=1

�Tk [�
P � (A+N�)�T�P (A+N�)�1]�k + �T0�

P�0

Since all the eigenvalues of (A+ N�)�1 are inside the unit disk and nonzero, there exists a

unique positive de�nite matrix �P satisfying

�P � (A+N�)�T�P (A+N�)�1 = I:

Moreover, the solution is given as

�P =
1X
k=0

f(A+N�)�T gk(A+N�)�k:

Since

�TM�P�M =
MX
k=1

j�kj
2 + �T0�

P�0 �
M�1X
k=1

j�kj
2 + �T0�

P�0;

it follows that
M�1X
k=1

j�kj
2 � �max(�

P )j�M j
2
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and

j�0j
2 �

�max(�P )

�min(�P )
� j�M j

2:

Finally, with (A.10) this gives (A.6).
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