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Abstract

The convergence aspects of the extended Kalman filter, when used as a deterministic
observer for a nonlinear discrete-time system, are analyzed. To a certain extent, the
results parallel those of [1] for continuous-time systems. However, in addition to the
analysis done in [1], the case of systems with nonlinear output maps is treated and the
conditions needed to ensure the uniform boundedness of certain Riccati equations are
related to the observability properties of the underlying nonlinear system. Furthermore,
we show the convergence of the filter without any a priori boundedness assumptions

on the error covariances whenever the states stay within a convex compact domain.
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1. Introduction

Designing an observer for a nonlinear system is quite a challenge. Thus, as a first step, it
is interesting to see how classical linearization techniques work with nonlinear systems and
what their limitations are. In [1], Baras et al. describe a method for constructing observers
for dynamic systems as asymptotic limits of filters. They discuss the method as applied to
the linear case, and a class of nonlinear systems with linear observations, in continuous-time
domain. Essentially the extended Kalman filter(EKF) is used as their observer[1,6].

Motivated by their work, we analyze the convergence aspects of the EKF when it is used
as a deterministic observer for a nonlinear discrete-time system. That is, we will consider

the system:

Tpr1 = flag,ug), o given,
Y = h(:z;k,uk),

and the EKF for the associated “noisy” system:

Zepr = [z, up) + Nwg, (1.2)
& = h(zg,up) + Rug.
Throughout the paper z,w € R" and y,v € R’ and f,h are assumed to be at least twice
differentiable. As usual, zg, vy, and wy are assumed jointly Gaussian and mutually independ-
ent. Furthermore zo ~ N(Zo, Qo),wr ~ N(0,1,), and vy ~ N(0,1,). We also assume that
N has rank n and R and Qg are positive definite.

We denote by | - |, the Euclidean norm of a vector, and by || - || and ||| - |||, the induced
norms on matrices and tensors. The symbol “:=” means that the RHS is defined to be equal
to the LHS; the reverse holds for “ =: 7.

Section 2 discusses the convergence of the Kalman filter for the class of linear systems; it
is emphasized that, especially for time-invariant systems, it is not necessary to assume the
uniform boundedness of the error covariances (cf. condition (28) in [1]) since it is implied by

the usual detectability condition and the invertibility of the system matrix. In Section 3, we

consider the case of nonlinear systems with nonlinear output maps. The conditions needed to



ensure the uniform boundedness of certain Riccati equations are related to the observability
properties of the underlying nonlinear system in Section 4. In Section 5, convergence of the
EKF without any boundedness assumption on the error covariances is proven whenever the
states stay within a convex compact set, which is not necessarily small. These results show

that the EKF is a quasi-local observer[14]. Conclusions are made in Section 6.

2. A global asymptotic observer for linear time-varying systems

In this Section we explicitly show that the Kalman filter for linear systems with artificial
noises can be used as a global asymptotic observer for the underlying deterministic system.
The results summarized here are essential for setting up the analysis on nonlinear systems,
which is done in Section 3 through Section 5.

Consider the linear system:

Tpr1 = Apvp+ Brug, o given, (2.1)
ye = Crag,
where Ay, is assumed invertible, and consider also the associated “noisy” system:
Zhy1 = Awze + Brug + Nwy
+1 ’ (22)

& = Crzp + Rog,
where the design parameters NV and R are assumed positive definite. Then the Kalman filter

equations for (2.2) are given as follows[3].

Measurement update:

t = 1, + Kp(& — Criy), (2.3a)
Qc' = (Q5) " + CL(RRT)'Cy, (2.3b)
Time update:
Ty = Ari + Brug, (2.4a)
Qi1 = AQrAL + NNT, (2.4b)



where
K, = Q:CH(RRT) ' = Q; CT(CLQ; CT + RRT)™
and @, @y are the a priori and a posteriori error covariances, respectively. The filter is
initiated by setting 25 = 2o and Qy = Qo ; Qo is used as a design parameter, assumed also
positive definite.
To obtain an error dynamics, let’s rewrite the Kalman filter in terms of the a priori

variables. jFrom (2.3) and (2.4) we have, noting that we use y; instead of ¢,

Ty = Al — KpCr)2 + Brug + ArKyys, (2.5)
Qryr = Al — KiCp)Qp Al + NNT. (2.6)
If we define the error as e, = x;, — 2, then the error dynamics is given as
ert1 = Ap(l — KiCy)ey. (2.7)
The associated Riccati equations for the error covariances are
Qrrr = Al(Qp)™ 4+ CLHRRT)T'CL " AL + NN, (2.8)
Oily = [AQeAl + NNTJ 4 CI(RET)C (2.9)
We note that taking Q5 = Qo > 0 and rank N = n implies Q3 > 0 and Q) > 0 for all
k> 0.
Since we are interested in the asymptotic behavior of the error, e, it is necessary to
obtain bounds for ||Q; | and ||Q% |-
Deyst and Price [11] obtained a sufficient condition which gives lower and upper bounds

of Qx. Consider the following “noisy” system:

Ty = Apzp + Nwy, (2.10)
yp = Char + Rog,

Suppose that there are real numbers a4, oy, 41, 32 such that the following conditions hold for

all £ > M and for some finite M > 0 :

ol > Z (kyi + DNNTOT (ki +1) > anl, 0< aq, 0y < o0, (2.11)
i=k—M



k
Bl < 3 OT (1 k)CHRRT) T Ch® (i k) < Bal, 0 < By, By < o0; (2.12)

E—M
then
1

m] <Qp < (ar +1/61)1,

where

(I)(k, Z) — Ak_lAk_Q o Az

Thus from (2.4b)

Q5 Il < (ax + 1/BIIAN* + IV]*.

The conditions (2.11) and (2.12) imply that the “noisy” system (2.10) is stochastically con-
trollable and observable[12]. The condition (2.11) is immediately satisfied with nonsingular
design parameter N. On the other hand, let’s take R = I, R being a design parameter;
then condition (2.12) is satisfied if the deterministic part of the system (2.10), i.e., the pair
(A, C), is uniformly completely reconstructible[13].

Baras et al.[l1] have also obtained bounds for the error covariances in continuous-time,
using dual optimal control problems. Similar methods yield bounds for the error covariances
in discrete-time. The bounds for the case of linear time invariant systems are explicitly shown
in the Appendix, and follow from the detectability of the pair (A, C') and the invertibility of
A. We will discuss how observability is related to the boundedness of the error covariances in
the extended Kalman filter later in Section 4. For now, we make the following assumption,
which, we note, is implied by the uniform observability of (A, Cy).

Assumption 2.1 The error covariances of the Kalman filter (2.3) and (2.4) are uniformly
bounded , i.c., there exists ¢ < 0o and p < oo such that ||Q} || < ¢ and ||Q3*|| < p for all
E>0.

Now with these bounds we can show that the error converges to zero asymptotically.
Before proceeding we need a lemma from Lyapunov stability theory [2, Theorem 4.8.3].
Definition 2.2 A function ¢ is said to be of class K if it is continuous in [0, a), strictly

increasing and ¢(0) = 0. Let N be the set of nonnegative integers, Rt the set of positive



reals, and B, the open ball having center at 0 and radius a.

Lemma 2.3 Assume for some a > 0 that there exists a function V' such that

(1) V: Nt x B, — R*;V(k,0) = 0; V is positive definite and continuous with respect to the
second argument;

(2) AV (k,er) = V(E+1,ex41) — V(k,er) < —p(lex|), where 1 is of class K. Then the origin

of (2.7) is asymptotically stable.

Theorem 2.4 Consider the system (2.1) and the Kalman filter equations (2.3) and (2.4)
for the associated system (2.2). Suppose that Ay, is invertible for all k and that Assumption
2.1 holds. Suppose further that | Al := sup{||A|| : & = 0,1,---} and ||C]| := sup{||Ck|| :
k =0,1,---} are bounded. Then the Kalman filter for the noisy system (2.2) is a global
asymptotic observer for the deterministic system (2.1), as long as N has rank n and R and
Qo are positive definite.

Proof: Let Py = (Qy)~'. From (2.4b)

Al Qi AT = Qi+ APNNT AT
Inverting the above equation
AP Ay = Q7 — QN Q7 + AL(NNT) T AT
If we note Qy = (I — KxCp)Qy or Q7 = (Q7 )Y (I — KxC)™" then
ALPL A ={P; — Pr (1 — KpCo) N Q"+ AL(NNT) T AT PR — KihCy)™' (2.13)
Thus, from (2.7) and (2.13)

et Prern = ef (I — KyCo) T AL P An(1 — KiCey,
= (I - K,O)'{P; — PT(I — K C) Q7!

+ATNNT) LA LR ey



Since Q) = (I — K, Cy)Q5 is symmetric, (I — K;Cy)T = P; (I — K,C1,)Q5 . Therefore,

e Pient = el (I — KpCy) — Pr(Qit + AL(NNT) T Ap) 7 P Yey,

= el Prey — e {PTKiCr 4+ Pr(Qit + AL(NNT)Y YA T P Ve

Now if we let V(k,er) = e{Pk_ek then V satisfies the conditions given in Lemma 2.3.

Moreover, noting Py, K;Cy = CE(CrQ; CF + RRT)71Cy,

AV (k,er) = e£+1Pk_+1ek+1 - ezpk_ek
= —e {CHCQr CF + RRY) ' Cr + P (Q1"

FALNNT)T AT P Fey

IA

—ei PO(Qpt + AL(NNT) T A T Py
Since
Q" + AL(NNT) T A < QM+ IINT AP < p+ [INTHPIAIP =21,
e Pr(Qt + ALNNT) T AT Prey = %IPgeklz-
If we use [P ex| > el

1

rqul

1
AV (k er) < ——lerl” < - V(k,ex),
rq

where we used the bounds given in Assumption 2.1 and py := p+ ||R™Y|?||C]|*. Therefore by

Lemma 2.3, e} converges to zero asymptotically.

3. General Nonlinear Systems

In this Section the results for linear systems are extended to general nonlinear systems

of the form:

Tpr1 = flag,ug), o given,

Y = h(l‘k, uk),



where f and h are at least twice continuously differentiable

consider a system without controls:

. For simplicity of notation®, we

Tpe1 = flag), a0 given, (3.1)
Y = h(xk)v
and its associated “noisy” system:
zepr = flz) + Ny, (3.2)
& = h(zk) + Roy.
The extended Kalman filter for the associated system is given as follows][3].
Measurement update:
Tpo= @y + K& — h(E)), (3.3)
Q' = (QF) + CL(RRN)TCL,
Time update:
92'1;+1 = f(i'k)a (3 4)
Qip1 = AsQeAL + NNT,
where
K, = Qy0H(CQpCl+ RRY),
af
A = —(a
k O (xk)v
oh . _
Crp = a—x(:pk ).
The Riccati equations for the error covariances are given as follows
Qi = Al(Q0)™ + HIH AL + NNT, (3.5)
le{l—l = [AkaAg —I_ NNT]_l -I_ Hg+1Hk+17 (36)

where H, = R7'(C}.

!The modifications necessasry to handle inputs are indicated at the end of the Section.



To begin with, we make the following assumptions for setting up the analysis; Section 4
addresses how Assumption 3.1.1 is implied by an observability property of (3.1).

Assumption 3.1

1. The error covariances of the extended Kalman filter (3.3) and (3.4) are uniformly

bounded, i.e., there exist ¢ < oo and p; < 0o such that, for all k >0, ||Q¢|| < q and

1QF I < pr.

2. Ax) = %(:p) is invertible at each x € R*, and ||A| := sup ||A(z)|| and ||A7"|| :=
rER™
(

sup ||[A7Y ()| are bounded.
zERM
h
3. ||H|| := sup HR_la—(:L')H is bounded.
rER™ Ox
4. Let g(x,y) := h(x) — h(y) — %(y)(x —y), and suppose that there exists g < oo such

that |g(z,y)| < g|||D*1|] |v — y|?* for all x,y € R™.

For later use we derive a few more bounds. From (3.3)
Py = (Qy) ™" = Qyf — Hy Hy,

thus giving
1Pl < Qx| +IHI* < po 4 [1H||* := p.

Also from (3.3)

1Qul < 1@l < ¢

Furthermore,

11— KnCurl| = 11Qu( Qi) M| < pyg

and

| = 1QuC (RET)TH| < gl H || B7Y* =2 6.

Now to prove convergence, set
V(k,ex) = ep Pre, 1D f]|| = SeulgnHlsz(w)Hlv I1D*R]| = SeulgnHlDzh(w)Hl,

8



and

1
(el MDA DRI = sglID*RI ANl + 1D FIll(pg + 8g I D*AIII fex])”,

1
llexl, IID* AU ND2RIIT) - = = +plexle(lel, D2 FNIL ID*RID{2pal Al

+o(lexl, 1D AU ND*AII) lex]}-

Theorem 3.2 Consider the system (3.1) and the extended Kalman filter equations (3.3)
and (3.4) for the associated system (3.2). Suppose that Assumption 3.1 holds. Then, if

ol D2l and]| Dbl are such that for some 5 >0,
P2 VEO, o), DI I1D?RI) < =

the extended Kalman filter for the noisy system (3.2) is a local asymptotic observer for the
deterministic system (3.1), as long as the design variables N, R and Qo have been chosen
such that N has rank n and R and Qq are positive definite.

Proof: Let e, = x, — ;. Then

err1 = flog) — f(2%)

1
_ / Df(dy + sér)dséy
0

where

€ = T — Tp = T — T — Kk(h(l'k) - h(i';?))

Note also

é&r = er— Kp(Crer + gi)

== (] — Kka)ek — [(kgk
Thus, using the above equation,
1
er1 = [Ax -I-/O (Df(&r 4 séx) — Df(21))dsé

9



— (A + /01/01 D2 f(iy + rséy)séndrds)ey
= [Ar + Brléx

= Apl({ — K;Cy)er — Kigi] + Bréx

= Ay — KiCyep + Iy,

where

B, = /01/01 D? (&g + rséy)sépdrds
I, = —ALKigr+ Biéy.
Hence,
et Prenn = (ef (I — KyCo)TAL + D) Py (An( — K C)ey + )
= e/ (I — KyCp) Al P Ae(I — Ky Cr)ey + [F Py Ax
x (I — KyCp)er + ef (I — KyCy) T AL P s + B Py
Using the linear results,
AVi(k,er) = e£+1pk_+1ek+1 — e;‘:Pk_ek
< = PR(Qi + AT(NNTD) TP A Prey + I Py An(T — Ki.Cy)ex
tei (I — KyCy)TAL P L+ 1 Py

With the definition of g = g(x, 2} ), since

éx] = (I — KxCh)er — Krgx

IA

11 = K Cxll lex] + [ Kl 1gx|

< (pa+ogll[D*All| lex])lexl,

and

101
| Bl = H/o/o D? (&g + rséy)sépdrds||

1,1 N 1 N
| [ D2 lisdrdsiec] = S e,
0.J0

IA

10



it follows that
[kl = | — ApKrgr + Bréy
< ollexl, 1D FI], [11D*AI]) |ex]?

and
P AL — Ky Cyey + el (I — KpC) AL P L + 1 Py
< [PE Nl CIAN ([T = KrCk|l Tex] + Ikl)
< plexPéler], 11D FIIl ID*RINA2pgl| Al + é([exl, 11D FII1, DRI |ex|} -
Therefore,
AV (k,er) < @(lexl, [1D* FI1 DA D exl*. (3.7)

A simple argument shows that if c,o(q%V%(O,eo), IID2f1I1, || D?R]||) < —~ then AV (k,ex) <
—~|ex)? for all k > 0. Thus e, converges to zero asymptotically by Lemma 2.3.
Remark 3.3

a the observation map 1s linear, 1.e. ) = z, then = 0. It follows that
()Ifhb 1 p is li ,',h() C'z, th D?h 0. It foll h

ellel. DAL DRI = =5z + B el - D2 FINIAI + B lexl - [[[D?£]]]). Thus if we let

2
(T be the real positive solution of the equation —# + @C(ZHAH +8()=—,0<y< #,
then (% is a function of the design variables N, R, Qq,~. Therefore, under Assumption 3.1,
if

_l_

jeol - ID* Il < max

> 3.8
N.R.Qor (pq)t/? (3.8)

the extended Kalman filter (3.3) and (3.4) with &, = yx is a local asymptotic observer for
the deterministic system (3.1) with linear observations. We note that the condition (3.8) can
be satisfied if either |eo| or |||D?f]|] is small enough, in other words, if either the estimate of
the initial state is close enough to the true value or f is only weakly nonlinear.

(b) If we know the controls we can construct in the same way a local asymptotic observer

for systems with inputs:

Tpr1 = flag,ug), o given,

(3.9)
yr = h(ag, ug),

11



using the extended Kalman filter for the associated “noisy” system:

= 9 + N 9
Zh41 f(zp, up) wp (3.10)
fk = h(zk,uk) —I—Rvk

The extended Kalman filter equations and the Riccati equations for the covariances of the
associated system (3.10) are the same as (3.3), (3.4),(3.5),(3.6) with f(&x), h(2}) replaced
by f(&k, ug), h(Z) , ug). For known u, let f*(x) := f(x,u) and h*(x) := h(x,u). Now suppose

that Assumption 3.1 holds with the following bounds:
0
I|A]l == Sup{Ha—];(x,u)H cx € R ue R},

_ af - n -
A7 = sup{l[5-(x, )] H:eeRueR"},

- oh n m
|H|| := sup{|| R la—x(x,u)H cx € R u e R™}.

Then Theorem 3.2 holds with the appropriate replacements.

4. Observability conditions of a nonlinear system and its lineariz-

ation

In this Section we discuss the observability condition in relation to the EKF. First,
consider the system (2.10). If we use R = I, the observability condition (2.12) becomes
k
Bl < 37 0T (i, k)CLCK (i, k) < Bol, 0 < By, B2 < 0. (4.1)
k=M
If we assume further that AT A, > vI > 0 Vk, then condition (4.1) is equivalent to the

following condition, for some 41,72, 0 < v <72 < o0,
1l <OT(k— M, k)O(k — M, k) <y, (4.2)

where

Crm

Cr—m1 Ak
Ok — M, k) := k—M+1Ak—M

i CrAp—1- - Ap_mr |

12



In order to apply this linear observability condition to the EKF (3.3) and (3.4) and, ulti-
mately, to relate this to observability properties of the underlying nonlinear system, let’s

represent O(k — M, k) in terms of the EKF variables, i.e.,

Reltn '

O.(k— M, k) = 'C(‘%I;—M-I—I)A(JA%—M) (4.3)

| C2)A(@ k=) - A(Bp-nr) |

= Oc(Tp_ppy ThoMy s Tho1, Tp ).
Define the map H : R" — (R?)" by

H(z) := (h(z), h(f(x)), - h(f"" (2))) (4.4)

The system is said to satisfy the observability rank condition at xo[15] if the rank?® of the
map H at xg equals n; The system satisfies the observability rank condition on O if this is
true for every z € O; if O = R", then one says that the system satifies the obsevability rank

condition. By the chain rule,

%@($0)
OH 8—2(51?1)%(1’0)
Oy = | H03 e
z :
L %%(fn—l)%ﬁ(fn—z)"'g§($0)_
QH( )
= — (20, T1," Ty
aw [P Y 9 1
where x4 = f(ag), k= 0,1,---,n — 2. It follows that rank O. = rank % it 2, and 2y
are equal to the true state zy, for £ = 0,1,---,n — 1. By continuity we can argue that if

the system (3.1) satisfies the observability rank condition, then its associated EKF satisfies
the observability condition (4.2), for M = n — 1, whenever the estimates &, and I are

“sufficiently” close to the true state xj. The boundedness of the error covariances would

?Recall that the rank of H at xg equals the rank of %(1‘) evaluated at zg.

13



then follow from Deyst and Price, [11]. This line of reasoning is made precise in Proposition

4.1 below and in Section 5.

Proposition 4.1 Suppose that the system (3.1) satisfies the observability rank condition on

a compact subset K C R". Then there exist v1,72,0 < v < 72 < o0 and 61 > 0 such that

oH . . oOH
il < 8—:1;(%7 T 751?n—1)Ta—x

for all & such that |2, — x| < 61,1 =0,---,n— 1, and for each z¢ € K.

(Zo, 5 Tnr) <72l (4.6)

Proof: By the observability rank condition,
OH 7 OH

—(l'o,l'l,' .. ,l’n_l) —(l'o,l'l,' . ,l'n_l) >0
oz

ox

for all o € K. Since % is continuous and K is compact, there exist 31 > 0,3y > 0 such

that, for all ¢ € K,

oM 7 OH

51] < a—x(fﬁo,wl,"',wn—ﬁ a—x(flfoafl?l,“‘afl?n—ﬁ < 52]-

Then, once again invoking continuity and compactness, there exist v1,7v2,0 < v < 1 <

By < 2 < 00 and é; > 0 such that (4.6) holds.
9

Remark 4.2 If one assumes that [%(:1;0)]_1 exists for each g € K, K C R" compact, then,

as long as 97 s continuous, it follows that there exist 11, 12,0 < 11 < vy < 00, such that

oz
0 0
1/1] S %(l’o)Ta—i(l’o) S 1/2].

Recall that this is important for linking (4.1) and (4.2).
Remark 4.3 Suppose that the system (3.1) satisfies the observability rank condition and
that the output y is scalar valued. Then # = H(x) is a local diffeomorphism about the

origin. In the Z- coordinates, (3.1) is transformed into a local, observer canonical form:

r(k+1) = z9(k)

Tk +1) = (k) (4.7)
Zalk+1) = o(ay(k), -, 2a(k))
= Ti(k)



A simple computation shows that the linearized observability condition (4.2) is always sat-
isfied for a system in the form (4.7); indeed, O(k — M, k) = I, for M = n — 1. This is a
marked contrast to the situation analyzed in Proposition 4.1, and underlines the coordinate
dependence of the Kalman filter in general, and the linearized observability condition (4.2)

in particular.

5. Applicability of EKF as an observer for nonlinear systems

In this Section we seek to remove the boundedness assumption on the error covariances
that was used in Section 3. By applying the EKF on a convex compact subset of the state
space, this can be done. Before we begin, a few notations are mentioned. Let O be a convex

compact subset of B*, ~ O the complement of O, and € > 0 be a positive constant. Define
dz,~O)=wmnf{lr—y|:y €~ O}, and O, = {x € O : d(x,~ O) > €}. Since O is compact,
h
I|A]| := sup Ha—f(x)H and || Dh|| := sup Ha—(:p)H are bounded. Let a = max(1,||A||) and
z€0 Ox z€Q Oz

k
b = (L4 [QollIDAI* BT a" TI{L + [ DAI*| B

=1

<[AIPNQoll + INIPALAIY + AP 4+ 1]

First we consider a sufficient condition for keeping the estimates 2, and #j near the true

state .

Theorem 5.1 Consider the system (3.1) and its associated EKF (3.3) and (3.4). Suppose

that the following conditions hold.

1. zp € O, for somee >0, 0<Fk< M.

2. leo| = |2y — @o] < & for some 0 < 6 < ¢/2.
Then for k=10,1,---, M,

|2y — x| <6 and  |&p —ag| < 6.

15



Proof: We show the closeness by induction. First, by assumption, |25 — x| < 6, thus

2y € Ocz. Now

to—wo| = [Zg + Ko(h(wo) = h(ig)) — o

IA

1
ol + 1ol - | [ Dh(5 + s(wo = 25 ))ds eol

< (14 5]l [1DR[D]eol,

where we used the fact that, by convexity, &5 + s(xzg — 25) € O for 0 < s < 1. Since
Co=52(25), 1Kol < [|Qoll [IDA]] |R7"|1?. Thus

[#0 = w0l < (L4 | Qoll IDAIP[[RT[*)leo] < 6.

For k =1,

ry — x| = |f(20) = f(zo)]
- |/01 D f(wo + 5(F0 — 20))ds(F0 — 20)|

< [|4]

Fo — wo| < [JANI(L + | Qoll DA ETH*)]eo] < 6.

In the same way as for k£ =0,

byl < (L4 KD IDRe
Using the fact that ||Ky[| < (JJAI|Qoll + [INIP)IDA 1B,
|21 — 21] < byleg| < 6.
Now suppose that |2, — x| < 6, and |#; — 2] < 6 for 0 <1 < k — 1. Then

2y —ax] = [f(@r-1) = flap)]

IA

HAH |§?k—1 - fl?k—1|

< A+ [ K= [ {[DA]])

Ty — wk—1|
< AN + [[Ke=a [ IDRIDIANL + ([ K=z | [|1DR]])

- [JA[C+ [Koll [[DA]])eol-

16



Note also that for 1 <1 <k —1,

lQdl = QD™ + ¢RI G < Q7 |,
QT = [ A-1Qia ALy + NNT|

< NAPIQ N + INT®

IA

LA Qoll + INIE(IAID + A0 4 1),

[l < QN DA BT

Therefore, for 2 < k < M,

T, — x| < br_q]eo] < 6.

Also,

B —apl < (L4 [[Bx| - [[DA]])

i’,;—l‘k

< bk|€0| S 5

This completes the proof.

Since we have conditions which keep the EKF estimates close to the true state, we can now
use the results of Theorem 3.2, Proposition 4.1, and Theorem 5.1 to show the convergence
of the EKF on a convex compact set without Assumption 3.1.

Note that on a compact set O C R", ||[|[D*f]|| = Slelg H|%(:1;)H| and |||D*A]|| =
itelg H|%(:p)”| are bounded, and Assumption 3.1.4 holds for all x,y € O. Let oy = || N||*(1+
A2+ | AI*+- - 4 ||A]272)), ay = minimum eigenvalue of NNT | a = maz(1,]|A|), and

k
B = (L+11Qoll I DAI*)a* TT{1 + [[DA]?

=1

<[IAINQoll + INIPAAID + AP 4+ 1]

Theorem 5.2 Suppose that the system (3.1) satisfies the observability rank condition on a

convex compact set O. Let 61 > 0 be a constant which satisfies the inequality (4.6) for some
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0 <y <. Let p=(12+1/az), ¢ =da*(ar+1/n1)+ [|N||*. Let 6 > 0 be such that
o((pg) 260, |||ID f|I], |1 D?R|||) < —7 for some v > 0, where ¢ is defined in Section 3, M be

the smallest integer which satisfies
~
[L+ (gl AP+ ([N DRIPITAN + ¢l DA|[*) (1 — E)M/z(pq)l/2 <1,

. Then we have

and 6 = min(e/2,61,62) for some € > 0. Suppose further that |eo] < 3 d

n+M-—1
the following results:
1|y —ap| <6 and |3y — x| <6 VE>0.
2. The linearized system around T, and Ty, i.€., zpy1 = gi(xk)zk, Yp = gZ(:z;k )2k,

satisfies the observability condition (4.2) for k > n—1. Thus there exist ¢ < co,p < 0

such that ||Qi|| < ¢, and ||Q;]| <p Yk>n—1.

3. The error is bounded by 6 and after time step n — 1, converges to zero, t.e., for k <

=1, Jerl <6 and for k> n =1, lex] < min(6, (1 — 2)=+/2(pg)1/26).

Proof: Since the assumptions satisfy the sufficient condition which bounds &, and 2; near

xp for k=0,---,n+ M — 1, it follows that for £k =0,--- ,n+ M — 1,
|2, —ap] <6 <€/2 and &, —ax] <6< e€/2.

Therefore, the EKF (3.3), (3.4) satisfies the observability condition (4.2) with R = [; i.e.,
forn—1<k<n+M-1,

k—1
nl< Y T k—n+ 1)CIC@Gk—n+1) <l (5.1)

i=k—n+1

Since N is nonsingular and O is compact, it follows clearly that forn —1 <k <n+4+ M — 1,

ol > Z (kyi + DNNTOT (ki +1) > aql. (5.2)

i=k—M

Hence by Deyst and Price[ll], forn — 1 <k <n+ M —1,

1@kl < a1+ 1/m and QL] < p.

18



thereby giving the following bounds forn — 1 <k <n+4+ M — 1,

Up < |Qill < 1@k < ¢ and 1/q < (@) < Q5 < p.

Using |e,—1| < 6, we have

o((pa) P lenal DAL DRI < —.

Accordingly, though we apply EKF from & = 0, we have the convergence results only after
k=n—1,ie.,

le1] < (pg)'/*(1 — %)("”“)/ﬂen_ﬂ, [>n—1.

Now we show the remaining part by induction. That is,

IA

1Al

=%72_|_M - xn—I—M| iﬁn—l—M—l - xn—I—M—1|
< AN+ K ppsa |l [1DA]]) [ €nsar -]

N
< AN + gl DAY (pa) (1 — ;)M/zlen—ll <o

Note that R = I is used as a design variable. Also,

IA

St = 2arar] < (L [Kaarll 11 DA]) earar

IA

[+ (gl A + [INIIDRIPHANC + gl|DR)?)
) (1= DYMP(pg)2)e, | < 6.
p
In addition, we have
T € Oca and T € O
Thus the conditions (5.1) and (5.2) are also met for k = n+ M. Hence ||Quinm|] < o1+ 1/

and ||@Q, ;]| < p. Therefore by induction it can be shown that for & > n + M,

Lo |2y —ap| <6< €/2, o —ap] <6< €/2.
2. 1Q5 I < g, 11Q:M < p.
3. Jerl < 6(pg)/3(1 — L)tz

19



Remark 5.3

(a) In order to satisfy the observability condition, it was necessary to keep the estimates &,
and T near x for 0 < k < n — 1, thus requiring a very good initial guess.

(b) We also needed to have an initializing period (n—1 < k < n+M —1) for the EKF in order

to build up the observability condition; after this, the recursions proceeded automatically.

6. Conclusion

We have analyzed in detail how the EKF works when it is applied to a deterministic
nonlinear system for the purpose of observation. With « priori bounded error covariances,
it can be shown that the EKF works as a quasi-local observer[14]. To obtain the convergence,
it is generally necessary either to have a very good initial guess or to have a weak nonlinearity
in the sense that |||D*f||| and ||| D?*k||| should be sufficiently small. This part of the analysis
was rather standard and followed the work of [1]. In order to estabilish the boundedness
of the error covariances in the EKF, an observability condition must be imposed on the
linearization of the nonlinear system along the estimated trajectory. Conditions under which
the observability of the underlying nonlinear system implied that of the linearized system
were identified in Section 4. In Section 5, it was then shown how this could be used to prove

the boundedness of the error covariances.
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Appendix: Error covariance bounds for linear time invariant systems
Motivated by [1], we interpret Q; and Q3" in terms of dual optimal control problems

which give the same Riccati equations as (2.8)and (2.9). Let H = R~'C and let M > 0 be

a fixed integer. Consider
Uk:ATUk+1‘|‘HTUk+17 k:()v"'vM_lv (Al)

where 1y is given and v is the control. The cost to minimize is

1 ~ 1 M-1
Ji = 577(?620 No + 9 Z (771{+1NNT77k+1 + vl{-l—lvk‘l'l)‘ (A.2)
k=0

Then the necessary conditions are given as follows in terms of a two-point boundary-value

problem:

me = Almepr + H vy, given,

Mgt = AN+ NNTiigs, Ao = Qgno,
and the optimal control is given as
V41 = —H)\k

If we set A\, = @ n, then by the “sweep method ”[8] it can be shown that @), satisfies the

Riccati equation (2.8). Moreover, the minimum cost is

L, 1 _ 1
Ji = 577%4QM77M = §Uf4)\M
Similarly, set P = Q' and consider
)\k+1:A)\k‘|‘va7 kZO,"',M—l, (Ag)

where Ajs is given and v is the control. The cost to minimize is

M-1

J2 = %)\g(Po — HTH))\O + % Z (AzHTHAk + vl{vk)- (A.4)
k=0

22



Then the necessary conditions are again given as follows in terms of a two-point boundary-

value problem:

)‘k-l-l = A)\k + va, )\M given,

me = Al + H HX ey, o = =A™ Py,
where A™T = (A™1)T and the optimal control is given as
Ve = —NTnk.

If we set n, = —A~T P\, then it can also be shown that Py satisfies the Riccati equaiton

(2.9). Moreover, the minimum cost is
* 1 T T
J; = S\ (Pa = HTH) A

Now we show that ||Qy,|| and ||Pa|| are bounded for all M. Since R is assumed positive
definite and N has rank n ,the pair (H, A) is detectable and the pair (A, N) is controllable.
Theorem A.1  Consider the system (2.1), the Kalman filter equations (2.3) and (2.4)
for the associated system (2.2) and the above two optimal control problems. Suppose that
N has rank n and Qq, R are positive definite. Then for any A,, chosen such that all the

eigenvalues of (A+ AH) and (A+ N, )™ are inside the unit disk and nonzero, let

P9 = f:(A + AHY{(A+ AH)T Y,

k=0

OF = SHA+N, ) THA+N, )

Then ®9 and ®F are well-defined positive definite matrices. Moreover,

maz(®%)

lQxl = {lIQoll - imT@Q) + (NI + AL - Aaa(99)} =2 ¢, (A.5)
[Parll - < {HHH2+(HQ61H+HHH2+H7!\2)-%+
I A 11 1%) - Ao (@)} =2 p, (A.6)

where Apin(+), Amaz(+) denote the minimum and mazimum eigenvalues, respectively.
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Proof: First, consider in (A.1) a feedback control

= ATnk.
Then from (A.2)
T T N T T T
207 =y Qumve < mg Qamo+ D it (NNT + AN )migq
k=0
M-1
< Q5 ol + (INIP + 1A D Ik I (A7)
k=0
Now by ne = (A + AH) 1y
T N T T T
@ = D (1 @9 — 0L %) + nd o
k=0
_ Q T 40
= Z N[99 = (A + AH)O (A + AH) nigs + ng @2 no.

Since the pair (H, A) is detectable, we can find A such that all the eigenvalues of (A + AH)
are inside the unit disk.Then there exists a unique positive definite matrix ®% that satisfies
the Liapunov equation

O — (A+ AH)D(A+AH) = 1.

Indeed,the solution is given as

0 =S (A+ A {(A+AH)}F
k=0
With this &9,
T = T
M@ = Y Ik + ng @9no.
k=0
Therefore,
M-1
Yo I < 0a®9nn < Ao (99) I (A.8)
k=0
and
Amin (D) 00]* < 13 @910 < A (B9 e %3
thus
A (‘D )
2 2me L A,
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Substituting (A.8) and (A.9) into (A.7) gives (A.5).

Similarly, consider in (A.3) a feedback control

Vg =, )\k
Then from (A.4),
M-1
2J5 = Ay (Py— HTH)A\y < M (Po — HTH)Xo + Y (AL HTHM + v vy)
k=0
or from (2.3b) noting Po — HTH = Q"'
B M-1
APurv < AGHTH M +20(Q0 + HTH +, 7))o+ D N (HTH+, 7, )\,
k=1
< NHIPPa* + QT+ P+ 11 1) ol (A.10)

M-1
FUHE 17 X2 Pl
k=1

Now Ar = (A+ N, )As_1, and thus \p_y = (A + N, )7' \g; therefore

M
A = SN = AL 07Nl + A0 07 )

k=1

M
= Y AT —(A+ N, TP (A+ N, )" + A @7 N
k=1

Since all the eigenvalues of (A + N, )~! are inside the unit disk and nonzero, there exists a

unique positive definite matrix ®* satisfying
OF —(A+ N, )y ToP (A4 N,) ' =1
Moreover, the solution is given as

O = S {(A+ N )y THA LN,

Since
M M-1
MA@ A = DT I AR A = DT AP+ AL 9T ),
k=1 k=1
it follows that
M-1
Yo P < A (@) A ?
k=1
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and
)\max(q)P)

2
< — 7

A

Finally, with (A.10) this gives (A.6).
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