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Abstract

The competition to deliver fuel e�cient and environmentally friendly vehicles is driving the

1
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automotive industry to consider ever more complex powertrain systems. Adequate performance

of these new highly interactive systems can no longer be obtained through traditional approaches,

which are intensive in hardware use and �nal control software calibration. This paper explores

the use of Dynamic Programming to make model-based design decisions for a lean burn, direct

injection spark ignition engine, in combination with a three way catalyst and an additional three-

way catalyst, often referred to as a lean NOx trap. The primary contribution is the development

of a very rapid method to evaluate the tradeo�s in fuel economy and emissions for this novel

powertrain system, as a function of design parameters and controller structure, over a standard

emission test cycle.

1 Introduction

Designing a powertrain system to meet drivability, fuel economy and emissions performance re-

quirements is a complicated task. There are many tradeo�s to be analyzed in terms of which

components to use, such as lean burn technology versus classical components, characteristics of

individual components, such as size or temperature operating range, and the control policies to be

employed. In addition, there are tradeo�s to be analyzed among the performance metrics them-

selves, such as emissions versus fuel economy. In the past, most of the powertrain design decisions

were on the basis of hardware, that is, on the basis of assembling and evaluating many possible

system con�gurations. Today, the time-line for vehicle design is constantly shrinking, the number

of possible powertrain con�gurations is expanding, and the cost of doing hardware evaluations is

growing. It is simply no longer feasible, economically, or time-wise, to make all (or even most) of

the design decisions on the basis of hardware alone. More and more of the decisions must be made
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upon the basis of mathematical models and analysis.

This paper will describe the use of Dynamic Programming to assist in making powertrain design

decisions on the basis of component models. The speci�c technology con�guration analyzed here

involves a direct injection spark ignition (DISI) engine. In this type of engine, fuel is injected

directly into the combustion chamber during the compression stroke, and the highly concentrated

fuel around the spark plug and extensive air motion enables combustion of an overall lean mixture

(the shape of the piston is specially designed to enhance air motion (swirl or tumble), and it is

further enhanced in the compression process) [1]. The DISI engine studied here can operate in

either homogeneous or strati�ed mode. In strati�ed mode, the engine can operate at air-fuel ratios

up to 40:1. The current NOx removal technique is to place an additional TWC, referred to as

a lean NOx trap (LNT), after the existing TWC in the exhaust system. NOx is trapped in the

LNT while the engine operates at a lean condition. By periodically operating the engine at a rich

condition (in homogeneous mode), the trapped NOx is purged and converted to N2 by reductants

such as CO, HC and H2 [2, 3, 4]. The duration and frequency of the purging mode (rich operation

of the engine), and obviously the control strategy for purging the LNT should be well optimized to

achieve high fuel economy and low NOx emissions.

Section 2 and Section 3 brie
y discuss the models used for optimization, and set up the fuel economy

versus emissions tradeo� problem in the context of a Dynamic Programming problem, respectively.

Section 4.1 explores the results of the application of the standard state space discretization meth-

ods; it will be seen that the computation times are too long for the engineer to do case study

analysis. Section 4.2 introduces a method for rapidly generating approximate solutions; a simple
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case is analyzed to show that the method can potentially produce near optimal solutions. The

computation time is reduced by a factor of twenty. Section 4.3 points out how the computation

speed can be further enhanced through the vectorization of the MATLAB code. Section 5 looks at

several case studies using this optimization tool.

2 Models

It is well-known that the computation time of the Dynamic Programming algorithm is exponential

in the number of states. For this reason, it is important to make a judicious choice of the complexity

of the dynamic models used in the optimization. The LNT is a dynamic device in the sense that

its capability to trap oxidants (NOx and oxygen) changes dynamically until it reaches saturation,

and similarly, the TWC dynamically stores and releases oxidants in the feedgas. The NOx �ll

time of the LNT is on the order of 30 seconds to 1 minute, and its purge time is on the order

of a few seconds. Finally, the most important dynamics of the engine are the intake manifold

�lling/emptying, which have a time constant on the order of a 100 milli-seconds. It is concluded

from this that the dominant dynamics are those of TWC oxygen storage, LNT NOx �lling and

emptying. Consequently, the engine can be treated as a static device delivering torque and exhaust

feedgas (emissions concentrations, 
ow rates, temperature) as a function of throttle position, fuel


ow, spark and exhaust gas recirculation (EGR) rate.

Control-oriented dynamic models of the TWC and LNT have been developed in [5, 6] and [4],

respectively, and a mean-value model of a 1.8 L, 4 cylinder DISI engine has been developed in [7].
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3 Mathematical Problem Formulation

A �nite horizon optimization problem for determining a control strategy of the combined DISI

engine and exhaust aftertreatment system depicted in Fig. 1 is posed in this section.

A model of the combined engine and emissions systems, discretized for numerical optimization, can

be expressed as:

x(k + 1) = f(x(k); u(k); !(k)) (1)

y(k) = h(x(k); u(k); !(k)); (2)

where u(k) is the vector of engine input parameters such as throttle position, fuel mass 
ow rate,

spark timing and EGR rate, x(k) is the vector of states of the overall system, !(k) is the vector of

engine speed and load imposed by drive cycle as explained in Appendix, and y(k) is the tailpipe

NOx emissions out of the LNT.

The objective of the study is to evaluate the tradeo� in fuel economy and NOx emissions1. The

instantaneous cost is chosen as a weighted sum:

g(y(k); u(k); !(k)) = fuel(k) + � �NOx;tp(k) = fuel(k) + � � y(k): (3)

In general, the emission performance of a vehicle is evaluated through a speci�c drive test cycle

such as the US FTP cycle, or the European Drive Cycle. Then the objective is to �nd the optimal

control input, u(k), that minimizes the cost functional

J(x) = min
u2U

M�1X
k=0

g(y(k); u(k); !(k)) = min
u2U

M�1X
k=0

�g(x(k); u(k); !(k)); (4)

1Since a DISI engine is mostly operated in a lean mode, it is felt that CO and HC levels should not be problem.

The only exception would occur if the LNT is purged too often, which would also show up as a fuel economy penalty.
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where U represent constraints for u imposed by meeting the load demands of the speci�c drive cy-

cle, plus constraints like intake manifold pressure being positive and not exceeding one atmosphere

(unless boosted); M is the time length of the drive cycle.

Remark: The constraint to meet the load requirements of the Euro-cycle imposes a relationship

on the inputs, u=(throttle, fuel, spark, EGR). This is taken into account in the formulation.

The cost (4) represents the cumulative weighted sum of fuel consumption and tailpipe NOx emis-

sions over the drive cycle. The objective will be to minimize the cost function (4), for a range of �.

This will provide information on the sensitivity of fuel economy to tailpipe NOx emission levels,

and is more useful than just knowing the best fuel economy for a given emissions constraint. A

systematic solution to the above problem can be determined recursively via Bellman's Dynamic

Programming [8] as follows:

Step M � 1:

JM�1(x(M � 1)) := minu(M�1)2U(M�1) [g(y(M � 1); u(M � 1); !(M � 1))]

= minu(M�1)2U(M�1) [�g(x(M � 1); u(M � 1); !(M � 1))] ; (5)

Step k, for M � 1 > k � 0:

Jk(x(k)) := min
u(k)2U(k)

[�g(x(k); u(k); !(k)) + Jk+1(f(x(k); u(k); !(k)))] (6)

End.

The optimal control policy is then any minimizer of (5) and (6).
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4 Numerical Dynamic Programming

4.1 Standard State Space Discretization

The standard method to convert a Dynamic Program into a �nite computation problem is to use

state space quantization and function interpolation [8, 9]. The state space is quantized into a �nite

grid

x 2 f�1; �2; : : : ; �Lg ; (7)

and at each step of the Dynamic Programming algorithm, the function Jk(x(k)) is determined at a

�nite number of points, f�1; : : : ; �Lg. The function Jk(x(k)) at an arbitrary point is then approxi-

mated by linear interpolation. In general, a successful approximation of this type of discretization

depends upon `consistency'. This means that a solution closer to a continuous optimal solution can

be achieved as the discretization becomes �ner [8], which in turn imposes increased computational

burden.

Spatial discretization yields the following general step of the Dynamic Programming algorithm:

Step k, for M � 1 > k � 0, and for 1 � i � L:

Jk(�i) := min
u(k)2U(k)

h
�g(�i; u(k); !(k)) + Ĵk+1(f(�i; u(k); !(k)))

i
; (8)

where Ĵk is de�ned by interpolating fJk(�1); : : : ; Jk(�L)g.

To check the computational complexity, the above program was setup in MATLAB, with a static

TWC model (static emissions conversion e�ciency as a function of feedgas air-fuel ratio) and a
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one state (NOx storage level) LNT model as the exhaust aftertreatment system. The state was

discretized as 0:15 � f0; 0:1; : : : ; 0:4; 0:5; 0:7; 0:9; 1g (the maximum trap capacity of the LNT was

set to be 0.15 g), and the European Drive Cycle (Euro-cycle), shown in Fig. 2, was used as a

drive test cycle. The cycle was sampled at the rate of one second, and the engine speed and load

required to follow the cycle at each time step were computed from the model using a gear shift

strategy mandated by the Euro-cycle. The minimization in (8) was performed with the MATLAB

Optimization Toolbox, using `constr:m', for � 2 f0; 5; 10; 20; 40; 80g.

The total computation time on a Pentium II, 200 MHz PC was roughly 60 hours. This is unaccept-

able because the engineer needs to be able to evaluate many di�erent parameter values for the LNT

model, for example, and in addition, it was deemed important to include the TWC oxygen storage

dynamics. Including a second state would result in approximately a half month of computation

time. Hence, to reduce the computation time, a new approximation is introduced.

4.2 Approximation via Local Engine Calibrations

The biggest time sink in the optimization process is the minimization operation performed by

`constr:m'. The DISI engine model is nonlinear, and results in many local minima. The idea of the

following approximation is to replace the DISI engine model with a �nite set of model behaviors,

called calibrations, parameterized by engine speed and load. More precisely, at each engine speed

and load point, the engine model is replaced by a �nite set of possible feedgas characteristics, chosen

in a way that they are likely to be useful in �nding an approximate optimal policy. For the use of

calibrations to develop \�xed structure" policies for complex DISI and hybrid diesel powertrains,

see [10].
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� Quantize the engine speed and brake torque values by a �nite grid:

N 2 f 1;  2; : : : ;  rg (RPM) (9)

Tb 2 f'1; '2; : : : ; 'lg (Nm): (10)

� For each of the points ( i; 'j), a normal calibration is generated by minimizing the cost that

represents the weighted sum of fuel consumption and NOx emissions into the LNT

J = fuel + � �NOx;lnt; (11)

for � 2 f0; 2; 5; 10; 30; 60; 80; 150g, over the engine input parameters throttle position, fuel


ow, EGR percent and spark. The NOx;lnt is computed by assuming that the TWC is in

steady state, that is, by multiplying the feedgas NOx emissions by the static NOx conversion

e�ciency of TWC. The EGR percent is constrained to be between 0 and 30 for strati�ed,

and 0 to 10 for homogeneous mode, and spark between 5 and 45 degrees before top dead

center. The strati�ed and homogeneous regimes are treated separately during the optimiza-

tion. Additional constraints are imposed that limit the intake manifold pressure between

5 and 100 KPa, brake torque equal to be 'j , and engine speed equal to  i, where 'j 2

f0; 6:25; 15; 25; 35; 45; 55; 65; 75; 85; 95; 105g, and  i 2 f600; 1250; 1750; 2250; 2750; 3250g.

For rich operation, the DISI engine model is used to generate a purge calibration. This is

obtained by maximizing CO emissions into the LNT. It is also assumed that TWC is in

steady state, and the mass of CO into the LNT is computed by multiplying the feedgas CO

emissions by the static CO conversion e�ciency of TWC. Since purge can only take place

under rich conditions, the air-fuel ratio is constrained to be less than stoichiometry, and the
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combustion regime to be homogeneous.

Over the drive cycle, engine output parameters are generated by interpolating calibrations of grided

operating points (10) around the true operating point. Figure 3 compares the results of performing

the Dynamic Programming with the engine calibrations versus the full optimization over the engine

input parameters. This �gure plots the tailpipe NOx emissions in g/km versus fuel economy in

miles per gallon, over the Euro-cycle. It is seen that the results are very close. The time taken for

generating the set of calibrations was roughly 4 hours (Pentium II, 200 MHz PC). However, once

the calibration is done, the Dynamic Programming with di�erent system parameters of the LNT

model can be easily and quickly performed because a calibration can be repeatedly used due to its

independence of the LNT.

4.3 Vectorization for Multi-State Models

The next step in developing Dynamic Programming as a realistic tool for tradeo� analysis was

to consider models with more than one state. This would allow the consideration of important

physical phenomena such as oxygen storage in the TWC and the temperature evolution of the

aftertreatment elements, which in turn, exponentially increases computations. Using the method

based on calibrations, and considering a one state model consisting of static TWC and the dynamic

LNT NOx level studied in Section 4.2, the discretized Dynamic Programming algorithm resulted in

a computation time of 5 hours. It was determined that the major computation bottle neck during

Dynamic Programming was the interpolation operation (recall (8)). However, this can be remedied

by interpolating on a vector scale. The basic idea is to build look-up tables for the dynamic update
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of the state x, and instantaneous cost �g, as a function of the quantized state �k, input parameters

u, weight �, engine speed and load. Once these tables are loaded, they are `vectorized' and used

to update (8) on a vector scale. The time spent, based on calibrations generated in Section 4.2,

Table 1: Time consumption on Dynamic Programming based on calibration. The Pentium II, 200

MHz PC was used for computation. To obtain total time consumption, time taken for calibration

(4 hours) should be added.

aftertreatment time taken time taken

system model (pointwise) (vectorized)

one state

- static TWC 5 hours 20 minutes

- dynamic LNT

two state

- dynamic TWC 60 hours 40 minutes

- dynamic LNT

is summarized in the Table 1. It is seen that the `vectorized' Dynamic Programming signi�cantly

reduces the time consumption, which enhances the feasibility of optimization for the multi-state

models.
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5 Case Studies

This section considers several practical case studies that illustrate how design decisions can be

made on the basis of optimization. The optimization is based on a static DISI engine model, and

a two state, dynamic model of the aftertreatment system. The dynamics of the TWC was limited

to the oxygen storage phenomenon since this is crucial for purging. The LNT model is represented

by the NOx storage level. The state space is discretized as x� (fraction of oxygen sites occupied

in TWC) � x� (LNT NOx storage level in grams):

x� = f0; 0:25; 0:5; 0:75; 1g (12)

x� = Clnt � f0; 0:1; : : : ; 0:5; 0:7; 0:9; 1g ; (13)

and the maximum capacities of TWC (Ctwc) and LNT (Clnt), were set to 0.5 g and 0.15 g, respec-

tively. The optimization was done with the interpolated DISI engine calibrations over a range of �.

As an example, Fig. 4 shows the normalized optimal trajectories of TWC oxygen storage level and

LNT NOx storage level, with NOx emissions constrained to Stage IV NOx Emissions Standard

(0.08 g/km) of the Euro-cycle. It is seen that the purging process is delayed by a few seconds until

the oxygen stored in the TWC is mostly released. This is because CO is oxidized before it reaches

the LNT, due to excess oxygen released from the TWC. Thus, in order for CO to reach the LNT to

purge the stored NOx, the oxygen level of the TWC must �rst be brought down to low levels. The

�gure also captures the unsolicited NOx release in the high vehicle speed portion of the Euro-cycle.

This release is due to high engine speed and load conditions, resulting in high LNT temperature.
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5.1 Case Study 1: TWC and LNT Capacities

The capacity of the LNT used on a vehicle will be determined by a tradeo� between manufacturing

price and system performance. To study this tradeo�, optimal solutions are obtained with various

maximum trap capacities for the LNT:

Ctwc = 0:5; Clnt 2 f0; 0:15; 0:5; 1; 2g : (14)

The fuel economy in miles per gallon, for the Stage IV NOx Emission Standard of the Euro-cycle,

is shown in Fig. 5 as a function of maximum trap capacity of the LNT. It is seen that fuel economy

improvement rapidly rolls o� as trap capacity increases, and is mostly improved at low maximum

trap capacity. In particular, when Clnt is equal to zero, the LNT is virtually removed, leaving

TWC as the unique component in the aftertreatment system. In this case, the DISI engine mostly

operates in stoichiometric mode so that the TWC maintains high NOx conversion e�ciency over

the cycle, thereby, signi�cantly increasing fuel consumption.

The e�ect of TWC oxygen storage capacity on fuel economy is also evaluated. The maximum

oxygen storage capacity of TWC was varied over

Ctwc 2 f0:25; 0:5; 1:5; 2g ; Clnt = 0:15: (15)

Figure 6 shows the fuel economy as a function of maximum capacity. As can be seen, fuel economy

decreases as maximum capacity of TWC increases. This is because purging is delayed until reduc-

tants, such as CO, HC and H2, are e�ectively delivered to the LNT, and the delay is proportional

to the emptying time of the oxygen stored in the TWC.
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5.2 Case Study 2: Removal of Homogeneous Lean Mode

For the engine under study, the homogeneous lean mode is limited to air-fuel ratios from 15 to 20.

The removal of the homogeneous lean mode is considered in order to simplify the engine operation

and control strategy. The e�ect of removal is evaluated by Dynamic Programming, and the fuel

economy and tailpipe NOx emissions over the Euro-cycle are shown in Fig. 7. The �gure shows

that the loss of fuel economy without the homogeneous lean mode is 0.3 miles per gallon, which

corresponds to a 0.78 % loss, with Stage IV NOx Emission Standard of Euro-cycle. However, for

Stage III NOx Emission Standard (0.15 g/km), the loss of fuel economy is 1.4 miles per gallon.

This is a 3.65 % loss, which is not acceptable. It is seen that the fuel economy is largely degraded

during the high vehicle speed region of the Euro-cycle without the homogeneous lean mode. This is

because without the homogeneous lean mode, the DISI engine has to operate in the stoichiometric

mode since the strati�ed mode is not viable at high ranges of engine speed and load. Thus, allowing

the homogeneous lean mode gives more freedom for the DISI engine to achieve better fuel economy

in this region. However, in the limit as the NOx constraint becomes lower and lower, the engine

must be operated in the stoichiometric mode. This explains why for Stage IV NOx regulation, the

homogeneous lean mode is not useful.

5.3 Case Study 3: E�ect of Temperature Dynamics

The aftertreatment systems' temperature dynamics is important due to signi�cant dependency of

LNT NOx storage capacity on temperature. Thus, the e�ect of temperature dynamics on DISI

engine performance is studied in this section. In general, the time constant of the LNT temperature
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dynamics depends on many factors such as the thermal e�ect of chemical reactions, but here, a

reasonable value of 30 seconds is assumed. For Dynamic Programming, the state space of LNT

temperature is discretized as follows:

xtemp = f273; 440; 507; 540; 574; 607; 641; 674; 707; 774; 874; 1600g (K): (16)

Figure 8 shows the Dynamic Programming result. It is seen that the three state model results in

roughly 38.9 miles per gallon of fuel economy with constrained NOx emissions to Stage IV NOx

Emission Standard of Euro-cycle, which is a 1.83 % improvement compared with the two state

model, thereby, indicating that the temperature dynamics increases the overall NOx storage ca-

pacity of LNT over the Euro-cycle. Figure 9 plots the normalized optimal trajectories of TWC

oxygen storage level and LNT NOx storage level of three state model, with NOx emissions con-

strained to Stage IV NOx Emissions Standard of the Euro-cycle. It shows frequent purging in the

high vehicle speed portion of the Euro-cycle, compared with the simulation result of the two state

model shown in Fig. 4. This is because slow temperature dynamics keeps the overall NOx storage

capacity much lower than that of two state model at this portion, and NOx stored in LNT needs

to be purged before it exceeds the storage capacity. In addition, the amount of NOx owing to

unsolicited release is very small because the temperature dynamics prevents an abrupt change of

NOx storage capacity. On the other hand, overall higher NOx storage capacity over the Euro-cycle

enables less frequent purging than two state model at low vehicle speed portion of the Euro-cycle,

while tailpipe NOx is constrained to the same level.
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5.4 Case Study 4: Optimal Gear Shift

The fuel consumption and feedgas properties of the DISI engine can be signi�cantly varied by

selecting di�erent gear positions. In this section, the e�ect of gear shift strategy on fuel economy and

NOx emissions is studied by seeking the optimal gear trajectory. Over the Euro-cycle, demanded

engine speed and load are determined by gear position and the rotational dynamics (Appendix); see

Fig. 10. Hence, when freedom of gear selection is given, the rotational dynamics should be re
ected

in the Dynamic Programming since engine speed and load cannot be instantaneously changed. One

possible choice for the additional state of the system is engine speed. However, engine speed is

continuous, and requires coarse discretization over the wide range to apply Dynamic Programming.

An alternative comes from the gear position. The gear position determines engine speed and load

given vehicle speed from the Euro-cycle, and can have only one of six discrete values (neutral, 1st,

: : :, 5th gear position), which is favorable for performing Dynamic Programming. Thus, the gear

position was chosen as a third state, in addition to TWC oxygen storage level and the NOx storage

level in LNT. The optimization result is shown in Fig. 11. It is seen that the optimal gear shift

strategy results in roughly 43.3 miles per gallon of fuel economy with NOx constrained to Stage

IV NOx Emission Standard, which is 13.35 % improvement over the standard gear shift strategy.

This shows that gear shift optimization is an important means for fuel economy improvement.

5.5 Case Study 5: Development of Cycle-independent Control Policy

The optimization problem posed in Section 3 is based on a speci�c driving cycle, that is, the

Euro-cycle. Thus, the optimal control policy obtained from the Dynamic Programming is cycle-
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dependent, which is unacceptable for vehicle deployment. It is desirable to determine if a cycle-

independent control policy can be found which achieves comparable performance to that of the

optimal policy on the Euro-cycle. One way to achieve this is to obtain the optimal control policies

at each point of a set of engine speeds and loads, and then implement the steady-state-optimal

policy along an arbitrary driving cycle.

At constant speed and load, the model of the combined engine and aftertreatment systems, (1)

and (2), becomes time-invariant, and the in�nite horizon optimization problem can be well de�ned.

The objective is to �nd the optimal control input, u(k), as a function of engine speed and load,

that minimizes the average cost functional

J(x) = lim
K!1

1

K
min
u2Ul

K�1X
k=0

g(y(k); u(k)) = lim
K!1

1

K
min
u2Ul

K�1X
k=0

�g(x(k); u(k)); (17)

where Ul represent constraints for u imposed by meeting constant engine speed and load. The

functions g(y(k); u(k)) and �g(x(k); u(k)) are instantaneous costs, which are weighted sums of fuel

consumption and tailpipe NOx emissions out of the LNT, as de�ned in (3). Over a range of weight

�, a solution can be obtained via Dynamic Programming [8]:

Step k, for k > 0:

Jk(x(k)) := min
u(k)2Ul

[�g(x(k); u(k)) + Jk�1(f(x(k); u(k)))] (18)

End if Jk(x(k))=k has converged.

Thus, if the average cost (17) converges, the (stationary) optimal solution can be obtained at the

end of iterations [8]. For numerical Dynamic Programming, the methods discussed in Section 4 can
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be employed to speed up the computation.

The solutions obtained from the in�nite horizon optimization at a set of constant engine speed and

load were scheduled along the Euro-cycle, and the fuel consumption and tailpipe NOx emissions

were computed via simulations. The performance curves for a range of � is shown in Fig. 12 with

that of the �nite horizon optimal policy as a target.

It is seen that the fuel economy of the scheduled in�nite horizon solution results in 37.2 miles per

gallon of fuel economy, with NOx constrained to Stage IV NOx Emission Standard. This is a 2.6

% loss when compared to the �nite horizon optimal solution, which has 38.2 miles per gallon of fuel

economy. As an example, Fig. 13 plots the normalized trajectories of TWC oxygen storage level

and LNT NOx storage level of scheduled in�nite horizon solution, with NOx emissions constrained

to Stage IV NOx Emissions Standard of the Euro-cycle. It shows that purging patterns at low

vehicle speed portion of the cycle resemble those of the �nite horizon optimal solution in Fig. 4.

However, the overall NOx storage level is kept lower than that of �nite horizon optimal solution at

high vehicle speed portion, thereby, consuming more fuel.

6 Conclusions

In this paper, a problem of predicting the best emission constrained fuel economy of a direct injec-

tion spark ignition powertrain over a drive cycle was investigated. This problem is di�cult because

the search for the optimal trajectory has to be done over all possible trajectories of the engine and

the aftertreatment on a drive cycle. The search procedure is based on the Dynamic Programming

algorithm. The procedure is made computationally tractable by combining several ideas that in-
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volve (i) model simpli�cation; (ii) state and control discretization; (iii) restricting the search to a

smaller set of trajectories that, based on engineering judgment, are deemed likely to contain the

optimal policy, and (iv) careful treatment of computer implementation details. Numerical results

have demonstrated signi�cant reduction in the computation time, while near optimal solutions are

generated.

The procedure has been used in several case studies where the e�ect of adjusting hardware pa-

rameters or control strategy on the fuel economy was evaluated. The ability to conduct this kind

of assessments is very important early in the development cycle of an automotive system and its

control strategy.

This study resulted from a cooperative research project between researchers from Ford Research

Laboratory and researchers from the University of Michigan. It demonstrates how advanced opti-

mization techniques can be adapted to a realistic industrial problem.
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Appendix

Demanded Brake Torque

The engine speed is determined by the vehicle speed, Sv (km/h), and the overall drive ratio (R),

which is a function of drive ratio (gr) from the crank shaft to the wheel, and the radius (m) of the

tire (rt):

N =
60Sv

3:6� 2�R
(A-1)

R =
rt
gr
: (A-2)

In this study, the radius of the tire is set to 0.31 m. The drive ratio, gr, is given as shown in Table

A-1, as a function of gear position. When vehicle speed is zero, the gear is in neutral position and

the engine speed is set to idle speed, which is, 625 RPM.

Table A-1: Drive ratio from crank shaft to wheel.

Gear position 1st 2nd 3rd 4th 5th

Drive ratio 14.48 7.87 5.57 4.16 3.10

The load torque, Tl (Nm), can be obtained from the engine speed and the road-load power, Pr
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(Watt) [1]:

Pr = (2:73CRMv + 0:0126CDAvS
2
v)Sv (A-3)

Tl =
60Pr
2�N

+ Taux; (A-4)

where CR,Mv, CD, and Av are coe�cients of rolling resistance (=0.0095), vehicle mass (=1313 kg),

drag coe�cient (=0.33), and frontal area of vehicle (=2.05 m2), respectively. The auxiliary torque,

Taux, represents the additional torque required to drive the engine accessories (air conditioner,

generator, various pumps, etc.), and are time-varying throughout a driving cycle. For example, the

averaged auxiliary torque over the European Drive Cycle is roughly 4.5 Nm. Then, the demanded

brake torque to maintain vehicle speed Sv can be determined from the rotational dynamics as:

J
2�

60
_N = Tb � Tl; (A-5)

where J is the sum of the engine inertia (=0.2 kg�m2) and the vehicle inertia (=Mv �R2 kg�m2).
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Figure 1: Complete model for emission system.

Figure 2: European Drive Cycle for emissions evaluation.

Figure 3: Fuel economy versus NOx emissions of optimal policy with calibrations and from full

optimization, over the Euro-cycle. The DISI engine, TWC models are quasi-static. The LNT NOx

�lling and emptying is dynamically updated.

Figure 4: Normalized optimal trajectories of TWC oxygen storage level and LNT NOx storage level,

with NOx emissions constrained to Stage IV NOx Emissions Standard. The maximum capacities

of TWC and LNT, Ctwc and Clnt, were set to 0.5 g and 0.15 g, respectively.

Figure 5: Fuel economy satisfying Stage IV NOx Emission Standard of Euro-cycle with various

maximum trap capacity of LNT.

Figure 6: Fuel economy satisfying Stage IV NOx Emission Standard of Euro-cycle with various

maximum oxygen storage capacity of TWC.

Figure 7: Fuel economy and NOx emissions over Euro-cycle with, and without homogeneous lean

mode.
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Figure 8: Fuel economy versus NOx emissions of optimal policy with two state (dynamic TWC

oxygen storage, dynamic LNT NOx storage, static LNT temperature) and three state (dynamic

TWC oxygen storage, dynamic LNT NOx storage, dynamic LNT temperature) model.

Figure 9: Normalized optimal trajectories of TWC oxygen storage level and LNT NOx storage

level of three state model, with NOx emissions constrained to Stage IV NOx Emissions Standard.

Figure 10: Emission system with free gear ratio.

Figure 11: Performance comparison of standard gear shift and optimally scheduled gear shift.

Figure 12: Fuel economy and NOx emissions over Euro-cycle with scheduled control policy of

in�nite horizon optimization and optimal policy of �nite horizon optimization.

Figure 13: Normalized trajectories of TWC oxygen storage level and LNT NOx storage level of

scheduled in�nite horizon solution, with NOx emissions constrained to Stage IV NOx Emissions

Standard.
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 1
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 3
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 4
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 5
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 6
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 7
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 8
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 9
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 10
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 11
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 12
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Jun-Mo Kang, Ilya Kolmanovsky and J. W. Grizzle: Figure 13
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