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Abstract

Recent work in nonlinear observer design has sought to
bring together the structural (or transformation based)
approach found in [8, 5, 1, 11] and the numerical differ-
entiation approach found in [4]. The goal is to achieve
higher flexibility and wider applicability than is possible
with either approach alone. In this paper, it is noted that
any observable, autonomous system admitting an equi-
librium point can be expressed as a state-affine system
parameterized by the output and its derivatives. A class
of (single-output) systems is identified that admit param-
eterizations with fewer than n — 1 derivatives, where n is
the dimension of the state.

1 Introduction and Background

The goal of the structural approach to observer design is
to transform a given nonlinear system
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into an observable linear system plus nonlinear input-
output injection. In this way, an observer with linear,
exponentially converging, error dynamics can be readily
formed. The first results in [8, 17] targeted single-output
systems that can be transformed, via a (local) state space
diffeomorphism, into
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Necessary and sufficient conditions for the existence of the
transformation are known [8]. It is also known that the
class of systems for which observers can be constructed in
this way is very small.

Subsequent research has addressed the case of multi-
output systems, but even more importantly, it has sought
to expand the class of systems that can be treated in two
directions: the first by allowing output transformations
[9, 19]; and the second by allowing a more general class of
target systems [1, 2, 5, 10, 11, 12, 14, 15, 20]. Among the
latter group, it is worth recalling the work of [14], which
allowed more general output injections of the form
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while keeping the matrices A and C constant, and the
work of [1, 10, 11], which allowed the “A” matrix to be
time varying in the sense that it depends on the input and
output
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where v = (u, y).

The motivation for seeking systems in the “state-afline”
form (4) comes from [3, 6], which established conditions
under which linear time-varying observer design could be
extended to this class of systems. The observer is

¢ = AW)a+o(v) + L{t)y —9)
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The conditions given for the error dynamics to converge
exponentially to zero are that solutions to (4) exist for-
ward in time on [tp, o0), and that there exist finite num-
bers T' > 0 and « > 0 such that the standard time-varying
observability grammian is greater than af over every in-
terval of the form [t, t+T], for £ > ty3. These conditions
are not readily checkable for most systems.

There are two main shortcomings to the structural ap-
proach to observer design. The first is that despite much
recent progress, the class of systems that can be treated
remains quite restricted. The second and more important



shortcoming is that computing the appropriate coordinate
transformation can be very difficult. In many cases, it re-
quires the solution of a partial differential equation (PDE),
which is enough to deter many would-be users.

A completely different approach to obtaining state esti-
mates of a system (1) was outlined in [4]. The idea is based
directly on the notion of observability, namely, the abil-
ity to reconstruct the states on the basis of the system’s
output and a finite number of its derivatives. Numerical
differentiation was used to compute the derivatives of the
output, and the states were then reconstructed from them
with a static map. The approach may seem somewhat
naive, but it is very general, flexible and straightforward
to implement in practice: it does not require the solution
of a PDE to find an appropriate change of coordinates.
Moreover, it is quite possible to state “separation-type”
results for such observers, along the line of the observa-
tion made in [13] for discrete-time systems. Finally, for
systems expressed in input-output form, namely,

y" = P(y,9,...,y" V),
or equivalently,
ii = Ti41 Z:L,?’L—l
i'rL = P(x17x27"'7xn7u) (6)
y = I,

observers are computing the output and its derivatives,
in any case, and this fact is explicitly exploited in the
high gain observer found in [7, 18], for example, and the
separation theorem of [16].

Among the shortcomings of this approach, one must
note that the numerical derivatives are quite sensitive to
measurement noise if the derivatives must be computed
within a short delay of taking the measurements [4], that
is, if an interval of time for smoothing cannot be allowed.
Thus, it is best to minimize, as much as possible, the
maximum order of the derivatives that must be computed.

Our goal here is to contribute to the merger of the struc-
tural and numerical approaches in order to combine the
strengths of each approach and to ameliorate the short-
comings. Already, from the work of [14], this is seen to
be a natural thing to do since the output injection terms
require the computation of the derivatives of the output
from measured data.

2 An Observation on State-Affine
Parameterizations

To simplify the exposition, systems without inputs will be
treated in the remainder of the paper. Consider a system
of the form (1), with € IR", no inputs, ¥ € IR, and
f(z,u) =: f(x) analytic. Suppose that the following ob-
servability property (see [4]) is met: there is an integer N

such that the map defined by

N
H(I) - (yvyv' "7y(Nv*1’) ) (7)
is injective. In a neighborhood of a point 2y, condition (7)
is implied by the observability rank condition

dim{dh(xo), -, dLY" "V h(wo)} = n. (8)

Since y € IR, N > n. By the injectivity of H, there exists
L such that = L (y,9, -, y™V V).

Suppose in addition that f(0) = 0. Then the mean
value theorem can be used to show that there exists a
(non-unique) matrix A(x) such that

[(z) = Az)z. (9)

Supposing that (1) is observable, the system can be re-
written as

& 4OL(y7y7”'7y(lV71))x
A(y7 yv e 7y(AV71))x (10)
Y L1,
which is of the form (4), with v = (3,9, - - -, y¥~Y). Thus,

under linear time-varying-like, uniform observability con-
ditions, an observer of the form (5) can be designed, as
long as the derivatives of the output can be obtained.
These can be computed via the numerical differentiation
Designing an observer on
the basis of (10) bears some resemblance to an extended
Kalman filter; the difference is that the system is being
“linearized” along a state “estimate” coming from numer-

results of [4], for example.

ical differentiation instead of an estimate coming from the
filter itself. It should be noted however that meeting the
observability requirement can be difficult, and seems to
depend on the choice of A and the coordinates in which
the parameterization is done.

Of course, even without an equilibrium point assump-
tion, (1) could be expressed as

T = [OL(yvy.v"'vy(Nv*l))
= ¢(y7 yv Ty y(AV71)) (11)
y = n-

However, the observability condition of (5) would then
be impossible to meet. More generally speaking, it is
the experience of the authors, that, when trying to ap-
ply observers of the form (5) to systems with noisy (or
inexact) measurements, it is “best” to include as much of
the model as possible in the “A(r)” matrix, and to mini-
mize the part that is placed in the injection term. Here,
“best” is meant in the intuitive sense of achieving some
“filtering” or “smoothing” of the measurement perturba-
tion. One way of looking at a filter is that it is a means
of producing trajectories that are compatible with a given
model. Terms in the “A(r)” matrix seem to force more
constraints on the trajectories than those in the injection



because the observer treats anything in the injection term
as an exogenous variable. On the other hand, this must be
balanced against the observability of the resulting state-
affine system, which is dependent on how the terms are
divided up between A and ¢.

As a final point of “philosophy”, it is clear that the
higher the order of the derivative, the less exact will be its
estimate. Thus, it is important to use as few derivatives
as possible when expressing a system in state-affine form.
On the other hand, placing constraints on the maximum
order of the derivatives allowed in (10) restricts the class
of systems that will meet the associated conditions.

3 Main Results

As mentioned in Section 1, previous work has studied the
problem of transforming a system to a state-afline form
without considering the use of derivatives of the output
in A, while allowing them in ¢. In fact, there seems to
be very little reason to allow derivatives in one and not
the other. One of the contributions of this paper is to
show that it is possible to identify a subclass of systems
for which constructive necessary and sufficient conditions
can be given for the existence of a state coordinate trans-
formation putting the system into state-affine form with
at most n—2 output derivatives. The problem is looked at
from both the state space and input-output perspectives.

3.1 State-space perspective

Lemma 1 In a neighborhood of a given point xq, there
exists a local change of coordinates z = v(x) which trans-
forms & = f(x) into

Po= Az, (12)

'7Z’ﬂ*1) : Z+¢(Z17”'7Z’ﬂ*1)7

if, and only if, there exisls a wector field X satisfying
X(wo) #0 and [X, X, f]] = 0.

Proof. If such a vector field exists, then choose coor-
dinates (2z1,--+,2,) in which X = %. The condition
[X, [X, f]] = 0 implies that % =0, which gives (12). On
the other hand, it is easily verified that if the system has
the form (12), then X = % satisfies the stated condi-
tions. -

The following result gives a sufficient condition under
which the system can be taken into the state-affine form
(4), with v = (y,9,- -,y ).

THEOREM 1 Consider the scalar output system

f(z)
h(z),

o A—

. (13)

with x € IR™, n > 3. In a neighborhood of a given point
20, suppose that the observability rank condition (8) holds
and that there exists a vector field X satisfying X (xg) # 0,

X € {alh,~~~,alL;Z’72h}L and [X,[X, f]] = 0. Then there
exists a local change of coordinates z = v(x) in which the
system can be expressed as

21 = 22
277,72 = Zn-1 (14)
'énfl - Anfl(zlv"'vznfl)zn
'én - An(zla"'7Zn71)zn+¢n(zlv"'7Zn71)
y = 2

Proof. From dim{dh(xo), ---, dL{"” P h(xo)} = n — 1,
and the existence of a vector field X satisfying X (2g) #£ 0
and X € {dh,u-,dL}“zh}L, it can be shown that, in
a neighborhood of xg, there exists a function n(z) such
that (21,...,20-1,2) = (h(@), ..., LY" P h(x),n(z)) is
a local change of coordinates, and, in these coordinates,
X = %. From this, it easily follows that %; = z;, for
i=1,---,n—2. Asin the proof of Lemma 1, the condition
[X, [X, f]] = 0 gives the affine structure in the remaining
coordinates:

) anl)

Ty Z’nfl)-

A 1(z1,0 0 2 1) 2 + ¢~5n71(z17 .
An(zly ) anl)gn +¢n(zl7 o

'énf 1
Zn =
From the observability rank condition, it follows that
A,,_1 does not vanish in a neighborhood of zg. Then, the

change of coordinates z, = %, + j”:ll puts the system
into the desired form.
Of course, (14) can be re-written as

A(v) -z + o)
C-z
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(15)

with v/ = (yvyv T y(an))’

0 1 0 0
0 1 0 0
A= 5 16
0 0 1 0 ( )
0 0 Anfl(V)
0 0 0 Av)
0
0
- 17
¢ 0 (17)
0
¢n(V)
and
C = (1,0,---,0). (18)

It is remarked that Theorem 1 can be used to show that
an observable system of the form

Ai(z)z + ¢1(21)

s =



: (19)
— A,

Zn-2 2(21, 5 Zn2)2n1 + On2(21, 5 Za2)
2o = An (2, 212+ 1 (21, 0, 20 1)
Zn = An(zlv"wzn—l)zn+¢n(zlv"‘7zn—1)
y = 2

can always be expressed in the form (14) through a change
of coordinates.

3.2 Input-output perspective

This section gives a constructive necessary and sufficient
condition for the existence of a state coordinate transfor-
mation which takes system (13) into the state-affine form
(15). The procedure is first summarized as a sequence of
steps, and then formalized as a theorem.

ALGORITHM: Suppose that (13) satisfies the observ-
ability rank condition (8), in a neighborhood of a point zg
so that it has a local input-output representation

y™ = Py, .4, ..,y Y). (20)
Let (30, 9" ") = (A(xo), ..., LY V(o).
PP . s
Step 1 Ifd[m]/\dy/\dy/\---/\dy(” 2) — 0, then
y’n*

there exists a function A, 1 (y,9,---,y" ?)) solving

0A,1 1 0?P

B T 21
Y2 2 gym-1) ! (21)
Anfl(yof 7y(()n 1)) 7é 0
n
Step 2 Define the polynomial P(y, .3, - -,y 1) by
p o potn e (22)
n—1
i n—2 9A, _ i oP
where A,_1 =3, , 8y(i)1 Syt If d[(9 o ]/\dy/\
dgA---Ady™2 =0, then a function A, (y, 9, - - ,y(” 2
oprP
is defined by A, 6 FWesy)
n

Step 3 Let the polynomial P(y, %, 4, -,y ?)) denote

_ p—An y('n'fl))

- 23
P - (23)

If d[P] Ady Adg A --- Ady® 2 = 0, then a function
¢n(y7 yv e 7y(n 2) ) 1S deﬁned by ¢n — P

A constructive necessary and sufficient condition for the
existence of a state coordinate transformation which takes
(13) into (15) is given next.

THEOREM 2 In a neighborhood of a point xq where
the observability rank condition holds, (13) is equivalent
to (15) under a state coordinate transformation if, and

only if,
5P

— L JAdyAdGA---Ady"D = 0
ay("’l)ﬂ y A dy y

P 24
d[a—]/\dy/\dyf/\---/\dy(””) =0 (24)
ay(nfl)
dlPIAdyANdgA--- A dy™2 =0

with the polynomials P, P and P defined by (20), (22)
and (23), respectively.

Proof of necessity.  Suppose that there exists a co-
ordinate transformation which takes (13) into (15). The
polynomial P, which is equal to 4™, then can be written
as

P = Anfl'zn+An71"én

A,

= - y(7171) + A - (An < 2n t ¢n)
Anfl
Anfl (n-1) y(nfl)

— L\ A (A, -
An—l y + n—1 ( n An—l +¢n)

_ 1 3An 1 D] D) (n—1)
+An71 . ¢n

Step 1 Applying the algorithm, yields

%P 2
A1) Ana

aAnf 1
8y(”* 2) "

The first condition of (24) is thus satisfied. The function
A, 1 depends on (y,7,---,y" ?) and is a solution of

(21).
Step 2 The polynomial P is determined from (22)

N Ap_
p = p-t=l.

n—1

- An . y(nil) +An71 . ¢n

y(nfl)

P
This yields (9— A,. The second condition
ay(nfl)
of (24) is thus satisfied; the function A, depends on
(y7 yv ) y(an))'



Step 3 The polynomial P is determined from (23)

_ p_ . q(n—1)
p . PAn-y™?
Anfl
= ¢n

The third condition of (24) is thus satisfied; the function
¢, depends on (y,7, - - .7y(nf2))_

The conditions of Theorem 2 are thus necessary for the
existence of a state representation of the given form. g
Proof of sufficiency. If the conditions of Theorem
2 are satisfied, then functions A,_;, A4, and ¢, can be
derived from the algorithm. It is then straightforward to

(n—1) .
show (21,..., %0 1,2) == (y,...,y" 2, Zﬁ) yields a
realization of the form (15). .
4 Example
Consider the system
a'cl = @2 =+ ng (x)
. 25
r3 = D3 (x) ( )
Yy = I — X2,
where,
Ds(x) = 20[1 —2(ay — 22)? — 2(xp — 3)?] (2 — 3)

—20(x; — x2) — 10x3.

Using Theorem 2, one verifies that system (25) is equiv-
alent to (15) with A2 = (1 + 0.5()?), A3 = —10 and
¢ = (0,0, =20y + 20(1 — 2(y* + 9*))¥)’". The coordinate
transformation is z; = xy — %Ig, 29 = x9 and 23 = x3.
We next note that, in this case, the injection term can
be re-absorbed into the A-matrix and write the system in

the form (15) with

0 1 0
A= 0 0 (1+05(%)%) | (26)
—20 20(1 —2(y% + %)) —10
and
¢ =10,0,0]". (27)

Three observers were computed for the system: one
using the numerical differentiation approach (computing
Y, 9, %), a second observer based upon (10) and the third
using the observer (5), based on (26) and (27). The ac-
tual measurement used for the estimation process was
assumed’ to be y,, = y - noise. For the estimation of the

numerical derivatives, the interpolating polynomial was

18imulink block, band-limited white noise, with noise power
equals 2e — 6 and sample time set to 0.15 seconds.

Time in Seconds

Figure 1: Comparison of the true system states delayed by
0.1 seconds (solid line) and the estimated states (dashed
line) as determined by numerical differentiation.

Time in Seconds

Figure 2: Comparison of the true system states de-
layed by 0.1 seconds (solid line) and the estimated states
(dashed line) as determined by the state affine observer
parametrized by y, v and 4.

of order 3, the sampling interval was chosen as 0.05, the
moving window was of length 10, and the derivatives were
estimated at the eighth node. The consequence of the
latter choice is that the estimates are made with a de-
lay of 0.1 seconds. The relationship between the states
of (15) and the outputs is given by 23 = y, 22 = ¢ and
2 =y @ /(1 +0.59%).

The results of the three observers are displayed in Fig-
ures 1, 2 and 3, respectively. The figures compare the true
system states delayed by 0.1 seconds (solid line) and the
estimated states (dashed line).
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