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Asymptotic Observer for Discrete-Time
Nonlinear Systems*
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Abstract

The convergence aspects of the extended Kalman filter, when
used as a deterministic observer for a nonlinear discrete-time sys-
tem, are analyzed. Systems with nonlinear output maps are treated,
and the conditions needed to ensure the uniform boundedness of the
error covariances are related to the observability properties of the
underlying nonlinear system. Furthermore, the uniform asymptotic
convergence of the observation error is established whenever the non-
linear system satisfies an observability rank condition and the states
stay within a convex compact domain. This last result provides a
theoretical foundation for this classic, approximate nonlinear filter.
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1 Introduction

Designing an observer for a nonlinear system is quite a challenge. Thus,
as a first step, it is interesting to see how classical linearization techniques
work with nonlinear systems and what their limitations are. In [4], Baras
et al. describe a method for constructing observers for dynamic systems
as asymptotic limits of filters. They discuss the method as applied to the
linear case, and a class of nonlinear systems with linear observations?, in
the continuous-time domain. Essentially the extended Kalman filter(EKF)
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1See also [13] for the case of nonlinear outputa.
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is used as their observer ([4], [5]). The extended Kalman filter is a well-
known standard linearization method for approximate nonlinear filtering.
The available literature is vast and we refer the reader to [14], [21], [28],
and the references therein. In particular, in the context of parameter esti-
mation for linear stochastic systems, a fairly systematic and comprehensive
convergence analysis of the EKF is given in [22).

Our work is most closely related to the work of Baras et al. [4]. We
will consider the system:

Tk41 f(zk,ur), o unknown,

- 1.1
e = h(zk, uk)t ( )
and the EKF for the associated “noisy” system:
Zk41 = f(zl:)uk) +kas (l 2)
&L o= h(z;,,uk)+ Ruy. '

Throughout the paper, we assume that z,w € R®,u € R™ and y,v €
RP, and that f,h are at least twice differentiable. As usual, zg,v:, and
w;. are assumed jointly Gaussian and mutually independent. Furthermore
z0 ~ N(&o, Po), wi ~ N(0,1,), and vz ~ N(0,I,). We also assume that
the design variables N, R, and P, are always chosen such that N has rank
n and R and Py are positive definite.

We denote by | - |, the Euclidean norm of a vector, and by || - || and
I} - l], the induced norms on matrices and tensors. We also adopt the
following notations. Given two symmetric matrices P and Q, of the same
dimension, the inequality P > @ means that the difference P — Q is non-
negative definite. Similarly, P > @ means that P—Q is positive definite. A
symmetric matrix @ is said to be bounded from above (below, respectively)
if there is a number ¢ > 0 such that Q@ < ¢I(g] < Q). The symbol “="
means that the RHS is defined to be equal to the LHS; the reverse holds
for “=: "7,
In Section 2, we give a new, simple proof which shows that the Kalman
filter is a global observer for (discrete-time) linear time-varying systems.
Based on this proof, we make an extension to the case of nonlinear systems
with nonlinear output maps in Section 3. The conditions needed to ensure
the uniform boundedness of the error covariances are then related to the
observability properties of the underlying nonlinear system in Section 4. In
Section 5, convergence of the error is proven under the observability rank
condition as long as the states stay within a convex compact set, which
is not necessarily small. These results show that the EKF is a quasi-local
observer [11]. Conclusions are made in Section 6.
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DISCRETE-TIME NONLINEAR SYSTEMS

2 The Kalman Filter: A Global Asymptotic Observer
for Linear Time-Varying Systems

It is well known that, under stochastic controllability and observability
assumptions, the Kalman filter for a linear time-varying system with arti-
ficial noises can be used as a global asymptotic observer for the underlying
deterministic system [9]. This fact can be also seen from the duality of
a linear optimal regulator problem [18, p. 635]. In this Section, we give a
new, simple proof, which is essential for setting up the analysis on nonlinear
systems done in Section 3 through Section 5.
Consider a linear system:

Arzp + Brug, 2 unknown,
Crzy,

Ti41

" (2.1)

where A; is assumed invertible?, and consider also the associated “noisy”
system:

zeg1 = Arze + Biug + Nwy,
& = Crzp + Rug,

where the design parameters N and R are to be chosen as positive definite
matrices. Then the Kalman filter equations for (2.2) are given as follows

[1].

Measurement update:

(2.2)

2, = Z+ K€ — Cre), (2.3)
Pi' = P74+ CT(RRT)-!Cy, :
Time update:
Zr41 = ApZp+ Brug, (2.4)
Py = AkPg;Ag‘ + NNT, '

Ky = P.CT(RRT)™! = P,CT (C+ PCT + RRT)™!

where P and Py are the a priori and a posteriori error covariances, and
Zp and &, the e priori and a posteriori estimates of the state at time k,
respectively. The filter is initiated with # and Py ; Pp is used as a design
parameter, assumed also positive definite.

2This assumption can be relaxed to singular state transition matrices if a linear
system is considered [25]. Toward nonlinear systems, however, we make this stronger
assumption here.
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To obtain an error dynamics, let’s rewrite the Kalman filter in terms of
the a priori variables. From (2.3) and (2.4) we have, noting that we use
instead of &,

T4t A(I — KxCr)zp + Brup + A K, (2.5)
Py = Au(I- Ky Cr)P AT + NNT, (2.6)

If we define the error as ey := z; — Z;, then the error dynamics is given as
€k41 = Ak(I - Ikag)ek. (27)
The associated Riccati equations for the error covariances are

Py = AP+ CT(RRT)™'Ci AT + NNT, (2.8)
Pily = [AwPeAT + NNTI™! + CT(RRT)1C,. (2.9)

Note that Py > 0 and rank N = n implies P > 0 and P, > 0 for all
0<k<oo0.

Since we are interested in the asymptotic behavior of the error, ey, it
is necessary to obtain bounds for ||P|| and ||P;Y||. Deyst and Price [9]
obtained a sufficient condition which gives lower and upper bounds on P
as follows.

Lemma 2.1 Consider the following “noisy” system:

Trpr = Aezi + Nug,
= Cizi + Rug. (2.10)

Suppose that there are posilive real numbers oy, aq, By, e such that the
Jollowing conditions hold for some finite M > 0 and for allk > M :

k-1
al> D O(ki+ )NNT®T(k,i+1) > aal, (2.11)
i=k-M
k
BI< Y 3T(i,k)CT(RRT)1Cid(i, k) < Bl (2.12)
i=k-M
then

1
mf <P < (a1 +1/81)1,

where
D(k,i) 1= Ap_1Ap_a- - A;.
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DISCRETE-TIME NONLINEAR SYSTEMS

Remark 2.2 The conditions (2.11) and (2.12) imply that the “noisy” sys-
tem (2.10) is stochastically controllable and observable [3]. It is easily
seen that the positive definiteness of N implies the stochastic controlla-
bility through the condition (2.11). For linear systems, this requirement
can be weakened to stabilizability [2] or even to nonstabilizability under a
few more assumptions [7]. For the ease of presentation and the nonlinear
systems to be considered later, however, we use this stronger assumption
here. On the other hand, let’s take R = I, R being a design parameter;
then condition (2.12) is satisfied if the deterministic part of the system
(2.10), i.e., the pair (A, Ct), is uniformly completely observable [18]. D

Remark 2.3 Under the above conditions, it can be also shown that P is
bounded from above and below. Indeed, from (2.4),

IPell < (a1 + 1/B)IIAI? + || NI,

Also, from (2.3),

— 1
P> P> —-I
k= k_ﬂz-i-l/az

Therefore,

1

Bt ey S P S Al + V/B)IAIP + NI}

It is obvious that P;"! and P! are both bounded from above and below.
m}

Remark 2.4 Deyst and Price [9] have also shown that, under stochas-
tic controllability and observability assumptions, the homogeneous filter
equations of the a posteriori estimates are uniformly asymptotically stable.
Since, in [9], AT A; is assumed bounded from above and below in norm,
and Zr4; = Ar&r when the control variable is not considered, uniform
asymptotic stability also holds for the homogeneous filter equations of the

a priori estimates (2.5), which is exactly the same as the error dynamics
(2.7).

Baras et al. [4] have also obtained bounds for the error covariances in
continuous-time via dual optimal control problems under some “stronger”
observability and controllability assumptions (see conditions (28) and (29)
in [4] ) and used the bounds to show the convergence of the error. Similar
methods yield bounds for the error covariances in discrete-time. Bounds
for the case of linear time invariant systems are explicitly shown in [26], but
in this case they follow simply from the detectability of the pair (4, C) and
the invertibility of A. In Section 4 we will discuss how the observability of
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a nonlinear discrete-time system is related to the boundedness of the error
covariances in the associated extended Kalman filter later.

Now we state a theorem on the convergence of the error, on which an
extention is made to the nonlinear systems later.

Theorem 2.5 Consider the system (2.1) and the Kalman filter equations
(2.3) and (2.4) for the associated system (2.2). Suppose that the system
(2.1) is uniformly observable and Ay is invertible for all k, and that || Al| :=
sup{||Ax]| : k > 0} and ||C|| := sup{||Ci|| : £ > 0} are bounded. Then the
Kalman filter for the noisy system (2.2) is a global, uniform asymptotic
observer for the deterministic sysiem (2.1).

Remark 2.6 In the proof the Lyapunov function V(k,ex) = e] P le; is
used, and the Riccati equations for the error covariances are exploited to
obtain the uniform asymptotic stability of the error dynamics. For the
detailed proof the reader may refer to [26].

3 General Nonlinear Systems

In this section the results for linear systems are extended to general non-
linear systems of the form (1.1). For simplicity of notation3, we consider a
system without controls:

zr41 = f(zi), o unknown,
w = h(z), 3.1)

and its associated “noisy” system:

Zegr = f(ze)+ Nug,
& = h(z)+ Ros. (3.2)

The extended Kalman filter for the associated system is given as follows

(1].

Measurement update:

£ = i+ Ke(& — h(&:), 3.9)
Pl = PC'4+CT(RRT)-'Cy, :
Time update:
Eik"'l = f(ﬁh),
Piyn = AePeAT + NNT, (3.4)

3The modifications necessary to handle inputs are indicated at the end of the section.
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where
Ky = P.CT(CiP.CT + RRT)™!,
A= Ly,

The Riccati equations for the error covariances are the same as in (2.8) and
. (2.9) with the above matrices.
‘ To begin with, we make the following assumptions for setting up the
analysis. Section 4 addresses how Assumption 3.1.1 is implied by an ob-
» servability property of (3.1); the other conditions are addressed in Section
5.

Assumption 3.1

1. The linearized system along the estimatled irajectory of the extended
Kalman filier is uniformly observable, that is, (Ax,Ct) of (3.9) and
(3.4) satisfies the uniform observability condition.

2. A(z) := %ﬁ-(z) is invertible at each z € R".

3. The following norms are bounded;

lAll := sup [lA()Il, A7*]) == sup [[[A(2)]7I,
zER® r€ER®

1 0h
|H]| := sup ||R '—a @M. MDP*Alll = sup 1D f(=)III,
ZER® T TER®

D%l = sup IIDA()]I
TER"
4. Let g(z,y) := h(z)—h(y)— Z2(z)(z—y), and suppose that there ezists
9 < 0 such that |g(z,y)| < gllID?h||| |z — y|? for all z,y € R".

Assumption 3.1.1 implies that the error covariances are uniformly
bounded. Thus let 0 < ¢,p1 < oo be the corresponding bounds for er-
ror covariances, that is, || P¢|| < ¢ and ||P;Y|| < p1 for all k£ > 0 . For later
use we derive a few more bounds. From (3.3)

Py' =Py —HyHp,
thus giving
WP Il < WP ll + IIHIP < po + IHNP = p.
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Also from (3.3), _
1Pl < 1|1 Pl < g
Furthermore,
I — KnCull = 1P Pig'l| < pa
and

&l = |PuCR(RRT) M| < gllHIIIIR7Y? =: 6.

Now to prove convergence, set

V(k, e);) = e{P;lek,
$(le|, X,Y) := &Y ||All+ 3X(pq + bgY lex|)?,
‘P(Ieklsxr Y) = _,-_;5 +P|ekr¢(|€k|,X, Y){2pan" +¢(Iekl’Xs Y)Ieki}

Theorem 3.2 Consider the system (3.1) and the extended Kalman filter
equations (3.3) and (3.4) for the associated system (3.2). Suppose that
Assumption 3.1 holds. Then, if |eo|,|||D%f|||, and |||D?h||| are such that
for some v > 0,

(a2 V3(0, e0), ID*£II, I D*HIII) < -7

then the extended Kalman filler for the noisy system (3.2) is a local, uni-
form asymptotic observer for the deterministic system (3.1).

Proof: Let ¢ = z — ;. Then
erv1 = f(ze) — f(E)
1
= / Df(&x + s€x)dséy
0

where
€ =Zp — X =2) — T — Kk(h(:ck) - h(i’k)).

Note also that

ér = e — Kg(C;,-ek + g;,.)
= (I - chk)ek -~ Kirgr.

Thus, using the above equation,
1
ery1 = [Ar +/ (Df(&r + séx) — Df(&r))ds)éx
0

1 p1
= [Ak +/ / sz(:i'k + rsé; )sé’kdrds]é’k
0J0

= [Ak + Bk]ék
= A;,-[(I - K;,-Ck)ek - Kkgk] + Byéx
= Ak(I - Kka)ek + Ik,
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where
1,1
B, = / / D? f(&y, + rséi)sédrds
0 Jo
I = —AiKigr+ Bré;.
Hence,
6{4.113;;118“1 = (e{([ - K],CI,)TAZ' + IZ)P;_‘_II(A];(I - K},-Cg)ek + lk)

= ef(I— Kka)TAZ‘P,;:IAk(I — KrChr)er
Hi Pl Ae x (I = KiCh)ex
+ei (I — KeCo)T AL Pl + T PO I
Using the linear results,
AV(k,ex) = e{HP;_'_llek.,.l - e}fﬁ;lek
< —ef PUNPT + AT(NNT) T A) Pl e + T Pl Al
~KiCi)er + el (I — KiCi)T AT Bk + IT B .

With the definition of gr = g(zi, Z)), since

1€l = |(I = KiCi)er — Kigel
< | = KiCi|l lex| + |1 Kkl |g|
< (pg + 6gllD?R|Il lex[)lex],
and
1 p1
IBell = ||/ / D?f(z: + r5é;)sépdrds||
0Jo
1 p1 ) 1
< [ [ o Alsarasteel = 30771 e,
it follows that
12| | — AeKigi + Brér|

< dleel, IID* AN, 111 DA |ex |
and

T -{.,fl Ar(I — KxCr)er +ef (I - Kka)TAZ'I_’,;‘llg + IZ’P,;}II,,.
NP5 BelUAN 117 = KiCrll lexl + |2])

plex*s(lexl, IID*SIII, IID?RII){2pqllAll
+o(lex, 1 D*£IIl, 1L D?A]| ek}
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Therefore,

AV(k, ex) < elexl, 1D FIII, IID*AII|)lex .

A simple argument shows that if p(¢3V3(0,e0), || D21, IID2RII) < —7

then
AV(k,ex) < —7|ex|? for all £ > 0. Thus e, uniformly converges to zero. O
Remark 3.3

(a) If the observation map is linear, i.e., h(z) Cz, then D?h = 0. It

(b)

()

4

follows that, p(Jex |, [1D21ll, I DAIl) = — 2 + 25 fes| - || D]
2]|Al] + B el - |||D2f|||) Let ¢{* be the real positive solution of

the equation —7r + L’—((2||A|| +E8()=-70<y< —,, (tisa
function of the demgn variables N, R, Py, 7. Under Assumptlon 3.1,if

D? !
leal - || fMi<  max (pq)"2

the extended Kalman filter (3.3) and (3.4) with & = y is a local
asymptotic observer for the deterministic system (3.1) with linear
observations. We note that the condition (3.5) can be satisfied if
either |eo| or |||D?f||| is small enough, in other words, if either the
estimate of the initial state is close enough to the true value or f
is only weakly nonlinear. If the observation map is nonlinear but
[I|D%4]|| is small, similar reasoning applies.

(3.5)

Even if the output map is nonlinear it may be locally transformed
via a coordinate change into a linear form provided the Jacobian of
h has constant rank. In order to obtain this result rigorously the
noisy system has to be constructed after the coordinate change since
otherwise the noisy terms become state dependent.

With known controls we can construct in the same way a local asymp-
totic observer for systems with inputs of the form (1.1), using the
extended Kalman filter for the associated “noisy” system (1.2).

Observability Conditions of a Nonlinear System and
its Linearization

In this section we discuss the observability condition in relation to the
EKF. First, consider the system (2.10). If we use R = I, the observability
condition (2.12) becomes

k
BI< Y ®T(GECTCOG,k) < fol, 0<fr,fa<co.  (41)
i=k-M
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If we assume further that ATA; > vI > 0 Vk, then condition (4.1) is
equivalent to the following condition: for some 71,92, 0 < 9 < 72 < o0,

mI < OT(k = M,k)O(k — M,¥) < na, (4.2)

where
Ci-m

Ci-p1Ab-
Ok — M, k) := | MM

CirApey - Ap—m

In order to apply this linear observability condition to the EKF (3.3) and
(3.4) and, ultimately, to relate this to observability properties of the un-
derlying nonlinear system, let’s represent O(k — M, k) in terms of the EKF
variables in (3.3) and (3.4), i.e.,

%ﬁ(ik-u)
_ . X S (Fk-nr41) 3 (Zr-m)
Oc(Zk-M, -, Bk, Eb-M, - Bk—1) = | .

52 (263 (2e-1) - EL(2b-m)
(4.3)
Define the map H : R" — (RP)" by

H(z) := (h(z), h(f(2)),- - h(/* ! ()T (4.4)

A system is said to satisfy the observability rank condition at z¢ [24] if the
rank? of the map H at z¢ equals n. A system satisfies the observability rank
condition on O if this is true for every z € O; if O = R", then one says
that the system satisfies the observability rank condition. By the chain
rule,

2% (z0)

OH 52(z1) 3 (x0)

E(zo) = : (4.5)
82 (2n-1)3L(2n-2) - L (x0)

= a‘(xo,zl, ‘e 'vzn-l)

where zp41 = f(zz), £=0,1,---,n—2. 1t follows that O, = %r‘;' if Z; and
Zj are equal to the true state z¢, for k =0,1,-.-,n — 1. By continuity, we
can argue that if the system (3.1) satisfies the observability rank condition,
then its associated EKF satisfies the observability condition (4.2), for M =

4Recall that the rank of H at z¢ equals the rank of %% () evaluated at zg.
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n— 1, whenever the estimates Z; and £, are “sufficiently” close to the true
state z;. The boundedness of the error covariances would then follow from
Deyst and Price [9]. This line of reasoning is made precise in Proposition
4.1 below and in Section 5. Let Xn_; := (%0,**,Zn-1) € (R™)" and
)fn-z = (&9, -+, %p-2) € (R*)""! and view O, as a function of X,_; and

n-2.

Proposition 4.1 Suppose that the system (3.1) satisfies the observability
rank condition on a compact subset K C R". If the estimates of the EKF
are sufficiently close to the irue stale, then the linearized system along the
estimated trajectory of the extended Kalman filler is uniformly observable;
i.e., there exist v;,72,0 < 71 < 72 < 00 and 6; > 0 such that

NI < 0T (Xa_1, Xn-2)0e(Xn-1, Xn-2) < 12l (4.6)

for all ; € K such that |£ — ;| < 6;,1 =0,---,n—1, and all &; € K
such that |#; — zj| < 6,7 = 0,---,n — 2, and for each zo € K, where
$|+1=f($l),l=0,”‘,n-2-

Proof: Let X,_1 := (20,21, -, Zn-1) € (R*)" and X,,_2 := (zg, 21, -,

Tp-2) € (R™)*~1. Now view Jo(Xn-1, Xn-2) := OF (Xn-1, Xn-2)0e(Xp-1,
Xn—2) as a function on Q := K™ x K"~!, Let’s denote the Euclidean norms
on R" and (R")" x (R")"~! as |- |,||| - |||, respectively, and the spectral
norm of a matrix as || - ||. Since Q is compact, J. is uniformly continu-
ous on . Thus for all ¢ > 0, there exists § > 0, independent of zo, such
that ||Je(Xn-1,Xn-2) = Je(Xn-1, Xn-2)|| < € whenever |||(Xn-1, Xn-2) -
(Xn-1,Xn-2)|ll < 6. Define a; := infzoex Amin{Je(Xn-1,Xn-2)} and
az = infroex Amaz{Je(Xn-1, Xn-2)}, where Apin ( Amaz, respectively)
denotes minimum (maximum) eigenvalue. By compactness of K and con-
tinuity of Jo, 0 < ) < ag < 00. Let € = a1 /2 and 8 be the corresponding
é coming from the continuity of J.. Then it follows that

7 v [43
%1 S Je(Xn-1,Xn-2) < (a2 + )1

whenever |||(Xn_1,Xn_2) (X,. 1, Xn-2)||| < 6o. Thus the proposition
holds with ¢, = ‘; y Y2 = a2 -I- ,and 8; = —fgﬁ ]

Remark 4.2 If one assumes that [%(-‘b‘o)]'l exists at each 29 € K, K C
R™ compact, then, as long as %,E is continuous, it follows that there exist
v, 9,0 < vy < vy < 00, such that

nil< < (zo)T f(zo) < vql.

Recall that this is important. for linking (4.1) and (4.2).
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Remark 4.3 Suppose that the system (3.1) satisfies the observability rank
condition and that the output y is scalar valued. Then £ = H(z) is a local
diffeomorphism. In the Z- coordinates, the system (3.1) is transformed into
a local, observer canonical form:

E1(k+1) = Zo(k)
Faa(k+1) = Ea(k) (“.7)
Fn(k+1) = @(F1(k), -, En(k))

y = (k)

A simple computation shows that the linearized observability condition
(4.2) is always satisfied for a system in the form (4.7); indeed, O(k—M, k) =
I, for M = n — 1. This is in marked contrast to the situation analyzed in
Proposition 4.1, and underlines the coordinate dependence of the extended
Kalman filter in general, and the linearized observability condition (4.2) in
particular.

5 Applicability of EKF as an Observer for Nonlinear
Systems

In this section we seek to remove Assumption 3.1 by applying the EKF on a
convex compact subset of the state space. Before we begin, a few notations
are mentioned. Let O be a (not necessarily small) convex compact subset
of R*, ~ O the complement of @, and € > 0 a positive constant. Define
diz,~0)=inf{lt—y|:y €~ O}, and O, = {z € O : d(z,~ O) > ¢}.

Since O is compact, ||A|| := sup ||—‘£(:e)|| and || Dh|| := sup ||z=(z)|| are
z€0 0T z€0 O
bounded. Let a = maz(1,||A}|) and

k
be = (L+[|PollllDAIPIR™P)a* TT{ + DRI R
=1

(AP Poll + INIPALAIPCD + AP + -+ 1))

First we consider a sufficient condition to keep the estimates Z; and #;
near the true state x; over a finite time period.

Lemma 5.1 Consider the system (3.1) and its associated EKF (3.8) and
(3.4). Suppose that the following conditions hold.

1. 2 €0 forsomee >0, 0<k <M.

2. leo| = |Z0 — mo| < ﬁ Jor some 0 < 6 < €/2.
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Then for k=0,1,---, M,
Iik —.’L‘kl <6 and Iik —.‘l:kl <é.

Proof: The proof is by induction. First, by assumption, |£¢ — zo| < 6,
thus &g € 0,/2. Now

|20 — zol = |Zo + Ko(h(zo) — h(Z0)) — zo|
1
< leol+ 1Koll - | /o Dh(%o + s(zo — Zo))ds eol
< (L4 ||Koll | DA]])eol,

where we used the fact that, by convexity, Z9+8(zo—%0) € Ofor0 < s < 1.
Since Co = 28(Z0), [|Koll < ||oll |1 DA |R~112. Thus

|20 — 2ol < (1+ (| Poll 1 DA IR leol < 6.
Fork =1,
|f(£0) — (o)l
|‘/0l Df(zo + 8(%0 — zo))ds(20 — zo)|
Al |20 — 2ol < [|ANI(L + | ol I DAIPIR™I?)leol < 6.
In the same way as for k =0,
|21 — 21| < (1 + || K| [| DA lea]-
Using the fact that [|K1|| < (lAI]|Poll + NI DA]L IR,
|£1 — z1] < bileo] < 6.

|21 — x|

IN

Now suppose that |Z; — ;| < 6, and |2; — z)] < 6 for 0 <! < k — 1. Then
[f(Ze-1) = fze-1)]

Al 12k-1 =z

IANCL + | K-l IDAI)IZk—1 — 221

AN+ N EKe-all IDADIAICL + || Ke 2| ||DA])

- 1Al + | Kol || DA|) el -

Note also that for 1 <1< k-1,

|2k — z&]

IANIAIN

Pl = A +CF(RRT)TICIT < 1A,
I2) = ||Ai-y Py AT, + NNT||

< AINB- |+ NI

< HAIP NPl + INIPCLAIRES + A2 + -4 1),
&l < B DAI IR
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Therefore, for 2 < k < M,
|2 — zk| < br—1]eo] < 6.
Also,
[8x — 2| < (14Kl | DA|)|Zx — 2]

< bileo] 6.
This completes the proof. O

Since we have conditions which keep the EKF estimates close to the
true state, we can now use the results of Theorem 3.2, Proposition 4.1, and
Lemma 5.1 to show the convergence of the EKF on a convex compact set
without Assumption 3.1. It is only required that the system (3.1) satisfy the
observability rank condition on a convex compact set O, and that [2£(z)]~!
exist at each z € 0.

2
Note that on a compact set @ C R", |||D*f]|| := sup llla—’Z(z)"l and
z€0O az

2
ND2%h||| := s:g |||g?’2l(z)||| are bounded, and Assumption 3.1.4 holds for

all 2,y € O. Let ay = |IN|2(1 + [|AII* + LA|I* + - - - + || A=), @ =
minimum eigenvalue of NN*, a = maz(1,|]A]|), and

k
B = (1+|1Poll [|DAf|*)a* [T{1 + ||DJ?
=1

X[LAIZ IRl + INIPAAIPCD + [LAPCD + -+ 1))

Theorem 5.2 Consider the system (3.1) and iis associated EKF (3.9)
and (3.4). Suppose that the system (8.1) satisfies the observability rank
condition on a convez compact set O, and that [-g-;é(:;r:)]‘l ezists at each
z € 0. Let 6, > 0 be a conslani which satisfies the inequality (4.6) for
some 0 <7 < 72. Let p= (72 + V/a&2), ¢ =a(as+1/m)+||N|?. Let
62 > 0 be such that o((pq)*/%6,, ||| D2f||l, [|D?R))|) < —7 for some ¥ > 0,
where ¢ is defined in Section 3, and let M be the smallest integer which
satisfies

(1 + (allAI? + IV DA ANCL + qll DA2)
x(1 = 2)YMI2(pg)l/2 < 1.

Suppose further that xx € O,, k > 0, for some € > 0, and that les] <
BTL-_‘ with 6 = min(e/2,8,,62). Then we have the following results:

1 |y —ze| <6 and |2 — x| <6 VE>O.
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2. The linearized system around T; and &, i.e., 2p41 = gﬁ(ﬁk)n, Yp =
$h(Z1k)ze, satisfies the observability condition (4.2) for k > n — 1.
Thus there ezist ¢ < 00,p < 0o such that ||Ps|| < ¢, and ||P]}|| <
p VE>n—1.

S. The error is bounded by 6 and converges lo zero, i.e., for k < n —
1, lex] <6, and fork > n—1, |ex| < min(5, (1- 1)('°"”“)/2(pq)1/26).

Proof: Since the assumptions satisfy the sufficient condition which bounds
Z; and £ near z; for k = 0,.--,n+ M — 1, it follows that for & =
0,--,n+M-1,

|Zx —zi| <6< €f2 and |Zp — x| < 6 < €f2.

Therefore, the EKF (3.3), (3.4) satisfies the observability condition (4.2)
with R=1I;ie,forn-1<k<n+M-1,

k-1
nIs Y, ®(Gk-n+1)CTCidG,k-n+1)< 1l (5.1)
i=k-n+1

Since N is nonsingular and O is compact, it follows clearly that for n—1 <
E<n+M-1,

k-1
al> Y ®(k,i+ )NNTOT(k,i+1) > aol. (5.2)
i=k-M

Hence by Deyst and Price [9],forn—1<k<n+M -1,
1Pl S er+1/m and |IPYI <,
thereby giving the following bounds forn—-1<k<n+ M -1,
Yp <Pl S IPell S g and Vg < |IPFM SNBSS P
Since |e,—1| < 8, we have
e((pg)"*len-11, DAL DRI < —7-

Accordingly, though the EKF is applied from k = 0, we have the conver-
gence only after k =n -1, i.e,,

ler] < (pg)*/?(1 - %)(1_“+1)/2len-1|, I>n-1.

Now the remaining part is shown by induction. That is,

|Zn+m — znam| < Al |EagM=1 — Tngrr-al
< NANQ + 1Knasr—al 1| DAID ensar—1]
< [IAICL + gl DR|I?)(pa)3(1 - gwﬂlen-ll <.
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Recall that R = I is used as a design variable. Also,

(1 + [[Knsnll 1| DRI en+n]

[1+ (all AN + IV I)IIDA||]I| AN + ]| DAYI?)
x(1- %)M”(m)mlen-ll <é

|£n+M - zn+M|

IAIA

In addition, we have
Za4M € 0:/2 and EpeM € 05/2-

Thus the conditions (5.1) and (5.2) are also met for ¥ = n + M. Hence
|Pataell € @1+ /71 and ||P sl < p. Therefore by induction it holds
that for k > n+ M,

Lo |2k — 2| <6< €/2, |2 —ze| <6< €f2.

2. 1Pl <a NI <

3. fex] < 8(p)!/2(1 - HE-nD/2. O
Remark 5.3

(a) In order to satisfy the observability condition, it is necessary to keep
the estimates Z; and 2 near 24 for 0 < k < n+ M —1, thus requiring
a good initial guess.

(b) We also need to have a converging period (n—1 < & < n+ M —1) for
the EKF in order to build up the observability condition; after this,
the recursions proceed automatically.

Remark 5.4 The above results hold wherever the initial guess is close
enough to the true state. In other words, we have convergence of the
observation error on an open neighborhood of the diagonal of the product
space of the true state and the estimate, which includes the origin. This
kind of observer is termed gquasi-local [11]. Note that most results on local
observers are only valid on an open neighborhood of the origin [8, 16, 17].

6 Conclusions

Motivated by the fact that the EKF can be used as a parameter estima-
tor, we have analyzed in detail how the EKF works when it is used as
an observer for general discrete-time nonlinear systems. First, we gave a
new proof of the fact that the Kalman filter is a global observer for linear
(discrete-time) time-varying systems. Based on this proof, we were able to
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show that the EKF is a quasi-local asymptotic observer for discrete-time
nonlinear systems. It was shown that, in order to obtain the convergence,
it is generally necessary either to have a good initial guess or to have a weak
nonlinearity in the sense that |||D%f||| and ||| D?h|}| should be sufficiently
small. It was also shown that, in order to establish the boundedness of
the error covariances, which is necessary for convergence of the error, an
observability condition must be imposed on the linearization of the non-
linear system along the estimated trajectory. This observability condition
for the linearization was then related to the observability properties of the
underlying nonlinear system. With this relation, it was proven that the
uniform asymptotic convergence of the observation error is achieved when-
ever the nonlinear system satisfies an observability rank condition and the
states stay within a convex compact domain. This last result also provides
a theoretical foundation for this classic, approximate nonlinear filter.
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