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ABSTRACT

Legged robots have the potential to transform the logistics and package delivery indus-

tries, become assistants in our homes, and aide in search and rescue. Although many wheeled

and flying robots have begun to hit the market, useful walking robots have yet to become

a practical reality due to challenging issues in controller design, motion planning, and state

estimation. These challenges arise from high degrees of freedom, underactuation, and com-

plex dynamics along with the unstructured nature of the environment in which we want

these robots to operate. In particular, state estimation is a crucial component of any mobile

robot system. To maintain stability, walking robots often require knowledge of orientation,

velocity, joint angles, and local terrain information. Whereas, to plan and execute walking

paths, awareness of global pose and map information is needed. Estimation of these states

requires consistent fusion of measurements from a variety of sensors.

This thesis focuses on contact-aided state estimation techniques for legged robots. Inertial

navigation systems can be used to obtain estimates of pose and velocity by integrating

measurements from an inertial measurement unit. However, due to sensor noise and bias,

these estimates will quickly drift away from their true values. To reduce or eliminate this

drift, additional sensors, such as magnetometers and GPS, can be used to aid these inertial

measurements. For legged robots, foot contact and forward kinematic measurements will

perform this correction.

First, we develop a contact-aided invariant extended Kalman filter (InEKF) using the

theory of Lie groups and invariant observer design. After modeling the robot’s state on

a Lie group, we show that the error dynamics follows a log-linear autonomous differential

equation allowing the observable state variables to be rendered convergent with a domain of

attraction that is independent of the system’s trajectory. Unlike the standard EKF, neither

the linearized error dynamics nor the linearized observation model depend on the current

state estimate, which leads to improved convergence properties and a local observability

matrix that is consistent with the underlying nonlinear system. Although the robot’s global

position and yaw remain unobservable after fusion of inertial, kinematic, and contact data,

this filter can be executed at high frequencies to provide the feedback controller with real-

time orientation and velocity data. Furthermore, since the position/yaw drift is slow, the
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pose estimate can be used to construct local terrain maps with the help of LiDAR sensors.

Next, we propose a method for contact-aided smoothing using factor graphs, which pro-

vide a flexible framework for fusing measurements from multiple sensors to obtain a maximum

a posteriori estimate of the robot’s entire trajectory. To extend this framework for legged

robots, we developed two novel factors. The hybrid contact factor describes how a contact

frame moves over time by preintegrating high-frequency inertial-contact data through an

arbitrary number of contact switches, while the forward kinematic factor relates this contact

frame to the robot’s base frame using noisy encoder measurements. Taken together, these

factors provide an independent leg odometry measurement that can be added into existing

factor graphs to improve state estimation.

Finally, we conclude with ideas and future work on how these state estimates can be

used along with gait libraries to design stabilizing feedback controllers as well as global

motion planning techniques. All presented algorithms were verified through simulation and

experiments results on an ATRIAS- or Cassie-series biped robot.

xvii



CHAPTER 1

Introduction

1.1 Motivation

Legged robots have the ability to traverse a wide variety of terrains that are inaccessible

to typical wheeled vehicles. Being able to step over obstacles allows legged robots to walk

in unstructured environments that include sand, snow, mud, rocks, or even fallen trees. In

fact, it is estimated that over 50% of the earth is inaccessible using only wheels [15]. In

addition, having legs allows these robots to tackle terrain commonly found in factories and

home environments, such as stairs and or cluttered spaces, that are a challenge for their

wheeled counterparts. These capabilities allow legged robots to potentially aid in package

delivery, terrain exploration, search and rescue, and disaster relief. Advances in legged robot

technology can also help humans regain the ability to walk though exoskeletons [5, 106] or

powered prosthetics [93, 244]. Despite their amazing capabilities and potential, most legged

robots are confined to controlled research spaces and have yet to be widely deployed. This is

largely due to unsolved challenges in controller design, motion planning, and state estimation

that arise from high degrees of freedom, underactuation, and complex dynamics along with

the unstructured nature of the environment in which we want these robots to operate.

This research was motivated with a simple question: how do we design a system that

allows a bipedal robot to move from point A to point B? Although the task appears simple, at

least three difficult sub-problems need to be solved; state estimation and motion planning,

and feedback control design. That is, the robot needs to know where it is, what path it

should follow, and how to move its joints to get there without falling down. All of the

research presented in this thesis aims towards building the fundamental algorithms that will

enable legged robots to complete this task.

Chronologically, the research with control design on the bipedal robot MARLO1. First,

a dynamic model of the robot is generated using the Euler-Lagrange equations. Then,

1See Sections 3.1.2 and 3.1.3 for a detailed description of the robots used in this thesis.
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trajectory optimization can be used to find a dynamically feasible gait. The resulting open-

loop trajectory corresponds to a single desired behavior of the robot (such as walking in

place). A set of outputs can be chosen and stabilized using a variety of methods, such

as input-output linearization [102] or simple PD control [91]. Unfortunately, since many

walking robots (MARLO and Cassie included) are underactuated, not all of the robot’s

states can be stabilized with this style of control. In addition, for 3D walking, the dynamics

of the uncontrolled states are often unstable. This led to Griffin and Grizzle’s [96] work on

nonholonomic virtual constraints, and the use of a heuristic foot placement controllers by

Da et al. [59]. In particular, these foot placement strategies proved to be time-consuming to

tune, with no easy generalization to other legged robots. This motivated the development of

posture adjustment functions (PAFs) [107], presented in Section 6.2. The PAF computes an

offset to the desired output trajectories based on some deviation from the nominal periodic

orbit. The parameters of the PAF are computed through an optimization problem where

the robot is pertubed while walking, and the cost minimizes the deviation from the nominal

orbit.

Recent trajectory optimization methods [117, 116, 118] have allowed relatively fast offline

computation of gaits for high-dimensional robots. This has enabled gait libraries to be built

up that cover a range of operating conditions. Da et al. [59] solved a series of planar

trajectory optimization problems to generate a library of periodic, forward and backward

walking gaits for MARLO. Linear interpolation of these gaits was used to choose the desired

trajectory based on the robot’s current velocity. This led to marginal stability, where the

robot simply adapts its gait to the current speed. These gaits were then fully stabilized on the

3D robot through the aforementioned foot placement method. As presented in Section 6.2,

we then expanded these ideas by utilizing the full 3D model of the robot for trajectory

optimization and generating a gait library based on a grid of velocities in both the sagittal

and lateral planes. These gaits were stabilized using PAFs instead of heuristically tuned

foot placement. Quan Nguyen et al. [187] later showed extending the gait library to include

multiple step heights can be used to tackle uneven terrain. Da and Grizzle [58] generalized

these gait library methods by using supervised maching learning to extract a control policy

from the set of reference trajectories. If the library contains perturbation recovery gaits

(or transitioning between velocities), then a dully stabilizing controller can be learning [60],

potentially eliminating the need for foot placement for PAFs. These ideas are captured by

the theory of generalized hybrid zero dynamics (GHZD) [58].

These gait library methods allowed for impressing walking feats on MARLO, such as

walking through the valleys of the University of Michigan’s Wave Field without the use of

vision [60]. As described in Section 6.3. a similar controller was transferred onto the Cassie
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biped robot allowing it to walk on a variety of different surfaces, including concrete, grass,

snow, and sand [91]. However, two key issues were identified through working with these

controllers. First, the learned control policy depended on having an estimate of the robot’s

current velocity (in the body frame). At this point, velocity estimation was done using

only joint encoder measurements and the assumption that the stance foot was pinned to the

ground. On our robots, this “kinematic velocity” estimate was too noisy to be directly used

for control (as shown in Figure 1.1). A low-pass filter had to be used causing significant delays

Figure 1.1: Estimate of velocity in the body frame. The using kinematics only results in a noisy signal (blue)
due to sensor noise and foot slip. This motivated the development of the right invariant extended Kalman
filter (RIEKF) (red) in Chapter 4.

in the signal. This delay led to oscillations, further complicating the tuning of the controller

parameters. Second, without a priori knowledge of the upcoming terrain, large height changes

can destabilize the controller, ultimately causing the robot to fall. Walking “blind” across

the large drop shown, shown in Figure 1.2, is what prevented MARLO from conquering the

Wave Field. In addition, without global map information, no level of autonomy could be

instilled in the robot. Solving these issues was the primary motivation behind the state

estimation work presented in this thesis.

State estimation involves recovering the robot’s state (position, orientation, velocity, etc.)

from a collection of noisy sensor measurements. Accurate state estimates are key to both

building a map of the environment and to designing a stabilizing feedback controller for

walking. Bloesch et al. [34] developed an extended Kalman filter (EKF) suitable for legged
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Figure 1.2: MARLO walking on the Wave Field. Without prior knowledge of the upcoming terrain, MARLO
cannot adapt its gait to the large drop causing the robot to fall.

robots that combined inertial, contact, and kinematic data to estimate the robot’s pose

and velocity. Due to the nonlinear nature of the robot’s dynamics, EKFs use the Jacobian

linearization along the current best estimate of its trajectory to linearize both the dynamics

and measurement models. Therefore, if the current state estimate is wrong, the linearization

will poorly represent the true dynamics. This often leads to consistency issues, poor state

estimates, and potentially filter divergence. In Chapter 4, we use recent advancements in

invariant observer design [24] to develop an invariant extended Kalman filter (InEKF), which

improves over the state-of-the-art quaternion-based extended Kalman filter (QEKF). The

main advantage of our proposed filter is that the linearization no longer depends on the state

estimate, leading to improved convergence properties. This filter can be used to provide the

feedback controller with real-time velocity estimates and local terrain information (provided

the robot is equipped with a stereo camera or LiDAR sensor). An example of this is shown

in Figure 1.3

In order to obtain a global map estimate, we turned our attention to the slew of progress

in visual-inertial odometry (VIO) and solving the simultaneous localization and mapping

(SLAM) problem [67, 136, 137, 160, 154, 85, 75]. Although these techniques provided the

underlying frameworks, there was no clear way to take advantage of the joint encoder and

contact sensors that are often available on legged robots. This led the development of the

contact-aided state smoothing algorithms presented in Chapter 5.
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(a) Looking towards a staircase

(b) University of Michigan’s North Campus with the bell tower

Figure 1.3: Once accurate pose information is obtained, LiDAR points can be used to build up a map of
the environment. These maps could potentially be used to improve stability by informing the robot about
upcoming terrain.
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1.2 Objectives

The primary objectives of this research were to improve legged robot state estimation algo-

rithms for use in feedback control, mapping, motion planning, and general autonomy.

Based on these objectives, the state estimation problem can be split into two goals:

odometry and local terrain mapping, and global pose and map estimation. This separation

stems from the following insight that holds for even human walking: only local motion and

terrain estimates are needed to maintain stability whereas global pose and map information

is only needed higher-level path planning. When we walk across town, we only need to look

at the ground to prevent us from tripping and falling, and we only need our current location

and Google Maps to plan the route.

To design a stabilizing feedback controller for a legged robot, estimates of orientation, ve-

locity, and joint angles, local terrain are often needed. To estimate these states, we developed

a contact-aided invariant extended Kalman filter (InEKF) using the theory of Lie groups and

invariant observer design [24]. This filter combines inertial measurements from an inertial

measurement unit (IMU) with contact and kinematic measurements to estimate the robot’s

base pose and velocity along with all current contact points. In the absence of IMU bias, we

show that the error dynamics of the inertial-contact system follow a log-linear differential

equation allowing the observable state variables to be rendered convergent with a domain

of attraction that is independent of the system’s trajectory. Unlike the standard extended

Kalman filter (EKF), neither the linearized error dynamics nor the linearized observation

model depend on the current state estimate, which leads to improved convergence properties

and a local observability matrix that is consistent with the underlying nonlinear system [109].

We show how to augment the state with IMU biases, and show that even though some impor-

tant theoretical properties are lost, the developed invariant extended Kalman filter (InEKF)

still outperforms similar quaternion-based extended Kalman filter (QEKF). This state esti-

mator can be run at high-frequencies (> 2000 Hz) to provide the feedback controller with

real-time state information. Although the robot’s global position and yaw remain unobserv-

able after fusion of inertial, kinematic, and contact data, this filter can be executed at high

frequencies to provide the feedback controller with real-time orientation and velocity data.

Furthermore, since the position/yaw drift is slow, we show that the pose estimate from this

filter can be used to construct local terrain maps with the help of stereo camera or LiDAR

sensors. These ideas on contact-aided filtering are presented in Chapter 4.

In order to allow for high-level path planning, a global pose and map estimate are needed.

It is possible to can extend this InEKF to include estimated landmark positions, which allows

for corrections of the position and yaw states. However, just like in EKF-simultaneous local-
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Figure 1.4: Block diagram of Cassie’s proposed system architecture. The invariant extended Kalman filter
(InEKF) is described in Chapter 4. The global mapper utilizes factor graph based optimization and is
described in Chapter 5. Ideas on control and planning are provided in Chapters 6 and 7.

ization and mapping (SLAM), as the number of landmarks increases, the problem can become

intractable to solve in real-time. In the simultaneous localization and mapping (SLAM)

community, this issue typically mitigated using factor graphs and incremental smoothing

techniques [66, 137]. However, the state-of-the-art offers no method for including contact

and kinematic measurements within the factor graph framework. Therefore, we developed

two novel factors that can be implemented alongside existing factors (such as inertial, GPS,

relative pose, or visual factors) to improve Maximum-A-Posteriori (MAP) state estimation.

The forward kinematic factor uses noisy encoder measurements to relate the robot’s base

frame to a contact frame located at the intersection of the robot with the ground. The hy-

brid contact factors preintegrate high-frequency contact measurements through an arbitrary

number of contact switches to constrain the relative motion of the contact frame. Together,

these factors combine to effectively allow “leg odometry” to be included within an exist-

ing factor graph framework. This paves the way for long-term global mapping, which is

necessary for high-level path planning and general autonomy. These ideas on contact-aided

smoothing are presented in Chapter 5.

In order to verify and demonstrate the capabilities of the proposed algorithms, we im-

plement them on a the Cassie-series bipedal robot (Described in Section 3.1.3). This robot

is equipped with an IMU, joint encoders, stereo cameras, LiDARs, and contact sensing ca-

pabilities. An overview of the proposed system architecture is shown in Figure 1.4, where

7



the colors indicate where processing was done on Cassie.

A long-term goal for legged robotics community is to achieve general autonomy. While the

objectives described in this section do not directly solve this problem, they contribute towards

the collection of underlying state estimation, planning, and controller design techniques that

will ultimately allow legged robots to become a practical reality.

1.3 Contributions

In summary, this thesis makes the following contributions:

• Derivation of a continuous-time invariant extended Kalman filter (InEKF) for an

IMU/contact process model with a forward kinematic measurement model. The filter

can be run at high frequencies (> 2000 Hz) to provide estimates of a legged robot’s pose

and velocity along with all current contact points and inertial measurement unit (IMU)

bias. We show that under certain conditions, the error dynamics of this system are

actually log-linear, which leads to improved convergence properties and superior per-

formance over standard quaternion-based extended Kalman filters (QEKFs).

• Alternative derivations of the invariant observer using a robo-centric state and the

left-invariant error definitions along with analytical discretizations of the filter are

provided.

• Development of an open-source C++ library for aided-inertial navigation using the In-

EKF, https://github.com/RossHartley/invariant-ekf, which was evaluated us-

ing walking experiments on a Cassie-series biped robot.

• A framework for including “leg odometry” into factor graph based smoothers for legged

robot state estimation. This includes the development of two novel factors; the for-

ward kinematic factor that relates the robot’s base frame to a contact frame through

noisy encoder measurements and several variants of preintegrated contact factors that

constrains how this contact frame moves over time. These variants include a rigid

contact factor which assumes that all 6 degrees of freedom (DOF) of the robot’s foot

is constrained while on the ground, a point contact factor which only assumes the

foot’s position is constrained, and an invariant contact-inertial factor which unifies

this framework with the aforementioned InEKF. All developed contact factors can

handle an arbitrary number of contact switches between nodes in the graph.
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• A method for stabilizing walking on a 3D biped robot using velocity-based gait libraries

and posture adjustment functions (PAFs). This method was tested experimentally by

stabilizing a walking gait on an ATRIAS-series biped robot.

1.4 List of Publications

The work on stabilizing underactuated bipeds using gait libraries and posture adjustment

functions (PAFs) was presented at the 1st IEEE Conference on Control Technology and

Applications (CCTA) in 2017 [107]. The initial research on how to use “leg odometry” with

factor graph based smoothing was presented at the 2018 IEEE InternationalConference on

Robotics and Automation (ICRA) [110]. This work was then generalized to include hybrid

preintegration of contact measurements through an arbitrary number of contact switches.

This research was presented at the 2018 IEEE International Conference on Intelligent Robots

and Systems (IROS) [108]. The work on contact-aided invariant filtering was presented at

the 2018 Robotics Science and Systems (RSS) conference [109].
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Conference Papers
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1262–1269. IEEE, 2017. ISBN 1509021825
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bined forward kinematic and preintegrated contact factors. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018
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1.5 Outline

The rest of this thesis is divided into 6 chapters that are summarized below.

Chapter 2 gives a review of the relevant literature. This includes a review of state

estimation techniques for general robots, as well as techniques specific to legged robots.

It also includes a review of motion planning techniques for dynamic robots and different

methods for controller design.

Chapter 3 provides the background theory necessary for understanding the remainder of

the thesis. This includes the mechanical description and model of the ATRIAS and Cassie-

series biped robots, as well as, the theory behind the extended Kalman filter (EKF) and

factor graph based smoothing. It also covers a brief background on Lie groups and Lie

algebras, with an emphasis on the matrix Lie groups commonly encountered in robotics.

Finally, a background on forward kinematics and the manipulator Jacobians is given.

Chapter 4 presents a novel contact-aided invariant extended Kalman filter (InEKF) which

combines contact and kinematic measurements with an inertial measurement unit (IMU)

based motion model to estimate a legged robot’s position, orientation, velocity, and contact

points. This filter is based on the theory of invariant observer design, which is briefly

summarized. This contact-aided filter is developed in two forms, a world-centric form (where

we are estimating the state relative the world frame), and a robot-centric form (the state is

relative to the robot’s body frame). The results of implementing the filter on a Cassie-series

robot is given, where it is compared to the standard quaternion-based approach. LiDAR

mapping results are used to provide a use case for the filter.

Chapter 5 presents a novel method for incorporating “leg odometry” into a factor graph

framework. This allows information from both joint encoders and contact measurements to

be combined with any existing factor to improve Maximum-A-Posteriori (MAP) estimation.

It is accomplished by introducing two separate factors. First, the forward kinematics factor

relates the robot’s base and contact frames at any particular time step. Second, the hy-

brid contact factor preintegrates high-frequency contact measurements through an arbitrary

number of contact switches to constrain the motion of the contact frame over consecutive

time steps. The experimental results of combining these factors with inertial and relative

pose factors are also given in this chapter.

Chapter 6 presents the research on control design that was conducted. It includes the
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developement of posture adjustment function (PAF) to stabilize 3D walking, as well as the

generation and use of gait libraries on both MARLO and Cassie.

Chapter 7 provides a discussion on future work. We present ideas on how to use terrain

information in the feedback controller as well as the utilization of gait libraries for path

planning. Some of these ideas have been tested in simulation, but further experimental

validation is required. Thoughts on future state estimation work is also provided.

11



CHAPTER 2

Literature Review

2.1 Mobile Robot State Estimation

A common challenge for all mobile robots, including legged robots, is state estimation, which

refers to the process of estimating a robot’s state (position, orientation, velocity, joint angles,

etc.) from a set of noisy sensor measurements. An accurate, real-time state estimate is a

critical foundation for the design of stabilizing feedback controllers and is often assumed

for many mapping and planning algorithms. If a prior map is given, the state estimation

problem is often referred to as localization [219]. In contrast, mapping refers to the process

of using the robot’s estimated state and exteroceptive sensor measurements to build up

maps of the environment. These maps can range from simple sets of landmarks to dense

point cloud representations [77, 127, 82, 115]. For mobile robots, we are often interested

in solving the simultaneous localization and mapping (SLAM) problem, where the robot

needs to localize itself in the map that it is simultaneously building [73, 46]. In the full

simultaneous localization and mapping (SLAM) problem, the complete robot trajectory is

also recovered [66]. In practice, the robot’s state can often be augmented to include these

map parameters. Therefore, in this dissertation, we broadly use the term state estimation to

refer to the collection of all of these problems. Throughout the history of robotics, numerous

state estimation algorithms have been proposed, but most can be grouped into two broad

categories, filtering and smoothing [14].

2.1.1 Filtering Methods

Filtering methods involve estimating the robot’s current state (and potentially landmarks)

using the set of all measurements up to the current time [14, 94, 204]. When the process

model and measurements are linear and the noise is white and Gaussian, Kalman filtering

[143] provides an optimal method (minimum mean squared error) for state estimation. The

general process for Kalman filtering involves two phases, propagation and correction. The
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state is typically represented using a Gaussian random vector, which is parameterized by a

mean and a covariance. During the propagation phase, the previous state and covariance

estimate are propagated forward in time using the system dynamics (alternatively known

as the process model). When a measurement is obtained, the state and covariance estimate

are corrected using the measurement model along with an associated measurement noise

covariance.

Although the Kalman filter provides a method for optimal linear filtering, most practical

mobile robots have nonlinear system dynamics, and many useful sensor models are also

nonlinear. For these cases, an extended Kalman filter (EKF) can be designed, which utilizes

Taylor series expansions to linearize the process and measurement models around the current

state estimate [219]. Due to its low computational complexity and accurate performance,

the EKF quickly became the de facto standard of nonlinear filtering for many mobile robot

applications, including wheeled vehicles, drones, and legged robots [44, 199, 34]. EKFs have

also been proposed to solve the SLAM problem [205]. However, since the nonlinear system is

linearized about the current state estimate, the EKF is, at best, only a locally stable observer

[208, 146]. The local convergence proofs are based on Lipschitz bounds of the nonlinear terms

in a model, and hence “the more nonlinear a system is, the worse an EKF may perform”.

Importantly, if the state estimate is initialized poorly, it is possible for the filter to diverge.

In addition, because an EKFs uses a system’s linearization about the current estimate, states

that are unobservable can spuriously be treated as observable by the filter. While this can

be mitigated through the use of an observability-constrained EKF developed by Huang et al.

[130], it cannot be altogether avoided.

For many systems, the error-state (or indirect) EKF offers superior performance to the

standard (total state or direct) form. As the name implies, the error-state extended Kalman

filter (ErEKF) is formulated using the errors, such as pose and velocity errors, as the filter

variables, while the standard EKF tracks the states themselves (pose and velocity directly)

[162, 197, 222, 207]. Under small noise assumptions, this leads to linear error dynamics

which are then used for covariance propagation in the error-state filter. The measurement

model is also rewritten with respect to these errors. Although the error dynamics are linear

in the error variables, they may still depend on the current state estimate, which if initialized

poorly, will degrade the performance of the filter. However, the approximate linear nature of

the error dynamics may respect the linear assumptions of the original Kalman filter better

than the underlying system dynamics, which can lead to improved performance [162].

Perhaps the most important feature of the ErEKF is the ability to circumvent dynamic

modeling [197]. This is done by replacing the potentially complicated process model with a

relatively simple inertial measurement unit (IMU) integration model (also known as strap-
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down modeling) [220, 167, 236]. Essentially, the IMU’s angular velocity and linear acceler-

ation measurements are integrated to propagate the state estimate, while the covariance is

propagated using the error dynamics. Additional (independent) sensor measurements will

correct the estimated error, which can then be used to update the state estimate. Using

this method, there is no longer a need to formulate complicated, platform-specific dynamics

models, which may require a large number of state variables and is likely to be exceedingly

nonlinear. The “strapdown” ErEKFs has proven to yield highly accurate results (even with

a low-cost IMUs) and continues to form the basis of many inertial navigation systemss (INSs)

[26, 153, 222, 207, 35].

In the standard formulation of Kalman filtering theory, the system evolves on Euclidean

spaces. However, in many cases, the state variables we are interested in lie on a manifold.

For example, the orientation of a 3D rigid body is represented by an element of the special

orthogonal group, SO(3). This matrix Lie group is defined by the set of orthogonal 3 × 3

matrices with a determinant of one. Although the matrix contains nine variables, the di-

mension of the manifold is only three. One common approach is to parameterize SO(3)

using local coordinates such as three Euler or Tait-Bryan angles [90, 200]. This allows the

standard ErEKF equations to be applied; however, these local parameterizations are of-

ten arbitrary (and therefore confusing) and contain singularities (the well-known Gimbal

lock problem). Alternatively, it is possible to represent 3D orientation using quaternions,

which are a four-dimensional double cover (a two to one diffeomorphism) of SO(3). Us-

ing quaternions eliminates the singularities; however, modifications to the standard ErEKF

equations have to be made [207, 222]. In brief, while the orientation is represented by a

four-dimensional quaternion, the orientation error has to be defined by a 3−vector (in the

Lie algebra of SO(3)) and the associated covariance by a 3 × 3 matrix in order to prevent

degeneracy. Also, the orientation corrections are done through quaternion multiplication in-

stead of vector addition. This quaternion-based extended Kalman filter (QEKF) 1 has been

well studied and implemented on a number of platforms, ranging from spacecraft [172, 153]

to legged robots [35, 196, 81].

It turns out, many useful robot states can be characterized using matrix Lie groups. Ex-

amples include 2D orientation, SO(2), 3D orientation, SO(3), and 3D pose (orientation and

position), SE(3). If the state to be estimated is a matrix Lie group, it is possible to further

improve the EKF filtering approach. Bourmaud et al. [40, 41] developed versions of both

discrete and continuous-time EKFs for systems where the state dynamics and measurements

evolve on matrix Lie groups. In these formulations, noise is represented as a concentrated

1The quaternion-based formulation of EKFs is also sometimes called “multiplicative filtering” (MEKF)
due to the orientation correction being done through quaternion multiplication [164].
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Gaussian on Lie groups [229, 230], which is a generalization of the multivariate Gaussian

distribution. In essence, noise is represented as a Gaussian in the tangent space about a

point on the manifold. This noise is then mapped to the Lie group through the use of the

group’s exponential map, resulting in a decidedly non-Gaussian distribution on the manifold.

An improved state estimate is obtained due to the filter taking into account the geometry

and structure of the problem [41].

Most recently, a new type of EKF has been developed that is rooted in the theory of

invariant observer design, in which the estimation error is invariant under the action of a

Lie group [3, 38]. This invariance is referred to as the symmetries of the system [19]. This

work led to the development of the invariant extended Kalman filter (InEKF) [37, 23, 24,

25], with successful applications and promising results in SLAM [23, 243] and aided INSs

[39, 18, 19, 23, 237]. Similar to the above mentioned EKFs on matrix Lie groups, the state

is again represented as a matrix Lie group and the noise as a concentrated Gaussian on the

group.

However, the InEKF exploits available system symmetries to further improve filtering re-

sults. The culminating result of the InEKF states that if a system satisfies a “group-affine”

property, the estimation error satisfies a “log-linear” autonomous differential equation on the

Lie algebra of the corresponding Lie group [25, 23]. In other words, the system linearization

does not depend upon the estimated states. Therefore, one can design a nonlinear state esti-

mator with strong convergence properties. Surprisingly, many mobile robot state estimation

problems can be solved within the InEKF framework. This includes attitude estimation [37],

inertial odometry [25, 23], velocity-aided inertial navigation [39], landmark-aided navigation

[23], GPS and magnetometer-aided navigation [18], and even EKF-based SLAM. In this the-

sis, we extend this class of solutions to contact-aided inertial navigation [109], where forward

kinematics is used to correct inertial and contact-based prediction models. This successfully

allows an InEKF to be used for legged robot state estimation. More details can be found in

Chapter 4. This approach successfully allows an InEKF to be used for legged robot state

estimation.

Countless other filtering techniques and modifications have been proposed throughout

the literature to solve the mobile robot state estimation and SLAM problems. The infor-

mation filter, often considered to be dual to the Kalman filter, is a Gaussian filter where

the states are represented by an information vector and an associated information matrix

as opposed to a mean and covariance [219]. The natural sparsity that arises in the informa-

tion matrix can be exploited, which has allowed the extended information filter to be used

to improve the efficiency of SLAM techniques [218, 79, 227, 80]. The unscented Kalman

filter provides an alternative method for linearizing the process and measurement models
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based a deterministic sampling approach [135]. When propagated through the true nonlinear

systems, these carefully chosen samples can be used to recompute the posterior mean and

covariance accurately up to the third order [228]. This filter has also been implemented on

a range of platforms (including legged robots) to solve state estimation and SLAM prob-

lems [35, 242, 126, 57]. All of the before mentioned filters assume Gaussian distributions;

however, a number of nonparametric filters have also been developed. In particular, particle

filtering approximates the posterior distribution using a finite number of samples (or par-

ticles) [219, 71]. The nonparametric nature allows arbitrary probability distributions (even

multi-model ones) to be captured. By consequence, particle filters are well adapted to solve

the localization problem for many mobile robots [193], including humanoids [81].

Despite all the breakthroughs in filtering, over time, the accumulation of numerous land-

marks in the state renders many filtering methods computationally intractable for long-term

SLAM [69]. In addition, since only the current state is being estimated, all previous states are

marginalized out. As a consequence, for nonlinear systems, the chosen linearization points

are fixed which may lead to an accumulation of linearization errors. For mobile robotics,

smoothing methods are popular alternatives that can potentially alleviate these issues.

2.1.2 Smoothing Methods

Smoothing methods involve estimating the robot’s state at a particular time given all pre-

vious measurements and a set of future measurements [14, 43]. Perhaps the most simple

example is the fixed-lag smoother [168] where a delayed state is being estimated, which al-

lows future measurements to be incorporated. Other formulations of the fixed-lag smoother

involve tracking all states within a sliding time window [70, 202], which can be solved us-

ing nonlinear optimization to obtain maximum likelihood estimates. All states outside this

window are marginalized out, leading to many of the same issues that filtering approaches

are plagued with (inconsistency, and accumulation of linearization errors). In general, how-

ever, smoothing methods typically outperform comparable filtering approaches since past

measurements can be re-linearized as future information is obtained [165].

Full smoothers, which estimate the complete trajectory of states (and landmarks), are

often employed to solve the full SLAM problem. Since old states are never marginalized out,

there are no commitments to previous (and potentially bad) linearizations, as the motion and

measurement models can always be re-linearized around the current best estimate. This leads

to highly accurate performance; however, the unbounded growth of states makes real-time

implementation a challenge. These smoothing problems are often represented using various

graphical modeling schemes, including the widely used factor graph framework [67, 47, 65].
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A factor graph is a bipartite graph that provides a convenient method for modeling the

relationships between measurements and state variables. Once a factor graph is defined,

inference is often performed by computing the Maximum-A-Posteriori (MAP) estimate,

which maximizes the posteriori probability of the states (and landmarks) given the complete

set of measurements [67, 99]. This can be reduced down to a weighted, nonlinear least-squares

problem, which can be iteratively solved using a variety of methods, such as the gradient

descent, Gauss-Newton, Levenberg-Marquardt, or Powell’s Dogleg algorithms [68]. As the

number of states/landmarks grows, this optimization problem becomes intractable to solve

in real-time, with the computational bottlenecks being re-linearization and the factorization

of the information matrix (which is necessary for solving the approximated linear system

at each time step) [66]. This lead to the development of incremental solvers, such as iSAM

[136] and iSAM2 [137], which allow this factorization to be updated incrementally. When

combined with periodic variable re-ordering, carefully timed re-linearizations, and batch

solves, factor graph based smoothing methods can yield highly accurate results that can be

obtained in real-time [67, 65].

Many mobile robots contain both visual (camera, LiDAR, etc.) and inertial sensors

(gyroscopes and accelerometers). The process of fusing these sensor measurements to esti-

mate camera pose is referred to as visual-inertial odometry (VIO). Although there have

been many proposed solutions, state-of-the-art visual-inertial odometry (VIO) systems typ-

ically use factor graph based smoothers to estimate relative motion [85, 134, 223, 186]. The

flexibility of the factor graph framework also allows for pose-based loop closures or with

the estimation of numerous landmarks, giving rise to full SLAM solutions [170]. Most of

these implementations rely on carefully chosen keyframes to limit the growth of optimiza-

tion variables and to enable real-time performance [154]. Inertial measurements are typically

obtained at high-frequencies, and therefore, it would be computationally impractical to add

new states (and optimization variables) at every time step. To limit variable growth at the

rate of keyframe addition, Lupton and Sukkarieh [160] proposed a method for preintegrating

IMU measurements between two consecutive frames to form relative motion constraints.

Similar to manifold-based filtering, smoothing methods have also been adapted for cases

where the optimized states lie on manifolds. Since many smoothing methods can be reduced

down to nonlinear least-squares problems, manifold-based optimization techniques [2, 1,

206] (such as the Gauss–Newton method on manifolds) can be employed to solve for these

states. Forster et al. [85] combined the ideas behind IMU preintegration and manifold-

based smoothing to create a real-time VIO algorithm that respects the geometry in the 3D

rotation group. This idea was improved by Eckenhoff et al. [74] through the use of closed-

form integration methods. Recently, Chauchat et al. [48] developed a invariant smoothing
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technique that parallels the invariant filtering approach. For certain systems, where the state

is a matrix Lie group and the dynamics and measurements are “group-affine”, this invariant

smoother can used to improve convergence and accuracy while potentially eliminating the

need for re-linearization.

Despite these breakthroughs in factor graph based odometry and SLAM, most methods

heavily rely on visual information and are prone to failure when visual tracking is lost, often

due to lighting or scarcity of features. In addition, the state-of-the-art offers no method for

incorporating some of the sensors that legged robot are typically equipped with, namely joint

encoders and contact sensors. In these scenarios, kinematic odometry2, offers a method for

reducing the accumulated drift, which can allow the robot to more easily recover from loss

of visual information. In this dissertation, we build off of our work in [110, 108] to develop a

method for incorporating kinematic odometry into the factor graph framework. In doing so,

we developed two novel factors, which we call forward kinematicand preintegrated contact

factors. The forward kinematic factor relates the robot’s base frame to a contact frame

(located at the intersection of the robot and the environment) through noisy joint encoder

measurements. The preintegrated contact factors adopt the concepts behind preintegration

theory [160, 85] to allow integration of high-frequency contact measurements through an

arbitrary number of contact switches. This binary factor relates the contact frame poses

at consecutive keyframes. Together, these factors constrain the robot’s base motion leading

to improved Maximum-A-Posteriori (MAP) state estimation. In addition, we derive these

factors using Lie group theory, and show that this visual-inertial-contact (VIC) odometry

system satisfies the “group-affine” property. Therefore, the techniques developed for invari-

ant smoothing can be used to accurately solve this problem. More details can be found in

Chapter 5.

2.1.3 Legged Robot and Humanoid State Estimation

Legged robots are a subclass of mobile robots that locomote through direct and switching

contact with the environment. These robots typically contain proprioceptive sensors, such

as IMU, joint encoders, and contact sensors. In addition, some legged robots, especially

humanoids, also have access to exteroceptive sensors, namely cameras and LiDARs. As

with all mobile robots, state estimation for legged robots is critical for mapping, planning,

designing feedback controllers, and developing general autonomy. In this section, an overview

of notable techniques for legged robot state estimation is given.

2Kinematic odometry refers to the process of estimating the robot’s relative pose transformation (and
potentially velocity) from forward kinematic measurements along with contact assumptions. For legged
robots, this has also been referred to as “leg odometry”.
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The simplest approach for estimation of a legged robot’s spatial location and velocity is

kinematic dead-reckoning, otherwise known as kinematic odometry. This involves estimating

relative transformations using only kinematic and contact measurements. In particular,

encoder measurements and the kinematics model are used to track the position, orientation,

and velocity of the robot’s base frame based on the assumption that a stance foot remains

fixed to the ground. Although this method can be easily implemented, the state estimate is

typically noisy due to kinematic modeling errors, encoder noise, and foot slip [195]. When

only one foot is in contact with the ground, this “static contact assumption” may be violated.

For example, if the robot has point feet, the stance foot position may remain fixed, but the

foot orientation is free to rotate (without changing the joint angles). Therefore, a gyroscope

is often used to provide angular velocity measurements which allows the robot’s body velocity

to be recovered. Alternatively, if the terrain is known a priori and at least 3 noncollinear point

feet are on the ground, Lin et at. [156] showed that the robot’s instantaneous base pose can

be computed through kinematics. These kinematic-based methods have been implemented

on a number of legged robots including a planar one-legged hopper [125], the CMU Ambler

hexapod [195], the RHex hexapod [156], and the biped robot MARLO [59, 60]. However,

due to the high amounts of noise coming from encoders and foot slip, the velocity estimate

typically needs to be heavily filtered before becoming usable in the feedback controller [107].

In addition, this noise causes the position and orientation estimates to drift substantially

rendering the estimator useless for mapping and autonomy tasks.

Fortunately, legged robots are often equipped with additional sensors such as IMUs, GPS,

cameras, or LiDARs which provide independent, noisy odometry measurements. Much of the

literature on legged robot state estimation focuses on fusing these measurements (potentially

with kinematic odometry) using filtering and smoothing methods. Singh et al. [203] combined

inertial measurements with optical flow measurements in a four-phase hybrid EKF. This

required explicit dynamic modeling of the robot in flight, landing, stance, and thrust phases.

Lin et al. [157] took a similar model-based approach and used an EKF to fuse kinematic

information with IMU measurements to estimate the state of a hexapod. Cobano et al. [56]

developed an EKF that fuses kinematic odometry and magnetometer readings with position

measurements from a GPS to localize a SILO4 quadruped outdoors. This implementation

fixes the issues with unbounded drift, but cannot operate in GPS-denied environments. If a

prior terrain map is known, Chitta et al. [54] showed that it is possible to solve the localization

problem for legged robots using only proprioceptive sensors and a particle filter. The key

idea was that if the robot “senses” that a terrain change through kinematics, then this limits

the potential locations the robot can be in a known map. The method was demonstrated on

the LittleDog quadruped.
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A breakthrough came in 2012 when Bloesch et al. [34] combined inertial and kinematic

measurements in an observability-constrained ErEKF using the strapdown IMU modeling

approach. In this work, no a priori knowledge of the terrain is assumed, and the IMU inte-

gration model completely eliminates the need for dynamic modeling of the robot. Therefore,

the derived filter equations are general enough to be used on any legged robot. The key

idea was to augment the state vector with the set of all foot positions currently in contact

with the environment. During the prediction phase, the foot contact dynamics are assumed

to be Brownian motion, which can account for some foot slippage. In the correction phase,

forward-kinematic position measurements are used to correct the estimated state. This work

was conducted on the StarlETH quadruped robot. If the stance feet orientations also remain

constant, as is the case for many humanoids, Rotella et al. [196] showed that this ErEKF

can be extended to allow forward-kinematic orientation measurements. The same group

also formulated a similar unscented Kalman filter that uses forward-kinematic velocity mea-

surements to correct inertial predictions and to accurately detect foot slip [35]. A detailed

analysis of these filtering techniques combined with methods for incorporating computer

vision can be found in Bloesch [33]. Due to the complexity involved in accurately formulat-

ing dynamic models, many groups have since adopted this IMU motion model approach to

legged robot state estimation [238, 81, 109].

This combined inertial and kinematic filtering approach yields an estimate of the robot’s

base pose and velocity. However, some legged robots require additional states to be esti-

mated. Hwangbo et al. [133] formulated a probabilistic contact estimator for cases when

contact sensors are unavailable. Xinjilefu et al. [238] developed a decoupled EKF that is

able to estimate the full state of the humanoid robot ATLAS, including base states, joint

angles, and joint velocities. Using proprioceptive sensing only, Bloesch et al. [34] proved

that the absolute positions and yaw angles are unobservable. Thus, over time, estimates of

these quantities will drift unboundedly. This is unacceptable for global mapping and plan-

ning algorithms; however, local elevation maps can still be obtained [82]. Fallon et al. [81]

proposed a method for drift-free state estimation for the humanoid ATLAS. In their im-

plementation, inertial and kinematic measurements were fused to yield accurate odometry.

Point cloud data from a LiDAR sensor was used with a particle filter to localize the robot

into a pre-built map. This approach provided corrections of position and yaw to obtain

a drift-free estimate of the state. Nobili et al. [176] took a similar approach but used the

iterative closest point (ICP) algorithm to perform LiDAR-based point cloud matching. The

algorithm was tested on the HyQ quadruped robot.

In this thesis, two novel legged-robot state estimation techniques are developed. First,

in Chapter 4, an invariant extended Kalman filter (InEKF) is designed that can accurately
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fuse inertial, kinematic, and contact measurements to obtain fast converging estimates of a

robot’s base pose, velocity, and contact positions. The approach we take is similar to Bloesch

et al. [34], however we model the entire state as a single matrix Lie group as opposed to

a decoupled state approach. This allows us to use Barrau and Bonnabel’s [24] theory of

invariant observer design to take advantage of the geometry and symmetry of the estima-

tion problem to formulate autonomous error dynamics. In addition with our formulation,

the linearizations are independent of the state estimate resulting in improved convergence

properties, especially for poor state initializations. We formulate both world-centric and

robo-centric state estimators highlighting the relation between the left- and right-invariant

error dynamics. In addition, we provide exact analytical time-discretizations of both filters.

The implemented filters can be run at high speeds (> 2000Hz) and can be directly used

for accurate local odometry. We demonstrate this idea through a LiDAR terrain mapping

application on a Cassie-series biped robot. Using only proprioceptive sensing, the absolute

position and yaw will drift over time. To remedy this, we show how incorporate landmark es-

timation into the same filter to provide drift-free estimation. Next, in Chapter 5, we develop

a method for incorporating kinematic odometry into a factor graph based smoothing frame-

work. These novel factors can be combined with existing state-of-the-art visual-inertial and

loop-closure algorithms to provide long-term SLAM solutions for legged robots. To the best

of the authors knowledge, this is the first time kinematic odometry has been implemented

in a full smoothing algorithm. Some of this work was previously published in [110, 108].

2.2 Motion Planning for Legged Robots

The ultimate goal is to develop a general kinodynamic motion planning algorithm that can

compute dynamically-stable, collision-free trajectories for legged robots in real-time. Despite

the extensive literature [152], many existing planners cannot be directly implemented on

legged robots due to switching contact points, high-dimensionality, complex dynamics, and

stability requirements. Although a general technique has yet to be developed, a number of

researchers have created or adapted specialized algorithms that can solve subclasses of this

motion planning problem. Most of these algorithms assume that an accurate state estimate

and environment map have already been obtained.

In general, motion planning algorithms for legged robots have been broadly separated

into two distinct areas of research: local gait generation, and global path planning. Broadly

speaking, most research on global planning provides methods focus on computing collision-

free paths through a known map that can bring the robot from an initial state to a goal

state. Many of planners tend to follow a “contact-before-motion” formula, where the footstep
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locations are computed before the body and joint movements are generated [147, 113, 63].

This is useful for navigation on rough or discontinuous terrain, where the footstep locations

are critical. However, the allowable motions are often restricted to satisfy a “quasi-static”

criteria. In contrast, dynamic trajectory optimization can be used to generate local gaits

that span a much larger range of motions. However, these “high-quality” gaits typically

ignore obstacles and are mostly computed offline due to computational complexity [116].

For some scenarios, such as walking on flat ground, the footstep locations do not matter.

Therefore, it is possible to plan collision-free routes using standard 2D planning algorithms

[148]. The robot can then follow these routes using a sequenced set of precomputed gaits.

2.2.1 Stability Criteria and Gait Classifications

A gait is simply a specific style of legged locomotion. In general, gaits can be either periodic

and aperiodic. When planning over rough or discontinuous terrain, the robot often has to

make specific choices about footfall locations and body movement. In these scenarios, the

resulting movements are sometimes called non-gaited because the motions are not precom-

puted to follow a specific style of walking [111]. However, in this dissertation, the term

“gait” refers to any legged robot movement, periodic or aperiodic. Unlike wheeled robots

and fully-actuated manipulators, stability is an important requirement for legged robot mo-

tion planning. Differing definitions of this stability criteria group gaits into three classes:

static walking, dynamic walking, limit cycle walking [64].

If the projection of the center of mass (CoM) on the ground is always contained within

the robot’s support polygon3, then the gait satisfies the static stability requirement. In

other words, when the robot is statically stable, all movement can be stopped and the

robot will still maintain balance. It is important to note that this is a stability requirement

that relies solely on kinematics. This simplifies planning techniques, but heavily restricts

allowable configurations. As the size or number of stance feet increases, the relative area of

the support polygon will also increase. This, in turn, enlarges the set of valid configurations.

This definition of stability has been used on robots such as Ambler [20] and ATHLETE [114].

If the zero-moment point (ZMP) is always contained within the robot’s support polygon,

then the gait satisfies the dynamic stability requirement. The ZMP is defined as the point

on the ground where all forces and moments acting on the foot can be replaced by a single

force and vertical moment [225, 226]. If the ZMP is computed to be outside the support

polygon, then it is labeled a “fictitious” ZMP and the robot will roll about its feet. Therefore

algorithms that plan dynamic gaits will attempt to compute motions that keep the ZMP

3The support polygon is defined as the convex hull of all supporting feet.
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within the robot’s support polygon at all times. Every motion that is statically stable is also

dynamically stable. While the ZMP criteria extends the set of allowable movements, the

inability to roll about the foot and the need for a support polygon are still restrictive. For

example, when a robot runs or jumps, there is a period of time when the support polygon

does not exist. ZMP-based stability has been widely used on humanoid robots such as H7

[139], P2 [119], ASIMO [198], and HRP-2 [241].

The last style of gait has been called limit cycle walking [123, 233]. These gaits are

characterized by periodic motions are are turned into stable limit cycles using passive mech-

anisms or feedback control. Stability can be checked using the method of Poincaré sections

[102]. This type of movement does not rely on support polygons, and can therefore be ap-

plied to all types of periodic gaits including walking, running, and jumping. It can even be

applied to robots with a single underactuated contact, such as a point or line foot. Even

more generally, since legged locomotion can be described using a hybrid nonlinear system (as

explained in Section 3.1), stability can simply defined using the standard nonlinear systems

theory definitions. This allows both periodic and aperiodic motions to be characterized as

exponentially stable, asymptotically stable, or stable in the sense of Lyapunov [145]. These

notions of stability have been utilized when studying McGeer’s [166] passive walkers, Raib-

ert and Tello’s [189] hoppers, and a number of other underactuated bipeds: RABBIT [51],

MABEL [101], ATRIAS [190], DURUS [117], and Cassie [91].

2.2.2 Local Gait Generation

Gait generation involves computing feasible, CoM or joint trajectories that allow a legged

robot to move. Typically, these methods do not account for obstacles and only find a local

motion plan that moves the robot a few steps (or even just a single one). These techniques

have also been called walking pattern generation [141, 239] or trajectory optimization [233,

117]. Naturally, these local gaits do not solve the global motion planning problem, but

they can be sequenced together to achieve more complex tasks. The methods used for gait

generation depend on how the robot is modeled, if footsteps are pre-planned, and which

criteria of stability is used.

While some robots rely on static stability for gait generation [246], many legged robots

and humanoids use simplified models and the ZMP criteria [225] to generate gaits. Shih et al.

[201] used inverse kinematics with a fixed CoM trajectory (constant forward speed, torso

height, and sinusoidal lateral movement) to analytically solve for a biped’s joint movements.

When this computed trajectory violated the ZMP criteria, the motion was heuristically ad-

justed until dynamic stability was regained. Dasgupta and Nakamura [62] devised a method
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for generating ZMP trajectories from human motion capture data. Sugihara et al. [216] used

control methods for an inverted pendulum to compute the reference ZMP. This method

allowed for real-time gait generation that was verified through humanoid simulations. Com-

pelling experimental examples of ZMP-based gait generation is given by Honda’s humanoid

robots [120], P2 [119] and ASIMO [198].

Notably, in 2003, Kajita et al. [142] developed a walking pattern generator based on pre-

view control. The robot dynamics were approximated using an 3D linear inverted pendulum

model (LIPM) [141] to provide an simple relationship between the CoM dynamics and the

ZMP. Assuming a reference ZMP trajectory is given, a ZMP tracking problem is then solved

to obtain the desired CoM dynamics. Future information (a preview) of the ZMP trajectory

is provided to allow the CoM to change before the ZMP does. The reference ZMP trajec-

tory is assumed to be given by a higher-level footstep planner. Once the CoM trajectory is

obtained, inverse kinematics are used to compute the necessary joint angles to achieve the

desired motion. If the robot is fully actuated, these joint trajectories can be easily tracked to

obtain a dynamic walking motion. Using this method, gaits can be generated that achieve

specific foot placement, which is often necessary for navigating rough terrain.

Over time, many other methods for gait generation and control using the ZMP have been

developed [132, 239]. Unfortunately, this ZMP restriction limits the allowable movements of

the robot. For example, human gaits often involve significant “toe roll”, which cannot happen

when the ZMP is within the support polygon. In addition, gaits without a support polygon

(jumping, running, point-foot walking) are also ignored. Trajectory optimization provides

an alternate method that can used to generate all of these gaits (including static and ZMP

walking). In general, trajectory optimization aims to find an dynamically feasible motion

through the minimization of a user-defined cost function (such as energy per step). Since

legged locomotion is typically modeled as a hybrid nonlinear system, the resulting problem is

called hybrid trajectory optimization. Although this optimization problem only has a single

cost function, it can contain numerous equality and inequality constraints. This allows torque

limits, friction cones, periodicity, ZMP, and other constraints to be included in the problem

formulation. The solution of this optimization is a locally optimal trajectory of the hybrid

nonlinear system that satisfies all imposed constraints. Once formulated, this optimization

problem is transcribed into a constrained nonlinear program, which is then solved using a

nonlinear optimization solver [30]. In some instances, a feedback controller is optimized

alongside a trajectory. This is the case for the hybrid zero dynamics (HZD) framework

[233], where a set of parameters and virtual constraints define both the controller and the

trajectory. More information about HZD-based gait design can be found in Section 3.1.4.

In recent years, trajectory optimization has become a widely used method for generating
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dynamically-feasible gaits on legged robots. Chevallereau et al. [51] used trajectory opti-

mization to design energetically efficient walking gaits for the planar biped robot RABBIT.

Similar methods were used to generate dynamically-feasible gaits (that also satisfy key phys-

ical constraints) for the biped robots MABEL [213], and ATRIAS [190, 60]. Unfortunately,

as the complexity of the dynamic model increases, so does the gait computation time. There-

fore, most legged robot trajectory optimization problems are solved offline. Recently, Hereid

et al. [117] developed a direct collocation framework for optimizing the HZD of a robot. This

direct method offers a considerable speedup over similar “shooting-based” solvers, however,

real-time gait computation is still intractable for high-dimensional robots. An open-source

implementation of this optimizer, Fast Robot Optimization and Simulation Toolkit (FROST)

[116], is available. FROST has been used to generate gaits for the biped robots MARLO

[107], DURUS [117], Cassie (this dissertation), and even the exoskeleton ATALANTE [106].

Most hybrid optimization methods, including FROST, require contact mode scheduling be-

forehand. Typically, the sequence of contact modes is determined heuristically, however,

this presents a combinatorial problem for robots with many contact modes. Posa et al. [181]

developed a “through contact” optimization method that avoids this scheduling pitfall. This

method was used to generate gaits for the FastRunner biped.

2.2.3 Global Planning Methods

Unlike local gait planning, global planning aims to find a dynamically-feasible, collision-free

path through an environment that brings the robot from an initial configuration to a goal

configuration. Most global planning methods for legged robots limit the search space to

robot configurations that satisfy either the static or dynamic equilibrium condition. This

restricts the allowable motions of the robot, but simplifies the global planning problem. These

methods fall under the category of quasi-static planners. Early work primarily focused on

static walking for robots with many legs. Beginning in 1986, Hirose et al. [122], Hirose and

Kunieda [121] outlined a method for motion planning over rough terrain with a quadruped

robot. This algorithm used geometric techniques to select an appropriate location for the

swing foot that kept the CoM within the support polygon. Similar static planners were

devised for the hexapod Ambler [20] and general spider robots [36].

In 2002, Kuffner et al. [150] developed a dynamically-stable motion planning algorithm

for humanoid robots. This algorithm assumes that the initial and final posture of the robot

is statically stable, and the contact points do not change. A modified rapidly-exploring

random tree (RRT) [149] is then employed to construct a trajectory between the initial and

goal posture. This RRT only samples from statically stable, collision-free configurations that
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were computed a priori. This trajectory was then sent through a dynamics filter function

“AutoBalancer” [138] to ensure that the final trajectory satisfies the ZMP criteria. The

end result is a dynamically-stable, collision-free trajectory. Following the “contact-before-

motion” formula, Kuffner et al. [147] then extended this algorithm to include switching

contact points which enables the humanoid to move though the environment while avoid-

ing obstacles. First, a library of precomputed, reachable footstep positions is used to de-

velop a tree-based footstep planner. Once a feasible sequence of footsteps is computed, the

before mentioned dynamically-stable motion planning algorithm [150] is used to plan the

robot’s motions between footsteps. These planners were tested on the H6 and H7 humanoid

robot platforms [139]. Chestnutt et al. [50] developed a similar footstep planner to generate

collision-free paths for the ASIMO robot. The algorithm used a finite set of state-dependant

actions to generate footstep locations using a A-star search algorithm. More recently, Deits

and Tedrake [63] developed a footstep planner based on mixed-integer convex optimization.

After a linear approximation of sinusoids, their planner can be solved to a global optimum

and can handle kinematic reachability and obstacle avoidance. Simulations with an Atlas

biped robot were used to verify the algorithm.

Eldershaw and Yim [76] proposed a solution to the legged robot motion planning problem

by combining a probabilistic roadmap (PRM) [144] with a heuristic footstep planner. The

search space is discretized into cells, and a PRM is used to compute a collision-free trajectory

for the CoM. An A-star search algorithm is used to connect the random samples while

checking if a statically stable configuration exists. In the next phase, the footstep planner

attempts to find foot positions and body motions that move the CoM between cells. If

there is no feasible path, the PRM replans. Li et al. [155] deconstructed the humanoid

motion planning problem into a global and local planner. The global planner computes a

collision-free path for the upper-half of the robot using a variation on the best-first search

algorithm. The local planner takes this reference trajectory and kinematically plans only

the next several steps for the lower half of the robot. Bézier curves are used to reshape the

swing foot trajectory to avoid collisions with the ground. Overall, this planner allowed their

simulated robot to navigate around a layered or two and half dimensional environment.

Yoshida et al. [241] took a two stage approach to generating dynamically-feasible motion

plans. First, a geometric and kinematic planner computes a collision-free path in 2D for the

body along with joint angles through inverse kinematics. In the second phase, this informa-

tion is fed into Kajita et al. [142] walking pattern generator that computes a dynamically

stable motion plan based on the ZMP criteria. If the resulting dynamic plan collides with

any obstacles, it is reshaped and the dynamic plan is recomputed. This allowed a simu-

lated HRP-2 humanoid to navigate through narrow spaces while carrying objects. Hauser
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et al. [111] developed a non-gaited humanoid motion planner following the “contact-before-

motion” idea. A PRM was used to plan the next step using iterative constraint enforcement

to quickly sample from feasible statically stable configurations. This method allows a robot

to use any pre-defined contact points for motion planning, including hands and knees. Their

planner was tested on a simulated HRP-2 humanoid. The same group extended this work by

developing stance and transition graphs define the connectivity of the robot’s configurations

[114, 113]. Combining these graph ideas with a PRM variant allowed static planning over

varied terrain for both the HRP-2 and ATHLETE robots. Hauser et al. [112] combined

the strengths of precomputed motion primitives with these stance and transition graphs.

The PRM planner then used these motion primitives to guide the growth of the search tree

allowing higher-quality motions to be obtained.

Unfortunately, most of these global planning algorithms only work for robots and gaits

that satisfy the static or ZMP stability requirements. Therefore, gaits without a support

polygon (running and jumping) are not supported. In addition, if a biped has point or

line feet, there will not even be a support polygon during the single-support phase of simple

walking gaits. This is the case for both the ATRIAS (point-feet) and Cassie (line-feet) robots

used throughout this dissertation. For example, during the double-support phase, Cassie can

maintain either static or ZMP-based stability. However, as soon as one foot leaves the ground,

the support polygon vanishes and there are no configurations that put Cassie in static or

ZMP-based stability. Therefore, none of the before-mentioned “quasi-static” planners can be

used for underactuated robots. Some notable research on dynamic planning without support

polygons has been done by Chestnutt [49] and Zhao et al. [245]. Recent advances in gait

optimization have allowed for relatively fast, off-line computation of “high-quality” motions 4

[117, 116]. Therefore, it is possible to build up libraries of these “motion primitives” that can

be used for planning. Other researchers have explored the use of these trajectory libraries

for humanoid balance [158], unmanned aerial vehicles (UAVs) [87, 163], grasping [28], and

even controller design for underactuated legged robots [58, 60, 59, 107, 187, 175]. However,

the utility of trajectory libraries for global motion planning of underactuated legged robots

has yet to be explored.

2.3 Controller Design for 3D Bipedal Robots

Even if we obtain perfect state estimation and optimal reference trajectories, the robot will

never realize this motion without a feedback controller. Generally, these controllers takes in

4“High-quality” is used here to describe trajectories which are solutions to the full-order dynamic model
of the legged robot that also satisfy key physical constrains such as torque limits, friction cones, etc.
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some reference command or gait and calculate the appropriate torques to send to the robot’s

actuators. In an ideal case, the feedback controller will enforce stability of the gait while

rejecting bounded disturbances and model errors. This section provides a brief overview of

feedback controller design methods for bipedal robots.

2.3.1 ZMP-Based Walking

The majority of 3D bipedal gaits are stabilized through control of the zero-moment point

(ZMP) [131, 198, 150, 241]. After planning footsteps, the reference ZMP trajectory is typ-

ically converted into a center of mass (CoM) trajectory and eventually a joint trajectory

through inverse kinematics [142]. Once a joint trajectory is obtained, a number of low-

level tracking controllers can be implemented. As mentioned before, this method produces

“quasi-static” gaits that can only be implemented on “fully actuated” robots. Although this

method can produce stable walking, the gaits are not robust to the loss of actuation that

occurs during foot roll. If a perturbation causes the ZMP to move to the edge of the support

polygon [225], stability will be lost without an auxiliary controller. Although a powerful

technique for bipedal control design, since ZMP walking requires a non-zero support poly-

gon, it cannot be applied to either robot used in this dissertation; MARLO has point feet,

and Cassie has line feet. Therefore, no further topics on ZMP-based control will be reviewed.

2.3.2 Simplified Models and Foot Placement Techniques

If a robot is underactuated, simply tracking a joint trajectory may not lead to a stable walk-

ing motion. Therefore, the feedback controller may need to modify the original reference

trajectory to regain stability. The high-dimensionality and complex dynamics present in

many biped robots limits the methods for online planning, thus simplified models are often

used to develop and understand controllers. Some of these simplified models include the

inverted pendulum [216], the linear inverted pendulum model (LIPM) [141], and the spring

loaded inverted pendulum (SLIP) model [98, 231, 179]. These simplified models are com-

monly used to develop heuristics for gait stabilization. Many of these heuristic techniques

can be broadly grouped into so-called “foot placement” methods, which involve placing the

swing foot appropriately to actively maintain stability [221]. Unlike footstep planning, which

plans multiple steps to avoid obstacles, foot placement methods typically compute only a

single swing foot location while ignoring obstacles. In other words, footstep planning is used

for global planning, while foot placement is used to achieve stability. Despite the consider-

able success of foot placement techniques on a number of robots [189, 179, 194, 59], there is

no agreed upon model or method for determining where to place the swing foot.
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Hodgins and Raibert [124, 189] implemented foot placement through the notion of a

“neutral point”, the swing foot position that will leave the velocity unchanged. If the swing

foot is placed ahead of the neutral point, the robot will slow down. Placement behind the

neutral point will cause the robot to accelerate. To stabilize a gait at a fixed velocity, the

desired displacement of the swing foot position from the neutral point was a linear function

of velocity error. Dunn and Howe [72] used a similar gait asymmetry to develop a method of

foot placement to regulate velocity on a planar biped. The foot placement estimator (FPE),

developed by Wight et al. [235], has also been used to develop control strategies. The FPE

is the point on the ground where, when the CoM moves over it, all kinetic energy has been

turned to potential energy, which would leave the robot balanced above the point. Van

Zutven et al. [224] generalized the FPE to robots with an arbitrary number of non-massless

links. This generalization was called the foot placement indicator (FPI). Desired swing

foot placement has also been estimated though other stability measures, such as the foot

rotation indicator (FRI) [92] and the notion of capture regions [185]. Recently, Da et al.

[59] used a linear foot placement technique in conjunction with a library of gaits to obtain

velocity-regulated, 3D walking on MARLO. Although foot placement techniques typically

involve only changing the swing foot positions, there has been some research into heuristically

modifying other postural aspects of the gait to achieve stability [182, 107].

2.3.3 Hybrid Zero Dynamics

The theory of hybrid zero dynamics (HZD), developed by Grizzle, Westervelt et al. [233],

has emerged as a powerful framework for designing gaits along with stabilizing feedback con-

trollers for underactuated biped robots. At its core, the hybrid zero dynamics (HZD) frame-

work is built around the idea of virtual constraints that are enforced though feedback control.

Typically, these virtual constraints are a function of the robot’s configuration variables (they

are holonomic) and encode a desired walking motion for a set of chosen coordinates. Unlike

physical holonomic constraints, which are enforced though mechanical connections, virtual

holonomic constraints are enforced through feedback control. Specifically, output functions

are defined using these virtual constraints, and when driven asymptotically to zero, force

the chosen coordinates to track the desired motion. This drives the full, high-dimensional

nonlinear system to a low-dimensional, invariant hybrid zero dynamics surface. Notions of

stability on this low-dimensional surface can be used to provide stability measures for the

full-order dynamical system. A detailed overview of the HZD framework can be found in

[233]. An important consequence of this theory is that exponentially stable orbits of the

hybrid zero dynamics surface equates to exponentially stabilizable orbits for the full-order
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system [232]. In other words, if the zero dynamics orbit is stable, a feedback controller can

be designed to render the robot’s walking gait stable. The stability of the zero dynamics

orbit can be checked using the method of Poincaré sections [102, 169].

Chevallereau et al. [51] utilized the HZD framework to design stabilizing walking con-

trollers for the planar biped RABBIT. Sreenath et al. [212] were able to achieve compliant

walking and running [214] on the planar biped MABEL within the same HZD framework.

A similar style of running was also obtained by Ma et al. [161] on the planar DURAS-2D

biped. For 2D walking, the exact conditions required for asymptotic stability of 2D walking

can be analytically computed and are independent of the virtual constraint choice [233, 100].

However, this does not extend to 3D walking, where many choices of virtual constraints

will lead to an unstable zero dynamics orbit [100]. Despite this limitation, a number of

methods, both heuristic and theoretical, have been used to overcome this problem. Full

3D, HZD based walking has been implemented on the bipeds DURUS [117, 192], MARLO

[45, 96, 59, 107, 60], and Cassie [91]. Similar controllers have been created for powered

prosthetics [93] and exoskeletons [5, 106].

After defining the virtual constraint outputs, the system can be described using two

sets of coordinates: the zero dynamics and transverse dynamics coordinates. When the

virtual constraint outputs are identically zero, the nonlinear system is constrained to a lower-

dimensional surface; the resulting submanifold is denoted the zero dynamics surface. The

coordinates describing the dynamics on this surface are called the zero dynamics coordinates.

The coordinates describing the dynamics transversal to the zero dynamics surface are called

the transverse dynamics coordinates. Under the same HZD framework, many researchers

have developed differing methods for ensuring stable orbits for both the transverse dynamics

and zero dynamics.

2.3.3.1 Transverse Dynamics

The choice of virtual constraints defines the coordinates that are are actuated. The dynamics

of these transverse coordinates are governed by the implemented feedback controller. Over

the years, a number of methods for stabilizing the transverse dynamics have been used.

In [102, 232] a finite-time controller [31] is used to drive the system to the zero dynamics

surface in finite time, which is useful because the impact maps associated with biped walking

are typically expansive (pushing the state even further away from the surface) [11]. In

many HZD-based controllers, input-output feedback linearization [145] is used to render the

transverse dynamics exponentially stable [233]. This feedback linearization technique has

been used to realize stable walking on a number of bipeds [52, 169, 212]; though in practice,

the feedforward term is often dropped to yield a simple PD controller [51, 60, 107].
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Ames et al. [11, 10] used the theory of control Lyapunov functions (CLFs) [209, 16] to

extend the class of controllers that can be used to stabilize the transverse dynamics. Using

this theory, an closed-form point-wise minimum norm control law [88] can be formulated

that uses the minimum torques needed to keep the derivative of the Lyapunov function

negative definite. This controller was tested on the biped robot MABEL [11]. Galloway et al.

[89] re-formulated this “min-norm” controller as the solution to a quadratic program (QP).

This QP formulation allows additional constraints, such as torque limits, to be included. A

relaxation term was added to the CLF constraints ensure solvability of the QP, as it may not

always be possible to satisfy the CLF criteria when then torques are bounded. A thorough

description of these control Lyapunov function based quadratic programs (CLF-QPs) along

with a connection between legged locomotion and manipulation is provided in [9]. Nguyen

and Sreenath [174] developed a robust CLF-QP that can handle a greater degree of model

uncertainty.

2.3.3.2 Zero Dynamics

To ensure stability of the full dynamical system, both the transverse dynamics and the zero

dynamics have to be stable [232]. Although it is relatively easy to stabilize the transverse

dynamics (detailed in the above section), the stabilization of the zero dynamics presents a

greater challenge. By definition, the zero dynamics of a nonlinear system are uncontrollable

if the number of virtual constraints is equal to the number of actuators. Therefore, if the

zero dynamics are unstable for a fixed set of virtual constraints, the full system will also be

unstable (even if the transverse dynamics are stabilized). Unfortunately, this is often the

case for underactuated 3D walking. It is possible, however, to recover stability by either

redesigning the virtual constraint trajectories or modifying them online.

One potential method for ensuring stability is to enforce the existence of a stable zero

dynamics orbit during the gait generation phase. Chevallereau et al. [52] did this for a five-

link walker by constraining the eigenvalues of the linearized Poincaré map to be strictly within

the unit circle. [52]. This has also be done as a post-processing step where a precomputed,

unstable gait is stabilized by redesigning the virtual constraints. Akbari Hamed et al. [6]

developed a method for the redesign step using Bilinear Matrix Inequalities (BMIs) built

from performing a sensitivity analysis of the Poincaré map. Another method, developed by

Griffin and Grizzle [96], utilized nonholonomic virtual constraints to allow velocity-based

posture regulation that can lead to stable zero dynamics.

Stabilization of the zero dynamics can also be achieved through online modification of

the virtual constraint trajectories (and therefore the transverse dynamics). For example,

imagine a fixed set of virtual constraints designed for walking in place. The computed
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virtual constraint trajectories may keep the leg angles constant and drive the swing knee

angles to bend mid-step. For an underactuated robot, this may be an unstable strategy

when the robot is pushed forwards. However, if the desired swing leg angle trajectory was

modified to swing forward, stability of the gait could be recovered. This gait modification is

precisely the idea behind swing foot placement techniques. Da et al. [59] used this method

to stabilize 3D walking on MARLO using velocity errors to modify the desired swing leg

trajectory. Reher et al. [191] used a similar method to stabilize the lateral motion on the

DURUS robot. In [107], optimization-based perturbation recovery was used to create posture

adjustment functions (PAFs) that can modify any joint trajectory on the robot to recover

stability.

Although most virtual constraints are configuration-based (and therefore relative degree

two), velocity or other relative degree one outputs can be chosen. The surface defined when

all relative degree two outputs are identically zero is denoted the partial hybrid zero dynamics

(PHZD) surface [7, 8]. For fully actuated robots, the partial hybrid zero dynamics (PHZD)

can become controllable allowing for stabilization techniques and speed regulation [183].

2.3.3.3 Safety Critical Constraints

In addition to stabilization, we may wish to enforce safety critical constraints using a feed-

back controller. During biped walking, for example, the controller should keep the swing

foot from scuffing the floor, and when encountering rough terrain, precise foot placement

may be required. Implementation of control barrier functions (CBFs) provide one method

for achieving these safety critical constraints. These CBFs were first used in numerical opti-

mization [42], but have also been used in nonlinear control due to their “dual” relationship

to Lyapunov functions [234]. In 2014, Ames et al. [12] developed a control barrier function

based quadratic program (CBF-QP) that can be used for safety critial systems. The use of

a QP allows for the unification of safety constraints with stability constraints, coming from

a CLF-QP. The resulting CBF-CLF-QP was evaluated on automatic cruise control and lane

keeping problems [13]. Hsu et al. [128] brought CBFs to biped locomotion by designing

a CBF-CLF-QP that allowed a planar model of AMBER2 to stably walk while enforcing

physical constraints, such as swing foot clearance and knee angle constraints. Nguyen and

Sreenath [173] used a similar formulation to enforce precise foot placement on a model of the

planar RABBIT robot. Quan Nguyen et al. [187] later extended this method to develop a

CBF-CLF-QP that achieved precise foot placement for 3D walking on stepping stones using

a model of the DURUS biped.
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2.3.3.4 Gait Libraries

In order for a legged robot to perform useful tasks, a wide range of behaviors may be needed

(walking at different speeds, turning, running, climbing stairs, etc.). This motivates the

use of trajectory or gait libraries. In 2016, Da et al. [59] used a library of eight gaits that

were each optimized for a single sagittal walking speed. These gaits were then interpolated

based on the current velocity measurement to create a continuously defined controller that

was marginally stable. Asymptotic stability was recovered by augmenting the controller

with a “foot placement” strategy to regulate speed. Da et al. [60] later included gaits that

transition between periodic orbits into the gait library. The combination of periodic gaits,

transition gaits, and supervised machine learning allowed control policies to be built that

stabilized 3D walking on MARLO. A terrain adaptation policy was generated using a 2D

grid of periodic gaits with varying sagittal velocities and step heights. This allowed MARLO

to stably walk though the valleys of the University of Michigan’s Wave Field. Future terrain

height was estimated based on prior kinematic measurements. In [107], we used a 2D grid

of periodic gaits to reject velocity disturbances and to extend the region of attraction of a

3D walking controller. This 2D grid of gaits included gaits for walking forwards, backwards,

sideways, and diagonally. This effort is described in Section 6.2. Nguyen et al. [175] used

a gait library of differing step lengths and step height to achieve planar dynamic walking

across randomly varying, discrete terrain. This was verified experimentally on an planar

ATRIAS-series biped by giving the robot a one-step preview of the terrain. Quan Nguyen

et al. [187] also combined gait libraries with CBFs to achieve precise foot placement and

dynamic walking on stepping stones. Harib et al. [106] used gait libraries and supervised

learning to generate a stable walking controller for the ATALANTE exoskeleton. This gait

design process, called generalized hybrid zero dynamics (GHZD), was fully developed by Da

and Grizzle [58]. In this thesis, Chapter 6 gives an description of some of the gait library

techniques that have been implemented on MARLO and Cassie.
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CHAPTER 3

Background

This chapter presents an overview of the background material useful for understanding the

remainder of the dissertation. Section 3.1 presents the mathematical model used for legged

locomotion as well as a description of the two robots (ATRIAS and Cassie) used for ex-

periments. Section 3.2 gives a short introduction to the extended Kalman filter (EKF).

Section 3.3 gives an overview of smoothing using factor graphs and optimization on mani-

folds. Section 3.4 provides introduction to Lie group theory along with useful expressions

for all groups used in this dissertation. Finally, Section 3.5 provides a overview of forward

kinematics and the various forms of its Jacobians.

3.1 Legged Locomotion

Throughout this dissertation, simulations and experiments were performed on either an

ATRIAS-series or a Cassie-series biped robot. This section provides a description of these

robots, along with necessary background information on the hybrid system that is used for

modeling legged locomotion. These mathematical models of the robots are later used to

optimize dynamically-feasible gaits and for feedback control design.

3.1.1 Dynamic Model of Legged Locomotion

Legged locomotion can be modeled using a hybrid system consisting of a set of continuous

phases along with discrete transitions between them [233]. Together, the continuous dynam-

ics and the discrete map form a domain. Steady-state walking can be modeled as a cyclic

directed graph composed from an ordered set of these domains [117]. The set of domains and

the corresponding dynamics are robot and application specific, but most can be described

through the same general equations.
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The continuous dynamics can be modeled by the constrained Euler-Lagrange equation,

D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu + JT(q)F, (3.1)

where q is vector of generalized coordinates, D(q) is a positive-definite mass matrix, C(q, q̇)

is the coriolis matrix, G(q) is a vector that describes the contribution of gravity to the

dynamics, and B is a matrix that maps the inputs to the state space. The last term

represents a vector of external forces F that enforce any holonomic constraints (such as

pinning the stance foot to the ground), which are mapped to the state space through the

constraint’s Jacobian, J(q). These holonomic constraints take the form h(q) = 0. To

enforce this relation over time, the constraint’s acceleration needs to be constrained to zero

using

J(q)q̈ + J̇(q, q̇)q̇ = 0. (3.2)

A guard S is formed from a subset of the boundary of the domain [117]. This represents

the condition that causes the continuous dynamics phase to end. Here S is defined as the set

of conditions which place the swing foot in contact with the ground. This can be represented

by the set

S = {(q, q̇) ∈ T Q | pvsw(q) = cg, ṗ
v
sw(q, q̇) < 0}, (3.3)

where pvsw denotes the switch foot’s vertical position and cg represents the ground height.

Domain transitions are modeled as an instantaneous, discrete map. For impacts (swing

foot hitting the ground), this results in a discontinuity in velocity [233]. The post-impact

velocities need to satisfy:

[

D(q−) −JT

D+(q−)

JD+(q−) 0

][

q̇+

δF

]

=

[

D(q−)q̇−

0

]

(3.4)

where (q−, q̇−) is the pre-impact state, (q̇+) is the post-impact velocity, δF is a vector of

impulse forces, and JD+(q) is the Jacobian matrix of the subsequent domain’s holonomic

constraints. The configuration of the system remains constant throughout impact (q− = q+).

Remark 1. When constraints are only removed between domains, the vector of impulse

forces will be equal to zero and the impact map can be simplified. This can happen when

the robot switches from double support to single support, or single support to flight.
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Figure 3.1: MARLO, the Michigan copy of an ATRIAS-series robot designed by the Dynamic Robotics
Laboratory at Oregon State University

3.1.2 ATRIAS-series Biped Robot Description

MARLO, shown in Figure 3.1, is an underactuated ATRIAS-series biped robot. This

robot has 4 motors capable of controlling leg motion in the sagittal plane and 2 mo-

tors capable of controlling the legs in the lateral plane; i.e. u ∈ R
6. The springs are

assumed to be sufficiently stiff enough to ignore for the purpose of modeling and gait

design. The configuration variables for the floating base model can be defined as q :=

(x, y, z, qz, qy, qx, q1R, q2R, q3R, q1L, q2L, q3L) ∈ R
12. The variables (x, y, z, qz, qy, qx) correspond

to the absolute world frame position and orientation (ZYX Euler angle convention) of the

robot’s base. The variables (q1R, q2R, q3R) and (q1L, q2L, q3L) refer to the local coordinates that

describe the joint angles of the right and left side of the robot respectively. Figure 3.2 shows

the coordinate system used. When designing walking gaits, the knee angle, qKA , q2−q1, and

the leg angle, qLA , 1
2
(q1 + q2), provide more intuitive coordinates for the robot. Note that

a four-bar mechanism constrains the remaining joints on the robot. For more information

about the mechanics of the robot, refer to [190].

MARLO has point feet, allowing us to model contact using a point contact model where
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Figure 3.2: MARLO coordinate system

the foot’s three position degrees of freedom (DOF) are constrained. Therefore, when one of

MARLO’s feet is on the ground, the position of the foot is assumed to remain fixed in the

world frame. This can be represented using a holonomic constraint

h stance foot(q) , pst(q)− cst = 0, (3.5)

where pst(q) is the position of the stance foot computed using the robot’s base pose and

configuration, while cst is a constant vector denoting the position that the stance foot will

be constrained to. This holonomic constraint, along with the continuous dynamics (3.1) and

impact map equations (3.4), are used to model point-foot walking.

3.1.3 Cassie-series Biped Robot Description

Cassie (Blue), show in Figure 3.3, is a biped robot designed by Agility Robotics that is

capable of 3D walking. The robot has 10 actuators (5 on each side) allowing hip abduction,

hip rotation, hip flexion, knee rotation, and toe pitch. There are also 4 springs (2 on each

side); one spring is in series connecting the knee motor and the shin, the other spring connects

the tarsus to the thigh to form a four-bar linkage. When relaxed, this “tarsus” spring keeps

the thigh and tarsus 13 degrees off from parallel. The floating base model of Cassie has 20

DOF with 10 coming from the actuated joints, 4 from the springs, and 6 from the pose of

the base. The links and joints of the robot are shown in Figure 3.4, and details about the
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Figure 3.3: Cassie (Blue) is a biped robot developed by Agility Robotics. It has 20 degrees of freedom, 10
actuators and 4 springs. The robot is equipped with an inertial measurement unit, joint encoders. In this
picture, a Multisense S7 stereo camera is also mounted.

motors are provided in Table 3.1.

The robot is equipped with an VN-100 inertial measurement unit (IMU) located in the

pelvis and 14 encoders to measure each joint angle (including the springs). The robot is

also equipped with a Multisense S7 stereo camera shown in Figure 3.3. When the robot is

standing, the knee and tarsus springs will deflect from their nominal positions. These spring

deflections can be measured by the joint encoders and are used to estimate ground reaction

forces and to estimate which feet are in contact.

3.1.3.1 State Description

Cassie’s configuration vector, q = [qB,qL,qR]
T, is comprised of 20 variables coming from

the body pose, qB, the left leg, qL, and the right leg, qR. The body and leg configurations
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Figure 3.4: Location of Cassie’s motors and links

Motor Name Gear Ratio Max Torque Max Speed
(Nm) (rad/s)

hip abduction 25:1 4.5 12.1475
hip rotation 25:1 4.5 12.1475
hip flexion 16:1 12.2 8.5085

knee 16:1 12.2 8.5085
toe pitch 50:1 0.9 11.5192

Table 3.1: Cassie motor properties

are defined as

qB =














x

y

z

qz

qy

qx














and qL/R =
















q hip abduction

q hip rotation

q hip flexion

q knee

q knee spring

q ankle

q toe
















, (3.6)

where x, y, and z are the base positions in the world (inertial) frame, and qz, qy, and qx

denote the yaw, pitch, and roll angles of the base relative to the world frame. We adopt the

intrinsic ZYX Euler angle convention for the rest of this dissertation. In other words, the

rotation matrix describing the base orientation is given by: R = Rz(qz)Ry(qy)Rx(qx). Each

leg joint angle is measured relative to the link before it. The ankle angle is defined as the

angle between the shin and the tarsus.

3.1.3.2 Domains

Due to the high stiffness properties of the springs, for trajectory optimization we often use a

springless model of Cassie. This can be achieved by simply imposing a set of holonomic con-

straints that forces the spring deflection to be always zero. The rigid knee spring constraint
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can be written as

h knee spring(q) ,

[

qLknee spring

qRknee spring

]

= 02×1. (3.7)

The four-bar constraint (that keeps the tarsus spring deflection at zero) is defined by

h four-bar(q) ,

[

qLknee + qLankle − 13 deg

qRknee + qRankle − 13 deg

]

= 02×1. (3.8)

Cassie’s feet are very narrow (only 3 cm), allowing us to model contact using a line

contact model which constrains 5 DOF of the foot. Therefore, when one of Cassie’s feet

is on the ground, the position, yaw angle, and pitch angle is assumed to remain rigid with

respect to the world frame. This can be represented using the holonomic constraint,

h stance foot(q) , pst(q)− cst = 0, (3.9)

where pst(q) is the position, yaw angle, and pitch angle of the stance foot computed using

the robot’s base pose and configuration, while cst is a constant vector denoting the position

and angles that the stance foot will be constrained to.

Using these holonomic constraints, along with the continuous dynamics (3.1) and impact

map equations (3.4), we can now define a set of domains for flat-foot walking. The flight

domain is defined when both feet are off the ground. The holonomic constraints imposed

are

h(q) =

[

h knee spring(q)

h four-bar(q)

]

= 04×1. (3.10)

The single-support domain is defined when only one foot is on ground. The holonomic

constraints imposed are

h(q) =






h knee spring(q)

h four-bar(q)

h stance foot(q)




 = 09×1. (3.11)

The double-support domain is defined when both feed are on ground. The holonomic con-

straints imposed are

h(q) =









h knee spring(q)

h four-bar(q)

h left foot(q)

h right foot(q)









= 014×1. (3.12)

40



3.1.3.3 Computing Kinematics and Dynamics

After developing a URDF file describing the Cassie’s kinematic tree and link properties, the

kinematics and dynamics were computed using Fast Robot Optimization and Simulation

Toolkit (FROST) [116]. This toolkit also provides methods for trajectory optimization and

simulation of this hybrid dynamical system.

3.1.4 Virtual Constraints and Hybrid Zero Dynamics

The feedback controllers described in this dissertation follow the hybrid zero dynamics (HZD)

design framework. The general idea is to design a set of virtual constraints that are enforced

through feedback control [233]. These virtual constraints have the form:

y(q,α, τ) = ya(q)− yd(α, τ) (3.13)

where ya(q) represents the actual outputs that are to be controlled, and yd(α, τ) represents

their desired paths. Driving y to zero forces ya to track yd. The desired paths can be

parameterized by Bézier Polynomials of degree M:

yid(τ,α) =
M∑

k=0

αi
k

M !

k!(M − k)!
τ k(1− τ)M−k (3.14)

Here τ ∈ (0, 1) is a monotonically increasing variable that can be parameterized by either

time or by the state. Trajectory optimization methods [233, 117, 116] can be used to deter-

mine the Bézier coefficients, α, that correspond to a dynamically feasible gait.

Once the virtual constraints are designed, input-output feedback linearization can used to

compute the torques necessary to drive the them to zero. Using the Lie derivative notation,

the torque equation becomes:

u = (−LgLfy(x))
−1(L2

fy(x) +Kpy +Kdẏ) (3.15)

It is also possible to use a constant decoupling matrix and to drop the feedforward term

resulting in a simple PD tracking controller.

3.2 Extended Kalman Filtering

In general, filtering provides a method for estimating a robots current state based on a

collection of noisy measurements. For linear systems with additive Gaussian noise, the
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Kalman Filter [143] provides the optimal solution (minimum mean squared error) for state

estimation. The extended Kalman filter (EKF) offers a way to extend this filter to the class

of nonlinear systems by linearizing the dynamics and measurement models about the current

estimate [219]. In the following section, the general equations for the continuous-dynamics,

discrete-measurement EKF are summarized.

3.2.1 Continuous/Discrete

Let x be the state vector and u be the vector of system inputs. The subscript (·)t denotes

continuous time dependence while the subscript (·)k denotes a discrete instance of time, tk.

The continuous system dynamics are assumed to be modeled using a noisy nonlinear system

d

dt
xt = f(xt,ut,w

f
t ), (3.16)

where wf
t ∼ N (0,Σf

t ) represents additive white Gaussian noise. We also assume that we

have a set of noisy, discrete,, nonlinear measurements of the form:

yk = h(xk,w
h
k), (3.17)

where wh
k ∼ N (0,Σh

k) represents additive white Gaussian noise.

Let x̄t denote the current state estimate. The system dynamics, f(·), and the measure-

ment model, h(·), can be linearized about the current estimate, x̄t, to obtain the linear

(continuous) dynamics matrix, At, the dynamics noise matrix, Gt, the linear (discrete)

measurement matrix, Hk, and the measurement noise matrix Nt.

At =
∂f(x,u)

∂x

∣
∣
∣
x=xt

Gt =
∂f(x,u)

∂wf

∣
∣
∣
x=xt

Hk =
∂h(x)

∂x

∣
∣
∣
x=x

k

Nt =
∂f(x,u)

∂wh

∣
∣
∣
x=xt

(3.18)

During the prediction phase, the state estimate is propagated forward in time using the

deterministic dynamics:
d

dt
x̄t = f(x̄t,ut). (3.19)

The state covariance matrix, Pt is computed using the following Riccati equation:

d

dt
Pt = AtPt +PtA

T

t +GtΣ
f
tG

T

t . (3.20)
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When a measurement is received, the state can be updated using

x̄+
k = x̄−

k +Kk

(
yk − h(x̄−

k

)
, (3.21)

where the Kalman Gain, K, is computed by

Sk = HkPkH
T

k +NtΣ
h
kN

T

t Kk = PkH
T

kS
−1
k . (3.22)

The state covariance matrix is updated using

P+
k = (I −KkHk)P

−
k . (3.23)

3.2.2 Discretization

The continuous dynamics can be discretized by assuming a zero-order hold on the inputs and

integrating from tk to tk+1. This results in discrete dynamics that can be generally written

as

x̄k+1 = fd(x̄k,uk). (3.24)

In order to propagate the covariance, a continuous-time Riccati equation (3.20) needs to be

solved. The analytical solution to that differential equation is given by [165]

Ptk+1
= Φ(tk+1, tk)Ptk

Φ(tk+1, tk)
T +Σfd

t , (3.25)

where the discrete noise covariance matrix, Σfd
t , is computed by

Σfd
t =

∫ tk+1

tk

Φ(tk+1, t)GtΣ
f
tG

T

t Φ(tk+1, t)
Tdt, (3.26)

and the state transition matrix, Φ(tk+1, tk), satisfies

d

dt
Φ(t, tk) = AtΦ(t, tk) with Φ(tk, tk) = I. (3.27)

3.3 Factor Graph based Smoothing

In contrast to filtering, most smoothing methods aim to estimate a discrete trajectory of

the robot’s state variables as opposed to only the current state. This trajectory of states

(along with possible landmarks) is estimated by solving a nonlinear optimization problem

that aims to find the set of states that best fits the entire history of noisy measurements.
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Since previous states are not marginalized out (as in the extended Kalman filter (EKF)),

loop closures can easily be incorporated. Furthermore, there are no commitments to previous

(and potentially bad) linearizations, as the motion and measurement models can always be

re-linearized around the current best estimate.

A factor graph is a bipartite graph that provides a convenient method for modeling the

relationships between measurements and state variables. Once a factor graph is defined,

inference is often performed by computing the Maximum-A-Posteriori (MAP) estimate,

which maximizes the posteriori probability of the states (and landmarks) given the set of

measurements [67].

Let X =
⋃

k∈Kf
xk denote the set of all state (and landmark) variables, and Z =

⋃

k∈Kh
yk

denote the set of all measurements (as defined in Section 3.2). The Maximum-A-Posteriori

(MAP) estimate of X can be computed by solving the following optimization problem:

X ∗ = argmax
X

p(X|Z). (3.28)

Using Bayes theorem, we can rewrite this maximization as:

X ∗ = argmax
X

p(X )p(Z|X )

p(Z)
∝ argmax

X
p(X )p(Z|X ) (3.29)

where the constant denominator can be dropped since does not affect the solution of the

optimization problem. In addition, since every input and measurement is assumed to be

independent, the joint densities can be computed as a product of factors:

p(X ) = p(x0)
∏

k∈Kf

p(xk+1|xk,uk), and p(Z|X ) =
∏

k∈Kh

p(yk|xk), (3.30)

where p(x0) denotes the prior probability of the initial state. The multivariate Gaussian

distributions can be computed from the motion model (3.24) and the measurement model

(3.17).

p(xk+1|xk,uk) =
1

√

|2πΣfd
k |

e







−
1

2
‖x

k+1
−f(x

k
,u

k
)‖2

Σ
fd
k







p(yk|xk) =
1

√

|2πΣh
k|

e







−
1

2
‖y

k
−h(x

k
)‖2

Σh
k







(3.31)

This posteriori maximization can be equivalently expressed as a minimization of the negative
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log-likelihood:

X ∗ = argmin
X

− log p(X|Z) (3.32)

which can be written using as a sum of error “residuals” due to the factorization of the

joint densities (3.30) and the zero-mean Gaussian noise assumptions (3.31). The resulting

optimization problem becomes:

X ∗ = argmin
X

‖y0 − x0‖
2
Σ0

+
∑

k∈Kf

‖xk+1 − f(xk,uk)‖
2

Σ
fd
k

+
∑

k∈Kh

‖yk − h(xk)‖
2
Σh

k
(3.33)

where y0 and Σ0 are the prior mean and covariance associated with the initial state, and

‖e‖2Σ , eTΣ−1e is defined as the Mahalanobis distance squared.

This nonlinear weighted least-squares optimization problem can be solved using a variety

of methods such as the gradient descent, Gauss-Newton, Levenberg-Marquardt, or Powell’s

Dogleg algorithms [68]. These algorithms generally work by iteratively linearizing the cost

and taking appropriate steps towards a local minimum. The computational bottlenecks are

often re-linearization and the factorization of the information matrix that is necessary for

solving the approximated linear system at each time step [66].

Incremental methods, such as iSAM [136] and iSAM2 [137], allow the factorization of

the information matrix to be updated incrementally. This reduces the computation time

required to incorporate new measurements into the factor graph, allowing many problems

to be solved in real-time. Periodic variable re-ordering, re-linearization, and batch solves are

often used along-side these incremental methods to further improve state estimation [67].

Remark 2. Incorporating a new measurement model into the factor graph framework simply

boils down to computing the measurement’s error residuals and the associated covariance

matrix.

3.4 Lie Groups

A Lie group is defined as a group that is also a smooth manifold [215, 104, 53]. In particular,

we focus on matrix Lie groups, which appear throughout robotics and can be defined as any

closed subgroup of the set of n× n invertible matrices. For the rest of this dissertation, any

Lie groups are assumed to be matrix Lie groups.
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3.4.1 Lie Algebra

Let G denote a particular matrix Lie group. The associated Lie algebra, denoted g, is defined

as the tangent space at the identity element of the group, g , TeG. If elements of G are

n × n matrices, then so are elements of g. The Lie algebra is a vector space and elements

can be mapped back and forth between g and R
dimg using the following operators:

(·)∧ : Rdimg → g and (·)∨ : g→ R
dimg. (3.34)

Therefore, the Lie algebra provides a natural vector space in which to define noise, errors, and

covariance. This is heavily utilized when performing filtering, smoothing, or optimization on

a manifold, as seen Section 3.4.6.

3.4.2 Exponential and Logarithm Maps

The exponential map of the Lie group, exp : g→ G, exactly maps an element of the Lie alge-

bra to a corresponding point on the Lie group [104]. For matrix Lie groups, the exponential

map is simply the matrix exponential. The logarithm map of the Lie group does the inverse,

log : G → g. It takes an element of the Lie group and maps it to a corresponding element in

the Lie algebra. The relationship between the exponential and logarithm maps is given by:

log(exp(ξ∧)) = ξ∧, (3.35)

where ξ ∈ R
dimg. To simplify notation, it is convenient to define “vectorized” exponential

and logarithm maps, Exp : Rdimg → G and Log : G → R
dimg;

Exp(ξ) = exp(ξ∧) and Log(Exp(ξ)) = ξ. (3.36)

3.4.3 Adjoint Representation

The adjoint representation plays a key role in the theory of Lie groups and through this

linear map we can capture the non-commutative structure of a Lie group.

Definition 1 (The Adjoint Map, see page 63 Hall [104]). Let G be a matrix Lie group with

Lie algebra g. For any X ∈ G the adjoint map, AdX : g → g, is a linear map defined as

AdX(ξ
∧) = Xξ∧X−1. Furthermore, we denote the matrix representation of the adjoint map

by AdX .

The adjoint map allows us to linearly and exactly transform vectors from the tangent

space about one group element to the (different) tangent space about another group element.
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The matrix representation also provides an easy method for shifting an element of the group

across the exponential map using the following relation:

XExp(ξ) = Exp(AdXξ)X. (3.37)

3.4.4 Jacobians

The Jacobians of the group relate the derivative of the exponential coordinates of the Lie

algebra to a generalized velocity of the corresponding Lie group element [21, 53]. Depending

on the frame of measurement (body or spatial), the generalized velocity, ̟ ∈ R
dimg, and the

group Jacobian can be defined two ways. When defined in the body frame, the generalized

velocity is defined as ̟∧ , X−1
t Ẋt, and the right Jacobian relates the derivative of the

exponential coordinates, ξ̇t to this velocity,

̟ = Jr(ξ)ξ̇t. (3.38)

When defined in the spatial frame, the generalized velocity is defined as ̟∧ , Ẋt X
−1
t , and

the left Jacobian relates the derivative of the exponential coordinates, ξ̇t to this velocity,

̟ = Jl(ξ)ξ̇t. (3.39)

The left and right Jacobians are related through the group’s adjoint map (4.19),

Jl(ξ) = AdExp(ξ) Jr(ξ). (3.40)

The right Jacobian, Jr, is useful for relating additive increments in the tangent space to

(right-hand-side) multiplicative increments on the manifold:

Exp(φ + δφ) ≈ Exp(φ)Exp(Jr(φ)δφ). (3.41)

The right Jacobian inverse, J−1
r , can be used to provide a similar first-order approximation

of the logarithm map:

Log(Exp(φ)Exp(δφ)) ≈ φ + J−1
r (φ)δφ. (3.42)

Similarly, the left Jacobian, Jl, is useful for relating additive increments in the tangent space

to (left-hand-side) multiplicative increments on the manifold:

Exp(φ + δφ) ≈ Exp(Jr(φ)δφ)Exp(φ). (3.43)
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The left Jacobian inverse, J−1
l , can be used to provide a similar first-order approximation of

the logarithm map:

Log(Exp(δφ)Exp(φ)) ≈ φ + J−1
l (φ)δφ. (3.44)

The Jacobian inverse can also be viewed as the first-order approximation of the Baker-

Campbell-Hausdorff (BCH) formula [21]. The BCH formula relates addition of elements in

the Lie algebra to multiplication of group elements.

Definition 2 (Baker-Campbell-Hausdorff (BCH) Formula). Let x and y be two vectors

in the Lie algebra. Multiplication of the corresponding two group elements, Exp(x) and

Exp(y), can be computed as an infinite sum of the vectors in the Lie algebra;

z = Log (Exp(x)Exp(y))

= x + y +
1

2
[x,y] +

1

12
([x, [x,y]] + [y, [y,x]])−

1

24
[y, [x, [x,y]]] + · · · ,

(3.45)

where [·, ·] denotes the Lie bracket operation.

3.4.5 Useful Matrix Lie Groups

In this section we detail the Lie groups used throughout this dissertation, along with their

algebras, exponential maps, logarithm maps, and adjoint representations. Each of these

groups are a subgroup of the general linear group of degree n, denoted GLn(R), which is

the set of all n× n non-singular real matrices. The group binary operation is the standard

matrix multiplication.

3.4.5.1 Group of Rotation Matricies, SO(3)

The three-dimensional (3D) special orthogonal group, defined by

SO(3) =
{
R ∈ GL3(R) | RRT = I3, detR = +1

}
, (3.46)

is the rotation group on R
3. It can be used to represent the orientation of a 3D rigid body.

The Lie algebra of SO(3), denoted by so(3), is defined by the set of 3 × 3 skew-symmetric

matrices such that for any φ , vec(φ1, φ2, φ3) ∈ R
3:

φ∧
, (φ)× =






0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0




 ∈ so(3). (3.47)
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If a skew-symmetric matrix is multiplied by a vector, one can swap the order using the

following useful property:

(a)× b = − (b)× a. (3.48)

In addition, if the skew operator is further applied to this quantity, it is possible to factor

out the expression into two terms;

(
(a)× b

)

×
= (a)× (b)× − (b)× (a)× . (3.49)

A closed-form expression for the exponential map of SO(3) is given by Rodrigues’ rotation

formula:

Exp(φ) = I3 +

(
sin θ

θ

)

(φ)× +

(
1− cos θ

θ2

)

(φ)2× ∈ SO(3) (3.50)

where θ , ||φ||. The closed-form expression for the logarithm map is given by:

Log(R) =
θ

2 sin θ
(R −RT) ∈ R

3, with θ = cos−1

(
tr(R)− 1

2

)

. (3.51)

The matrix representation of the Adjoint map of SO(3) is simply the rotation element itself,

AdR = R ∈ R
3×3. (3.52)

The right Jacobian of SO(3) is can be calculated using:

Jr(φ) = I3 −

(
1− cos θ

θ2

)

(φ)× +

(
θ − sin θ

θ3

)

(φ)2× (3.53)

where, once again, θ , ||φ||, [53, p. 40]. The right Jacobian inverse of SO(3) also has a

closed-form expression given by:

J−1
r (φ) = I3 +

1

2
(φ)× +

(
1

θ2
−

1 + cos θ

2θ sin θ

)

(φ)2× (3.54)

The left Jacobian of SO(3) and its inverse can be computed using

Jl(φ) = I3 +

(
1− cos θ

θ2

)

(φ)× +

(
θ − sin θ

θ3

)

(φ)2×

J−1
l (φ) = I3 −

1

2
(φ)× +

(
1

θ2
−

1 + cos θ

2θ sin θ

)

(φ)2× .

(3.55)
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Remark 3. In this dissertation, the skew-symmetric operator, (·)×, is preferred over the

hat operator, (·)∧, when mapping vectors to so(3). This is done to prevent confusion and

operator overload when working with other Lie algebras, such as se(3).

3.4.5.2 Group of Direct Spatial Isometries, SE(3)

The 3D special Euclidean group, defined by

SE(3) =

{

H =

[

R p

01×3 1

]

∈ GL4(R) | R ∈ SO(3),p ∈ R
3

}

(3.56)

is the group of rigid transformations on R
3. It can be used to represent the pose (position

and orientation) of a 3D rigid body. The Lie algebra of SE(3), denoted by se(3), can be

identified by 4× 4 matrices such that for any ξ , vec(φ,ρ) ∈ R
6:

ξ∧
,

[

(φ)× ρ

01×3 0

]

∈ se(3) (3.57)

The exponential map of SE(3) can be computed using:

Exp(ξ) =

[

Exp(φ) Jl(φ)ρ

01×3 1

]

∈ SE(3), (3.58)

where Exp(φ) and Jl(φ) are the exponential map and the left Jacobian of SO(3). The

logarithm map of SE(3) is computed using:

Log(H) =

[

Log(R)

J−1
l (Log(R))p

]

∈ R
6, (3.59)

where Log(R) is the logarithm map of SO(3). The matrix representation of the Adjoint map

of SE(3) is given by:

AdH =

[

R 03×3

(p)× R R

]

∈ R
6×6. (3.60)
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The left Jacobian of SE(3) given by [22, 21],

Jl(ξ) =

[

Jl(φ) 03×3

Q(φ,ρ) Jl(φ)

]

Q(φ,ρ) ,
1

2
(ρ)× +

θ − sin(θ)

θ3
(
(φ)× (ρ)× + (ρ)× (φ)× + (φ)× (ρ)× (φ)×

)

+
θ2 + 2 cos(θ)− 2

2θ4
(
(φ)2× (ρ)× + (ρ)× (φ)2× − 3 (φ)× (ρ)× (φ)×

)

+
4θ + 2θ cos(θ)− 6 sin(θ)

4θ5
((φ)× (ρ)× (φ)2× + (φ)2× (ρ)× (φ)×),

(3.61)

where θ , ||φ||, and Jl(φ) is the left Jacobian of SO(3).

3.4.5.3 Group of K Direct Isometries, SEK(3)

The group of K direct isometries, defined by

SEK(3) =







X =












R p1 p2 · · · pK

01×3 1 0 · · · 0

01×3 0 1 · · · 0
...

...
...

. . .
...

01×3 0 0 · · · 1












∈ GLK+3(R) | R ∈ SO(3),pi ∈ R
3







, (3.62)

can be used to represent a 3D orientation along with K vectors in R
3. This group will be

useful for modeling the inertial measurement unit (IMU) state (pose plus velocity) along

with other positions, such as contact points or landmarks. The Lie algebra of SEK(3),

denoted by seK(3), can be identified with (K + 3) × (K + 3) matrices such that for any

ξ , vec(ω,ρ1,ρ2, · · · ,ρK) ∈ R
3K+3:

ξ∧
,












(ω)× ρ1 ρ2 · · · ρK

01×3 0 0 · · · 0

01×3 0 0 · · · 0
...

...
...

. . .
...

01×3 0 0 · · · 0












∈ seK(3) (3.63)
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The exponential map of SEK(3) can be computed using:

Exp(ξ) =












Exp(φ) Jl(φ)ρ1 Jl(φ)ρ2 · · · Jl(φ)ρK

01×3 1 0 · · · 0

01×3 0 1 · · · 0
...

...
...

. . .
...

01×3 0 0 · · · 1












∈ SEK(3), (3.64)

where Exp(φ) and Jt(φ) are the exponential map and the left Jacobian of SO(3). The

logarithm map of SEK(3) is computed using:

Log(X) =












Log(R)

J−1
l (Log(R))p1

J−1
l (Log(R))p2

...

J−1
l (Log(R))pK












∈ R
3K+3, (3.65)

where Log(R) is the logarithm map of SO(3). The matrix representation of the Adjoint map

of SEK(3) is given by:

AdX =












R 03×3 03×3 · · · 03×3

(p1)× R R 03×3 · · · 03×3

(p2)× R 03×3 R · · · 03×3

...
...

...
. . .

...

(pK)× R 03×3 03×3 · · · R












∈ R
(3K+3)×(3K+3). (3.66)
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The left Jacobian of SEK(3) given by,

Jl(ξ) =












Jl(φ) 03×3 03×3 · · · 03×3

Q(φ,ρ1) Jl(φ) 03×3 · · · 03×3

Q(φ,ρ2) 03×3 Jl(φ) · · · 03×3

...
...

...
. . .

...

Q(φ,ρK) 03×3 03×3 · · · Jl(φ)












Q(φ,ρ) ,
1

2
(ρ)× +

θ − sin(θ)

θ3
(
(φ)× (ρ)× + (ρ)× (φ)× + (φ)× (ρ)× (φ)×

)

+
θ2 + 2 cos(θ)− 2

2θ4
(
(φ)2× (ρ)× + (ρ)× (φ)2× − 3 (φ)× (ρ)× (φ)×

)

+
4θ + 2θ cos(θ)− 6 sin(θ)

4θ5
((φ)× (ρ)× (φ)2× + (φ)2× (ρ)× (φ)×),

(3.67)

where θ , ||φ||, and Jl(φ) is the left Jacobian of SO(3).

3.4.6 Uncertainty and Optimizations on Lie Groups

For optimization problems where the unknown variables are vectors, e.g.(3.33), simple sub-

traction can be used to define errors, ek = x̄k−xk, while addition can be used to update the

variables, i.e. x̄ ← x̄ + δx. However, when the unknown variables live on manifolds, extra

steps need to be taken. In this section, the key ideas are outlined through a simple example.

Lets assume that our state, X ∈ G, is a matrix lie group. The noisy system dynamics

(3.24) can be rewritten as:

Xk+1 = f(Xk,uk)Exp(w
fd
k ), (3.68)

where f(·) is the discrete dynamics function and wf
k ∈ R

dimg is zero-mean Gaussian noise

with a covariance of Σfd
k . Since f(Xk,uk) ∈ G is a matrix, the noise is multiplicative instead

of additive.

First, the error residual that we aim to minimize is defined in the tangent space. The

residual for the discrete dynamics (3.68) can be written as:

rk+1 = Log
(
f(Xk,uk)

−1Xk+1

)
∈ R

dimg. (3.69)

Next, a bijective retraction, RX : TXG 7→ G, is defined that maps between an element of the

tangent space, δx, and a neighborhood of X ∈ G [2]. A natural choice of a retraction map

for Lie groups is the exponential map,

RX(δx) , XExp(δx) or RX(δx) , Exp(δx)X. (3.70)
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The optimization problem can now be lifted using this retraction,

minimize
X

f(X) → minimize
δx∈Rdimg

f(RX(δx)), (3.71)

and the re-parameterized problem can be iteratively solved using standard optimization

techniques [85].

In our example, let X ,
⋃

k∈Kf
Xk denote the set of all unknown states. The original

optimization problem involves minimizing the sum of the squared norm of all error residuals:

X ∗ = argmin
X

∑

k∈Kf

‖Log
(
f(Xk,uk)

−1Xk+1

)
‖2
Σ

fd
k

(3.72)

This optimization problem can be solved by iteratively lifting the problem to the tangent

space, solving the re-parameterized problem, then mapping the updated solution back to

the manifold using the retraction map. Using the exponential map as the retraction, the

re-parameterized optimization problem becomes:

δ∗ = argmin
δ

∑

k∈Kf

‖Log
(
f(XkExp(δxk),uk)

−1Xk+1Exp(δxk+1)
)
‖2
Σ

fd
k

(3.73)

where δ ,
⋃

k∈Kf
δxk is the set of all increments in the tangent space. After each iteration of

the solver, the increments get mapped back to the Lie group, ∀k ∈ Kf , Xk ← XkExp(δxk).

This lift-solve-retract process is repeated until a local minimum is reached. Refer to [2, 1, 206]

for more information about performing optimization on manifolds.

3.5 Forward Kinematics

Forward kinematics refers to the process of computing the relative pose transformation be-

tween two frames of a multi-link system. Each individual joint displacement describes how

the child link moves with respect to the parent one. This joint displacement can either be

an angle (revolute joints) or a distance (prismatic joints).

Let α ∈ R
N denote the vector of joint displacements for a general robot. Without loss

of generality, we define a base and an end-effector frame on the robot, donated B and E

respectively. The homogeneous transformation between the base frame and the end-effector

frame is defined by:

H
BE

(α) ,

[

RBE(α) BpBE(α)

01×3 1

]

(3.74)
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where RBE(α) and BpBE(α) denote the relative orientation and position of the end-effector

frame with respect to the base frame. This homogeneous transformation defines the forward

kinematics function and can be constructed from the product of all relative joint transfor-

mations between the base (i) and end-effector (j) frames:

H
BE

(α) =

j−1
∏

k=i

H
k,k+1

(α). (3.75)

The manipulator Jacobian1, J(α) , vec(Jω(α), Jv(α)), relates joint displacement rates

to rotational and translational velocities of the end-effector. Together, these velocities form

a generalized velocity vector, ̟ , vec(ω, v) ∈ se(3) [171]. The manipulator Jacobian can

either be a spatial Jacobian, where the resulting velocities are measured in the first frame

(base here),

B̟BE =

[

BωBE

BvE

]

= BJBE
(α)α̇, (3.76)

or a body Jacobian, where the velocities are measured in the second frame (end-effector here),

E̟BE =

[

EωBE

EvE

]

= EJBE
(α)α̇. (3.77)

As noted in Section 3.4.4, the frame of measurement for the twist specifies which side it

appears on when looking at the time derivative of the homogeneous transformation;

d

dt
H

BE
(α) = (BξBE)

∧H
BE

(α) =
(

BJBE
(α)α̇

)∧
H

BE
(α) or

d

dt
H

BE
(α) = H

BE
(α)(EξBE)

∧ = H
BE

(α)
(

EJBE
(α)α̇

)∧
.

(3.78)

These spatial and body Jacobians are related through the adjoint map of SE(3) (3.60),

BJBE
(α) = AdHBE(α) EJBE

(α). (3.79)

Sometimes, it is useful to define a Jacobian for the position kinematics only. Starting

1also called the geometric Jacobian
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with (3.78), we can express the pose derivative in matrix form,

d

dt
H

BE
(α) =

(

BJBE
(α)α̇

)∧
H

BE
(α)

=

[(

BJ
ω
BE

α̇
)

× BJ
v
BE

α̇

01×3 0

][

RBE BpBE

01×3 1

]

=

[(

BJ
ω
BE

α̇
)

×
RBE

(

BJ
ω
BE

α̇
)

× BpBE + BJ
v
BE

α̇

01×3 0

]

=

[(

BJ
ω
BE

α̇
)

×
RBE

(

BJ
v
BE
− (BpBE)× BJ

ω
BE

)
α̇

01×3 0

]

.

(3.80)

Extracting out just the position term, and using (3.48) to bring α̇ outside the skew operator

gives

d

dt
BpBE =

(

BJ
v
BE
− (BpBE)× BJ

ω
BE

)
α̇

, BJ
ṗ
BE

(α)α̇,
(3.81)

where the Jacobian BJ
ṗ
BE

relates joint displacement rates to the derivative of the position

directly. This Jacobian can alternatively be computed using

BJ
ṗ
BE

(α) =
∂BpBE

∂α
. (3.82)

These Jacobians are useful for making first-order approximations of how encoder noise

gets propagated through forward kinematics. Assume δα is a small perturbation to the joint

displacements. This term can be factored out of the forward kinematics using the various

definitions of the manipulator Jacobians. The full pose approximation is given by

H
BE

(α + δα) ≈ Exp
(

BJBE
(α)δα

)
H

BE
(α) = H

BE
(α)Exp

(

EJBE
(α)δα

)
, (3.83)

whereas the position only approximation is given body

BpBE(α + δα) ≈ BpBE(α) + BJ
ṗ
BE

(α)δα. (3.84)

Refer to Murray [171] and Spong et al. [211] for more information about kinematics and the

manipulator Jacobians.
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CHAPTER 4

Contact-Aided Invariant Extended Kalman

Filtering

4.1 Overview

The core content in this chapter was previously published in [109] with co-authors Maani

Ghaffari Jadidi, Jessy W Grizzle, and Ryan M. Eustice. Several extensions are made, how-

ever, most text and results remain unchanged.

4.1.1 Introduction and Objective

Legged robots have the potential to transform the logistics and package delivery industries,

become assistants in our homes, and aide in search and rescue [55]. In order to develop mo-

tion planning algorithms and robust feedback controllers for these tasks, accurate estimates

of the robot’s state are needed. Some states, such as joint angles, can be directly measured

using encoders, while other states, such as the robot’s pose and velocity, require additional

sensors. Most legged robots are equipped with an inertial measurement unit (IMU) that

can measure linear acceleration and angular velocity, albeit with noise and bias perturba-

tions. Consequently, nonlinear observers are typically used to fuse leg odometry and inertial

measurements to infer trajectory, velocity, and calibration parameters [196, 27, 78, 151]. In

view of a practical solution, designing a globally convergent observer is sacrificed for one

with at best local properties, such as the extended Kalman filter (EKF) [103, 146, 222, 207].

This EKF-based approach is computationally efficient and easily customizable, allowing suc-

cessful implementation on a number of legged robots with rigorous real-time performance

requirements [35, 33, 81, 177].

Accurate pose estimation can be combined with visual data to build maps of the environ-

ment [82]. Then such maps can be used in gait selection to improve the stability of a robot

while walking on uneven terrains and as a basis for high-level motion planning. Although
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there have been many recent advancements in visual-inertial-odometry and simultaneous lo-

calization and mapping (SLAM) [186, 129, 83], these algorithms often rely on visual data for

pose estimation. This means that the observer (and ultimately the feedback controller) can

be adversely affected by rapid changes in lighting as well as the operating environment. It is

therefore beneficial to develop a low-level state estimator that fuses data only from proprio-

ceptive sensors to form accurate high-frequency state estimates. This approach was taken by

Bloesch et al. [35] when developing a quaternion-based extended Kalman filter (QEKF) that

combines inertial, contact, and kinematic data to estimate the robot’s base pose, velocity,

and a number of contact states. In this article, we expand upon these ideas to develop an

invariant extended Kalman filter (InEKF) that has improved convergence and consistency

properties allowing for a more robust observer that is suitable for long-term autonomy.

The theory of invariant observer design is based on the estimation error being invariant

under the action of a matrix Lie group [3, 38], which has recently led to the development of

the InEKF1 [37, 23, 24, 25] with successful applications and promising results in simultaneous

localization and mapping [23, 243] and aided inertial navigation systems [18, 19, 23, 237].

The invariance of the estimation error with respect to a Lie group action is referred to

as a symmetry of the system [19]. Summarized briefly, Barrau and Bonnabel [24] showed

that if the state is defined on a Lie group, and the dynamics satisfy a particular “group

affine” property, then the symmetry leads to the estimation error satisfying a “log-linear”

autonomous differential equation on the Lie algebra. In the deterministic case, this linear

system can be used to exactly recover the estimated state of the nonlinear system as it evolves

on the group. The log-linear property therefore allows the design of a nonlinear observer or

state estimator with strong convergence properties.

4.1.1.1 Contribution

In this chapter, we develop a contact-aided invariant extended Kalman filter (InEKF) using

the theory of Lie groups and invariant observer design. This filter combines an contact-

inertial dynamics model with forward kinematic corrections to estimate the base pose and

velocity along with all current contact points. We show that the error dynamics of this

contact-inertial system follow a log-linear autonomous differential equation; hence, the ob-

servable state variables can be rendered convergent with a domain of attraction that is

independent of the system’s trajectory. Therefore unlike the standard EKF, both the lin-

earized error dynamics and the linearized forward kinematic measurement model do not

depend on current state estimate, which leads to these improved convergence properties.

1We use the InEKF acronym to distinguish from an iterated-EKF (IEKF).
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We further demonstrate how to augment the state with IMU biases, as the online estima-

tion of these parameters can have a crucial impact on system performance. The expressions

for both the right-invariant and left-invariant error dynamics are given along with both a

world-centric and robo-centric estimator formulation. We compare the convergence of the

proposed InEKF with the commonly used quaternion-based EKF though both simulations

and experiments on a Cassie-series bipedal robot. The accuracy of the filter is demonstrated

using motion capture, while a LiDAR mapping experiment provides a practical use case. In

addition, an open-source C++ library implementing the developed filter is provided. Over-

all, the developed contact-aided InEKF provides better performance in comparison with the

quaternion-based EKF as a result of exploiting symmetries present in the system dynamics.

In summary, this work has the following contributions:

1. Derivation of a continuous-time right-invariant EKF for an IMU/contact process model

with a forward kinematic measurement model; the observability analysis is also pre-

sented;

2. State augmentation with IMU biases;

3. Evaluations of the derived observer in simulation and hardware experiments using a

3D bipedal robot;

4. Alternative derivation of the observer using a left-invariant error definition;

5. Detailed explanation of the connection between the invariant error choice and the

world-centric and robo-centric estimator formulations;

6. Equations provided for analytical discretization of the proposed observers; and

7. Development of an open-source C++ library for aided-inertial navigation using the

InEKF https://github.com/RossHartley/invariant-ekf.

4.1.1.2 Outline

The remainder of this chapter is organized as follows. Section 4.1.2 provides the necessary

preliminary material needed for understanding the InEKF formulation, which is motived

by an attitude dynamics example in Section 4.1.3. Section 4.2 provides the derivation of

a right invariant extended Kalman filter (RIEKF) for contact-inertial navigation with a

right-invariant forward kinematic measurement model. In Section 4.3 we present simula-

tion results comparing the convergence properties to a state-of-the-art QEKF. Section 4.4

discusses the state augmentation of the previously derived InEKF with IMU bias. The
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Figure 4.1: A Cassie-series biped robot is used for both simulation and experimental results. The robot was
developed by Agility Robotics and has 20 degrees of freedom, 10 actuators, joint encoders, and an inertial
measurement unit (IMU). The contact and IMU frames used in this work are depicted above.

consequences of the adding and removing contact points in the estimator are described in

Section 4.5. Experimental evaluations on a 3D biped robot are presented in Section 4.6

along with an application towards LiDAR-based terrain mapping. Section 4.7 provides an

alternative derivation of the proposed observer using the left-invariant dynamics along with

an explanation of how to easily switch between the two formulations. Section 4.8 details how

these equations can be modified to create a “robot-centric” estimator. Section 4.9 itemizes

additional sensor measurements that fit within the InEKF framework and describes the re-

lation between the developed filter and landmark-based SLAM. Finally, Section 4.10 gives

details about discretization.

4.1.2 Preliminaries on Invariant Filtering

4.1.2.1 Autonomous Error Equations

Let Xt ∈ G be a N × N matrix Lie group denoting the state at time t. A review of Lie

groups and our adopted notation is provided in Section 3.4. The process dynamics evolving
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on the Lie group can be defined by:

d

dt
Xt = fut

(Xt), (4.1)

where ut denotes the system inputs. The estimate of the state at time t is denoted by X̄t.

The state estimation error is invariant to the action of the Lie group and is defined using

right or left multiplication of X−1
t as follows.

Definition 3 (Left and Right Invariant Error). The right- and left-invariant errors between

two trajectories Xt ∈ G and X̄t ∈ G are:

ηr
t = X̄tX

−1
t = (X̄tL)(XtL)

−1 (Right-Invariant)

ηl
t = X−1

t X̄t = (LX̄t)
−1(LXt), (Left-Invariant)

(4.2)

where L ∈ G is an arbitrary element of the group.

The following two theorems are the fundamental results for deriving an InEKF and show

that by correct parametrization of the error variable, a wide range of nonlinear problems can

lead to linear error equations.

Theorem 1 (Autonomous Error Dynamics [24]). A system is group affine if the dynamics,

fut
(·), satisfies:

fut
(X1X2) = fut

(X1)X2 +X1fut
(X2)−X1fut

(Id)X2 (4.3)

for all t > 0 and X1,X2 ∈ G. Furthermore, if this condition is satisfied, the right- and

left-invariant error dynamics are trajectory independent and satisfy:

d

dt
ηr
t = gut

(ηr
t ) where gut

(ηr) = fut
(ηr)− ηrfut

(Id)

d

dt
ηl
t = gut

(ηl
t) where gut

(ηl) = fut
(ηl)− fut

(Id)η
l

In the above, Id ∈ G denotes the group identity element; to avoid confusion, we use In

for the n× n case.

In the following, for simplicity, we will use only the right-invariant error dynamics. Define
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At to be a dimg× dimg matrix satisfying 2

gut
(Exp(ξ)) , (Atξ)

∧ +O(‖ξ‖2). (4.4)

For all t ≥ 0, let ξt be the solution of the linear differential equation

d

dt
ξt = Atξt. (4.5)

Theorem 2 (Log-Linear Property of the Error [24]). Consider the right-invariant error,

ηt, between two trajectories (possibly far apart). For arbitrary initial error ξ0 ∈ R
dimg, if

η0 = Exp(ξ0), then for all t ≥ 0,

ηt = exp(ξt); (4.6)

that is, the nonlinear estimation error ηt can be exactly recovered from the time-varying

linear differential equation (4.5).

This theorem states that (4.5) is not the typical Jacobian linearization along a trajectory

because the (left- or) right-invariant error on the Lie group can be exactly recovered from

its solution. This result is of major importance for the propagation (prediction) step of the

InEKF [24].

Remark 4. This indirect way of expressing the Jacobian of gut
is from Barrau and Bonnabel

[24]; it is used because we are working with a matrix Lie group viewed as an embedded

submanifold of a set of n× n matrices.

4.1.2.2 Autonomous Innovation Equations

The above section described how dynamics satisfying the group affine property (4.3) leads

to autonomous (and log-linear) error equations. A similar property holds for innovation

equations. If the measurement model fits one of the following forms:

Yt = Xtb +Vt (Left-Invariant Observation) or (4.7)

Yt = X−1
t b +Vt (Right-Invariant Observation), (4.8)

where b ∈ R
N denotes a constant vector and Vt is a vector of Gaussian noise, then the

innovation for the right/left-invariant error is autonomous and given by X̄tYt and X̄
−1
t Yt

2This indirect way of expressing the Jacobian of gut
is from [24]; it is used because we are working with

a matrix Lie group viewed as an embedded submanifold of a set of n× n matrices.
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respectively [24]. The update equations now take the following form:

X̄
+
t = X̄t exp

(

Lt

(

X̄
−1
t Yt − b

))

(Left-Invariant Observation) (4.9)

X̄
+
t = exp

(
Lt

(
X̄tYt − b

))
X̄t (Right-Invariant Observation) (4.10)

(4.11)

where Lt : RN 7→ R
dimg is a gain function that is computed through error linearizations.

For the InEKF, Lt is essentially the Kalman gain (see Section 3.2). For more details on the

material discussed above, we refer the reader to Barrau [23], Barrau and Bonnabel [24, 25].

4.1.3 A motivating example: 3D orientation propagation

Suppose we are interested in estimating the 3D orientation of a rigid body given angular

velocity measurements in the body frame, ω̃t , vec(ωx, ωy, ωz) ∈ R
3. This type of measure-

ment can be easily obtained from a gyroscope.

There are several different parameterizations of SO(3); Euler angles, quaternions, and

rotation matrices being the most common. If we let qt , vec(qx, qy, qz) be a vector of Euler

angles using the RzRyRx convention, then the orientation dynamics can be expressed as [? ]

d

dt






qx

qy

qz




 =






1 sin(qx) tan(qy) cos(qx) tan(qy)

0 cos(qx) − sin(qx)

0 sin(qx) sec(qy) cos(qx) sec(qy)











wx

wy

wz




 . (4.12)

Let δqt , qt− q̄t ∈ R
3 be the error between the true and estimated Euler angles. The error

dynamics can be written as a nonlinear function of the error variable, the inputs, and the

state
d

dt
δqt = g(δqt, ω̃t,qt). (4.13)

In order to propagate the covariance in an EKF, we need to linearize the error dynamics at

the current state estimate, qt = q̄t (i.e. zero error). This leads to a linear error dynamics of

the form:

d

dt
δqt ≈






0 (ωz c̄x + ωy s̄x)/c̄
2
y t̄y(ωy c̄x − ωz s̄x)

0 0 ωz c̄x + ωy s̄x

0 (s̄y(ωz c̄x + ωy s̄x))/c̄
2
y (ωy c̄x − ωz s̄x)/c̄y




 δqt

, A(ω̃t, q̄t)δqt,

(4.14)

where c̄x, s̄x, and t̄x are shorthand for cos(q̄x), sin(q̄x), and tan(q̄x). The linear dynamics ma-

trix clearly depends on the estimated angles, therefore bad estimates will affect the accuracy

of the linearization and ultimately the performance and consistency of the filter.
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Now instead, lets use a rotation matrix to represent the 3D orientation, Rt ∈ SO(3). The

dynamics can now be simply expressed as

d

dt
Rt = Rt (ω̃t)× , (4.15)

where (·)× denotes a 3 × 3 skew-symmetric matrix. If we define the error between the true

and estimated orientation as ηt , RT

t R̄t ∈ SO(3), then the (left-invariant) error dynamics

becomes

d

dt
ηt = RT

t R̄t (ω̃t)× +
(
Rt (ω̃t)×

)T
R̄t

= RT

t R̄t (ω̃t)× − (ω̃t)× RT

t R̄t

= ηt (ω̃t)× − (ω̃t)× ηt

= g(ηt, ω̃t).

(4.16)

Using this particular choice of state and error variable yields an autonomous error dynamics

function (independent of the state directly). Since, SO(3) is a Lie Group, we can look at the

dynamics of a redefined error that resides in the tangent space, ηt , Exp(ξt).

d

dt
(Exp(ξt)) = Exp(ξt) (ω̃t)× − (ω̃t)× Exp(ξt)

d

dt

(
I + (ξt)×

)
≈
(
I + (ξt)×

)
(ω̃t)× − (ω̃t)×

(
I + (ξt)×

)

=⇒
d

dt
(ξt)× = (ξt)× (ω̃t)× − (ω̃t)× (ξt)×

=
(
− (ω̃t)× ξt

)

×

=⇒
d

dt
ξt = (−ω̃t)× ξt

(4.17)

After making a first-order approximation of the exponential map, the tangent space error

dynamics become linear. In addition, this linear system only depends on the error, not the

state estimate directly. In other words, wrong state estimates will not affect the accuracy

of the linearization, which leads to better accuracy and consistency of the filter. For SO(3),

this effect is well studied and has been leveraged to design the commonly used QEKFs3,

[222, 207]. However, the extension to general matrix Lie groups, called the InEKF, was only

recently developed by Barrau and Bonnabel [24].

In the above example, we utilized the first-order approximation for the exponential map

of SO(3); Exp(ξt) ≈ I + (ξt)×. In general, one may ask how much accuracy is lost when

3The set of quaternions, along with quaternion multiplication, actually forms a Lie group.
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making this approximation. The surprising result by Barrau and Bonnabel [24] is that this

linearization is, in fact, exact. This is the basis of Theorem 2. If the initial error is known,

the nonlinear error dynamics can be exactly recovered from this linear system. In this work,

we leverage these ideas to develop a contact-aided inertial observer for legged robots.

4.2 World-centric Right-Invariant EKF

In this section, we derive a “world-centric”, right invariant extended Kalman filter (RIEKF)

using inertial measurement unit (IMU) and contact motion models with corrections made

through forward kinematic measurements. This RIEKF can be used to estimate the state of

a robot that has an arbitrary (finite) number of points in contact with the static environment.

The state is measured in the world frame (hence “world-centric”), and the number of contact

points can vary over time if appropriate steps are taken when initializing or removing the

contact states.

While the filter is particularly useful for legged robots, the same theory can be applied

for manipulators as long as the contact assumptions (presented in Section 4.2.2) are verified.

In order to be consistent with the standard InEKF theory, IMU biases are neglected for now.

Section 4.4 provides a method for reintroducing the bias terms.

4.2.1 State Representation

As with typical aided inertial navigation, we wish to estimate the orientation, velocity, and

position of the IMU (body) in the world frame [160, 83, 240]. These states are represented

by RWB(t),WvB(t), and WpWB(t) respectively. In addition, we append the position of all

contact points (in the world frame), WpWCi
(t), to the list of state variables. This is similar

to the approach taken in [35, 33].

The above collection of state variables forms a matrix Lie group, G. Specifically, for N

contact points, Xt ∈ SEN+2(3) can be represented by the following matrix:

Xt ,














RWB(t) WvB(t) WpWB(t) WpWC1
(t) · · · WpWCN

(t)

01×3 1 0 0 · · · 0

01×3 0 1 0 · · · 0

01×3 0 0 1 · · · 0
...

...
...

...
. . .

...

01×3 0 0 0 · · · 1














Because the process and measurements models for each contact point, WpWCi
(t), are iden-
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tical, without loss of generality, we will derive all further equations assuming only a single

contact point. Furthermore, for the sake of readability, we introduce the following shorthand

notation:

Xt ,









Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









, ut =

[

Bω̃WB(t)

BãWB(t)

]

,

[

ω̃t

ãt

]

, (4.18)

where the input ut is formed from the angular velocity and linear acceleration measurements

coming from the IMU. It is important to note that these measurements are taken in the body

(or IMU) frame. The Lie algebra of G, denoted by g, is an N +5 dimensional square matrix.

We use the hat operator, (·)∧ : R3N+9 → g, to map a vector to the corresponding element of

the Lie algebra. In the case of a single contact, for example, this function is defined by:

ξ∧ =









(
ξR
)

×
ξv ξp ξd

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









,

where (·)× denotes a 3 × 3 skew-symmetric matrix. The inverse operation is defined using

the vee operator, (·)∨ : g→ R
3N+9. The matrix representation of the adjoint is given by:

AdXt
=









R 0 0 0

(vt)× Rt Rt 0 0

(pt)× Rt 0 Rt 0

(dt)× Rt 0 0 Rt









. (4.19)

More details about the SEK(3) Lie group are given in Section 3.4.5.3

Remark 5. The set of 3×3 skew-symmetric matrices actually forms so(3), the Lie algebra of

SO(3). Therefore, the (·)∧ notation could also be used to map from R
3 to a skew-symmetric

matrix. However, to avoid confusion from overloaded notation, we use
(
ξR
)

×
instead of

(ξR)
∧
when when dealing with the rotation term.
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4.2.2 Continuous System Dynamics

The IMU measurements are modeled as being corrupted by additive white Gaussian noise,

per

ω̃t = ωt +wg
t , wg

t ∼ N (03×1,Σ
g)

ãt = at +wa
t , wa

t ∼ N (03×1,Σ
a);

these are explicit measurements coming directly from a physical sensor. In contrast, the

velocity of the contact point is implicitly inferred through a contact sensor; specifically,

when a binary sensor indicates contact, the position of the contact point is assumed to

remain fixed in the world frame, i.e. the measured velocity is zero. In order to accommodate

potential slippage, the measured velocity is assumed to be the actual velocity plus white

Gaussian noise, namely

WṽC(t) = 03×1 = CvC(t) +wv(t), wv(t) ∼ N (03×1,Σ
v). (4.20)

Using the IMU and contact measurements, the individual terms of the system dynamics can

be written as:

d

dt
Rt = Rt (ω̃t −wg

t )×

d

dt
vt = Rt(ãt −wa

t ) + g

d

dt
pt = vt

d

dt
dt = Rt RBC(α̃t)(−w

v
t ),

(4.21)

where g is the gravity vector and RBC(α̃t), arising from forward kinematics, is the measured

orientation of the contact frame with respect to the IMU frame. Therefore, Rt RBC(α̃t) is a

rotation matrix that transforms a vector from the contact frame to the world frame.

In matrix form, the dynamics can be expressed as

d

dt
Xt =









Rt (ω̃t)× Rtãt + g vt 03×1

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









−









Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1

















(wg
t )× wa

t 03×1 RBC(α̃t)w
v
t

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









, fut
(Xt)−Xtwt

∧,

(4.22)
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with wt , vec(wg
t , w

a
t , 03×1,RBC(α̃t)w

v
t ). The deterministic system dynamics, fut

(·), can

be shown to satisfy the group affine property, (4.3). Therefore, following Theorem 1, the

left- and right-invariant error dynamics will evolve independently of the system’s state.

Using Theorem 1, the right-invariant error dynamics is

d

dt
ηr
t = fut

(ηr
t )− ηr

tfut
(Id) + (X̄twt

∧X̄
−1
t )ηr

t

, gut
(ηr

t ) + w̄∧
t η

r
t

(4.23)

where the second term arises from the additive noise. The derivation follows the results in

Barrau and Bonnabel [24] and is not repeated here.

Furthermore, Theorem 2 specifies that the invariant error satisfies a log-linear property.

Namely, if At is defined by gut
(Exp(ξ)) , (Atξ)

∧ +O(||ξ||2), then the log of the invariant

error, ξ ∈ R
dimg, approximately satisfies4 the linear system

d

dt
ξt = Ar

tξt + w̄t = Atξt +AdX̄t
wt

ηr
t = Exp(ξt).

(4.24)

To compute the matrix At, we linearize the invariant error dynamics, gut
(·), using the first

order approximation ηr
t = Exp(ξt) ≈ Id + ξt

∧ to yield

gut
(Exp(ξt)) ≈









(

I +
(
ξRt
)

×

)

(ω̃t)×

(

I +
(
ξRt
)

×

)

ãt + g ξvt 03×1

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









−









I +
(
ξRt
)

×
ξvt ξ

p
t ξdt

03×1 1 0 0

03×1 0 1 0

03×1 0 0 1

















(ω̃t)× ã + g 03×1 03×1

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









=









03×3 (g)× ξRt ξvt 03×1

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









=









03×1

(g)× ξRt

ξvt

03×1









∧

.

(4.25)

With the above, we can express the prediction step of the RIEKF. The state estimate,

X̄t, is propagated though the deterministic system dynamics, while the covariance matrix,

Pt, is computed using the Riccati equation [165], namely,

d

dt
X̄t = fut

(X̄t) and
d

dt
Pt = AtPt +PtA

T

t + Q̄t, (4.26)

4With input noise, Theorem 2 no longer holds, and the linearization is only approximate.
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where the matrices At and Q̄t are obtained from (4.25) and (4.24),

At =









0 0 0 0

(g)× 0 0 0

0 I 0 0

0 0 0 0









and Q̄t = AdX̄t
Cov (wt) Ad

T

X̄t
. (4.27)

Remark 6. For the right-invariant case, expression (4.27), At is time-invariant and the time

subscript could be dropped. However, in general it can be time-varying, therefore, we use

At throughout the paper.

4.2.3 Right-invariant Forward Kinematic Measurement Model

Let αt ∈ R
M denote the vector of joint displacements (prismatic or revolute) between the

body and the contact point. We assume that the encoder measurements are corrupted by

additive white Gaussian noise.

α̃t = αt +wα
t , wα

t ∼ N (0M,1,Σ
α) (4.28)

Using forward kinematics, we measure the relative position of the contact point with respect

to the body,

BpBC(αt) , BpBC(α̃t −wα
t ) ≈ BpBC(α̃t)− BJ

ṗ
BC

(α̃t)w
α
t , (4.29)

where BJ
ṗ
BC

denotes the components of the analytical Jacobian mapping encoder rates to

the time derivative of position. See Section 3.5 for more details. Using the state variables,

the forward-kinematics position measurement becomes

BpBC(α̃t) = RT

t (dt − pt) + BJ
ṗ
BC

(α̃t)w
α
t . (4.30)

Re-written in matrix form, this measurement has the right-invariant observation form (4.7),









BpBC(α̃t)

0

1

−1









︸ ︷︷ ︸

Yt

=









RT

t −RT

t vt −R
T

t pt −R
T

t dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









︸ ︷︷ ︸

X−1
t









03×1

0

1

−1









︸ ︷︷ ︸

b

+









BJ
ṗ
BC

(α̃t)w
α
t

0

0

0









︸ ︷︷ ︸

Vt

. (4.31)
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Therefore, the innovation depends solely on the invariant error and the update equations

take the form [24, Section 3.1.2]

X̄
+
t = Exp

(
Lt

(
X̄tYt − b

))
X̄t

ηr+
t = Exp

(
Lt

(
ηr
tb − b + X̄tVt

))
ηr
t ,

(4.32)

where Exp(·) is the exponential map corresponding to the state matrix Lie group, G, Lt is

a gain matrix to be defined later, bT =
[

01×3 0 1 −1
]

, and YT
t =

[

Bp
T

BC(α̃t) 0 1 −1
]

.

Because the last three rows of X̄tYt − b are identically zero, we can express the update equa-

tions using a reduced dimensional gain, Kt, and an auxiliary selection matrix Π ,

[

I 03×3

]

,

so that Lt

(
X̄tYt − b

)
= KtΠX̄tYt as detailed in Barrau [23].

Using the first order approximation of the exponential map, ηr
t = Exp(ξt) ≈ Id + ξt

∧, and

dropping higher-order terms, we can linearize the update equation (4.32),

ηr+
t ≈ Id + ξ+t

∧
≈ Id + ξt

∧ +









KtΠ









(Id + ξt
∧)









03×1

0

1

−1









+ X̄t









BJ
ṗ
BC

(α̃t)w
α
t

0

0

0

























∧

.

(4.33)

Therefore,

ξ+t
∧

= ξ
t

∧

+











KtΠ





















I +
(

ξRt
)

×
ξvt ξ

p
t ξdt

03×1 1 0 0

03×1 0 1 0

03×1 0 0 1





















03×1

0

1

−1











+ X̄t











BJ
ṗ
BC

(α̃t)w
α
t

0

0

0































∧

= ξt
∧ +









KtΠ

















ξ
p
t − ξdt

0

1

−1









+ X̄t









BJ
ṗ
BC

(α̃t)w
α
t

0

0

0

























∧

.

Taking (·)∨ of both sides yields the linear update equation,

ξ+t = ξt −Kt

([

03×3 03×3 −I I
]

ξt − R̄t BJ
ṗ
BC

(α̃t)w
α
t

)

, ξt −Kt

(
Htξt − R̄t BJ

ṗ
BC

(α̃t)w
α
t

)
.

Finally, we can write down the full state and covariance update equations of the RIEKF
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using the derived linear update equation and the theory of Kalman filtering [165, 14, 17] as

X̄
+
t = Exp

(
KtΠX̄tYt

)
X̄t

P+
t = (I −KtHt)Pt(I −KtHt)

T +KtN̄tK
T

t ,
(4.34)

where the gain Kt is computed using

St = HtPtH
T

t + N̄t Kt = PtH
T

t S
−1
t

and from (4.34), the matrices Ht and N̄t are given by

Ht =
[

03×3 03×3 −I I
]

,

N̄t = R̄t BJ
ṗ
BC

(α̃t) Cov(w
α
t ) (BJ

ṗ
BC

(α̃t))
T R̄

T

t .
(4.35)

4.2.4 Observability Analysis

Because the error dynamics are log-linear (c.f., Theorem 2), we can determine the unobserv-

able states of the filter without having to perform a nonlinear observability analysis [23].

Noting that the linear error dynamics matrix in our case is time-invariant and nilpotent

(with a degree of 3), the discrete-time state transition matrix is a polynomial in At,

Φ = Expm(At∆t) =










I 0 0 0

(g)× ∆t I 0 0
1

2
(g)× ∆t2 I∆t I 0

0 0 0 I










. (4.36)

It follows that the discrete-time observability matrix is

O =









H

HΦ

HΦ2

...









=










0 0 −I I

−
1

2
(g)× ∆t2 −I∆t −I I

−2 (g)× ∆t2 −2I∆t2 −I I
...

...
...

...










. (4.37)

The last six columns (i.e., two matrix columns) of the observability matrix are clearly linearly

dependent, which indicates the absolute position of the robot is unobservable. In addition,

since the gravity vector only has a z component, the third column of O is all zeros. Therefore,

a rotation about the gravity vector (yaw) is also unobservable. This linear observability

analysis agrees with the nonlinear observability results of Bloesch et al. [35], albeit with
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much less computation. Furthermore, as the error dynamics do not depend on the estimated

state, there is no chance of the linearization spuriously increasing the numerical rank of the

observability matrix [23]. This latter effect was previously known and studied by Bloesch

et al. [35], and in order to resolve this problem, an observability-constrained EKF [130]

was developed. In our proposed framework, by default, the discrete RIEKF has the same

unobservable states as the underlying nonlinear system; hence, the developed discrete RIEKF

intrinsically solves this problem.

4.3 Simulation Results

To investigate potential benefits or drawbacks of the proposed filter, we compare it against a

state-of-the-art quaternion-based extended Kalman filter (QEKF), similar to those described

by Bloesch et al. [35], Rotella et al. [196]. For implementation, the filter equations were

discretized; see Section 4.10 for more details.

4.3.1 Quaternion-Based Filter Equations

The choice of error variables is the main difference between the invariant extended Kalman

filter (InEKF) and the QEKF. Instead of the right-invariant error (4.2), a QEKF typically

uses decoupled error states

Exp(δθt) , RT

t R̄t

δvt , vt − v̄t

δpt , pt − p̄t.

δdt , dt − d̄t.

(4.38)

Using this definition of error, the QEKF deterministic error dynamics can be approximated

as

d

dt









δθt

δvt

δpt

δdt









=









− (ω̃t)× 0 0 0

−R̄t (ãt)× 0 0 0

0 I 0 0

0 0 0 0

















δθt

δvt

δpt

δdt









, (4.39)

while the linearized observation matrix becomes

Ht =
[(

R̄
T

t (d̄t − p̄t)
)

×
0 −R̄

T

t R̄
T

t

]

. (4.40)

The above linearizations are clearly dependent on the state estimate. Therefore, when
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the estimated state deviates from the true state, the linearizations are potentially wrong, re-

ducing accuracy and consistency in the QEKF. In contrast, the deterministic right-invariant

error dynamics are exactly log-linear (4.27). In addition, the linearized observation matrix

for our InEKF (4.35) is also independent of the state estimate.

4.3.2 Convergence Comparison

A dynamic simulation of a Cassie-series bipedal robot (described in Section 4.6) was per-

formed in which the robot slowly walked forward after a small drop, accelerating from 0.0 to

0.3 m / sec. The discrete, simulated measurements were corrupted by additive white Gaus-

sian noise, which are specified in Table 4.1 along with the initial state covariance values.

The same values were used in both simulation and experimental convergence evaluations of

the filters. The IMU bias estimation was turned off for these simulations. The simulation

was performed with MATLAB and Simulink (Simscape Multibody™) where the simulation

environment models ground contact forces with a linear force law (having a stiffness and

damping term) and a Coulomb friction model. A typical walking gait is shown in Figure 4.2.

Table 4.1: Experiment Discrete Noise Statistics and Initial Covariance

Measurement Type noise st. dev.

Linear Acceleration 0.04 m / sec2

Angular Velocity 0.002 rad / sec
Accelerometer Bias 0.001 m / sec3

Gyroscope Bias 0.001 rad / sec2

Contact Linear Velocity 0.05 m / sec
Joint Encoders 1.0 deg

State Element initial st. dev.

Orientation of IMU 30.0 deg
Velocity of IMU 1.0 m / sec
Position of IMU 0.1 m
Position of Right Foot 0.1 m
Position of Left Foot 0.1 m
Gyroscope Bias 0.005 rad / sec
Accelerometer Bias 0.05 m / sec2

To compare the convergence properties of the two filters, 100 simulations of each filter

were performed using identical measurements, noise statistics, initial covariance, and various

random initial orientations and velocities. The initial Euler angle estimates were sampled

uniformly from −30 deg to 30 deg. The initial velocity estimates were sampled uniformly

from −1.0 m / sec to 1.0 m / sec. The pitch and roll estimates as well as the (body frame)

velocity estimates for both filters are shown in Figure 4.3. Although both filters converge for

this set of initial conditions, the proposed right invariant extended Kalman filter (RIEKF)

converges considerably faster than the standard quaternion-based EKF.
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Figure 4.2: A typical walking gait that is used for filter comparisons. The Cassie bipedal robot is simulated
using Simscape Multibody™.

Figure 4.3: A quaternion-based extended Kalman filter (QEKF) and the proposed right invariant extended
Kalman filter (RIEKF) were run 100 times using the same measurements, noise statistics, and initial covari-
ance, but with random initial orientations and velocities. The noisy measurements came from a dynamic
simulation of a Cassie-series biped robot where the robot walks forwards after a small drop, accelerating
from 0.0 to 0.3 m / sec. The above plots show the state estimate for the initial second of data, where the
dashed black line represents the true state. The RIEKF (bottom row) converges considerably faster than the
QEKF (top row) for all observable states. The estimated yaw angle (not shown) does not converge for either
filter because it is unobservable. Therefore, to compare convergence, the velocities shown are represented in
the estimated IMU (body) frame.
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4.3.3 Accuracy of Linearized Dynamics

The superior performance of the InEKF over the QEKF comes from the improved accuracy

of the linearized error dynamics. As indicated by Theorem 2, the deterministic error dy-

namics of the InEKF are actually exact, while the QEKF version is only an approximation.

To demonstrate this, a simulation was performed where propagation of the true error is

compared to the propagation of the linearized error dynamics.

We first analyzed the deterministic dynamics. Given an initial error vector, ξtrue0 , the

initial state estimate for the InEKF was computed using the definition of right-invariant

error (4.2), and the initial state estimate for the QEKF was computed using equation (4.38).

The true state was initialized to the identity element. The true and estimated states for both

filters were then propagated for 1 second (1000 time steps), using randomly sampled inertial

measurement unit (IMU) measurements. The error states for both the InEKF and the

QEKF were also propagated using their respective linearized error dynamics. The resulting

error, ξtrue1 , between the final estimated and true states were computed and compared to the

propagated error states, ξprop1 to yield a measure of linearization accuracy, ‖ξtrue1 − ξ
prop
1 ‖.

This test was performed multiple times while linearly scaling the initial orientation error

from vec(0, 0, 0) to vec(π/2, π/2, π/2). The results are shown in Figure 4.4. As expected,

Figure 4.4: Analyzing accuracy of the deterministic error dynamics. This Figure shows the difference
between the true error and the propagated error as the initial true error increases. The state and errors were
propagated for 1 second using randomly sampled IMU measurements.

when the initial error is zero, the difference between the true and propagated error is zero.

This indicates that the linearized error dynamics for both the InEKF and the QEKF are

correct. As the initial error increases, the difference between the true and propagated error
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states for the QEKF grows due to the decreased accuracy of the linearization. In contrast,

the difference between the true and propagated error states for the InEKF are always exactly

zero regardless of the initial error. In other words, assuming the initial error is known, the

true propagated state can be exactly recovered from solving the linearized error dynamics

system; see Theorem 2.

In the non-deterministic case (with sensor noise), Theorem 2 no longer holds. This can be

seen in Figure 4.5, where the same test was performed, but with sensor noise corrupting the

propagated state estimate. The difference between the true and propagated error is no longer

exactly zero for the InEKF. However, the InEKF linearization remains more accurate due

Figure 4.5: Difference between the true and propagated errors when measurements contain noise. The
log-linear error dynamics of the InEKF are no longer exact.

to the reduced sensitivity to initial state errors. This helps to further explain the improved

convergence properties shown in Figure 4.3.

4.3.4 Covariance Ellipse Comparison

The error states in both the QEKF and the InEKF are assumed to be zero-mean Gaussian

random vectors. However, due to the differing choice of error variables, the state uncertainty

will differ. In the QEKF, all states and errors are decoupled (4.38). For example, the

true position only depends on the position estimate and the position error, p = p̄ + δp.

Therefore, the position estimate is a Gaussian centered at p̄. In contrast, when using the

InEKF, the position and orientation are actually coupled together, X = Exp(ξ)X̄. Although

ξ is a Gaussian random vector, after applying the group’s exponential map and matrix
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multiplication, the state estimate’s uncertainty distribution is no longer Gaussian. This

distribution is known as a concentrated Gaussian on a Lie group [229, 230]. This type of

distribution can often capture the underlying system uncertainty better than a standard

Gaussian defined in Euclidean space [159, 22].

To demonstrate the difference, a simple simulation was performed where the Cassie robot

walked forward for 8 sec at an average speed of 1 m/s. The standard deviation for the initial

position uncertainty was set to 0.1 m about each axis, while the standard deviation of the

initial yaw uncertainty was set to 10 deg. A set of 10,000 particles sampled from this

distribution were propagated forward to represent the robot’s true uncertainty distribution.

After running both the InEKF and the QEKF, particles were sampled from the resulting

filter covariances to provide a picture of the estimated position uncertainties. This result is

shown in Figure 4.6. The curved position distribution comes from the initial yaw uncertainty

Figure 4.6: 10,000 samples taken from the estimated filter covariances for a simulation where Cassie walked
forward with an average speed of 1 m/s. The position distributions at times 0, 2, 4, 6, and 8 sec are shown.

that continually grows due to its unobservability (Section 4.2.4). The InEKF is able to closely

match this distribution since the samples are taken in the Lie algebra and are mapped to the

group through the exponential map. This couples the orientation and position errors leading

to a curved position distribution. In contrast, the QEKF position uncertainty can only have

the shape of the standard Gaussian ellipse, which may not represent the true uncertainty

well.

The InEKF can even accurately model the case of complete yaw uncertainty. To demon-

strate this, the initial yaw standard deviation was set to 360 deg, and the same 8 sec

simulation was performed. Each ring in Figure 4.7 shows the sample position distribution
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spaced 2 sec apart. This type of uncertainty cannot be captured with a standard Gaussian

covariance ellipse. These examples illustrate that even if the means are identical, the co-

variance estimate of the InEKF can provide a more accurate representation of the state’s

uncertainty than the standard QEKF.

Figure 4.7: Samples taken from the InEKF’s estimated position distribution for a walking simulation with a
completely uncertain initial yaw angle. The robot moved forward at an average speed of 1 m/s. Each ring
represents the position uncertainty at times 0, 2, 4, 6, and 8 sec.

4.4 IMU bias augmentation

Implementation of an IMU-based state estimator on hardware typically requires model-

ing additional states, such as gyroscope and accelerometer biases. Unfortunately, as noted

in Barrau [23], there is no Lie group that includes the bias terms while also having the

dynamics satisfy the group affine property (4.3). Even though many of the theoretical prop-

erties of the right invariant extended Kalman filter (RIEKF) will no longer hold, it is possible

to design an “imperfect invariant extended Kalman filter (InEKF)” that still outperforms

the standard EKF [23].
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4.4.1 State Representation

The IMU biases are slowly varying signals that corrupt the measurements in an additive

manner:

ω̃t = ωt + bg
t +wg

t , wg
t ∼ N (03×1,Σ

g)

ãt = at + ba
t +wa

t , wa
t ∼ N (03×1,Σ

a).

These biases form a parameter vector that needs to be estimated as part of the RIEKF state,

θt ,

[

bg(t)

ba(t)

]

,

[

bg
t

ba
t

]

∈ R
6. (4.41)

The model’s state now becomes a tuple of our original matrix Lie group and the parameter

vector, (Xt,θt) ∈ G × R
6. The augmented right-invariant error is now defined as

ert , (X̄tX
−1
t , θ̄t − θt) , (ηr

t , ζt). (4.42)

Written explicitly, the right-invariant error is

ηr
t =









R̄tR
T

t v̄t − R̄tR
T

t vt p̄t − R̄tR
T

t pt d̄t − R̄tR
T

t dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









, (4.43)

while the parameter vector error is given by

ζt =

[

b̄
g
t − bg

t

b̄
a
t − ba

t

]

,

[

ζ
g
t

ζa
t

]

. (4.44)
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4.4.2 System Dynamics

With inertial measurement unit (IMU) biases included, the system dynamics are now ex-

pressed as

d

dt
Rt = Rt (ω̃t − bg

t −wg
t )×

d

dt
vt = Rt(ãt − ba

t −wa
t ) + g

d

dt
pt = vt

d

dt
dt = Rt hR(α̃t)(−w

v
t ).

(4.45)

The IMU bias dynamics are modeled using the typical “Brownian motion” model, i.e.,

the derivatives are white Gaussian noise, to capture the slowly time-varying nature of these

parameters,
d

dt
bg
t = wbg

t , wbg
t ∼ N (03×1,Σ

bg)

d

dt
ba
t = wba

t , wba
t ∼ N (03×1,Σ

ba).

(4.46)

The deterministic system dynamics now depend on both the inputs, ut, and the parameters,

θt

fut
(X̄t, θ̄t) =









R̄t (ω̄t)× R̄tāt + g v̄t 03×1

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









, (4.47)

where ω̄t , ω̃t − b̄
g
t and āt , ãt − b̄

a
t are the “bias-corrected” inputs. To compute the

linearized error dynamics, the augmented right-invariant error (4.42) is first differentiated

with respect to time,

d

dt
ert =

(

d

dt
ηr
t ,

[

wbg
t

wba
t

])

. (4.48)

After carrying out the chain rule and making the first order approximation, ηr
t = Exp(ξt) ≈ Id + ξt

∧,
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the individual terms of the invariant error dynamics become

d

dt

(
R̄tR

T

t

)
≈
(
R̄t (w

g
t − ζ

g
t )
)

×

d

dt

(
v̄t − R̄tR

T

t vt

)
≈ (g)× ξRt + (v̄t)× R̄t(w

g
t − ζ

g
t )

+ R̄t(w
a
t − ζa

t )

d

dt

(
p̄t − R̄tR

T

t pt

)
≈ ξvt + (p̄t)× R̄t(w

g
t − ζ

g
t )

d

dt

(
d̄t − R̄tR

T

t dt

)
≈
(
d̄t

)

×
R̄t(w

g
t − ζ

g
t )

+ R̄t hR(α̃t)w
v
t .

(4.49)

Importantly, the augmented invariant error dynamics only depends on the estimated trajec-

tory though the noise and bias errors, ζt (this is expected because when there are no bias

errors, there is no dependence on the estimated trajectory). A linear system can now be

constructed from (4.49) to yield,

d

dt

[

ξt

ζt

]

= At

[

ξt

ζt

]

+

[

AdX̄t
012,6

06,12 I6

]

wt, (4.50)

where the noise vector is augmented to include the bias terms,

wt , vec(wg
t , w

a
t , 03×1, hR(α̃t)w

v
t ,w

bg
t ,w

ba
t ).

4.4.3 Forward Kinematic Measurements

The forward kinematics position measurement (4.30) does not depend on the IMU biases.

Therefore, the Ht matrix can simply be appended with zeros to account for the augmented

variables. The linear update equation becomes

[

ξ+t

ζ+
t

]

=

[

ξt

ζt

]

−

[

K
ξ
t

K
ζ
t

](

Ht

[

ξt

ζt

]

− R̄t (Jv(α̃t)w
α
t )

)

. (4.51)

4.4.4 Final Continuous RIEKF Equations

The final “imperfect” RIEKF equations that include IMU biases can now be written down.

The estimated state tuple is predicted using the following set of differential equations:

d

dt

(
X̄t , θ̄t

)
=
(
fut

(X̄t, θ̄t),06,1

)
. (4.52)
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The covariance of the augmented right invariant error dynamics is computed by solving the

Riccati equation
d

dt
Pt = AtPt +PtA

T

t + Q̄t, (4.53)

where the matrices At and Q̄t are now defined using (4.49),

At =














0 0 0 0 −R̄t 0

(g)× 0 0 0 − (v̄t)× R̄t −R̄t

0 I 0 0 − (p̄t)× R̄t 0

0 0 0 0 −
(
d̄t

)

×
R̄t 0

0 0 0 0 0 0

0 0 0 0 0 0














Q̄t =

[

AdX̄t
012,6

06,12 I6

]

Cov(wt)

[

AdX̄t
012,6

06,12 I6

]T

.

(4.54)

The estimated state tuple and its covariance are corrected though the update equations

(

X̄
+
t ,θ

+
t

)

=
(

Exp
(

K
ξ
tΠX̄tYt

)

X̄t , θ̄t +K
ζ
t ΠX̄tYt

)

P+
t = (I −KtHt)Pt(I −KtHt)

T +KtN̄tK
T

t ,
(4.55)

where the gains K
ξ
t and K

ζ
t are computed from

St = HtPtH
T

t + N̄t Kt =

[

K
ξ
t

K
ζ
t

]

= PtH
T

t S
−1
t ,

with the following measurement, output, and noise matrices,

YT

t =
[

h
T

p (α̃t) 0 1 −1
]

,

Ht =
[

0 0 −I I 0 0
]

,

N̄t = R̄t Jv(α̃t) Cov(w
α
t ) J

T

v (α̃t) R̄
T

t .

Remark 7. The upper-right block of the new linearized dynamics matrix (4.54) is related

to the adjoint of the current state estimate (4.19). Intuitively, this maps the bias error

(measured in the body frame) to the world frame.
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4.5 Addition and Removal of Contact Points

Sections 4.2 and 4.4 derived the equations for the right invariant extended Kalman filter

(RIEKF) under the assumption that the contact point is unchanging with time. However, for

legged robots, contacts are discrete events that are created and broken as a robot navigates

through the environment. Therefore, it is important to be able to conveniently add and

remove contact points states to and from the observer’s state.

4.5.1 Removing Contact Points

To remove a previous contact point from the state, we marginalize the corresponding state

variable by simply removing the corresponding column and row from the matrix Lie group.

The corresponding elements of the covariance matrix are also eliminated. This can be done

through a simple linear transformation. For example, if the robot is going from one contact

to zero contacts, then the newly reduced covariance would be computed by






ξRt

ξvt

ξ
p
t




 =






I 0 0 0

0 I 0 0

0 0 I 0














ξRt

ξvt

ξ
p
t

ξdt









ξnewt , M ξt

=⇒ Pnew
t = MPt M

T.

(4.56)

Remark 8. This marginalization matrix, M, does not depend on the choice of right or left

invariant error.

4.5.2 Adding Contact Points

When the robot makes a new contact with the environment, the state and covariance matrices

need to be augmented. Special attention needs to be given to initialize the mean and

covariance for the new estimated contact point. For example, if the robot is going from

zero contacts to one contact, the initial mean is obtained though the forward kinematics

relation

d̄t = p̄t + R̄t BpBC(α̃t). (4.57)
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In order to compute the new covariance, we need to look at the right-invariant error,

ηd
t = d̄t − R̄tR

T

t dt

= p̄t + R̄t BpBC(α̃t)− R̄tR
T

t dt

= p̄t + R̄t BpBC(α̃t)− R̄tR
T

t (pt +Rt BpBC(α̃t −wα
t ))

≈ η
p
t + R̄t BJ

ṗ
BC

(α̃t)w
α
t

=⇒ ξdt ≈ ξ
p
t + R̄t BJ

ṗ
BC

(α̃t)w
α
t .

(4.58)

Therefore, covariance augmentation can be done using the following linear map,









ξRt

ξvt

ξ
p
t

ξdt









=









I 0 0

0 I 0

0 0 I

0 0 I














ξRt

ξvt

ξ
p
t




+









0

0

0

R̄t BJ
ṗ
BC

(α̃t)









wα
t

ξnewt , Ft ξt +Gtw
α
t

=⇒ Pnew
t = Ft Pt F

T

t +Gt Cov(w
α
t )G

T

t .

(4.59)

Remark 9. The error augmentation matrix, Ft, and the noise matrix, Gt, will depend on

the choice of error variable. Here they are derived for the right invariant error case. The

matrices will differ in the left invariant error formulation, as detailed in Section 4.7.

4.6 Experimental Results on Cassie Robot

We now present an experimental evaluation of the proposed contact-aided right invariant

extended Kalman filter (RIEKF) observer using a 3D bipedal robot. The Cassie-series robot,

shown in Figure 4.1, developed by Agility Robotics, has 20 degrees of freedom coming from

the body pose, 10 actuators, and 4 springs. The robot is equipped with an IMU along

with 14 joint encoders that can measure all actuator and spring angles. The proposed

and baseline algorithms (along with the robot’s feedback controller) are implemented in

MATLAB (Simulink Real-Time). The IMU (model VN-100) is located in the robot’s torso

and provides angular velocity and linear acceleration measurements at 800Hz. The encoders

provide joint angle measurements at 2000Hz. The robot has two springs on each leg that are

compressed when the robot is standing on the ground. The spring deflections are measured

by encoders and serve as a binary contact sensor. The controller used for these experiments

84



Figure 4.8: An experiment was performed where an actual Cassie-series robot slowly walked forward at
approximately 0.3 m / sec. The noisy measurements came from the on-board inertial measurement unit
(IMU) (VN-100) and the robot’s joint encoders. The quaternion-based extended Kalman filter (QEKF) and
the proposed right invariant extended Kalman filter (RIEKF) were run (off-line) 100 times using the same
measurements, noise statistics, and initial covariance, but with random initial orientations and velocities.
The black line represents the filter state estimates when initialized with a good estimate. The RIEKF
(bottom row) converges considerably faster than the QEKF (top row) for all observable states. Zoomed-in
plots of the RIEKF performance is provided in the top-right corner.

was developed by Gong et al. [91].

4.6.1 Convergence Comparison

An experiment was performed where the robot walked forwards at approximately 0.3 m / sec.

The quaternion-based extended Kalman filter (QEKF) and the proposed RIEKF were run

(off-line) 100 times using the same logged measurements, noise statistics, and initial co-

variance with random initial orientations and velocities. The noise statistics and initial

covariance estimates are provided in Table 4.1. As with the simulation comparison pre-

sented in Section 4.3, the initial mean estimate for the Euler angles were uniformly sampled

from −30 deg to 30 deg and the initial mean estimate for velocities were sampled uniformly

from −1.0 m / sec to 1.0 m / sec. Bias estimation was turned on and the initial bias esti-

mate was obtained from processing the IMU data when the robot was static. The pitch and

roll estimates as well as the (body frame) velocity estimates for both filters are shown in

Figure 4.8. The experimental results for comparing filter convergence matches those of the

simulation. The proposed RIEKF converges faster and more reliably in all 100 runs than

the QEKF; therefore, due to the convenience of initialization and reliability for tracking the

developed RIEKF is the preferred observer.

When the state estimate is initialized close to the true value, the RIEKF and QEKF have

similar performance, because the linearization of the error dynamics accurately reflects the
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underlying nonlinear dynamics. However, when the state estimate is far from the true value,

the simulation and experimental results show that RIEKF consistently converges faster than

the QEKF. The relatively poor performance of the QEKF is due to the error dynamics

being linearized around the wrong operating point, in which case the linear system does not

accurately reflect the nonlinear dynamics. In addition, when bias estimation is turned off,

the invariant error dynamics of the RIEKF do not depend on the current state estimate.

As a result, the linear error dynamics can be accurately used even when the current state

estimate is far from its true value, leading to better performance over the QEKF. Although

this theoretical advantage is lost when bias estimation is turned on, the experimental results

(shown in Figure 4.8) indicate that the RIEKF still is the preferred observer due to less

sensitivity to initialization.

4.6.2 Motion Capture Experiment

In order to verify the accuracy of the invariant extended Kalman filter (InEKF) state es-

timate, we performed a motion capture experiment in the University of Michigan’s M-Air

facility. This outdoor space is equipped with 18 Qualisys cameras that allows for position

tracking. We had the Cassie robot walk untethered for 60 sec along an approximately 15 m

path. A top-down view of the estimated trajectory is shown in Figure 4.9. Although there

Figure 4.9: Top-down view of the InEKF’s estimated trajectory for a motion capture experiment. The
position drift is unobservable, however, the final drift is less than 5% of the distance traveled.
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is noticeable drift due to the unobservability of the position and yaw, the final position error

accounts for less than 5% of the distance traveled. This drift error is due to a combination

of sensor noise and imperfect modeling of the robot’s kinematics which may introduce biases

to the forward kinematic measurements. The orientation, velocity, and position estimates

along with their 3σ covariance hulls are shown in Figure 4.10. Due to the unobservability of

the yaw angle, the velocity estimate is given in the body frame instead of the world frame.

The orientation is plotted using exponential coordinates, Exp(φ) = R. Due to an inaccurate

orientation estimate from the motion capture system, the “ground truth” for the orientation

is given by the VectorNav-100, which runs a state-of-the-art QEKF that fuses angular veloc-

ity, linear acceleration, and magnetometer measurements to estimate orientation only. As

expected, the error for all observable states remains small. In order to plot the 3σ covariance

hull, the right-invariant error covariance needed to be converted to a covariance where the

error is defined by Euclidean distance. Up to a first-order approximation, this mapping is

done using:





δφt

δvt

δpt




 =






−Γ−1
1 (φ̄t) 0 0

(v̄t)× −I 0

(p̄t)× 0 −I











ξRt

ξvt

ξ
p
t




 , (4.60)

where the “Euclidean orientation error” is defined as δφt , φt − φ̄t, and the velocity and

position errors match the QEKF error states (4.38). The matrix Γ1(φ̄t) is known as the left

Jacobian of SO(3) and has an analytical form. Further explanation and the derivation of

the above equation is given in Section 4.11.

4.6.3 Long Odometry Experiment

In addition to providing accurate estimates of states vital for legged robot control (orientation

and velocity), this InEKF can also provide reliable odometry for a higher-level mapping or

simultaneous localization and mapping (SLAM) system. To demonstrate the accuracy of

long-term odometry, we had Cassie walk about 200 m along a sidewalk around the University

of Michigan’s Wave Field. In total, the walk took 7 minutes and 45 seconds. The estimated

path from the InEKF overlaid onto satellite imagery is shown in Figure 4.11. Even though

the absolute position is unobservable, the odometry estimate from the InEKF contains low

enough drift to keep the estimate on the sidewalk for the duration of the experiment. The

final position estimate is within a few meters of the true position, and the yaw drift is

imperceptible. This odometry estimate is readily available, as it only depends on inertial,

contact, and kinematic data, which barring sensor failure, always exist. It does not require

the use of any vision systems that may be susceptible to changes in environment or lighting

87



Figure 4.10: Motion capture experiment conducted in the University of Michigan’s M-Air facility. The
dashed black line represents ground truth, the solid red line is the right-invariant EKF estimate, and the
red shaded area represents the 3σ covariance hull. The ground truth for position and velocity were obtained
using 18 Qualisys cameras. Due to poor orientation estimates from the motion capture system, the “ground
truth” for orientation was obtained from the VectorNav-100, which runs a highly accurate on-board QEKF.
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Figure 4.11: Long outdoor odometry experiment where Cassie walked roughly 200 m along a sidewalk over
7 minutes and 45 seconds.

conditions.

4.6.4 LiDAR Mapping Application

One application for the InEKF odometry is the building of local maps of the environment.

We equipped the Cassie-series robot with a new torso that houses a Velodyne VLP-32C

LiDAR. With the filter running, we can project each received packet of point cloud data

into the world frame based on the current state estimate. This point cloud data can then be

accumulated to create a map of the environment. Figure 4.12 shows a few still frames from

several LiDAR mapping experiments. A video of these results can be viewed at: https:

//youtu.be/pNyXsZ5zVZk.
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(a) University of Michigan’s North Campus with the bell tower (b) Looking towards a staircase

(c) Walking along a sidewalk (d) Inside the Bob and Betty Beyster Building

Figure 4.12: LiDAR maps created by transforming 10 seconds of point cloud data onto the pose trajectory
estimated by the InEKF. The high frequency odometry estimate allows for motion compensation with a
single scan of the LiDAR (10Hz); https://youtu.be/pNyXsZ5zVZk

4.7 Alternative Left-Invariant Formulation

For the derivations in Sections 4.2-4.5, we were assuming the use of the right-invariant error.

This choice was due to the forward kinematic measurement having the right-invariant obser-

vation form. However, it is possible to derive a left-invariant form of this filter, which may

be more appropriate to use when dealing with left-invariant observations. For example, GPS

measurements are left-invariant observations for the world-centric observer; see Section 4.9.

Written explicitly, the left-invariant error is

ηl
t , X−1

t X̄t

=









RT

t R̄t RT

t (v̄t − vt) RT

t (p̄t − pt) RT

t (d̄t − dt)

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









.
(4.61)
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After carrying out the chain rule and making the first order approximation, ηl
t = Exp(ξt) ≈ Id + ξt

∧,

the individual terms of the left-invariant error dynamics become:

d

dt
RT

t R̄t ≈
(
− (ω̃t − ζ

g
t )× ξRt − ζ

g
t +wg

t

)

×

d

dt
RT

t (v̄t − vt) ≈ −
(
ãt − b̄

a
t

)

×
ξRt

−
(
ω̃t − b̄

g
t

)

×
ξvt − ζa

t +wa
t

d

dt
RT

t (p̄t − pt) ≈ ξvt −
(
ω̃t − b̄

g
t

)

×
ξ
p
t

d

dt
RT

t (d̄t − dt) ≈ −
(
ω̃t − b̄

g
t

)

×
ξdt + hR(α̃t)w

v
t .

(4.62)

Using these results, the log-linear left-invariant dynamics can be expressed using the following

linear system

d

dt
ξt = Atξt +wt

=⇒
d

dt
Pt = AtPt +PtA

T

t + Q̄t,

(4.63)

where the dynamics and noise matrices are

Al
t =














− (ω̄t)× 0 0 0 −I 0

− (āt)× − (ω̄t)× 0 0 0 −I

0 I − (ω̄t)× 0 0 0

0 0 0 − (ω̄t)× 0 0

0 0 0 0 0 0

0 0 0 0 0 0














Q̄t = Cov(wt).

(4.64)

Similar to the right-invariant case, the dynamics only depend on the state through the IMU

bias. When a left-invariant observation comes in, the state estimate is corrected using

(

X̄
+
t ,θ

+
t

)

=
(

X̄tExp
(

K
ξ
tΠX̄

−1
t Yt

)

, θ̄t +K
ζ
t ΠX̄

−1
t Yt

)

, (4.65)

where the exponential map is now multiplied on the right side [24].
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4.7.1 Switching Between Left and Right-Invariant Errors

Because forward kinematic measurements have the right invariant observation form, the

innovation equations are only autonomous when the right invariant error is used. Fortunately,

it is possible to switch between the left and right error forms through the use of the adjoint

map.

ηr
t = X̄tX

−1
t = X̄tη

l
tX̄

−1
t

=⇒ Exp(ξrt ) = X̄tExp(ξ
l
t)X̄

−1
t = Exp(AdX̄t

ξlt)

=⇒ ξrt = AdX̄t
ξlt

(4.66)

This transformation is exact, which means that we can easily switch between the covariance

of the left and right invariant errors using

Pr
t = AdX̄t

Pl
t Ad

T

X̄t
. (4.67)

Therefore, when handling a right-invariant observation, we can map the propagated left-

invariant covariance to the right-invariant covariance temporarily, apply the right-invariant

update equations (4.55), then map the corrected covariance back to the left-invariant form.

It is also possible to compute the log-linear left-invariant dynamics starting from the

right-invariant form. Substituting (4.67) into the (right-invariant) covariance propagation

equation (4.26) and solving for the left-invariant covariance yields

d

dt
Pl

t =

(

Ad
X̄

−1
t
Ar

tAdX̄t
− Ad

X̄
−1
t

d

dt

(
AdX̄t

)
)

Pl
t

+Pl
t

(

AdT

X̄t
ArT

t AdT

X̄
−1
t
−

d

dt

(

AdT

X̄t

)

AdT

X̄
−1
t

)

+Ad
X̄

−1
t
Q̄

r

tAd
T

X̄
−1
t
.

(4.68)

Therefore, we learn that the right and left dynamics and noise matrices are related by the

following expressions

Al
t , Ad

X̄
−1
t
Ar

tAdX̄t
− Ad

X̄
−1
t

d

dt

(
AdX̄t

)

Q̄
l

t , Ad
X̄

−1
t
Q̄

r

tAd
T

X̄
−1
t
.

(4.69)
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Remark 10. Intuitively, the left-invariant error represents an error measured in the body

frame of the robot, while the right-invariant error represents an error measured in the world

or spatial frame. The frame of measurement dictates whether the exponential map appears

on the right or left in the update equations. The error can be moved between these two

frames using the adjoint map of the Lie group.

4.7.2 Adding New Contact Points

The process for removing a contact point from the state (marginalization) is identical to

the right-invariant error case, described in Section 4.5.1. Likewise, when a new contact is

detected, the state can be augmented using the same kinematics relation (4.57) as before.

However, due to the change in error variable, the process for augmenting the covariance will

be different.

In order to compute the new covariance, we need to look at the left-invariant error,

ηd
t = RT

t (d̄t − dt)

= RT

t

(
p̄t + R̄t hp(α̃t)

)
−RT

t (pt +Rt hp(α̃t −wα
t ))

≈ η
p
t + ηR

t hp(α̃t)− hp(α̃t) + Jv(α̃t)w
α
t

=⇒ ξdt ≈ ξ
p
t − ( hp(α̃t))× ξRt + Jv(α̃t)w

α
t .

(4.70)

Therefore, covariance augmentation can be done using the following linear map,









ξRt

ξvt

ξ
p
t

ξdt









=









I 0 0

0 I 0

0 0 I

(− hp(α̃t))× 0 I














ξRt

ξvt

ξ
p
t




+









0

0

0

Jv(α̃t)









wα
t

ξnewt , Ft ξt +Gtw
α
t

=⇒ Pnew
t = Ft Pt F

T

t +Gt Cov(w
α
t )G

T

t .

(4.71)

4.8 Robo-centric Estimator

In this section, we derive a “robot-centric” version of the contact-aided invariant extended

Kalman filter (InEKF) where the estimated state is measured in the robot’s base (inertial

measurement unit (IMU)) frame. When switching to a robot-centric model, the forward

kinematics measurements take the left-invariant observation form. In addition, the left/right-

invariant error dynamics equations are identical to the world-centric form, albeit swapped.
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The right-invariant error dynamics for the world-centric estimator are equivalent to the left-

invariant error dynamics for the robo-centric estimator.

The properties of this filter are identical to the right invariant extended Kalman filter

(RIEKF) derived in Section 4.2. However, in some cases this filter may be preferred as it

directly estimates states that are useful for controlling a legged robot (namely the velocity

measured in the body frame).

4.8.1 State and Dynamics

We are interested in estimating the same states as before, though measured in the robot’s

body frame. Again, the state variables can form a matrix Lie group, G. Specifically, for N

contact points, Xt ∈ SEN+2(3) can be represented by the following matrix (which is simply

the inverse of the world-centric state)5:

Xt

redefine

,














RBW(t) −BvB(t) BpBW(t) BpC1W
(t) · · · BpCNW(t)

01×3 1 0 0 · · · 0

01×3 0 1 0 · · · 0

01×3 0 0 1 · · · 0
...

...
...

...
. . .

...

01×3 0 0 0 · · · 1














(4.72)

Without loss of generality, assume a single contact point. Furthermore, for the sake of

readability, we redefine our shorthand notation to be body-centric states,

Xt

redefine

,









Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









. (4.73)

Using the bias corrected IMU measurements, the individual terms of the new robot-

5The negative sign on body velocity appears when inverting the world-centric state; −BvB = −RT

WB WvB.
This sign is removed on the position vectors by swapping the start and end points, BpBW = −RT

WB BpWB.
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centric system dynamics can be derived as [35]

d

dt
Rt = − (ω̄t −wg

t )× Rt

d

dt
vt = −(āt −wa

t )−Rt g − (ω̄t −wg
t )× vt

d

dt
pt = vt − (ω̄t −wg

t )× pt

d

dt
dt = − (ω̄t −wg

t )× dt −RBC(α̃t)w
v
t .

(4.74)

Written in matrix form, this becomes

d

dt
Xt =









− (ω̄t)× Rt −āt −Rtg − (ω̃t)× vt vt − (ω̃t)× pt − (ω̄t)× dt

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









−









(wg
t )× wa

t 03×1 RBC(α̃t)w
v
t

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0

















Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









, fu(Xt,θt)−wt
∧Xt

(4.75)

with wt , vec(wg
t , w

a
t , 03×1,RBC(α̃t)w

v
t ). The deterministic dynamics function fu(·) can

be shown to satisfy the group affine property (4.3). Therefore, the left (and right) invariant

error dynamics depends solely on the invariant error.

We can derive the log-linear dynamics matrices for the body-centric estimator following

a similar derivation process to the world-centric version in Section 4.2. In fact, without IMU

bias, the linearization of the left-invariant dynamics for the body-centric estimator is the

same as the right-invariant dynamics for the world-centric estimator;

Al
t (body-centric) = Ar

t (world-centric)

Ar
t (body-centric) = Al

t (world-centric).
(4.76)

When IMU bias is included, the above relation still holds, though with the bias terms

negated6. The noise covariance matrices for the body-centric left/right-invariant propagation

6If definition of bias error is negated, even these terms would remain the same.
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models are given by:

Q̄
l

t =

[

Ad
X̄

−1
t

015,6

06,15 I6

]

Cov(wt)

[

Ad
X̄

−1
t

015,6

06,15 I6

]T

Q̄
r

t = Cov(wt),

(4.77)

which are also swapped versions of the world-centric noise matrices, after accounting for

the redefinition of X̄t as its inverse. A comparison of the world-centric and body-centric

equations are given in Tables 2 and 3.

4.8.2 Left-Invariant Forward Kinematic Measurement Model

We use forward-kinematics to measure the relative position of the contact point with respect

to the body, BpBC(α̃t). Using the new robot-centric state variables, the measurement model

(4.29) becomes

BpBC(α̃t) = pt − dt + BJ
ṗ
BC

(α̃t)wt. (4.78)

Re-written in matrix form, this measurement will have now have the left-invariant observa-

tion form (4.7),









BpBC(α̃t)

0

1

−1









︸ ︷︷ ︸

Yt

=









Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









︸ ︷︷ ︸

Xt









0

0

1

−1









︸ ︷︷ ︸

b

+









BJ
ṗ
BC

(α̃t)w
α
t

0

0

0









︸ ︷︷ ︸

Vt

. (4.79)

The state update equation will take the left-invariant form (4.65), where the matrices Ht

and N̄t can be derived to be:

Ht =
[

03×3 03×3 I −I
]

,

N̄t = R̄
T

t BJ
ṗ
BC

(α̃t) Cov(w
α
t ) (BJ

ṗ
BC

(α̃t))
T R̄t.

(4.80)

It is important to note that the forward kinematics measurement is a right-invariant obser-

vation for the world-centric estimator, while the same measurement becomes a left-invariant

observation for the body-centric version. Also, the above linearization (4.80) is similar to the

world-centric, right-invariant one (4.35). Namely, Ht is simply negated, while N̄t is identical

after accounting for the redefinition of the state as its inverse.
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4.9 Additional Sensor Observations and

Filter Summary

This chapter extends upon our conference paper results [109] where we originally presented

the contact-aided invariant extended Kalman filter (InEKF). As described in earlier sections,

this filter uses an inertial-contact dynamics model with corrections coming from forward

kinematics. In addition to forward kinematics, other groups have discovered that a number

of measurements common to robotics can also fit the invariant observation model (4.7).

Bonnabel [37] developed an invariant observer that uses magnetometer and acceleration

measurements to solve the attitude estimation problem. Barczyk and Lynch [18], Barrau [23]

described methods for invariant observer design for GPS and magnetometer-aided navigation.

Wu et al. [237] developed an InEKF to solve visual-inertial navigation. It has also been shown

that an InEKF can be used for simultaneous localization and mapping (SLAM) [243].

In particular, it is interesting to note the similarities between our contact-aided InEKF

and landmark-based SLAM. In the simplest case, this SLAM problem involves jointly es-

timating the robots state along with the position of static landmarks in the environment.

The robot is often assumed to have a sensor capable of measuring the position of the land-

mark relative to the robot. This formulation is identical to our developed InEKF with the

contact positions acting as landmarks and forward kinematics measuring the relative trans-

lation between the base and contact frames. This similarity was also mentioned by Bloesch

et al. [34]. However, there are a few notable differences. The contact frame velocity is as-

sumed to be white noise to allow for foot slip, while landmarks are usually treated as static.

Forward kinematics measurements often come at high frequencies (2000 Hz on Cassie). In

contrast, landmarks measurements are often at a much lower frequency. Finally, with land-

mark observations, a data association problem often has to be solved which associates the

measurement with a particular landmark state. This problem does not exist with forward

kinematic measurements.

Due to the similarities between contacts and landmarks, in our state matrix, the landmark
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position states can be easily appended,

Xt ,






















RWB(t) WvB(t) WpWB(t) WpWC1
(t) · · · WpWCN

(t) WpWL1
(t) · · · WpWLM

(t)

01×3 1 0 0 · · · 0 0 · · · 0

01×3 0 1 0 · · · 0 0 · · · 0

01×3 0 0 1 · · · 0 0 · · · 0
...

...
...

...
. . .

...
...

. . .
...

01×3 0 0 0 · · · 1 0 · · · 0

01×3 0 0 0 · · · 0 1 · · · 0
...

...
...

...
. . .

...
...

. . .
...

01×3 0 0 0 · · · 0 0 · · · 1






















,

where each of the N contacts are represented by WpWCi
(t) and each of the M landmarks are

represented by WpWLi
(t). In this way, it is possible to develop an observer that contains

no unobservable states. Although, like extended Kalman filter (EKF)-SLAM, the filter can

become too computationally expensive to run in real-time if the number of landmarks grows

too large.

Tables 4.2 and 4.3 give a summary of the left/right world-centric and robo-centric InEKF

equations assuming a single contact and landmark position. The linearized observation ma-

trix and observation type for several different sensors are also provided. In these tables, lt

is shorthand for the true landmark position, and m denotes the true magnetic field vector.

Using these tables, it is clear to see the relation between the left/right invariant error dy-

namics and the world/robo-centric formulations. All of these dynamics and observations are

supported in an open-source C++ Library released alongside this document; available at

https://github.com/RossHartley/invariant-ekf.
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Table 4.2: Summary of World-centric State Estimator

State Definition Deterministic Nonlinear Dynamics

Xt ,











RWB WvB WpWB Wp
WC Wp

WL

01×3 1 0 0 0
01×3 0 1 0 0
01×3 0 0 1 0
01×3 0 0 0 1











fu
t
(X̄t, θ̄t) =













R̄t (ω̄t)× R̄tāt + g v̄t 03×1 03×1

01×3 0 0 0 0
01×3 0 0 0 0
01×3 0 0 0 0
01×3 0 0 0 0













Log-Linear Right-Invariant Dynamics Log-Linear Left-Invariant Dynamics

Ar
t =





















0 0 0 0 0 −R̄t 0

(g)
×

0 0 0 0 − (v̄t)× R̄t −R̄t

0 I 0 0 0 − (p̄t)× R̄t 0

0 0 0 0 0 −
(

d̄t

)

×
R̄t 0

0 0 0 0 0 −
(

l̄t
)

×
R̄t 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





















Al
t =





















− (ω̄t)× 0 0 0 0 −I 0

− (āt)× − (ω̄t)× 0 0 0 0 −I

0 I − (ω̄t)× 0 0 0 0

0 0 0 − (ω̄t)× 0 0 0

0 0 0 0 − (ω̄t)× 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





















Q̂
r

t =

[

Ad
X̄

t

015,6

06,15 I6

]

Cov(wt)

[

Ad
X̄

t

015,6

06,15 I6

]T

Q̂
l

t = Cov(wt)

Measurement Observation Matrix, H Observation Type

Forward Kinematic
[

0 0 −I I 0 0 0
]

Right-Invariant

Relative Landmark Position
[

0 0 −I 0 I 0 0
]

Right-Invariant

Absolute Landmark Position
[

(l)
×

0 −I 0 0 0 0
]

Right-Invariant

Magnetometer
[

(m)
×

0 0 0 0 0 0
]

Right-Invariant

GPS Position
[

0 0 I 0 0 0 0
]

Left-Invariant

Table 4.3: Summary of Robo-centric State Estimator

State Definition Deterministic Nonlinear Dynamics

Xt ,











RBW −BvB BpBW BpCW BpLW

01×3 1 0 0 0
01×3 0 1 0 0
01×3 0 0 1 0
01×3 0 0 0 1











fu
t
(X̄t, θ̄t) =













− (ω̄t)× Rt −āt −Rtg − (ω̄t)× vt vt − (ω̄t)× pt − (ω̄t)× dt − (ω̄t)× lt
01×3 0 0 0 0
01×3 0 0 0 0
01×3 0 0 0 0
01×3 0 0 0 0













Log-Linear Right-Invariant Dynamics Log-Linear Left-Invariant Dynamics

Ar
t =





















− (ω̄t)× 0 0 0 0 I 0

− (āt)× − (ω̄t)× 0 0 0 0 I

0 I − (ω̄t)× 0 0 0 0

0 0 0 − (ω̄t)× 0 0 0

0 0 0 0 − (ω̄t)× 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





















Al
t =





















0 0 0 0 0 R̄t 0

(g)
×

0 0 0 0 (v̄t)× R̄t R̄t

0 I 0 0 0 (p̄t)× R̄t 0

0 0 0 0 0
(

d̄t

)

×
R̄t 0

0 0 0 0 0
(

l̄t
)

×
R̄t 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





















Q̂
r

t = Cov(wt) Q̂
l

t =

[

Ad
X̄

−1
t

015,6

06,15 I6

]

Cov(wt)

[

Ad
X̄

−1
t

015,6

06,15 I6

]T

Measurement Observation Matrix, H Observation Type

Forward Kinematic
[

0 0 I −I 0 0 0
]

Left-Invariant

Relative Landmark Position
[

0 0 I 0 −I 0 0
]

Left-Invariant

Absolute Landmark Position
[

− (l)
×

0 I 0 0 0 0
]

Left-Invariant

Magnetometer
[

− (m)
×

0 0 0 0 0 0
]

Left-Invariant

GPS Position
[

0 0 −I 0 0 0 0
]

Right-Invariant
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4.10 Discretization of Filter Equations

In the preceding sections, the filters equations were in continuous time. However, in order

to implement these filters using software and physical sensors, these equations need to be

discretized. For our implementation, we assumed a zero-order hold on the inertial measure-

ments, and performed analytical integration [74, 129]. In particular, analytical integration

was important for the resulting error dynamics to satisfy Theorem 2.

4.10.1 Discrete World-centric Dynamics

This section demonstrates how to derive the deterministic, discrete time (world-centric)

dynamics through analytical integration of the continuous state (4.45) and bias (4.46) dy-

namics. The contact, landmark, and bias dynamics are simply gaussian noise. Therefore,

the discrete, deterministic dynamics are simply:

d̄tk+1
= d̄tk

, b̄
g
tk+1

= b̄
g
tk
, b̄

a
tk+1

= b̄
a
tk
. (4.81)

Assuming a zero-order hold on the incoming IMU measurements between times tk and tk+1,

the orientation can be updated using the exponential map of SO(3):

R̄tk+1
=

∫ tk+1

tk

R̄tk
(ω̄t)× dt = R̄tk

Exp
(
ω̄tk

∆t
)

(4.82)

where ∆t , tk+1− tk. Integrating the velocity dynamics yields an equation that involves the

integral of the exponential map:

v̄tk+1
= v̄tk

+

∫ tk+1

tk

R̄tāt + g dt = v̄tk
+ g∆t+ R̄tk

(∫ tk+1

tk

Exp
(
ω̄tk

t
)
dt

)

ātk
. (4.83)

Likewise, analytically solving for the discrete position dynamics involves computing the

double integral:

p̄tk+1
= p̄tk

+ v̄tk
∆t+

1

2
g∆t2 + R̄tk

(∫ tk+1

tk

∫ τ

tk

Exp
(
ω̄tk

t
)
dt dτ

)

ātk
. (4.84)

To solve these integrals, is useful to define an auxiliary function [34]:

Γm(φ) ,

(
∞∑

n=0

1

(n+m)!
(φ)n×

)

, (4.85)
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which allows integrals to be easily expressed and computed using the taylor series form of

the SO(3) exponential map.

∫ tk+1

tk

Exp (ωt) dt =

∫ tk+1

tk

Γ0(ω̄tk
t) dt =

(
∞∑

n=0

1

(n+ 1)!

(
ω̄tk

∆t
)n

×

)

∆t = Γ1(ω∆t)∆t

∫ tk+1

tk

∫ τ

tk

Exp
(
ω̄tk

t
)
dt dτ =

∫ tk+1

tk

Γ1(ω̄tk
t) t dt =

(
∞∑

n=0

1

(n+ 2)!

(
ω̄tk

∆t
)n

×

)

∆t2 = Γ2(ω∆t)∆t2

(4.86)

closed-form expressions also exist, allowing fast and easy computation of these quanti-

ties [207].

Γ0(φ) = I3 +
sin(||φ||)

||φ||
(φ)× +

1− cos(||φ||)

||φ||2
(φ)2×

Γ1(φ) = I3 +
1− cos(||φ||)

||φ||2
(φ)× +

||φ|| − sin(||φ||)

||φ||3
(φ)2×

Γ2(φ) =
1

2
I3 +

||φ|| − sin(||φ||)

||φ||3
(φ)× +

||φ||2 + 2 cos(||φ||)− 2

2||φ||4
(φ)2×

(4.87)

Remark 11. Γ0(φ) is simply the exponential map of SO(3), while Γ1(φ) is also known as

the left Jacobian of SO(3) [53, 21].

Using these expressions, we can write down the discrete dynamics for the rotation, ve-

locity, and positions states as:

R̄k+1 = R̄k Γ0(ω̄k∆t)

v̄k+1 = v̄k + R̄kΓ1(ω̄k∆t)āk∆t+ g∆t

p̄k+1 = p̄k + v̄k∆t+ R̄kΓ2(ω̄k∆t)āk∆t2 +
1

2
g∆t2,

(4.88)

where the t is dropped from the subscript for readability. These discrete dynamics are

an exact integration of the continuous-time system under the assumption that the inertial

measurement unit (IMU) measurements are constant over ∆t.
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4.10.2 Discrete Body-centric Dynamics

To compute the body-centric dynamics you simply need to inverse the discrete world-centric

dynamics to obtain:

R̄k+1 = Γ0(−ω̄k∆t) R̄k

v̄k+1 = Γ0(−ω̄k∆t)
(
v̄k − Γ1(ω̄k∆t)āk∆t− R̄kg∆t

)

p̄k+1 = Γ0(−ω̄k∆t)
(

p̄k + v̄k∆t

− Γ2(ω̄k∆t)āk∆t2 −
1

2
R̄kg∆t2

)

.

(4.89)

4.10.3 Discrete Covariance Propagation

In order to propagate the covariance, a continuous-time Riccati equation needs to be solved.

d

dt
Pt = AtPt +PtA

T

t + Q̄t (4.90)

The analytical solution to the differential equation above is given by [165]:

Ptk+1
= Φ(tk+1, tk)Ptk

Φ(tk+1, tk)
T + Q̄d, (4.91)

where the discrete noise covariance matrix is computed by

Q̄d =

∫ tk+1

tk

Φ(t, tk)Q̄tΦ(t, tk)
Tdt, (4.92)

and the state transition matrix, Φ(tk+1, tk), satisfies

d

dt
Φ(t, tk) = AtΦ(t, tk) with Φ(tk, tk) = I. (4.93)

The (world-centric) left-invariant error dynamics matrix only depends on the IMU inputs

and the estimated bias terms, see Table 2. Since both are assumed to be constant between

times tk and tk+1, the state transition matrix can be simply computed from the matrix

exponential.

Φl(tk+1, tk) = Expm(A
l
t∆t) (4.94)

102



This state transition matrix also has an analytical solution of the form:

Φl(tk+1, tk) =














Φl
11 0 0 0 Φl

15 0

Φl
21 Φl

22 0 0 Φl
25 Φl

26

Φl
31 Φl

32 Φl
33 0 Φl

35 Φl
36

0 0 0 Φl
44 0 0

0 0 0 0 I 0

0 0 0 0 0 I














(4.95)

where the individual terms are

Φl
11 = ΓT

0 (ω̄k∆t)

Φl
21 = −Γ

T

0 (ω̄k∆t) (Γ1(ω̄k∆t)āk)× ∆t

Φl
31 = −Γ

T

0 (ω̄k∆t) (Γ2(ω̄k∆t)āk)× ∆t2

Φl
22 = ΓT

0 (ω̄k∆t)

Φl
32 = ΓT

0 (ω̄k∆t)∆t

Φl
33 = ΓT

0 (ω̄k∆t)

Φl
44 = ΓT

0 (ω̄k∆t)

Φl
15 = −Γ

T

0 (ω̄k∆t)Γ1(ω̄k∆t)∆t

Φl
25 = ΓT

0 (ω̄k∆t)Ψ1

Φl
35 = ΓT

0 (ω̄k∆t)Ψ2

Φl
26 = −Γ

T

0 (ω̄k∆t)Γ1(ω̄k∆t)∆t

Φl
36 = −Γ

T

0 (ω̄k∆t)Γ2(ω̄k∆t)∆t2.

The matrices Ψ1 and Ψ2 involve computing the solution to a more complicated integral.

However, these integrals still have analytical solutions which can be expressed easier after
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defining φ , ||ω̄k|| and θ , φ∆t.

Ψ1 ,

∫ tk+1

tk

(Γ0(ω̄kt)āk)× Γ1(ω̄kt) t dt

= (āk)× Γ2(−ω̄k∆t)∆t2
(sin(θ)− θ cos(θ)

φ3
(ω̄k)× (āk)×

+
cos(2θ)− 4 cos(θ) + 3

4φ4
(ω̄k)× (āk)× (ω̄k)×

+
4 sin(θ) + sin(2θ)− 4θ cos(θ)− 2θ

4φ5
(ω̄k)× (āk)× (ω̄k)

2
×

+
θ2 − 2θ sin(θ)− 2 cos(θ) + 2

2φ4
(ω̄k)

2
× (āk)×

+
6θ − 8 sin(θ) + sin(2θ)

4φ5
(ω̄k)

2
× (āk)× (ω̄k)×

+
2θ2 − 4θ sin(θ)− cos(2θ) + 1

4φ6
(ω̄k)

2
× (āk)× (ω̄k)

2
×

)

(4.96)

Ψ2 ,

∫ tk+1

tk

Γ0(ω̄kt)Φ
l
25(t, tk) dt

= (āk)× Γ3(−ω̄k∆t)∆t3
(θ sin(θ) + 2 cos(θ)− 2

φ4
(ω̄k)× (āk)×

+
6θ − 8 sin(θ) + sin(2θ)

8φ5
(ω̄k)× (āk)× (ω̄k)×

+
2θ2 + 8θ sin(θ) + 16 cos(θ) + cos(2θ)− 17

8φ6
(ω̄k)× (āk)× (ω̄k)

2
×

+
θ3 + 6θ − 12 sin(θ) + 6θ cos(θ)

6φ5
(ω̄k)

2
× (āk)×

+
6θ2 + 16 cos(θ)− cos(2θ)− 15

8φ6
(ω̄k)

2
× (āk)× (ω̄k)×

+
4θ3 + 6θ − 24 sin(θ)− 3 sin(2θ) + 24θ cos(θ)

24φ7
(ω̄k)

2
× (āk)× (ω̄k)

2
×

)

(4.97)

The (world-centric) right-invariant error dynamics matrix depends on the the state esti-

mates, R̄t, v̄t, and p̄t, which will change between times tk and tk+1, see Table 2. Therefore,

the state transition matrix will not simply be the matrix exponential, as in the left-invariant
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case. Solving (4.93) yields a state transition matrix of the form:

Φr(tk+1, tk) =














I 0 0 0 Φr
15 0

Φr
21 I 0 0 Φr

25 Φr
26

Φr
31 Φr

32 I 0 Φr
35 Φr

36

0 0 0 I Φr
45 0

0 0 0 0 I 0

0 0 0 0 0 I














(4.98)

where the individual terms can be analytically computed as

Φr
21 = (g)× ∆t

Φr
31 =

1

2
(g)× ∆t2

Φr
32 = I∆t

Φr
15 = −R̄kΓ1(ω̄k∆t)∆t

Φr
25 = −

(
v̄k+1

)

×
R̄kΓ1(ω̄k∆t)∆t+ R̄kΨ1

Φr
35 = −

(
p̄k+1

)

×
R̄kΓ1(ω̄k∆t)∆t+ R̄kΨ2

Φr
45 = −

(
d̄k+1

)

×
R̄kΓ1(ω̄k∆t)∆t

Φr
26 = −R̄kΓ1(ω̄k∆t)∆t

Φr
36 = −R̄kΓ2(ω̄k∆t)∆t2.

Since the left/right-invariant errors are related through the adjoint, the two state transi-

tion and discrete noise matrices also satisfy the following relations [23].

Φr = AdX̄k+1
ΦlAd

X̄
−1

k

Q̄
r

d = AdX̄k+1
Q̄

l

dAd
T

X̄k+1

(4.99)

Therefore, the right-invariant state transition matrix can alternatively be computed using:

Φr(tk+1, tk) = AdX̄k+1
Expm(A

l
t∆t) Ad

X̄
−1

k
, (4.100)

which can simplify implementation since many software libraries already contain efficient

methods to compute the matrix exponential.

Similar to the state transition matrices, the discrete noise covariance matrix (4.92) also
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has an analytical solution. In practice, this matrix is often approximated as:

Q̄d ≈ ΦQ̄kΦ
T∆t. (4.101)

This approximated discrete noise matrix was used for all results in this chapter.

4.11 Error-state Conversions

Throughout this chapter, several versions of error states are used. These include the left/right

invariant error (4.2), the quaternion-based extended Kalman filter (QEKF) error states (4.38),

and the “Euclidean orientation error” used for plotting the covariance hull (4.60). It is often

necessary to covert between these error states for plotting or when initializing the filters to

provide fair comparisons. For example, the initial if the QEKF and the invariant extended

Kalman filter (InEKF) are initialized with identical covariance matrices, the underlying dis-

tribution that they represent may be substantially different. This section provides details

on how to convert between these error states up to a first-order approximation.

When designing a QEKF, the orientation error can be defined in either the local or global

frame [207]. These errors are equivalent to the left- and right-invariant errors for SO(3). In

this chapter, the orientation error in the QEKF was chosen to be the error defined in the

local frame (left-invariant error). Since the invariant errors are related through the group’s

adjoint, the exact relation between right-invariant and QEKF orientation errors is

Exp(ξRt ) = Exp(R̄tδθt). (4.102)

When plotting the individual axes of the orientation error covariance hull, a “Euclidean

orientation error” should be used. Let δφt , φt−φ̄t be this Euclidean error where Exp(φ) ,

R is the exponential coordinate representation of a particular orientation. When the errors

are small, a first-order approximation can be used to find a mapping between the right-

invariant orientation error and this “Euclidean orientation error”.

Exp(ξRt ) = R̄tR
T

t = Exp(φ̄t)Exp(−φ̄t − δφ)

≈ Exp(−Γ1(φ̄t)δφ)
(4.103)

A similar first-order approximation can be used to find the relation between the right-
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invariant error and the QEKF velocity errors.

ηv
t = v̄t − R̄tR

T

t vt = v̄t − Exp(ξRt )vt

≈ v̄t − vt −
(
ξRt
)

×
vt = −δvt + (vt)× ξRt

=⇒ ξvt ≈ −δvt + (v̄t)× ξRt

(4.104)

The same process can be repeated for the position states.

ξ
p
t ≈ −δpt + (p̄t)× ξRt

ξdt ≈ −δdt +
(
d̄t

)

×
ξRt

(4.105)
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CHAPTER 5

Contact-Aided Smoothing

using Factor Graphs

5.1 Overview

The core content in this chapter was previously published in [110, 108]. Co-authors for [110]

were Josh Mangelson, Lu Gan, Maani Ghaffari Jadidi, Jeffrey M. Walls, Ryan M. Eustice,

and Jessy W Grizzle. Co-authors for [108] included Maani Ghaffari Jadidi, Lu Gan, Jiunn-

Kai Huang, Jessy W Grizzle, and Ryan M. Eustice. Several extensions are made, however,

much of the text and results remain unchanged.

5.1.1 Motivation and Objective

Long-term state estimation and mapping for legged robots requires a flexible sensor fusion

framework that allows for reducing the drift and correcting past estimates as the robot

perceives new information. During long-term missions, odometry systems can drift substan-

tially since the absolute position and yaw (rotation about gravity) are unobservable [35]

(also see Section 4.2.4), leading to an unbounded growth in the covariance of the estimate

and an undesirable expansion of the search space for data association tasks. The factor

graph smoothing framework [137, 65, 47, 85] offers suitable machineries for building such

systems in which real-time performance is achieved by exploiting the sparse structure of

the simultaneous localization and mapping (SLAM) problem [218, 80]. In addition, the

incorporation of loop-closures [80] into the graph, upon availability, is convenient.

Legged robot perception often involves fusing leg odometry, inertial measurement unit

(IMU) data, and visual/depth measurements to infer the robot trajectory, controller inputs

such as velocity, and calibration parameters [196, 151]. The challenge in such perception

problems is the rigorous real-time performance requirements in legged robots arising from

their direct and switching contact with the environment [35, 82, 33, 81]. Furthermore,
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leg odometry involves estimating relative transformations and velocity using kinematic and

contact information, which can be noisy due to the encoder noise and foot slip [195].

Towards building a perception system for legged robots suitable for long-term state es-

timation and mapping, we develop two novel factors that integrate the use of multi-link

forward kinematics and the notion of contact between the robotic system and the environ-

ment into the factor graph framework. The forward kinematic factors relate the base frame

to a contact frame through noisy joint encoder measurements. The hybrid preintegration

contact factors provide odometry measurements of this contact frame over time based on

a contact sensor. This factor is formulated to be able to handle an arbitrary number of

contact switches between added nodes in the graph. Unlike the originally developed con-

tact factor [110], the proposed hybrid modeling approach reduces the number of required

variables in the nonlinear optimization problem by only requiring new states to be added

alongside camera or selected keyframes.

5.1.2 State Representation

As with typical inertial navigation [160, 85, 240] and our contact-aided invariant extended

Kalman filter (InEKF), developed in Chapter 4, we are interested in estimating the robot’s

base pose, H
WB
∈ SE(3), and velocity, WvB ∈ R

3, measured in the world frame. In order

to later formulate the forward kinematicand contact factors, we also want to estimate the

pose of a contact frame relative to the world frame, denoted H
WC
∈ SE(3). In addition,

to enable practical applications with imperfect IMUs, we include the parameter vector,

b , vec (ba,bg) ∈ R
6, in our state, where ba ∈ R

3 and bg(t) ∈ R
3 are the accelerometer and

gyroscope biases, respectively. All together, the state at any time ti is a tuple as follows:

Ti ,
(
H

WB
(ti),WvWB(ti),HWC

(ti),b(ti)
)
, (Xi,vi,Ci,bi) . (5.1)

Further, it is convenient to denote the discrete trajectory of the state variables up to time

step k by Xk ,
⋃k

i=1 Ti. Unlike filtering methods, which typically estimate only the current

state, smoothing methods often aim to estimate the complete state trajectory. Therefore,

the main goal in this chapter is to estimate Xk.

5.1.3 Factor Graph Formulation

Overall, we aim to incorporate forward kinematic and contact measurements into existing

factor graphs that may already include visual and inertial measurements. A illustration of

this factor graph is shown in Figure 5.1. Let Kk be the index set of time steps (also called
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Figure 5.1: An example factor graph for the proposed system. Forward kinematic factors are added at each
node and constrain the pose of the contact frames on the feet of the robot with respect to the robot base.
Contact factors are added to the graph over time steps where at least one (potentially switching) contact
frame remains in contact with the environment. This framework enables the system to handle failures of the
visual tracking or loop closure system (denoted here by general pose constraints).

nodes or keyframes) up to time step k. The rate at which keyframes are added to the factor

graph is a design parameter, however, it is typically chosen based on the rate of the slowest

sensor.

Let Lij ∈ SE(3) be a relative odometry or loop-closure measurement relating poses at

time steps i and j (j > i) computed from an independent perceptual sensor. Examples

of this type of measurement include the output of point cloud matching algorithms, such

as iterative closest point (ICP) [29], or the relative transformations computed from visual

odometry algorithms [86]. Most IMUs provide measurements at a higher frequency than the

keyframe frequency. Therefore, between any two time steps i and j, we denote the set of all

IMUs (inertial) measurements by Iij. The forward kinematicmeasurement at time step i is

denoted by Fi. This measurement originates from high-frequency joint encoders, however,

these measurements are only needed at the slower keyframe frequency. Lastly, we denote

the set of high-frequency contact measurements between any two time steps i and j, by Cij.

We denote the set of all measurements (loop-closure, inertial, forward-kinematic, and con-

tact) up to time step k by Zk , {Lij, Iij,Fi, Cij}i,j∈Kk
. By assuming the measurements are

conditionally independent and are corrupted by additive zero mean white Gaussian noise, the

posterior probability of the full SLAM problem can be written as p(Xk|Zk) ∝ p(X0)p(Zk|Xk),

where

p(Zk|Xk) =
∏

i,j∈Kk

p(Lij|Xj)p(Iij|Xj)p(Fi|Xi)p(Cij|Xj). (5.2)

The Maximum-A-Posteriori (MAP) estimate of Xk can be computed by solving the

following optimization problem:

minimize
Xk

− log p(Xk|Zk). (5.3)
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Due to the Gaussian noise assumption mentioned earlier is this is equivalent to solving the

nonlinear least-squares problem,

minimize
Xk

‖r0‖
2
Σ0

+
∑

i,j∈Kk

‖rLij
‖2Σ

Lij

+
∑

i,j∈Kk

‖rIij‖
2
Σ

Iij

+
∑

i∈Kk

‖rFi
‖2Σ

Fi

+
∑

i,j∈Kk

‖rCij‖
2
Σ

Cij

, (5.4)

where r0 and Σ0 represents the prior over the initial state and serves to anchor the graph,

rLij
, rIij , rFi

, rCij are the residual terms associated with the loop closure, IMU, forward-

kinematic, and contact measurements respectively, i.e. the error between the measured and

predicted values given the state, and ΣLij
, ΣIij

, ΣFi
, ΣCij

are the corresponding covariance

matrices. More information about the basic factor graph formulation is given in the back-

ground, Section 3.3

The calculation of the the loop-closure (and/or visual odometry) residuals and covariance,

rLij
and ΣLij

, will depend on the specific type of measurement, and are out of the scope of

this work. The preintegrated IMU residuals and covariance, rIij and ΣIij
, can be found in

[85]. The goal of the following sections will be to formulate the residuals and covariances for

the forward kinematicand contact measurements, rFi
, rCij , and ΣFi

, ΣCij
.

5.2 Forward Kinematic Pose Factor

In this section, we derive a forward kinematic pose factor that relates the base frame to a

contact frame through noisy joint encoder measurements.

5.2.1 Frames and Definitions

Forward kinematics refers to the process of computing the relative pose transformation be-

tween two frames of a multi-link system. Each individual joint displacement describes how

the child link moves with respect to the parent one. This joint displacement can either be

an angle (revolute joints) or a distance (prismatic joints). Let α ∈ R
N denote the vector of

joint displacements for a general robot. More information about forward kinematics can be

found in the background, Section 3.5.

Without loss of generality, we define a base frame on the robot, denoted B, that is

assumed to be collocated with both the IMU and the camera frames. When the robot is in

contact with a static environment, we can also define a contact frame, denoted C, on the

robot at the point of contact. The homogeneous transformation between the base frame and
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Figure 5.2: In this chapter, we refer to two separate forward kinematics functions. The pose of the current
contact frame relative to the base frame is denoted by H

BC
. When the robot has multiple points of contact

with the environment, it is possible to transfer this contact from from one frame to another. This transfer
of contact is captured by the homogeneous transform H

C
-
C

+ .

the contact frame is defined by

H
BC

(α) ,

[

RBC(α) BpBC(α)

01×3 1

]

, (5.5)

whereRBC(α) and BpBC(α) denote the relative orientation and position of the contact frame

with respect to the base frame.

When there are two points in contact with the static environment, it is possible to

“transfer” the contact frame from one point to the other (shown in Figure 5.2). This will

later be useful when preintegrating contact measurements through contact switches. Let C−

denote the old contact frame and C+ denote the new contact frame. Then, the homogeneous

transformation between the old frame and the new frame is defined by

H
C-C+(α) ,

[

RC-C+(α)(α) C-pC-C+(α)

01×3 1

]

, (5.6)

where RC-C+(α) and C-pC-C+(α) denote the relative orientation and position of the new

contact frame with respect to the old contact frame.
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5.2.2 Noisy Encoder Measurements

We assume that every joint on the robot is equipped with a set of joint encoders that

can measure the joint displacement. These encoder measurements, α̃, are assumed to be

corrupted with additive Gaussian white noise. This is an explicit measurement coming from

physical sensors located on the robot;

α̃(t) = α(t) +wα(t) wα(t) ∼ N (0N×1,Σ
α(t)). (5.7)

The manipulator (or geometric) Jacobian, denoted J(α), provides a method for comput-

ing the angular and linear velocity of an end-effector given the vector of joint velocities [171].

In a similar manner, we can use the Jacobian to map incremental angle changes to incremen-

tal changes in the end-effector pose. Let CJBC
(α) denote the body manipulator Jacobian of

the forward kinematics function (5.5). Then, this relationship can be expressed as

CξBC δt = CJBC
(α) δα, (5.8)

where δα and δt are incremental encoder and time quantities and CξBC denotes the vector

of angular and linear velocities (the twist) of the contact frame due to δα (measured in the

contact frame). We perform Euler integration using (5.8) to provide a method for factoring

out the noise from the forward kinematics equations. Up to a first order approximation,

(5.5) can be factored as

H
BC

(α̃(t)−wα(t)) ≈ H
BC

(α̃(t)) Exp
(
−CJBC

(α̃(t))wα(t)
)
. (5.9)

A similar approximation can be found for (5.6), albeit with a different Jacobian;

H
C-C+(α̃(t)−wα(t)) ≈ H

C-C+(α̃(t)) Exp
(
−C+J

C-C+(α̃(t))wα(t)
)
. (5.10)

Remark 12. In general, the manipulator Jacobian can be derived as spatial or body ma-

nipulator Jacobian [171], and based on this choice, the noise term will appear on the left or

right side of the rotation/rigid body transformation, respectively. See Section 3.5 for more

information about these Jacobians.
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5.2.3 Forward Kinematic Factor

The goal of this section is to derive a general forward kinematicfactor that can be used in

the factor graph framework. This will be a unary factor that relates two poses (at a single

time step) through the forward kinematics equations while accounting for encoder noise.

The derivation here assumes that we are relating the base and contact frames.

The pose of the contact frame with respect to the world frame is given by

H
WC

(t) = H
WB

(t) H
BC

(α(t)). (5.11)

Substituting in the state variables at time ti (5.1), the forward kinematic equations (5.5)

yields

Ci = Xi HBC
(α̃i −w

α

i ). (5.12)

We can now use the first order approximation (5.9) to factor out the encoder noise to give

the following expressions:

Ci = Xi HBC
(α̃i) Exp

(
−CJBC

(α̃i)w
α

i

)
(5.13)

Defining the zero-mean white Gaussian forward kinematic noise term, δci , CJBC
(α̃i)w

α

i ,

allows us to write out the forward kinematicmeasurement model,

H
BC

(α̃i) = X−1
i Ci Exp(δci), (5.14)

where the forward kinematics noise is characterized by δci ∼ N (06×1,ΣFi
). The residual

errors are defined in the tangent space and can be written as

rFi = Log
(
C−1

i Xi HBC
(α̃i)

)
. (5.15)

The covariance is computed through the linear transformation

ΣFi
= CJBC

(α̃i) Σ
α

i CJ
T

BC
(α̃i), (5.16)

where CJBC
(α̃i) is the body manipulator Jacobian evaluated at the current encoder mea-

surements and Σ
α

i denotes the encoder covariance matrix at time ti. This residual and

covariance can now be used to insert the forward kinematic factors into the factor graph

optimization problem (5.4).
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5.3 Hybrid Preintegrated Rigid Contact Factor

This section derives the hybrid preintegration contact factor that provides contact frame

odometry based on measurements from a contact sensor. This factor is formulated to be

able to handle an arbitrary number of contact switches between graph nodes.

5.3.1 Contact Dynamics as a Hybrid System

As a legged robot moves through the environment, contact is made and broken numerous

times. Therefore, between any two keyframes, the definition of the contact frame may switch

(between the left and right foot for example) an arbitrary number of times. This switching

process can be captured by modeling the contact dynamics as a hybrid dynamical system.

Remark 13. If we assume that the contact frame does not switch between keyframes, then

the hybrid nature can be ignored, and the contact dynamics are simplified. This is the

approach we took in [110]. However, to enforce the non-switching assumption, keyframes

have to be added at every time step where contact with the environment is made or broken.

This often leads to large optimization problems that can be difficult to solve in real-time

(due to the large number of keyframes). This problem is only exacerbated when dealing with

robot’s with more legs (imagine how often contact switches occur for a hexapod).

A continuous hybrid dynamical system, H, can defined with a continuous dynamics

function, f(·), a discrete transition map, ∆(·), and a switching surface, S [233]. The general

form of this system can be expressed as

H :

{

ẋ(t) = f(x, t) (x−, t−) 6∈ S

x+ = ∆(x−) (x−, t−) ∈ S.
(5.17)

Trajectories of the hybrid dynamical system evolve according to the continuous dynamics,

until the switching surface it hit. At those moments, the state gets mapped through the

discrete transition map, after which the trajectory continues according to the continuous

dynamics again.

In general, the contact pose dynamics can be modeled using the hybrid system

H :







d

dt
H

WC
(t) = H

WC
(t) (CξWC(t))

∧ t− 6∈ S

H
WC+ = H

WC- HC-C+ t− ∈ S,
(5.18)
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where CξWC(t), denotes the twist (angular and linear velocity) of the contact frame, and the

switching surface, S is simply modeled as the set of all times where contact is switched from

one frame to another. The matrix H
C-C+ denotes the pose of the new contact frame relative

to the old contact frame (5.6).

Since the sensor measurements are coming in at discrete time steps, we perform Euler

integration from time t to t+∆t to discretize the continuous hybrid contact dynamics (5.18)

to form the discrete hybrid system

H :

{

H
WC

(t+∆t) = H
WC

(t) Exp (CξWC(t)∆t) t− 6∈ S

H
WC+ = H

WC- HC-C+ t− ∈ S,
(5.19)

where the twist assumed to be constant over ∆t. Physically, the continuous dynamics func-

tion, f , describes how a single contact frame moves over time while contact is maintained.

When a new contact frame is detected, the new contact pose can be computed by applying

the transition map, ∆(·), which utilizes the homogeneous transformation between the old

and new contact frames.

5.3.2 Noisy Contact Twist Measurements

The angular and linear velocities of the contact frame are implicit measurements that are

inferred through a binary contact sensor; specifically, when this sensor indicates contact, the

pose of the contact frame is assumed to remain fixed in the world frame, i.e. the measured

twist is zero. In order to accommodate potential contact slip, this measurement is assumed

to be corrupted with additive white Gaussian noise, namely

Cξ̃WC(t) = 06×1 = CξWC(t) +wξ(t), wξ(t) ∼ N (06×1,Σ
ξ(t)). (5.20)

Using the state variables (5.1), forward kinematics definition (5.6), encoder measurements

(5.7), and contact measurements (5.20), the hybrid contact dynamics (5.19) can be written

as

H :







Ck+1 = Ck Exp
(

−w
ξd
k ∆t

)

t−k 6∈ S

C+ = C− H
C-C+(α̃k −w

α

k ) t−k ∈ S
, (5.21)

where w
ξd
k , the discrete time contact noise, is computed using the sample time,

Cov(wd(t)) =
1

∆t
Cov(w(t)). (5.22)
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This results in a rigid contact model, because without noise, the contact frame’s position and

orientation are assumed to rigid with respect to the world frame. This is a strict assumption,

relaxed only slightly by the addition of velocity noise, that should be validated with the

particular robot’s gait. However, this method can be applied to many humanoid robots that

walk flat-footed. This contact factor is re-derived with a point contact assumption later in

Section 5.5.

Remark 14. The equations defining the forward kinematics function, H
C-C+(αk), will de-

pend on the specific contact frames, C− and C+, at time tk. For example, the forward

kinematics function to switch from left foot contact to a right foot contact will be different

than the one used to switch from right foot to left foot. Therefore, when implementing

the derived factor, the user needs to determine the specific frames involved in the contact

transfer in order to select the appropriate kinematics function.

5.3.3 Preintegrating Contact Pose

The goal of this section is to formulate a general hybrid preintegrated rigid contact factor

that can be used within an existing factor graph framework. This factor is a binary factor

that relates the contact pose at time ti to the contact pose at time tj. When combined with

the forward kinematicfactor, derived in Section 5.2, the motion of the robot’s base frame

is further constrained, leading to improved Maximum-A-Posteriori (MAP) state estimation.

The hybrid nature of this factor comes from the potential switching of contact that occurs

naturally in legged locomotion described in Section 5.3.1. Since contact measurements are

typically obtained at a much higher frequency than the keyframes, all measurements between

any two keyframes need to be integrated into a single factor. In order to avoid re-integration

of these contact measurements every time the state estimate is updated, we employ ideas from

inertial measurement unit (IMU) preintegration theory [160, 85, 74] to prevent unnecessary

computation allowing efficient implementation of the factor.

Let S denote the sequence of all time indices associated with contact switches between

times ti and tj, so that each si ∈ S represents a single time index where a contact switch

occurs. To compute the contact pose at time tj, we need to integrate the hybrid contact dy-

namics model (5.21) (starting with the pose at time ti) through this set of contact switches.

This involves integrating the measurements up to the first contact switch time tsi , apply-

ing the transition map ∆(·), integrating until the next contact switch, applying the next

transition map, and so on until time tj.
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Figure 5.3: In the factor graph framework, we are estimating the robot’s state along a discretized trajectory
(denoted by red circles). Each independent sensor measurement can provide a “factor” (denoted by lines)
that constraints the state at separate time steps. The proposed hybrid contact factor (shown on top) allows
preintegration of high-frequency contact data through an arbitrary number of contact switches. In this
example, there are two contact switches, where the robot moves from left-stance (L) to right-stance (R),
then back to left stance.

For the following derivations, a concrete example (depicted in Figure 5.3) is used to make

it easier for the reader to understand. We later use this example to extend the derivation

to an arbitrary number of contact switches. For the example shown in Figure 5.3, there are

two contact switches between times ti and tj (i.e. |S| = 2). Integrating the discrete hybrid

contact model (5.21) from ti to tj yields

Cj = Ci

(
s1−1∏

k=i

Exp(−w
ξd
k ∆t)

)

H
C-C+(α̃s1

−wα
s1
)

(
s2−1∏

k=s1

Exp(−w
ξd
k ∆t)

)

H
C-C+(α̃s2

−wα
s2
)

(
j−1
∏

k=s2

Exp(−w
ξd
k ∆t)

)

.

(5.23)

We then use the manipulator Jacobian (5.10) to factor the noise from the forward kinematics

terms along with the adjoint map (4.19) to shift the measured kinematics to the left, resulting

in the following expression:

Cj =Ci HC-C+(α̃s1
) H

C-C+(α̃s2
)

(
s1−1∏

k=i

Exp(−AdH−1

C-C+ (α̃s2
)AdH−1

C-C+ (α̃s1
)w

ξd
k ∆t)

)

Exp(−AdH−1

C-C+ (α̃s2
)C+J

C-C+(α̃s1
)wα

s1
)

(
s2−1∏

k=s1

Exp(−AdH−1

C-C+ (α̃s2
)w

ξd
k ∆t)

)

Exp(−C+J
C-C+(α̃s2

)wα
s2
)

(
j−1
∏

k=s2

Exp(−w
ξd
k ∆t)

)

.

(5.24)
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In the above expression, anytime Ci changes, we would need to re-integrate to obtain Cj.

To prevent this, we multiply both sides by C−1
i , finally arriving at a relative contact pose

expression that is independent of states Ti and Tj,

∆Cij , C−1
i Cj = ∆C̃ijExp(−δcij), (5.25)

where ∆C̃ij ,
∏

k∈S H
C-C+(α̃k) represents the hybrid preintegrated contact measurement,

and Exp(−δcij) groups all of the noise terms together. Physically, ∆C̃ij corresponds to the

measured change in contact pose (from ti to tj) as measured by the encoders. The noise term,

δcij, corresponds to the cumulative noise coming from both contact slip and the encoders.

We introduce the following Lemma, which allows a product of small group elements to be

approximated by a summation in the tangent space. A similar results for 3D rotation group,

SO(3), is worked out in [85], however, we state this result for general matrix Lie groups.

Lemma 1 (Approximate Accumulation of Product of Small Group Elements). Let G be a

matrix Lie group and g be its associated Lie Algebra. The product of small group elements

(near the identity) can be approximated by a summation of the corresponding elements in the

Lie Algebra g.

Proof. Let Exp(δxk) ∈ G be a group element near the identity where δxk ∈ R
dimg. This

result can be seen by first separating one element from the product to yield

Log

(
j
∏

k=i

Exp(δxk)

)

= Log

((
j−1
∏

k=i

Exp(δxk)

)

Exp(δxj)

)

= Log

(

Exp

(

Log

((
j−1
∏

k=i

Exp(δxk)

)))

Exp(δxj)

)

,

(5.26)

which can be approximated using the inverse of the right Jacobian of G, defined in Sec-

tion 3.4.4,

Log

(
j
∏

k=i

Exp(δxk)

)

≈ Log

(
j−1
∏

k=i

Exp(δxk)

)

+ J−1
r

(

Log

(
j−1
∏

k=i

Exp(δxk)

))

δxj. (5.27)

The right Jacobian (and its inverse) can be approximated by the identity matrix since the

argument is small. Therefore,

Log

(
j
∏

k=i

Exp(δxk)

)

≈ Log

(
j−1
∏

k=i

Exp(δxk)

)

+ δxj, (5.28)
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and the process can be repeated incrementally to show

Log

(
j
∏

k=i

Exp(δxk)

)

≈

j
∑

k=i

δxk. (5.29)

The collected noise term, Exp(−δcij), is a product of multiple small rigid body trans-

formations, therefore, we can use the results from Lemma 1 to approximate the noise as a

summation;

δcij ≈
s1−1∑

k=i

AdH−1

C-C+ (α̃s2
)AdH−1

C-C+ (α̃s1
)w

ξd
k ∆t

+AdH−1

C-C+ (α̃s2
)C+J

C-C+(α̃s1
)wα

s1
+

s2−1∑

k=s1

AdH−1

C-C+ (α̃s2
)w

ξd
k ∆t

+ C+J
C-C+(α̃s2

)wα
s2
+

j−1
∑

k=s2

w
ξd
k ∆t.

(5.30)

The same result can be obtained by repeatedly using a first-order approximation of the

Baker-Campbell-Hausdorff (BCH) formula (3.45). The hybrid preintegrated contact noise,

δcij, is now a summation of zero-mean Gaussian terms, and is therefore also zero-mean

and Gaussian. It is possible to generalize this noise expression to an arbitrary number of

contact switches, however, it becomes much simpler to do so when looking at the iterative

propagation form in the following section.

5.3.4 Iterative Propagation of Contact Measurements and Noise

It is possible to write both the preintegrated contact measurements, ∆C̃ij, and the preinte-

grated contact noise, δcij, in iterative update forms. This allows the terms to be updated

as contact and encoder measurements are coming in. In addition, this form simplifies the

expressions and allows for the covariance to be easily computed. This result is captured in

the following proposition.
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Proposition 3 (Iterative Propagation of Hybrid Contact Process). Between any two time

steps ti and tj such that j > i, starting with ∆C̃ii = I4 and δcii = 06×1, the hybrid prein-

tegrated contact measurement, ∆C̃ij, and noise, δcij, for an arbitrary number of contact

switches can be computed iteratively using the following hybrid systems:

H̃ :

{

∆C̃ik+1 = ∆C̃ik t−k 6∈ S

∆C̃
+

ik = ∆C̃
−

ik H
C-C+(α̃k) t−k ∈ S

(5.31)

δH :







δcik+1 = δcik +w
ξd
k ∆t t−k 6∈ S

δc+ik = AdH−1

C-C+ (α̃k)
δc−ik + C+J

C-C+(α̃k)w
α

k t−k ∈ S.
(5.32)

Therefore, when the contact frame remains fixed, the measured relative pose, ∆C̃ik, remains

constant. When a contact switch occurs, the new contact pose is computed by applying

the measured homogeneous transformation, H
C-C+(α̃k), which corresponds to the forward

kinematics of the new contact frame relative to the old contact frame. A similar intuitive

description of the noise model can be given. When the contact frame remains fixed, the

contact noise accumulates additive white noise coming from potential contact slip. When

a contact switch occurs, the new noise, δcik+1, is computed by transforming the old noise

from the tangent space about C− to the tangent space about C+ using the adjoint map. In

addition, an extra noise term, C+J
C-C+(α̃k)w

α

k , needs to be added to account for forward

kinematics noise. An abstract representation of these hybrid systems is shown in Figure 5.4.

The proof for this proposition is developed over the following two sections.

5.3.4.1 Contact Pose

We begin with the preintegrated pose measurement, ∆C̃ij ,
∏

k∈S H
C-C+(α̃k). This relative

measurement is simply the product of multiple homogeneous transformations, which is only

updated when a contact switch occurs. This is the integration of the following hybrid system

that iteratively updates the contact pose measurement, starting with ∆C̃ii = I4:

{

∆C̃ik+1 = ∆C̃ik t−k 6∈ S

∆C̃
+

ik = ∆C̃
−

ik H
C-C+(α̃k) t−k ∈ S.

(5.33)

When contact persists, the relative measurement remains the same. When a contact switch

occurs, the relative pose is updated by multiplying by a homogeneous transform that repre-

sents the new contact frame relative to the old frame.
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Figure 5.4: When a contact switch occurs, the relative contact pose, ∆C̃
−

ik
, gets mapped from one point in

SE(3) to another point, ∆C̃
+

ik
, on the manifold. The contact noise, δc−

ik
, is represented in the tangent space,

se(3), and is mapped from the tangent space of ∆C̃
−

ik
to the tangent space of ∆C̃

+

ik
through the use of the

adjoint map of the forward kinematics transformation, HC-C+ . However, due to noisy encoders, an addition
noise term (computed using the manipulator Jacobian) has to be added to compute δc+

ik
.

5.3.4.2 Contact Noise

In similar fashion, the iterative form of the noise can be derived. We first reorder the

approximate noise expression from (5.30). This expression is only for the two contact switch

example depicted in Figure 5.3.

δcij ≈ AdH−1

C-C+ (α̃s2
)

















AdH−1

C-C+ (α̃s1
)

(
s1−1∑

k=i

w
ξd
k ∆t

)

︸ ︷︷ ︸

δc−is1

+C+J
C-C+(α̃s1

)wα
s1

︸ ︷︷ ︸

δc+is1

+

s2−1∑

k=s1

w
ξd
k ∆t

















︸ ︷︷ ︸

δc−is2

+C+J
C-C+(α̃s2

)wα
s2

︸ ︷︷ ︸

δc+is2

+
∑j−1

k=s2
w

ξd
k ∆t

(5.34)

Upon close inspection, one can recognize that this is the integration of the following hybrid

system from ti to tj:

δH :







δcik+1 = δcik +w
ξd
k ∆t t−k 6∈ S

δc+ik = AdH−1

C-C+ (α̃k)
δc−ik + C+J

C-C+(α̃k)w
α

k t−k ∈ S.
(5.35)

122



The above expression is now general and can be integrated for an arbitrary number of contact

switches to obtain δcij.

5.3.5 Rigid Contact Factor

The relative contact pose expression (5.25) can be used to define the preintegrated contact

measurement model,

∆C̃ij = C−1
i CjExp(δcij) with δcij ∼ N (06×1,ΣCij

), (5.36)

where the zero-mean Gaussian preintegrated contact noise is characterized by δcij. In the

factor graph framework, the preintegrated contact model represents a binary factor that

relates the contact frame pose over consecutive time steps. The residual error is defined in

the tangent space, and can be written as

rCij = Log
(

C−1
j Ci ∆C̃ij

)

. (5.37)

The covariance is computed using using the hybrid contact noise model (5.35), starting with

ΣCii
= 06×6;







ΣCik+1
= ΣCik

+Σ
ξ

k ∆t t−k 6∈ S

Σ+
Cik

= AdH−1

C-C+ (α̃k)
Σ−

Cik
AdT

H−1

C-C+ (α̃k)
+ C+J

C-C+(α̃k) Σ
α

k C+JT

C-C+(α̃k) t−k ∈ S,

(5.38)

where Σ
ξ

k denotes the covariance of the continuous contact slip noise and Σ
α

k denotes the

covariance of the encoder noise. This residual and covariance can now be used to insert the

hybrid preintegrated contact factors into the factor graph optimization problem (5.4).

5.4 Experimental Results on Cassie-series Robot

We now present experimental evaluations of the proposed factors. In the first experiment,

we compare three odometry systems composed by visual-inertial-contact (VIC), inertial-

contact (IC), and visual-inertial (VI) factors. Since the proposed forward kinematic model

is a unary factor, whenever the contact factor is used, it is assumed that forward kinematic

factor is also available; therefore, it is not explicitly mentioned for brevity. In the second

experiment, we study the effect of losing visual data for a period to see how the contact factor

can constrain the graph in the absence of a reliable vision system. In the third experiment,

we will evaluate a novel notion called terrain factor, where loop-closures can be added to the
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Figure 5.5: Experiments were conducted on a Cassie-series robot designed by Agility Robotics in an indoor
laboratory environment. The motion capture system is used to record the robot trajectory as a proxy for
ground truth data. The Cassie-series robot has 20 degrees of freedom, 10 actuators, joint encoders, an IMU,
and mounted with a Multisense S7 stereo camera.

graph through contact frame poses.

5.4.1 Experimental Setup

All experiments are done on a Cassie-series robot designed by Agility Robotics, which has

20 degrees of freedom, 10 actuators, joint encoders, an IMU, along with a Multisense S7

stereo camera mounted on the top of the Cassie robot, containing another IMU, as shown

in Fig. 5.5. Cassie also has four springs (two on each leg) that can be used as a binary

contact sensor by thresholding the spring deflection measurements. The Cassie robot has

two computers: a MATLAB Simulink Real-Time and a Linux-based system computer. We

use the Robot Operating System (ROS) [188] with the User Datagram Protocol (UDP) to

communicate sensor data between the two computers. We also integrate the time synchro-

nization algorithm in [178] into our system to ensure all sensory data are synchronized. More

information about the Cassie robot can be found in Section 3.1.3.

The motion capture system developed by VICON is used as a proxy for ground truth tra-
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jectories. The setup consists of 17 motion capture cameras where four markers are attached

to Cassie robot to represent its pelvis as well as two markers to represent the orientation of

the IMU on Cassie where the base frame is located. The VICON contains the stereo images

(20 Hz) and IMU data (750 Hz) from the Multisense S7 camera as well as the joint encoders

and IMU data from the Cassie robot (at 400 Hz each).

The proposed factors are implemented in GTSAM [65], and we used the IMU factor

built into GTSAM 4.0 [85] with an incremental solver iSAM2 [137]. We used a semi-direct

visual odometry library SVO 2.0 [86] with the Multisense S7 camera. The camera recorded

synchronized stereo images at 20 Hz and IMU measurements in about 750 Hz. SVO pro-

cesses those measurements in real-time and outputs 6 degrees of freedom poses of the left

camera in a fixed world frame, Xi, for the current time step i. The relative transformation

of the camera from time step i to j can be obtained using ∆Xij = X−1
i Xj. We selected

keyframes approximately every 0.25 seconds and added a pose factor for connecting any two

corresponding successive keyframes in the graph.

5.4.2 Odometry Comparison

In this experiment, we had Cassie stand in place for about 15 seconds, then slowly walk

forwards and backwards along the length of the lab for approximately 45 seconds. The

resulting data was used to compare the odometry performance (processed off-line) of different

combinations of factors. The results are shown in Figure 5.6. The odometry estimate

from VIC, as expected, outperforms all other combinations of factors. The Cumulative

Distribution Function (CDF) of the relative position error is shown in Figure 5.7. The

relative position CDF provides a method for analyzing the drift of an odometry estimate.

From Figure 5.7, it can be seen that VIC has the highest fraction of data corresponding

to smaller relative position errors. This means VIC has lowest drift among all odometry

systems. When the robot is walking, the hard impacts cause significant camera shake which

leads to motion blur in the images. This effect, along with possibly the lab environment

lacking numerous quality features, helps to explain the relatively poor VI odometry perfor-

mance.
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Figure 5.6: The odometry results from a 60 second walking experiment using a Cassie-series robot. The
Visual-Inertial-Contact (VIC) odometry outperformed both the Inertial-Contact (IC), and the Visual-Inertial
(VI) odometry. “Ground-truth” data was collected from a Vicon motion capture system. It is important to
note that no loop-closures are being performed, which helps to explain the relatively poor odometry from
VI. The video of this experiment is provided at https://youtu.be/WDPhdl5g2MQ.

Figure 5.7: The Cumulative Distribution Function (CDF) of the relative position error provides a way to
analyze the drift in the odometry estimates from various combinations of factors. The fraction of data
corresponding to small relative position errors (low-drift odometry) is the larger for Visual-Inertial-Contact
(VIC) odometry than for Inertial-Contact (IC) or Visual-Inertial (VI) odometry.

5.4.3 Vision Dropout

One of the main benefits from including forward kinematic and contact factors is that the

state estimator can be more robust to failure of the vision system. In this experiment, we

simulate the effects of “vision dropout” by simply ignoring SVO visual-odometry data for two

10-second periods of the experimental data described in the previous section. In other words,

during a “vision dropout” period, VIC odometry reduces to IC odometry, and VI odometry

reduces down to inertial (I) odometry. Figure 5.8 shows the log determinant of the base

pose covariance for VIC and VI for these “vision dropout” experiments. The larger the

log determinant, the more uncertain the estimator is about the robot’s base pose. During
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the “vision dropout” periods, uncertainty grows for VI odometry. This sharp covariance

growth is due to the lack of additional sensor measurements to add into the factor graph. In

contrast, the covariance growth for VIC is hardly affected over the same dropout periods.

Figure 5.8: When vision data is lost, the covariance of the robot’s base pose sharply grows for VI odometry
due to the lack of additional measurements to constrain the graph. In contrast, during “vision dropout”
periods, the additional contact factors allows the covariance estimate from VIC to remains close to the
nominal case.

5.4.4 Terrain Factors as Loop-Closures

Another benefit of adding the proposed contact factors comes from the addition of the contact

frame poses into the robot’s state. With these new state variables, it becomes simple to to

place additional constraints that relate the contact pose to a prior map. We test this idea

on the collected experiment data by recognizing that the ground was relatively flat in the

laboratory. This “zero-height” elevation data serves as our prior map. Figure 5.9 shows how

adding this trivial constraint can reduce position drift in the z-direction. This experiment

simply serves to illustrate the potential for “terrain factors”, as the state estimate could be

further improved if the robot was actually mapping out the terrain; there was actually a

small downward slope in the lab (as shown in the motion capture data).
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Figure 5.9: Since the contact pose is now part of the estimated state, it is possible to add “terrain factors”
that relate this contact pose to a prior map. Adding the simple constraint that the contact frame z-translation
is zero (VIC-T) improves the drift in the z-direction when compared to the nominal Visual-Inertial-Contact
(VIC) case.

5.5 Hybrid Preintegrated Point Contact Factor

The preintegrated contact factor derived in Section 5.5 assumed that both the contact po-

sition and orientation remained fixed with respect to the world frame. For some robots,

including Cassie and MARLO, this assumption may be violated. For example, when a robot

has point feet, only the position remains fixed. The orientation of the contact frame can

freely rotate during a step. Furthermore, since there are no encoders located between the

contact frame and the ground, the orientation remains unobservable without the use of a

gyroscope or visual sensor. This section aims to derive a hybrid preintegrated point contact

factor that can be used when this point contact assumption is valid.

5.5.1 Point Contact Dynamics Model

Since the contact orientation is no longer constrained, we can remove it from the state and

optimization framework. The state to be optimized now becomes

Ti ,
(
H

WB
(ti),WvWB(ti),WpWC(ti),b(ti)

)
, (Xi,vi,di,bi) , (5.39)

where di , WpWC(ti) denotes the contact frame position with respect to the world frame.

The hybrid discrete contact dynamics can now be modeled as

H :

{

WpWC(t+∆t) = WpWC(t) +RWC(t) CvWC(t)∆t t− 6∈ S

WpWC+ = WpWC- +RWC- C-pC-C+ t− ∈ S.
(5.40)

The linear velocity of the contact frame is an implicit measurement that is inferred through

a binary contact sensor; specifically, when this sensor indicates contact, the position of the
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contact frame is assumed to remain fixed in the world frame, i.e. the measured velocity is

zero. In order to accommodate potential contact slip, the measured velocity is assumed to

be corrupted with additive white Gaussian noise, namely

CṽC(t) = 03×1 = CvC(t) +wv(t), w(t) ∼ N (03×1,Σ
v(t)), (5.41)

where w(t) is the contact velocity noise represented in the contact frame.

The orientation of the contact frame is not part of the state anymore, so we express

it in terms of base orientation, RWB, and the relative orientation between the base and

contact frame, RBC, coming from forward kinematics. When contact switching occurs, the

position of the new contact frame relative to the old contact frame can also be computed

using forward kinematics. This leads to the following relations,

RWC(t) = RWB(t)RBC(t) = Rt RBC(αt)

RWC-(t) C-pC-C+(t) = RWB(t) BpC-C+(α̃(t)) = Rt BpC-C+(α̃t),
(5.42)

where the base orientation, Rt, can be extracted from the base pose Xt. We can now rewrite

the point contact dynamics (5.40) using the state variables (5.39), the velocity measurement

(5.41), the encoder measurements (5.7), and the forward kinematicrelations (5.42);

H :

{

dk+1 = dk −Rk RBC(α̃k −w
α

k ) w
vd
k ∆t

d+
k = d−

k +Rk BpC-C+(α̃k −w
α

k ) k ∈ S.
(5.43)

The above equation represents the hybrid point contact dynamics model.

5.5.2 Integrating Contact Position

Integrating the point contact dynamics (5.43) from time ti to tj gives,

dj = di +
∑

k∈S

Rk BpC-C+(α̃k −w
α

k )−

j−1
∑

k=i

Rk RBC(α̃k −w
α

k )w
vd
k ∆t, (5.44)

where the terms arising from all contact switches are grouped together. To avoid having to

re-integrate the measurements every time the state is updated, we rearrange terms to give

an expression that is independent of the states Ti and Tj;

RT

i (dj − di) =
∑

k∈S

∆Rik BpC-C+(α̃k −w
α

k )−

j−1
∑

k=i

∆Rik RBC(α̃k −w
α

k )w
vd
k ∆t, (5.45)
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where ∆Rik , RT

i Rk denotes the relative change in base orientation from time ti to time tk.

For robots with point contact, the relative change in base orientation is unobservable

using only forward kinematics and contact measurements. In other words, the robot is free to

pivot about its point contact while maintaining constant joint displacements. Therefore, we

use gyroscope measurements and inertial measurement unit (IMU) preintegration techniques

from [160, 85, 74] to track the relative base orientation. Coming directly from Forster et al.

[85], the relative base orientation is given by

∆Rij =

j−1
∏

k=i

Exp
(

(ω̃k − b̄
g
i −wgd

k )∆t
)

≈ ∆R̃ijExp(−δφij), (5.46)

where ω̃k denotes the measured angular velocity, wgd
k ∼ N (03×1,Σ

g
k) denotes the discrete

gyroscope noise, and b̄
g
i denotes the gyroscope bias estimate at the time of preintegration.

Although this quantity still depends on the bias states, a first-order update can be used to

correct these terms [85]. The preintegrated rotation measurement is given by

∆R̃ij =

j−1
∏

k=i

Exp((ω̃k − b̄
g
i )∆t), (5.47)

while the Gaussian white noise term is approximated as

δφij ≈

j−1
∑

k=i

∆R̃
T

k+1,j Jr(ω̃k − b̄
g
i ) w

gd
k ∆t, (5.48)

where Jr(·) denotes the right Jacobian of SO(3); see Section 3.4.4 and equation (3.53) for

more details regarding the right Jacobian.

We can use the manipulator Jacobians to approximate the forward kinematics functions,

namely

RBC(α̃k −w
α

k ) ≈ RBC(α̃k) Exp
(
−CJ

ω
BC

(α̃k)w
α

k

)

BpC-C+(α̃k −w
α

k ) ≈ BpC-C+(α̃k)− BJ
ṗ

C-C+(α̃k)w
α

k ,
(5.49)

where Jω denotes the angular velocity component of the manipulator Jacobian, and Jṗ

denotes the analytical Jacobian of the forward kinematic position function1. Using this

forward kinematics approximation (5.49) and the relative base orientation (5.46), we can

1This is different than the Jacobian that relates encoder rates to linear velocity. See Section 3.5 for more
details.
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expand (5.45) to give

∆dij , RT

i (dj − di)

=
∑

k∈S

∆R̃ik Exp(−δφik)
(

BpC-C+(α̃k)− BJ
ṗ

C-C+w
α

k

)

−

j−1
∑

k=i

∆R̃ik Exp(−δφik)RBC(α̃k)Exp(−CJ
ω
BC

w
α

k )w
vd
k ∆t,

(5.50)

Using the first order approximation for the exponential map, Exp(φ) ≈ (I + (φ)×), we can

approximate the above equation as

∆dij ≈
∑

k∈S

∆R̃ik

(
I − (δφik)×

) (

BpC-C+(α̃k)− BJ
ṗ

C-C+w
α

k

)

−

j−1
∑

k=i

∆R̃ik

(
I − (δφik)×

)
RBC(α̃k)

(

I −
(

CJ
ω
BC

w
α

k

)

×

)

wvd
k ∆t.

(5.51)

Expanding (5.51) and dropping all higher order noise terms yields,

∆dij ≈
∑

k∈S

∆R̃ik BpC-C+(α̃k)−

j−1
∑

k=i

∆R̃ik RBC(α̃k)w
vd
k ∆t

+
∑

k∈S

∆R̃ik (BpC-C+(α̃k))× δφik −
∑

k∈S

∆R̃ik BJ
ṗ

C-C+(α̃k)w
α

k .

(5.52)

Upon inspection, we can recognize that the above expression for ∆dij is the sum of a mea-

sured term and a noise term. Therefore, we can express it as

∆dij = RT

i (dj − di) , ∆d̃ij − δdij, (5.53)

where ∆d̃ij represents the hybrid preintegrated point contact position measurement, and δdij

groups all the noise terms together. Written explicitly, these terms are

∆d̃ij ,
∑

k∈S

∆R̃ik BpC-C+(α̃sk), and

δdij ,

j−1
∑

k=i

∆R̃ik RBC(α̃k)w
vd
k ∆t+

∑

k∈S

∆R̃ik

(

BJ
ṗ

C-C+(α̃k)w
α

k − (BpC-C+(α̃k))× δφik

)

.

(5.54)
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The noise is zero-mean and Gaussian since δdij is the sum of zero-mean Gaussians.

5.5.3 Iterative Propagation

Similar to the rigid contact case (Section 5.3.4), it is possible to derive iterative expressions

for the hybrid preintegrated point contact position measurement and noise terms. This

iterative form allows both the preintegrated measurement and the covariance to be easily

and efficiently updated as new measurements are received.

The iterative update equations for the position measurement (5.53) can be written using

a hybrid system;

H̃ :

{

∆d̃ik+1 = ∆d̃ik

∆d̃
+

ik = ∆d̃
−

ik +∆R̃ik BpC-C+(α̃k) k ∈ S.
(5.55)

Intuitively, if the contact sensor detects that the previous contact persists, then the contact

position measurement remains unchanged. This comes from our assumption that the position

of the contact point is fixed in the world frame. If the contact sensor detects a change in

contact frames, a separate term is added that represents the relative position change between

the new and old contact frames. Similarly, iterative update equations for the position noise

(5.53) can also be written as a hybrid system;

δH :







δdik+1 = δdik +∆R̃ik RBC(α̃k)w
vd
k ∆t

δd+
ik = δd−

ik +∆R̃ik

(

BJ
ṗ

C-C+(α̃k)w
α

k − (BpC-C+(α̃k))× δφik

)

k ∈ S.
(5.56)

When the previous contact persists, the position noise simply accumulates white noise to ac-

commodate potential slipping. This “contact velocity noise” was represented in the contact

frame, and therefore has to be rotated using forward kinematics and the relative base ori-

entation. When a contact switch is detected, additional noise terms are added that account

for uncertainty in the relative base orientation and uncertainty in the forward kinematics.

Since the noise, δdij, is coupled to the base orientation noise, δφij, we need to formulate

this point contact factor as an extension to the preintegrated IMU factor described in [85].

When (5.56) is combined with the iterative preintegrated IMU equations detailed in [84],
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the combined hybrid noise system can be expressed as









δφik+1

δvik+1

δpik+1

δdik+1









=










∆R̃
T

kk+1 0 0 0

−∆R̃ik(āk − ba
i )

∧∆t I 0 0

−
1

2
∆R̃ik(āk − ba

i )
∧∆t2 I∆t I 0

0 0 0 I










︸ ︷︷ ︸

Ak









δφik

δvik

δpik

δdik









+










Jr(ω̃k − bg
k)∆t 0 0 0

0 ∆R̃ik∆t 0 0

0
1

2
∆R̃ik∆t2 0 0

0 0 ∆R̃ikRBC(α̃k)∆t 0










︸ ︷︷ ︸

Bk









wgd
k

wad
k

wvd
k

wα
k









,

(5.57)

when the previous contact persists, and









δφ+
ik

δv+
ik

δp+
ik

δd+
ik









=









I 0 0 0

0 I 0 0

0 0 I 0

−∆R̃ik (BpC-C+(α̃k))
∧ 0 0 I









︸ ︷︷ ︸

Fk









δφ−
ik

δv−
ik

δp−
ik

δd−
ik









+









0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∆R̃ik BJ
ṗ

C-C+(α̃k)









︸ ︷︷ ︸

Gk









wgd
k

wad
k

wvd
k

wα
k









k ∈ S,

(5.58)

when a contact switch is detected. This hybrid linear system can be used to iteratively

compute the covariance, starting with ΣICii
= 012×12,

{

ΣICik+1
= AkΣICik

AT

k +BkΣ
w

k B
T

k

ΣIC
ik+

= FkΣIC
ik−

FT

k +GkΣ
w

k G
T

k k ∈ S,
(5.59)

where Σ
w

k denotes the covariance of the sensor noise wk = vec(wgd
k ,wad

k ,wvd
k ,wα

k ).
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5.5.4 First-order Bias Update

Similar to the preintegrated measurements developed by Forster et al. [85], the hybrid prein-

tegrated point contact position measurement, ∆d̃ij, depends on the IMU bias estiamte at

the time of preintegration. In this case, ∆d̃ij only depends on the gyroscope bias. When

this bias estimate changes, instead of re-integrating the measurement (time and memory

intensive), we simply apply a first-order correction;

∆d̃ij(b̄
g
i + δbg) ≈ d̃ij(b̄

g
i ) +

∂∆d̃ij

∂δbg δbg. (5.60)

The Jacobian of the preintegrated measurement with respect to the bias can be computed

iteratively. Looking at (5.55), we can see that ∆d̃ij only depends on the bias estimate through

the preintegrated rotation term, ∆R̃ij, which arises from switching contact. Therefore, the

Jacobian will only change on contact switch. The iterative form of the Jacobian can be

derived as

∆d̃
+

ik +
∂∆d̃

+

ik

∂δbg δbg = ∆d̃
−

ik +
∂∆d̃

−

ik

∂δbg δbg +∆R̃ik Exp

(
∂∆Rik

∂δbg δbg

)

BpC-C+(α̃k)

≈ ∆d̃
−

ik +
∂∆d̃

−

ik

∂δbg δbg +∆R̃ik

(

I +

(
∂∆Rik

∂δbg δbg

)

×

)

BpC-C+(α̃k)

= ∆d̃
−

ik +∆R̃ik BpC-C+(α̃k) +

(

∂∆d̃
−

ik

∂δbg −∆R̃ik (BpC-C+(α̃k))×
∂∆Rik

∂δbg

)

δbg

=⇒
∂∆d̃

+

ik

∂δbg =
∂∆d̃

−

ik

∂δbg −∆R̃ik (BpC-C+(α̃k))×
∂∆Rik

∂δbg .

(5.61)

5.5.5 Combined Point Contact and IMU Factor

Since the noise, δdij, is coupled to the base orientation noise, δφij, the preintegrated hybrid

point contact factor has to be coupled with the preintegrated IMU factor described in [85, 84].

This was not necessary for the rigid contact case described in Section 5.3 due to the static

contact orientation assumption. The combined, preintegrated hybrid point contact and IMU

residual includes the three IMU residuals defined in [85] and the new hybrid point contact
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residual (5.53). Written explicitly, the full residual becomes:

rICij ,










r∆Rij

r∆vij

r∆pij

r∆dij










=


















Log





(

∆R̃ij Exp

(

∂R̃ij

∂bg δbg

))T

RT

i Rj





RT

i (vj − vi − g∆tij)−

[

∆ṽij +
∂ṽij

∂bg δb
g +

∂ṽij

∂ba δb
a

]

RT

i (pj − pi − vi∆tij −
1

2
g∆tij)−

[

∆p̃ij +
∂p̃ij

∂bg δb
g +

∂p̃ij

∂ba δb
a

]

RT

i (dj − di)−

[

∆d̃ij +
∂∆d̃ij

∂δbg δbg

]


















(5.62)

This combined residual and its covariance, ΣICij
(computed using (5.59)), can be used to

insert the hybrid preintegrated contact factors into the factor graph optimization problem

(5.4).

Remark 15. If no contact switch occurs between two consecutive keyframes, the contact

position noise does not get correlated to the base orientation noise. This can be seen by rec-

ognizing that the orientation noise, δφij, only appears in the transition map of (5.56). Also,

if both measurements are Gaussian and uncorrelated, they are also independent. Therefore,

if no contact switching occurs, the preintegrated IMU measurement can be decoupled from

the point-contact position measurement. This simplifies the implementation of the factors

and allows for pre-existing or alternative formulations of the IMU factor to be used.

5.5.6 Forward Kinematic Position Factor

The forward kinematic factor derived in Section 5.2 relates the base frame pose to a contact

frame pose. However, if a the point contact factor is used (instead of the rigid contact

factor), the contact frame orientation is not being constrained. Therefore, including the

contact frame pose in the state is unnecessary since the Maximum-A-Posteriori (MAP)

estimate would simply be the value obtained from forward kinematics. In this section, we

derive a forward kinematic position factor that only constrains the contact frame position,

allowing us to remove the orientation state from the optimization problem.

The position of the contact frame at any given time can be expressed as

WpWC(t) = WpWB(t) +RWB(t) BpBC(α(t)), (5.63)

where the position of the contact frame relative to the base frame, BpBC(α(t)) is measured
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using forward kinematics. Re-writing this expression using the new state definition (5.39)

at time ti and encoder measurements (5.7) gives

di = pi +Ri BpBC(α̃i −w
α

i )

≈ pi +Ri BpBC(α̃i)−Ri BJ
ṗ
BC

(α̃i)w
α

i ,
(5.64)

where the kinematics Jacobian appears when taking a first-order approximation of the posi-

tion kinematics to separate out the encoder noise (5.49).

Now that the noise is separated out, we can construct the measurement residual and its

covariance. The residual is

rFi
= RT

i (di − pi)− BpBC(α̃i). (5.65)

The covariance is computed through the linear transformation

ΣFi
= BJ

ṗ
BC

(α̃i) Σ
α

i BJ
ṗT
BC

(α̃i), (5.66)

where Σ
α

i denotes the encoder covariance matrix at time ti. This residual and covariance

can now be used to insert the forward kinematic factors into the factor graph optimization

problem (5.4).

5.6 Analytical Preintegration and

Invariant Smoothing

In Section 5.5, a hybrid point contact factor was developed that relates the contact frame

position between two keyframes. Due to the modeling of contact as a hybrid dynamical

system, an arbitrary number of contact frames switches can be handled. This factor was

derived as an extension of the preintegrated IMU factors developed by Forster et al. [85].

As explained by Eckenhoff et al. [74], discretization was done assuming piecewise constant

acceleration measurements in the world frame. In contrast, Eckenhoff et al. [74] provided

a method for closed-form preintegration of the acceleration measurements assuming they

are piecewise constant in the body (or local) frame. This method of integration is a closer

approximation to the true body acceleration that the accelerometer is designed to measure,

which leads to improved state estimation.

However, both Forster et al. [85] and Eckenhoff et al. [74] used a decoupled state, similar

to a quaternion-based extended Kalman filter (QEKF), where the orientation, position, and
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velocity all lie in separate spaces. When decoupled, the linearized error dynamics depend

on the state estimate, which can degrade the accuracy of uncertainty propagation. In addi-

tion, using this formulation, the position and velocity covariances are represented by ellipses

in R
3. In some cases, this representation of covariance can poorly reflect the underlying

distributions [22] which are often curved.

In Chapter 4, based on the work of Barrau and Bonnabel [24], we developed an invariant

extended Kalman filter (InEKF) that fuses inertial-contact dynamics with forward kinematic

corrections to estimate the base pose and velocity along with all current contact positions.

This filter was able to outperform the standard QEKF by leveraging Lie group theory to

take advantage of inherent symmetries present in the error dynamics. In particular, the

derived deterministic log-linear error dynamics are autonomous and exactly describe the

evolution of the state error defined on the Lie group itself. This means that without sensor

noise, the error covariance can be propagated without approximation. Although this does

not hold in practical cases with sensor noise and bias, we showed that this formulation still

outperforms the standard QEKF by exploiting these symmetries and through representation

of the covariance in the Lie algebra as opposed to a Euclidean vector space. When pushed

through the group’s exponential map, these covariance ellipses become “curved” on the

group, which better reflects the underlying distribution.

In this section, we derive a new invariant hybrid inertial-contact factor that leverages

the results from Chapter 4 to provide an alternate factor that can be used in place of the

hybrid point contact factor derived in Section 5.5. In addition to the analytical integration

and improved accuracy of covariance propagation, the equations for this new factor have nice

parallels to the InEKF equations of Chapter 4. Furthermore, under certain assumptions, the

Jacobian of this factor’s residual becomes independent of the current state estimate. This is

the main idea behind the invariant smoothing framework developed by Chauchat et al. [48].

5.6.1 Hybrid Contact-Inertial Dynamics

Similar to the contact-aided InEKF (Chapter 4) and the hybrid preintegrated point contact

factor (Section 5.5), we are interested in estimating the base orientation RWB(t), velocity

WvB(t), and position WpWB(t), as well as a contact position WpWC(t). All of these states are

measured in the world frame. We can combine these states into a single matrix Lie group;

Xt =









RWB(t) WvB(t) WpWB(t) WpWC(t)

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









,









Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









∈ SE3(3)
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In addition, we are also interested in estimating the inertial measurement unit (IMU) bias

bt , vec(bg
t ,b

a
t ) ∈ R

6. Together, the full state that we are estimating is a combination of

this group and the bias vector, which can be written as a tuple, (Xt, bt).

Let ω̃t and ãt be the noisy gyroscope and accelerometer measurements. When contact is

measured, the stance foot velocity is assumed zero with additive Gaussian noise to accom-

modate foot slip, and the continuous group dynamics can be written as

d

dt
Xt =









Rt (ω̃t − bg
t )× Rt(ãt − ba

t ) + g vt 03×1

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









−









Rt vt pt dt

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1

















(wg
t )× wa

t 03×1 RBC(α̃t)w
v
t

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









, fut
(Xt)−Xt(w

f
t )

∧
,

(5.67)

wherewf
t , vec(wg

t , w
a
t , 03×1,RBC(α̃t)w

v
t ) is the vector of inertial-contact sensor noise. The

continuous bias dynamics are modeled using the standard Brownian motion model,

d

dt
bt = wb

t , (5.68)

where wb
t , vec(wbg

t , wba
t ) is a vector of gyroscope and accelerometer bias noise. Refer to

Chapter 4 for more information as these dynamics equations are identical to the world-centric

InEKF dynamics.

However, unlike the InEKF (where integration is performed over a single time step),

we are interested in preintegrating the dynamics between two keyframes. In general, the

frame in contact with the ground may change an arbitrary number of times between any two

keyframes. When a contact switch occurs, we can map from the old contact position, d−
t ,

to the new contact position, d+
t , using forward kinematics;

d+
t = d−

t +Rt BpC-C+(α̃t −w
α

k )

≈ d−
t +Rt BpC-C+(α̃t)−Rt BJ

ṗ

C-C+(α̃t)w
α
t .

(5.69)

In the above expression, BpC-C+(α̃t) denotes the position of the new contact frame relative

to the old contact frame as measured in the body frame. The analytical Jacobian of this

kinematics function, Jṗ

C-C+(α̃t), is used to make a first-order approximation allowing separa-

tion of the noise from the kinematics (see Section 3.5). This discrete update can be written
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in matrix form as

X+
t = X−

t









I3×3 0 0 BpC-C+(α̃t)

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









−X−
t









03×3 03×1 03×1 BJ
ṗ

C-C+(α̃t)w
α
t

01×3 0 0 0

01×3 0 0 0

01×3 0 0 0









, ∆ut
(X−

t )−X−
t (w

∆
t )

∧
,

(5.70)

with w∆
t , vec(03×1, 03×1, 03×1, BJ

ṗ

C-C+(α̃t)w
α
t ) being the noise vector for the discrete up-

date. The bias states remain unchanged during the discrete map. Together the continuous

group dynamics (5.67), bias dynamics (5.68), and the discrete dynamics (5.70) form a hybrid

system;

H :







d

dt
(Xt, bt) =

(

fut
(Xt)−Xt(w

f
t )

∧
, wb

t

)

t− 6∈ S
(
X+

t , b
+
t

)
=
(

∆ut
(X−

t )−X−
t (w

∆
t )

∧
, b−

t

)

t− ∈ S,
(5.71)

where the switching surface S is defined by all times where contact switch occurs.

5.6.2 Analytical Preintegration of Mean

Given the state at time ti, we can propagate the mean to time tj by integrating this deter-

ministic part of the hybrid dynamics (5.71):

Rtj
=

∫ tj

ti

Rt (ω̃t − bg
t )× dt

vtj
= vti

+

∫ tj

ti

Rt(ãt − ba
t ) + g dt

ptj
= pti

+

∫ tj

ti

vt dt

dtj
= dti

+
∑

tk∈S

Rtk BpC-C+(α̃tk
)

bj = bi.

(5.72)

In practice, sensor measurements come in at discrete times. Assuming a zero-order hold on

the measurements between consecutive sensor time steps, we can analytically integrate the
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above expressions to yield

Rj = Ri

j−1
∏

k=i

Exp((ω̃k − bg
i )∆t)

vj = vi +

j−1
∑

k=i

(RkΓ1((ω̃k − bg
i )∆t)(ãk − ba

i )∆t+ g∆t)

pj = pi +

j−1
∑

k=i

(

vk∆t+RkΓ2((ω̃k − bg
i )∆t)(ãk − ba

i )∆t2 +
1

2
g∆t2

)

dj = di +
∑

k∈S

Rk BpC-C+(α̃k)

bj = bi,

(5.73)

where t(·) was replaced with the subscript to simplify notation. The matrix Γm(·) denotes

the mth integration of the exponential map (4.85). For more details see Section 4.10. If

we were to directly use the equations above during optimization of the factor graph, every

time Xi changes, the full integration would have to be performed again. To prevent this, we

construct a set of preintegrated measurements that are independent of the group states at

times ti and tj. This leads to a set of analytical preintegrated measurements defined as

∆R̃ij , RT

i Rj =

j−1
∏

k=i

Exp(ω̄k∆t)

∆ṽij , RT

i

(
vj − vi − g∆tij

)
=

j−1
∑

k=i

∆R̃ikΓ1(ω̄k∆t)āk∆t

∆p̃ij , RT

i

(

pj − pi − vt∆tij −
1

2
g∆t2ij

)

=

j−1
∑

k=i

∆R̃ik (Γ1(ω̄k∆t) + Γ2(ω̄k∆t)) āk∆t2

∆d̃ij , RT

i

(
dj − di

)
=
∑

k∈S

∆R̃ik BpC-C+(α̃k),

(5.74)

where ω̄k , ω̃k − b̄
g
i and ω̄k , ãk − b̄

a
i denote the IMU measurements corrected by the

current bias estimate at the time of integration.

These preintegrated measurements can also be written in iterative form to allow integra-
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tion as the data streams in;

∆R̃i,k+1 = ∆R̃i,k Exp(ω̄k∆t)

∆ṽi,k+1 = ∆ṽi,k +∆R̃ikΓ1(ω̄k∆t)āk∆t

∆p̃i,k+1 = ∆p̃i,k +∆ṽi,k+1∆t+∆R̃ikΓ2(ω̄k∆t)āk∆t2

∆d̃i,k+1 =







∆d̃i,k

∆d̃i,k +∆R̃ik BpC-C+(α̃k) k ∈ S

(5.75)

Unfortunately, these preintegrated measurements still depend on the bias state at time

ti. However, instead of re-integrating the measurements, a first-order correction will be done

to account for changes in the bias estimate. The analytical preintegration of the IMU states

were first derived by Eckenhoff et al. [75]. Here, the preintegration was extended to include

the contact position state. We can now rewrite the state Xj as a function of the state Xi

and this set of preintegrated measurements;

Xj =









Ri∆R̃ij vi + g∆tij +Ri∆ṽij pi + vi∆tij +
1
2
g∆t2ij +Ri∆p̃ij di +Ri∆d̃ij

01×3 1 0 0

01×3 0 1 0

01×3 0 0 1









, f∆ij
(Xi, b̄t).

(5.76)

Preintegration of the sensor measurements turned the hybrid continuous state dynamics

(5.71) into simple discrete dynamics equation.

5.6.3 Covariance Propagation

To propagate the covariance we can utilize the linearized error dynamics. The error between

two states can be defined a number of different ways. However, from Chapter 4, we know

that the continuous deterministic dynamics fut
(·) satisfies the group affine property (4.3).

This means that according to Theorems 1 and 2 by [24], both the right- and left-invariant

errors lead to autonomous, log-linear error dynamics. Although with contact switching

the deterministic dynamics follow a hybrid system (5.71), this property is preserved. So,

although the error variables can be defined a number of ways, it is natural and beneficial to

choose either the right- or left-invariant error (4.2). If the right-invariant error is used, the

noise will appear on the left of the propagated state, while if the left-invariant error is used,
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the noise will appear on the right;

Xj = Exp(ξij) f∆ij
(Xi, b̄t) Right-invariant error

Xj = f∆ij
(Xi, b̄t) Exp(ξij) Left-invariant error.

(5.77)

Intuitively, the left-invariant error represents an error measured in the body frame, while the

right-invariant error is measured in the world (spatial) frame. In the factor graph framework,

this error is assumed to be a zero-mean Gaussian. The covariance of this error (and ultimately

the residual) can be computed by assuming zero error at time ti and using the linearized

error dynamics to propagate the covariance until time tj. In the following sections, we show

how to compute the residual covariance for the left-invariant error definition.

5.6.3.1 Left-Invariant Error Dynamics

The left-invariant error between two trajectories is defined as ηr
t , X−1

t X̄t , Exp(ξt), where

ξt denotes the Lie algebra representation of the error. Since the continuous part of dynamics

is identical to the derived world-centric left-invariant dynamics from Chapter 4, we only need

to derive the log-linear error update when a contact switch occurs. Deriving this update using

the definition of the left-invariant contact position error, ηd
t = RT

t (d̄t − dt), gives

ηd+
t = RT

t (d̄
+
t − d+

t )

= RT

t

(

d̄
−
k + R̄t BpC-C+(α̃t)−

(

d−
k +Rt BpC-C+(α̃t)−Rt BJ

ṗ

C-C+ w
α
t

))

= ηd−
t +

(
ηR
t − I

)

BpC-C+(α̃t) + BJ
ṗ

C-C+ w
α
t

=⇒ ξd+t ≈ ξd−t −
(

BpC-C+(α̃t)
)

×
ξRt + BJ

ṗ

C-C+ w
α
t .

(5.78)

Using the previously derived continuous left-invariant error dynamics from Chapter 4, we

can express the hybrid error dynamics as

dH :







d

dt




ξt

ζt



 = Al
t




ξt

ζt



+




wf

t

wb
t



 t− 6∈ S




ξ+t

ζ+
t



 = Dt




ξ−t

ζ−
t



+




w∆

t

wb
t



 t− ∈ S,

(5.79)
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where the matrices Al
t and Dt are given by

Al
t =














− (ω̄t)× 0 0 0 −I 0

− (āt)× − (ω̄t)× 0 0 0 −I

0 I − (ω̄t)× 0 0 0

0 0 0 − (ω̄t)× 0 0

0 0 0 0 0 0

0 0 0 0 0 0














Dt =














I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

−
(

BpC-C+(α̃)
)

×
0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I














.

(5.80)

It is important to note that in the case without IMU bias and sensor noise, the solution

to (5.79) exactly describes the evolution of the left-invariant error. In other words, the error

dynamics are exactly described by a hybrid log-linear system. The proof is sketched as

follows. The continuous dynamics, fut
, were shown to satisfy the “continuous group-affine”

property [24] in Chapter 4. The discrete dynamics, ∆ut
can also be shown to satisfy the

discrete “discrete group affine” property [25]. Therefore, assuming the initial error is known

Theorem 2 and its discrete time analog can be used to show that the left-invariant error can

be exactly recovered from the corresponding hybrid linear system.

5.6.3.2 Iterative Covariance Propagation

Now that we have a hybrid linear system describing the error dynamics, the error at time tj

can be computed iteratively by integrating the (5.79) from ti to tj, starting from zero error.

Therefore, the covariance can be computed iteratively, starting from ΣICii
= 018×18, using

{

ΣICik+1
= Φl

k+1,k ΣICik
ΦlT

k+1,k + Q̄
fd
k

Σ+
ICik

= Dk Σ
−
ICik

Dk +Q∆
k k ∈ S,

(5.81)

where Φl
k,k+1 , Φl(tk+1, tk) denotes the state transition matrix for the continuous left-

invariant error dynamics equation and Q̄
fd
k denotes the associated discrete noise covariance
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matrix. The state transition matrix, Φl(tk+1, tk), satisfies

d

dt
Φl(t, tk) = Al

t Φ
l(t, tk) with Φl(tk, tk) = I, (5.82)

which has closed form solution previously derived in Section 4.10. The discrete noise covari-

ance matrix can be computed by solving

Q̄
fd
k =

∫ tk+1

tk

Φl(t, tk)Q
f
t Φ

l(t, tk)
T dt

≈ Φl
tk+1,tk

Qf
k Φ

lT
tk+1,tk

∆t,

(5.83)

where the latter approximation can be done for efficiency.

5.6.4 Bias Correction

When preintegrating the measurements (5.74) the IMU bias estimate is assumed to be fixed

at bi. To prevent re-integration of the measurements, when the bias estimate changes, we

apply a first-order correction. This is similar to the process done by Forster et al. [85] and

Eckenhoff et al. [75]. This first-order correction can be expressed as

f∆ij
(Xi, b̄i + δb) ≈ f∆ij

(Xi, b̄i) Exp

(
∂f∆ij

∂δb
δb

)

, (5.84)

where δb is a small bias correction and
∂f∆ij

∂δb
is a (right) Jacobian that relates changes in

bias to changes on the group. This bias Jacobian can be computed iteratively using the

previously defined state transition matrix, Φl
k+1,k, that has an analytical solution (4.95)

derived in Chapter 4. Starting with
∂f∆ii

∂δb
= 012×6, this iterative update can be computed by





∂f∆ik+1

∂δb

I6



 = Φl
k+1,k





∂f∆ik

∂δb

I6



 , (5.85)

where the identity block comes from Jacobian of the discrete bias dynamics.

5.6.5 Invariant Hybrid Inertial-Contact Factor

Combining the discrete preintegrated dynamics (5.76), the first-order bias update 5.84, and

the left-invariant error definition (5.77) allows us to fully express the our prediction of the
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state at time tj as

Xj = f∆ij
(Xi, b̄i) Exp

(
∂f∆ij

∂δb
δb

)

Exp(ξij)

bj = bi + ζij,

(5.86)

where the error vector,

vec(ξij, ζij) ∼ N
(

018×1,ΣICij

)

, (5.87)

is a zero-mean Gaussian whose covariance is computed using (5.81). The error residual can

be expressed as

rf = Log

(

Exp

(

−
∂f∆ij

∂δb
δb

)

f∆ij
(Xi, b̄i)

−1Xj

)

rb = bj − bi,

(5.88)

where the negative sign comes from inverting the exponential map. The residual covariance

is simply ΣICij
. This factor can be inserted into the factor graph optimization problem (5.4).

5.6.6 Experimental Results on Cassie

To test these contact-aided smoothing ideas experimentally, we performed a motion capture

experiment in the University of Michigan’s M-Air facility (shown in Figure 5.10). This

outdoor space is equipped with 18 Qualisys cameras that allows for position tracking. We

had the Cassie robot walk untethered for 60 sec along an approximately 15 m path. We

first built a factor graph using only the inertial, contact, and kinematic data. Graph nodes

were added once per second to simulate low-frequency camera keyframes. Figure 5.11a

shows the result of optimizing this graph. The “discrete smoothing line” (yellow) shows

the odometry result when using the hybrid point contact factor described in Section 5.5.

The “invariant smoothing line” (purple) shows the odometry result when using the invariant

hybrid inertial-contact factor described in this section. For this experiment, both version

converged to approximately the same solution. The red line shows the InEKF odometry

from Chapter 4. In general, one would expect smoothing to outperform filtering due to the

ability to re-linearize measurements. However, in this case, the InEKF odometry appears to

outperform the smoothing results. This can be explained through two observations. First, as

indicated in Chapter 4, the developed InEKF does not suffer from the typical linearization

errors of typical filtering methods. This diminishes the re-linearization advantage that the
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Figure 5.10: Cassie walking in MAir for a motion capture experiment.

(a) Without loop closures (b) With loop closures

Figure 5.11: Motion capture experiment with Contact-aided smoothing. Figure (a) shows the results of
optimizing a factor graph containing inertial, contacts, and kinematics data. Figure (b) shows the result
when 3 simulated loop closures are added (one every 20 seconds).

smoothing methods have2. Second, the forward kinematic correction are applied at 2000 Hz

for the InEKF, while forward kinematic corrections for the smoothing methods are only

applied at the keyframe rate (1 Hz here). In fact, increasing the keyframe rate pushes the

smoothing results closer to the InEKF odometry, as shown in Figure 5.12.

The main advantage contact-aided smoothing provides is the ability to perform loop

2Of course, the re-linearization advantage appears again if additional (non-invariant) observations are
included.
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(a) Trajectory Estimate (b) Pose Error

Figure 5.12: As the frequency of keyframes increases, more nodes are added to the graph. This results in
improved state estimation due to the increasing number of forward kinematic factors added to the graph.

closures. Figure 5.11b shows the result of optimizing the factor graphs when only 3 simulated,

pose-based loop closures are added (one every 20 seconds). This shows that once a few loop

closures are added, the smoothing results can easily outperform the InEKF and aligns the

estimated trajectory with the ground truth.

In the future, we hope to combine the developed factors with vision-based factors and loop

closures to solve simultaneous localization and mapping (SLAM) for legged robots. While

the work of this chapter presets a theory of contact-aided smoothing, further development

and experiments need to be done to verify these results for long-term mapping.

5.7 Residual Jacobians

Solving the factor graph involves computing the Maximum-A-Posteriori (MAP) estimate

of Xk. This is done by solving a weighted nonlinear least-squares problem (5.4). Solvers can

often by more accurate and efficient when analytical Jacobians are provided. In this section,

we provide these Jacobians for all the factors presented in this chapter.

5.7.1 Forward Kinematic Pose

The forward kinematic pose factor is derived in Section 5.2. Let Xi and Ci denote the base

and contact pose respectively. The relative pose transformation between these two frames,

H
BC

(α̃i), can be measured through forward kinematics. The error residual is

rFi = Log
(
C−1

i Xi HBC
(α̃i)

)
. (5.89)
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To compute the residual Jacobian, we perturb each state using the Exp(·) retraction;

X ← X Exp(δx) C ← C Exp(δc) (5.90)

A first-order approximation of the perturbed residual is then computed.

rFi (Xi Exp(δxi)) = Log
(
C−1

i Xi Exp(δxi)HBC
(α̃i)

)

= Log
(

C−1
i Xi HBC

(α̃i)Exp(AdH−1
BC

(α̃i)
δxi)

)

≈ rFi(Xi) + J−1
r (rFi(Xi)) AdH−1

BC
(α̃i)

δxi

(5.91)

rFi (Ci Exp(δci)) = Log
(
Exp(−δci)C

−1
i Xi Exp(δxi)HBC

(α̃i)
)

≈ rFi(Ci)− J−1
l (rFi(Ci)) δci

(5.92)

The last line of each utilizes respectively uses the right and left Jacobian inverse of SE(3) to

give a first-order approximation; see Section 3.4.4. Therefore, the forward kinematic residual

Jacobians are:

∂rFi

∂δxi

= J−1
r (rFi) AdH−1

BC
(α̃i)

∂rFi

∂δci
= −J−1

l (rFi).

(5.93)

5.7.2 Hybrid Rigid Contact

The hybrid rigid contact factor is derived in Section 5.3. Let ∆C̃ij be the relative contact

pose transformation between ti and tj. The error residual is

rCij = Log
(

C−1
j Ci ∆C̃ij

)

. (5.94)

This residual has the same general form as the forward kinematics residual (5.89). Therefore,

the Jacobian can be computed the same way, leading to

∂rCij
∂δxi

= J−1
r (rCij) Ad∆C̃

−1

ij

∂rCij
∂δci

= −J−1
l (rCij).

(5.95)
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5.7.3 Hybrid Point Contact

The hybrid point contact factor is derived in Section 5.5. This error residual makes use of

the preintegrated inertial measurement unit (IMU) quantities developed by Forster et al.

[85], along with the new preintegrated relative contact translation ∆d̃ij.

rICij ,










r∆Rij

r∆vij

r∆pij

r∆dij










=


















Log





(

∆R̃ij Exp

(

∂R̃ij

∂bg δbg

))T

RT

i Rj





RT

i (vj − vi − g∆tij)−

[

∆ṽij +
∂ṽij

∂bg δb
g +

∂ṽij

∂ba δb
a

]

RT

i (pj − pi − vi∆tij −
1

2
g∆tij)−

[

∆p̃ij +
∂p̃ij

∂bg δb
g +

∂p̃ij

∂ba δb
a

]

RT

i (dj − di)−

[

∆d̃ij +
∂∆d̃ij

∂δbg δbg

]


















(5.96)

The Jacobians for the first three terms are provided in [84], so only the Jacobian of r∆dij
is

derived here. Forster et al. [85] used an alternative retraction;

R ← R Exp(δφ) v ← v + δv p ← p +Rδp. (5.97)

Since this factor is formulated as an extension to their preintegrated IMU factor, we adopt

a similar retraction for the contact position;

d ← d +Rδd. (5.98)

The Jacobian is again computed through first-order approximation of the perturbed residual.

r∆dij
(Ri Exp(δφi)) = Exp(−δφ)RT

i (dj − di)−∆d̃ij −
∂∆d̃ij

∂δbg δbg

≈
(
I − (δφ)×

)
RT

i (dj − di)−∆d̃ij −
∂∆d̃ij

∂δbg δbg

= r∆dij
(Ri) +

(
RT

i (dj − di)
)

×
δφ

(5.99)

r∆dij
(di +Riδdi) = RT

i (dj − di −Riδdi)−∆d̃ij −
∂∆d̃ij

∂δbg δbg

= r∆dij
(di)− δdi

(5.100)
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r∆dij
(dj +Rjδdj) = RT

i (dj +Rjδdj − di)−∆d̃ij −
∂∆d̃ij

∂δbg δbg

= r∆dij
(di) +RT

i Rjδdi

(5.101)

r∆dij
(δbg + δb̂

g
) = RT

i (dj − di)−∆d̃ij −
∂∆d̃ij

∂δbg (δbg + δb̂
g
)

= r∆dij
(di)−

∂∆d̃ij

∂δbg δb̂
g

(5.102)

Therefore, the residual Jacobians are:

∂r∆dij

∂δφi

=
(
RT

i (dj − di)
)

×

∂r∆dij

∂δdi

= −I

∂r∆dij

∂δdj

= RT

i Rj

∂r∆dij

∂δb̂
g = −

∂∆d̃ij

∂δbg .

(5.103)

5.7.4 Forward Kinematic Position

The forward kinematic position factor is derived in Section 5.5.6. This error residual is

expressed as

rFi
= RT

i (di − pi)− BpBC(α̃i), (5.104)

where BpBC(α̃i) denotes the position of the contact frame relative to the base frame as

measured by forward kinematics. Sticking with the retraction (5.97) used by Forster et al.

[85], and newly defined contact position retraction (5.98), we can again compute the Jacobian

through first-order approximation of the perturbed residual.

rFi
(Ri Exp(δφi)) = Exp(−δφi)R

T

i (di − pi)− BpBC(α̃i)

≈ rFi
(Ri) +

(
RT

i (di − pi)
)

×

(5.105)

rFi
(pi +Riδpi)) = RT

i (di − pi −Riδpi)− BpBC(α̃i)

= rFi
(Ri)− δpi

(5.106)

rFi
(di +Riδdi)) = RT

i (di +Riδdi − pi)− BpBC(α̃i)

= rFi
(Ri) + δdi

(5.107)
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Therefore, the residual Jacobians are:

∂rFi

∂δφi

=
(
RT

i (di − pi)
)

×

∂rFi

∂δpi

= −I

∂rFi

∂δdi

= I.

(5.108)

5.7.5 Invariant Inertial-Contact

The invariant inertial-contact factor was derived in Section 5.6. The group component of

the error residual is expressed as

rf = Log

(

Exp

(

−
∂f∆ij

∂δb
δb

)

f∆ij
(Xi, b̄i)

−1Xj

)

(5.109)

The unbiased, discrete preintegrated dynamics function, f∆ij
(Xi), can be shown to satisfy

the following “discrete group-affine” property [25]:

f(X1X2) = f(X1) f(Id)
−1 f(X2). (5.110)

Therefore, the left-invariant error dynamics can be expressed as

g∆ij
(ηl

t) = f∆ij
(Id)

−1 f∆ij
(ηl

t) = Exp(F∆ij
ξt), (5.111)

where

F∆ij
=










∆R̃
T

ij 0 0 0

−∆R̃
T

ij

(
∆ṽij

)

×
∆R̃

T

ij 0 0

−∆R̃
T

ij

(
∆p̃ij

)

×
∆R̃

T

ij∆tij ∆R̃
T

ij 0

−∆R̃
T

ij

(

∆d̃ij

)

×
0 0 ∆R̃

T

ij










(5.112)

can be constructed from the preintegrated measurements. The following Jacobian derivation

assumes that the retraction is the exponential map on the right-hand side,

X ← X Exp(δx). (5.113)

To keep notation simple, let Bi , Exp

(
∂f∆ij

∂δbi

δbi

)

be the first-order bias update. The

Jacobian is again computed by perturbing the state using the chosen retraction. Perturbing
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Xi gives

rf (Xi Exp(ξi)) = Log
(

B−1
i

(
f∆ij

(
Xi Exp(ξi), b̄i

))−1
Xj

)

= Log
(

B−1
i

[
f∆ij

(Xi, b̄i) f∆ij
(Id, b̄i)

−1 f∆ij
(Exp(ξ), b̄i)

]−1
Xj

)

= Log

(

B−1
i

[

f∆ij
(Xi, b̄i) Exp(F∆ij

ξi)
]−1

Xj

)

= Log
(

B−1
i Exp(−F∆ij

ξi) f∆ij
(Xi, , b̄i)

−1Xj

)

= Log
(

Exp(−AdB−1
i
F∆ij

ξi)B
−1
i f∆ij

(Xi, b̄i)
−1Xj

)

≈ rf (Xi)− J−1
l (rf (Xi)) AdB−1

i
F∆ij

ξi,

(5.114)

where (5.110) is used to separate the perturbation from the dynamics, and (5.111) is used

to represent the error dynamics as a log-linear system. The final approximation utilizes the

left Jacobian inverse of SEK(3), J
−1
l (·), to linearize; see Section 3.4. Perturbing Xj gives

rf (Xj Exp(ξj)) = Log
(

B−1
i

(
f∆ij

(
Xi, b̄i

))−1
Xj Exp(ξj)

)

≈ rf (Xj) + J−1
r (rf (Xj)) ξj,

(5.115)

where J−1
r (·) is the right Jacobian inverse of SEK(3). Perturbing the bias states gives

rf (δb + δb̂) = Log

(

Exp

(

−
∂f∆ij

∂δb
(δb + δb̂)

)

f∆ij
(Xi, b̄i)

−1Xj

)

≈ Log

(

Exp

(

−Jl

(

−
∂f∆ij

∂δb
δb

)

δb̂

)

Exp

(

−
∂f∆ij

∂δb
δb

)

f∆ij
(Xi, b̄i)

−1Xj

)

≈ rf (δb)− J−1
l (rf (δb))Jl

(

−
∂f∆ij

∂δb
δb

)

δb̂,

(5.116)

where the left Jacobian of SEK(3), Jl(·), is used to approximately separate the perturbation

from the exponential map. All together, the residual Jacobians can be expressed as

∂rf
∂ξi

= −J−1
l (rf ) AdB−1

i
F∆ij

∂rf
∂ξj

= J−1
r (rf )

∂rf

∂δb̂
= −J−1

l (rf )Jl

(

−
∂f∆ij

∂δb
δb

)

.

(5.117)

If we make the assumption that the residual error is small, the left/right Jacobians can be

approximated with the identity element. Therefore, the residual Jacobians can be approxi-
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mated as

∂rf
∂ξi

= −AdB−1
i

F∆ij

∂rf
∂ξj

= I

∂rf

∂δb̂
= −Jl

(

−
∂f∆ij

∂δb
δb

)

.

(5.118)

This is in line with the invariant smoothing framework developed by Chauchat et al. [48].

Using this approximation, the Jacobians only depend on the bias terms.
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CHAPTER 6

Gait and Control Design for Underactuated

Legged Robots

6.1 Overview

This chapter presents ideas on how to both generate and stabilize dynamically feasible gaits

on 3D underactuated legged robots using the hybrid zero dynamics (HZD) framework [233].

Gait design is done through trajectory optimization where we are searching for a trajec-

tory that satisfies the hybrid dynamic model of legged locomotion subject to a number of

constraints (such as torque limits, joint limits, friction cone, foot clearance, and periodic-

ity constraints) [116]. The result of this optimization is a single open-loop trajectory that

exhibits a desired behavior (like walking in place). The remaining challenge is to develop

a feedback controller that stabilizes the walking motion. Standard controller techniques,

such as input-output linearization, can be used to stabilize a set of outputs or virtual con-

straints [233]. However, due to underactuation, some states will remain uncontrollable. The

dynamics of these states are referred to as the zero dynamics. Unfortunately, for 3D walking,

it is often the case that for fixed, holonomic virtual constraint trajectories, the zero dynamics

are unstable. This led to the use of heuristic foot placement strategies, gait libraries, and

more general control policies that modify the virtual constraint trajectories online to render

all states stable [59, 60, 91].

Section 6.2 describes a two-stage optimization framework can be used to generate and

then stabilize a periodic orbit. The main idea is the optimization of a posture adjustment

function (PAF) that modifies key virtual constraints online to stabilize a walking gait. The

parameters of this PAF are found by perturbing the robot is optimization and minimizing the

deviation from the nominal motion. A gait library consisting of forwards, backwards, side-

ways, and diagonal walking is then used to extend the region of attraction of the controller.

These ideas were tested on an ATRIAS-series robot (MARLO). Section 6.3 describes the

trajectory optimization used to develop a feedback controller on a Cassie-series robot. This
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controller utilizes a gait library of only forward and backwards walking motions. Stability is

achieved through a heuristically tuned foot-placement controller. The developed controller

was tested in a variety of indoor and outdoor scenarios including concrete, grass, sand, and

snow.

6.2 Using Posture Adjustments and Gait Libraries to

Reject Velocity Disturbances on MARLO

The core content in this section was previously published in [107]. Co-authors include Xingye

Da. and Jessy W Grizzle. Small changes have been made, however, much of the text and

results remain unchanged.

6.2.1 Overview and Related Work

Legged robots have the potential to aid in disaster relief, package delivery, and terrain

exploration. Related technology can even help humans regain the ability to walk through

powered prosthetics [93, 244] and exoskeletons [4]. However, to be useful, legged robots need

to exhibit extreme stability, characterized by their ability to remain upright in the presence

of real-life terrain and velocity disturbances. While numerous design techniques exits that

allow periodic walking gaits to be constructed and implemented using feedback controllers,

most stabilization techniques rely on full actuation, simplified models, or hand-tuned foot

placement controllers.

In this sections, we present a systematic, two-stage optimization process that designs

and stabilizes a periodic walking gait using the full 3D dynamic model of the robot. Us-

ing this method, a discrete library of periodic walking gaits is designed over a range of

longitudinal and lateral velocities. The gait library is then used to construct a continuous

“unified” control policy that allows our underactuated ATRIAS-series robot, MARLO, to

reject omnidirectional velocity disturbances.

6.2.1.1 Contributions

We propose a sequence of optimization techniques that, when applied sequentially, can gen-

erate and stabilize periodic orbits for underactuated dynamical systems. This work builds

upon a recent optimization framework developed by Hereid et al. [117] and a “controller

interpolation” technique used by Da et al. [59] to generate biped walking gaits that cover a

range of operating conditions. The primary contributions include:
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• introducing a parametric means of adjusting a robot’s posture to exponentially stabilize

periodic walking of an underactuated 3D biped (more general than foot placement);

• selection of these controller parameters through optimizing a full-order dynamic model

excited by a set of judiciously chosen perturbations that move the robot away from its

nominal motion;

• an extension of the “gait library” method of [59] from a 2D to a 3D robot model;

• an overall controller that allows the robot to reject both lateral and longitudinal velocity

disturbances.

This work culminates with a series of simulations and preliminary experiments that show

an ATRIAS-series robot stably stepping in place and rejecting both longitudinal and lateral

force perturbations.

6.2.1.2 Related Work

The majority of 3D bipedal gaits are stabilized through control of the zero-moment point

(ZMP) [119, 131, 142]. In general, this method produces “quasi-static” gaits that are not

robust to the loss of actuation that occurs during foot roll. Therefore, without auxiliary

controllers, stability is lost when large perturbations cause the ZMP to move to the edge

of the support polygon [225]. In addition, the ZMP criterion is not necessary for stability,

thereby artificially restricting the variety of allowable gaits [184]. Furthermore, because

this method requires having a non-zero support polygon, it is not applicable to robots with

curved, line, or point feet.

Another common approach to gait stabilization can be broadly grouped into “foot place-

ment” techniques. These methods typically rely on a simplified model to determine a desired

swing foot position for stability [221]. While foot placement has enjoyed considerable success

on a number of robot platforms [189, 179, 194], there is no agreed upon method for deter-

mining where to place the foot. The simplified model used and the procedure for calculating

the desired swing foot position vary throughout the literature.

Hodgins [124] used the notion of a “neutral point”, the foot position that will leave

the velocity unchanged, to determine the desired location of the swing foot. If the foot is

displaced forwards or backwards from the neutral point, then the robot will slow down or

speed up. The displacement from the neutral point was a hand-tuned function of velocity

error. Pratt and Tedrake [184] used the closed-form solution of the linear inverted pendulum

(LIP) proposed by Kajita and Tani [140] to construct a foot placement policy. Further ways

to estimate the desired foot position are through the notion of capture regions [185], the
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foot placement estimator (FPE) [235], or the foot placement indicator (FPI) [224]. Foot

placement algorithms are able to handle larger disturbances than ZMP-based control, and

can work for underactuated systems. However, most of these methods only explore changing

the swing foot position. In contrast, the technique described in this paper allows adjustment

to any controlled part of the robot’s posture (pitch, stance knee angle, etc.). Allowing the

entire robot’s posture to change can potentially enhance the ability to reject perturbations.

There have been several other notable methods for 3D biped gait stabilization outside of

ZMP and “foot-placement” algorithms. Chevallereau et al. [52] used optimization to directly

generate a stable gait/controller by constraining the eigenvalues of the linearized Poincaré

map to be strictly within the unit circle. Akbari Hamed et al. [6] performed a sensitivity

analysis of the Poincaré map resulting in a method for stabilizing precomputed periodic gaits

using bilinear matrix inequalities. Griffin and Grizzle [95] investigated using nonholonomic

virtual constraints to implement velocity-based posture regulation that accounts for the full

dynamics of the robot.

Lastly, and perhaps most similar to our work, Post and Schmiedeler [182] used heuris-

tically chosen, hand-tuned adjustments to step length and torso pitch of a planar biped

to regulate velocity and achieve stabilization. In this paper we seek to reduce this tuning

process by using finite-horizon optimization to solve for a posture adjustment function. In

addition, the proposed method extends to stabilizing 3D biped gaits. Finally, we show that

the region of attraction can be extended by leveraging information from numerous distinct

periodic gaits.

6.2.2 Stabilizing Periodic Gaits through Finite-Horizon Parame-

ter Optimization

To generate an exponentially-orbitally-stable walking gait, hereafter called a stable walking

gait, we propose decomposing the problem into two distinct stages. First, trajectory op-

timization is used to generate a feasible periodic orbit. Associated with this orbit will be

a nominal feedback controller that does not need to stabilize the system. Second, a sep-

arate parameter optimization is run to generate stabilizing actions. Taken together, this

two-stage process gives a systematic way to both design and stabilize a periodic orbit in an

underactuated robot.

During the first stage, we assume that a dynamically feasible periodic orbit has been

found. There are no requirements on the method used to generate this orbit. For our robot,

we employ a fast, direct-collocation-based trajectory optimization framework developed by

Hereid et al. [117]. The hybrid dynamics model used for both optimization and simula-
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tion is described in Section 3.1. The robot model used during optimization is described in

Section 3.1.2. Once found, we denote the state trajectory along the periodic orbit as xO(t).

6.2.2.1 Parameterized Feedback Controller

In addition, we assume a parameterized locally Lipschitz continuous feedback controller

u(t) = Γ(x,α, t) (6.1)

that for a given constant value of α ∈ R
N induces a periodic orbit corresponding to xO(t).

This fixed value is hereafter denoted by α∗. Lastly, we require that the controller parameters

α(x, t), when allowed to vary with state and time, adjust the posture of the robot. The

nominal controller (α = α∗) is not assumed to stabilize the orbit. Stability will be achieved

through a second stage in the control design process. By not imposing stability of the

nominal gait/controller, a much wider range of controllers and gait optimization methods

can be employed.

For our robot, Γ(·) is an input-output linearizing controller derived using the hybrid

zero dynamics (HZD) framework [233], and the controller parameters α affect the robot’s

nominal posture in its key degrees of freedom (torso pitch, torso roll, swing leg angle, swing

hip angle, and knee angles). It is now clear in what sense this is an extension of “foot

placement”. In our robot, a constant value of α∗ induces periodic walking with zero yaw,

constant longitudinal and lateral average velocities, and meeting key physical constraints,

such as torque limits, friction cones, and joint limits. We know that our choice of controller

can stabilize a periodic orbit because adjusting the leg and hip angles has previously been

shown to stabilize gaits [59].

MARLO has 6 actuators, therefore 6 outputs are chosen to be controlled using input-

output linearization. The controlled coordinates for both left and right stance are

h0(q) =














Pitch Angle

Swing Leg Angle

Stance Knee Angle

Swing Knee Angle

Roll Angle

Swing Hip Angle














=














qx
1
2
(qsw1 + qsw2 )

qst2 − qst1

qsw2 − qsw1

qy

qsw3














. (6.2)

More information about our controller is given in Section 3.1.4.
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6.2.2.2 Posture Adjustment Functions

We seek an adjustment to the nominal controller parameters α∗ of the following form:

α(x, t) = α∗ +∆α(x, t) (6.3)

such that

∆α(x, t)|x(t)=x
O
(t) = 0 (6.4)

In other words, the adjustment to the nominal controller is zero when the system is on the

periodic orbit. This ensures that the originally designed fixed point is unchanged in steady

state. When off the periodic orbit, we want ∆α(x, t) to modify the nominal controller

parameters, appropriately adjusting the robot’s posture to return the system back to the

periodic orbit. We therefore call ∆α(x, t) the posture adjustment function (PAF), because

it adjusts the robot’s posture to achieve stability.

One way to design a PAF that meets the criteria of 6.4 is to make ∆α depend solely on

the deviation away from the nominal orbit. Let τ be a (state- or time-based) phase variable

that strictly increases throughout the periodic orbit. The PAF then becomes:

∆α(x, t) := ∆α(δx(τ),β), ∆α(0,β) = 0 (6.5)

δx(τ) :=







x(τ)− xO(0), if τ < 0

x(τ)− xO(τ), if τ ∈ [0, 1]

x(τ)− xO(1), if τ > 1

(6.6)

where β is a set of parameters that shapes the behavior of the PAF. The quantity δx(τ)

will be called the transverse error.

6.2.2.3 Finite-Horizon Optimization

The parameters β in the PAF, ∆α(δx(τ),β), will be determined by minimizing a cost

function defined over a finite number of steps of the robot. The cost function can be thought

of as a norm on the ”disturbance-to-state” response of the robot, which is inspired by the

notion of Input-to-State Stability of Sontag [210]. The key steps in this process are:

• choosing a parameterization of the PAF;

• transcribing a parameter optimization problem that simulates the closed-loop dynam-

ical system over a finite horizon;
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• perturbing the system with a finite set of disturbances and defining a finite-horizon

objective that measures the deviation of the closed-loop trajectory from the nominal

“open-loop” one;

• solving the resulting nonlinear program to yield the optimal parameters, β

It is desirable that the optimized PAF not only stabilize the robot, but can allow it to

recover from perturbations. Motivated by the work of [97, 61], a discrete set of disturbances

is introduced during the optimization. These disturbances should be selected to induce

deviations in the robot’s state that will be representative of “experimental reality”. Here,

they were selected to be force perturbations applied to the robot’s base. These forces had

both an x and y component, allowing the robot to be perturbed along multiple directions.

The forces were chosen from the sets,

Fx = {−100, 0, 100}N

Fy = {−200, 0, 200}N

excluding the trivial zero force selection. All forces were applied for 0.1 seconds.

The algorithm to compute the finite-horizon objective is outlined as follows:

Algorithm 1 Finite-Horizon Objective

1: function Cost(β)
2: Initialize set of perturbations F
3: while F 6= ∅ do
4: x← xO(0) ⊲ Initialize state
5: select perturbation from set F
6: simulate “closed-loop” system forward N steps
7: compute perturbation recovery cost ⊲ (6.7)
8: remove selected perturbation from set F

9: J ← weighted sum of recovery costs ⊲ (6.8)
10: return J

The perturbation recovery cost measures the deviation of the robot’s “closed-loop” trajectory

from the nominal periodic orbit. Let δ(xi(τ)) be the transverse error for step i, as defined in

equation (6.6). In addition, let wi and Wi respectively be a scalar and positive semi-definite

matrix that allows individual steps and states to be weighted differently. The perturbation

recovery cost over an N-step horizon can now be written as:

Jk =
N∑

i=1

wi

∫ 1

0

τ ||Wi δxi(τ)||
2 dτ (6.7)
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Figure 6.1: An example of the robot adjusting its posture over four steps to reject the applied force distur-
bance. Each frame is taken at the beginning of the corresponding step.

The inclusion of the phase variable τ in the integrand ensures that the robot’s trajectory

deviation at the beginning of each step is not penalized (τ = 0). It is important to include

this because the PAF should initially make changes to the robot’s posture to reject the

applied disturbance. However, by the end of the step (τ = 1), the transverse error should

be minimized.

For all presented results, a 4-step horizon was used with wi = 0 for the first 3 steps.

Therefore, to minimize the perturbation recovery cost, only the last step needs to be near the

nominal trajectory. This allows the controller to command posture adjustments throughout

the first three steps without affecting the cost. Figure 6.1 shows an example recovery using

a 4-step optimization horizon.

This perturbation recovery cost is computed for each of the M predefined disturbances.

The final cost is computed as a weighted sum of all perturbation recovery costs.

J =
M∑

k=1

ckJk (6.8)

The scalar ck allows different perturbations to be weighted individually. This would be

particularly beneficial if several perturbation types were applied. In this work, we chose to

weight all perturbations equally with ck = 1.

Once the cost function is fully defined, the resulting nonlinear program is solved for the

parameters, β, defining the PAF. It is important to note, that the resulting controller is

not guaranteed to stabilize the “closed-loop” system. Stability should be check posteriori

to the optimization. It is our experience that it is not difficult to select an adequate set of

perturbations and an adequate set of degrees of freedom so that the PAF achieves locally

exponential orbital stability.
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6.2.2.4 Simulation Results

A periodic “stepping in place” gait was generated using the trajectory optimization presented

in [117]. Additional constraints were placed to enforce torque limits, friction cones, foot

clearance, and other physical constraints. The objective being minimized was the sum of

squared torques over the two steps. This optimization resulted in a dynamically feasible,

periodic gait and a nominal HZD controller parameterized by α∗; see the Appendix for more

details. The resulting controller was found to be unstable.

We then analyzed 3 distinct, heuristically-chosen PAFs to stabilize the robot. 1

• Version 1 encodes a linear relationship between the velocity error, δv, and adjust-

ment to the swing leg/hip angle. This is the simplest case, and similar (hand-tuned)

adjustments have been shown to stabilize our robot [59].

• Version 2 allows the swing hip angle to vary using a degree-three polynomial of lateral

and longitudinal velocity errors, δvx and δvy. In this version, the swing leg angle

changes as a function of the longitudinal velocity error and the initial stance leg error

θinit, which gives some information about the previous step.

• Version 3 allows all of the controlled coordinates to be adjusted linearly with velocity

errors. To maintain symmetry, the knee angle adjustments use the absolute value of

the longitudinal velocity.

Version 1:

[

∆αswing hip

∆αswing leg

]

=

[

β1δvx

β2δvy

]

Version 2:

[

∆αswing hip

∆αswing leg

]

=

[

P3(δvx, δvy,β)

P3(δvy, θinit,β)

]

Version 3:














∆αpitch

∆αroll

∆αswing hip

∆αswing leg

∆αstance knee

∆αswing knee














=














β1δvy

β2δvx

β3δvx

β4δvy

β5|δvy|

β6|δvy|














(6.9)

The parameters for each of the three PAFs were computed using the finite-horizon op-

timization procedure outlined above. The nonlinear program was solved using MATLAB’s

FMINCON function. To compare their performance, each controller was subjected to a 100

1In all versions, the posture adjustment was scaled linearly over the step.
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N push in the lateral plane and a 200 N push in the sagittal plane. The force perturbation

was applied to the robot’s base for 0.1 seconds. Figure 6.2 shows the response of the three

PAFs.

Figure 6.2: Responses of three heuristically chosen PAFs to a force perturbation. All three controllers
maintained stability while converging back to the nominal zero-velocity orbit.

All three versions achieved stability while converging back to the nominal zero-velocity

orbit. The lateral response was similar across the three versions. In the sagittal plane,

Version 3 was the quickest to reject the perturbation. However, the maximum velocity was

larger than in Versions 1 & 2. A video comparing the three responses is given in Table 7.1 .

6.2.3 Gridded-Velocity Gait Library

In the preceding section, a two-stage optimization process was outlined to design and stabilize

a periodic gait. When successful, this process yields a nominal controller along with a PAF

that defines how the robot’s posture should change when away from the nominal trajectory.

The resulting controller will allow the robot to walk at a fixed velocity and handle the range

of perturbations used in the finite-horizon parameter optimization.
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Figure 6.3: Unified Controller Block Diagram

In this section, information from numerous periodic gaits (designed over a range of veloc-

ities) is leveraged to construct a “unified” control policy. The resulting control policy is used

to extend the controller’s region of attraction, allowing the robot to handle perturbations

outside the PAF’s valid range.

6.2.3.1 Gait Library

A gait library is a finite collection of periodic gaits and controllers defined on a grid of op-

erating conditions. The grid points can represent desired walking speeds, constant ground

slopes, range of step lengths, etc. In prior work [59], the authors built a gait library con-

sisting of periodic 2D walking gaits over a set of average longitudinal velocities. A single

continuously defined controller was created by a linear interpolation of the gaits in the li-

brary based off of the current walking speed. The resulting controller was neutrally stable

in velocity2. Stability and velocity regulation were achieved through a hand designed foot

placement controller.

In this paper, we build upon this idea to create a controller that allows our robot to reject

larger velocity disturbances than the PAF can handle alone. First, a series of trajectory

optimizations are run to generate a gait library that contains periodic 3D walking gaits

over a grid of average longitudinal and lateral velocities. This gait library includes gaits

for walking forwards, backwards, sideways, and diagonally. Next, a unified control policy is

defined using bilinear interpolation of the library’s gaits. The interpolation input will be a

desired average velocity that gets automatically shifted when the robot is perturbed outside

the PAF’s valid range.

2All but one of the eigenvalues of the linearized Poincaré were strictly within the unit circle, with the
remaining eigenvalue approximately equal to +1.
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6.2.3.2 Gait Library Generation

The designed gait library consists of 121 distinct periodic walking gaits, each corresponding

to a unique average longitudinal and lateral velocity. The set of gaits is denoted by

Av = {α
∗(vx, vy)} (6.10)

where −0.5 ≤ vx ≤ 0.5, increasing in steps of 0.1 m/s, and −1.0 ≤ vy ≤ 1.0, increasing in

steps of 0.2 m/s. Each gait was generated through trajectory optimization [117] and comes

with a nominal controller, as defined by equation 6.1 .

6.2.4 Unified Control Policy through Bilinear Interpolation

To construct a unified control policy, the discrete set of gaits need to be “stitched” together.

In general, this can be viewed as a supervised learning algorithm, where the set of optimized

gaits is the training data [60]. The learned control policy π : Φ→ A is a function that maps

some feature vector φ ∈ Φ to a controller parameter vector α∗ ∈ A. This feature vector

can, in general, be a combination of robot states, command signals, and terrain information.

Once defined, the control policy will be responsible for selecting the robot’s desired gait at

any given time.

Since the only difference between separate gaits in Av is the average velocity, the feature

vector can simply chosen as φ = (vdesx , vdesy ), where vdesx and vdesy are the desired lateral and

longitudinal average velocities. In general, any supervised learning algorithm can be used

to create the control policy [60]. However, since Av is defined over a 2D grid of velocities,

simple interpolation is enough to create the policy π.

Formally, the control policy α∗(t) = π(vdesx , vdesy ) is defined using bilinear interpolation

of the desired velocities,

α∗(t) = K

[

x2 − vdesx (t)

vdesx (t)− x1

]T [

α∗
11 α∗

12

α∗
21 α∗

22

][

y2 − vdesy (t)

vdesy (t)− y1

]

K =
1

(x2 − x1)(y2 − y1)

(6.11)

where (x1, x2) and (y1, y2) are the lateral and longitudinal velocity grid points that bound

(vdesx , vdesy ) in Av. The controller parameters defined at those grid points, α∗(xi, yi), are

denoted by α∗
ij. Figure 6.4 shows an graphical example of this interpolation.
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Figure 6.4: Controller parameters α∗ are on a uniform grid of longitudinal and lateral velocities. A bilinear
interpolation is used to fit the data.

Number Type Description Link

1 Simulation Posture Adjustment Function (PAF) Comparison https://youtu.be/ytDTEWXDVV8

2 Simulation PAFs with Gait Library Control Policy https://youtu.be/Lte8pkmT0PQ

3 Experiment PAFs with Gait Library Control Policy https://youtu.be/PyWjTxq5PGc

Table 6.1: Simulation/Experiment Videos for Stabilization using PAFs

6.2.5 Extending the Controller’s Region of Attraction

Let v0 be the average velocity a periodic gait that is stabilized by a PAF; here we used

the “stepping in place” gait. This parameterized PAF is only valid over the perturbation

range that the system was subjected to during the finite-horizon optimization. If the robot

is perturbed outside of this range, it could behave erratically. Therefore, the transverse error

must be saturated at the max error values seen in optimization. To extend the region of

attraction outside this perturbation range, the unified control policy can be used.

Let v(t) be the current velocity3 and vmin and vmax be minimum and maximum ve-

locity errors seen during the finite-horizon optimization. The control policy’s input can be

expressed as

vdes(t) =







v(t)− vmin v < vmin

v0 vmin < v(t) < vmax

v(t)− vmax v > vmax

(6.12)

When the robot is perturbed outside the range seen during the finite-horizon optimiza-

tion, the control policy will select a gait with a larger average velocity. From this new set

point, the perturbation looks smaller, and the PAF can adjust appropriately. An example

3The lateral velocity uses the last step average to account for the non constant speed over the step.
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of this is shown in Figure 6.5 . The PAF limits, (vmin,vmax), can be used to modify the

velocity convergence rate. Smaller limits will decrease the maximum posture adjustment,

thereby slowing down the rate of convergence to the nominal velocity. When the PAF limits

are set to zero, the control policy chooses a gait corresponding to the current velocity. This

reduces to the case of neutral stability discussed in [59].

To summarize, vdes is chosen to be a desired average velocity such that the velocity error

is within the PAF’s valid range. The control policy uses vdes to select a vector of controller

parameters, α∗, and the corresponding nominal periodic orbit, xO(t), using information from

the gait library. Finally, the PAF uses this desired trajectory, along with the current state,

to adjust the robot’s posture to achieve stability. Figure 6.3 shows a block diagram of the

full unified controller.

Figure 6.5: When the robot’s velocity is perturbed less than 0.4 m/s, the PAF can simply reject the distur-
bance. If subjected to a larger velocity disturbance, the desired velocity value automatically shifts to keep
the error less than 0.4 m/s.

6.2.5.1 Simulation Results

A unified controller was constructed from each of the three optimized PAFs detailed in

Section 6.2.2. The PAF limits, (vmin,vmax), were chosen to be ± 0.4 m/s for the longitudinal

velocity and ± 0.2 m/s for the lateral velocity.

The three controllers were subjected to several force perturbations applied for 1 second,

including a 150 N push along the longitudinal axis, and a 75 N push along the lateral axis.

These perturbations were enough to bring the velocity error of the robot to above 0.7 m/s

laterally and 1.4 m/s longitudinally, enabling the full use of the gait library (6.10). All
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three controllers were able to reject the disturbances and achieve stability. A video of the

controllers’ responses is given in Table 7.1.

6.2.5.2 Experimental Results

Several small adjustments were made to the controllers when translating from simulation to

experiments. A low-pass filter was added to reduce spikes in the velocity estimates. This,

in turn, caused a significant delay in velocity signal which introduced velocity oscillations in

the perturbation response. To reduce the oscillations, a “derivative term” that compares the

current filtered velocity to the last step’s mean velocity was added to the PAFs as done in

[59]. These oscillations were also present in simulations when the velocity signal was delayed.

In preliminary experiments, all three controllers were able to stabilize the robot, though

perturbations caused significantly more velocity oscillations. This sensitivity to the delay in

the velocity signal also put a limit on the maximum perturbation that the controllers could

reject. Version 1 was able to withstand the largest velocity disturbance, approximately 0.8

m/s; shown in Figure 6.6. Version 2 had the least velocity oscillations and overshoot. Version

3 was the most sensitive to the velocity delay, and could therefore handle the least amount

of velocity disturbance.

Figure 6.6: The posture adjustment function (PAF) (version 1) allows MARLO to withstand a large velocity
disturbance of approximately 0.8 m/s.

Table 7.1 provides a video of these controllers implemented on MARLO. The largest kick,

using PAF Version 1, brought the longitudinal velocity error to approximately 0.8 m/s.
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6.2.6 Discussion and Conclusion

A systematic two-stage optimization process was presented that can design and stabilize

periodic walking gaits using the full 3D dynamic model of the robot. First, a dynamically

feasible (and potentially unstable) gait/controller is designed using trajectory optimization.

This gait is then stabilized using a posture adjustment function (PAF) that is generated

through a finite-horizon parameter optimization that emphasizes gait robustness to pertur-

bations. Three distinct PAFs were analyzed for our robot model, each resulting in a stable

controller that can reject limited velocity disturbances.

To extend the disturbance rejection range, a unified control policy was built using bilinear

interpolation of 121 distinct periodic gaits. The policy’s input was a desired average velocity

that gets automatically shifted when the robot’s velocity is perturbed outside the PAF’s

valid range. This policy greatly extended the controller’s region of attraction allowing the

simulated robot to recover from longitudinal velocity perturbations of up to 1.4 m/s and

lateral perturbations of up to 0.7 m/s. Preliminary experimental results show an ATRIAS-

series robot demonstrating the unified controller’s capability to both stabilize a periodic orbit

and to reject velocity disturbances.

Remark 16. For all results presented in this Section, the robot’s velocity was being esti-

mated through kinematics alone. This resulted in noisy signal that required further low-pass

filtering. This poor/delayed velocity estimate was a factor in preventing easy translation

of our controllers from simulation to experiments. This motivated the research of improved

filtering techniques for legged robots, ultimately resulting in the development of the contact-

aided invariant extended Kalman filter (InEKF) described in Chapter 4.

6.3 Gait Library Design for the Feedback

Control of Cassie

This section outlines a gait library generation for Cassie-series robot. A description of this

robot is provided in Section 3.1.3. This generated gait library was used by Gong et al. [91]

to develop a feedback controller that allowed cassie to walk on concrete, grass, snow, and

even sand.
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6.3.1 Single Gait Optimization

First, we generated a dynamic model of the Cassie robot according to the constrained Euler

Lagrange equations detailed in Section 3.1. This was done by developing a Unified Robot

Description Format (URDF) file that describes the kinematic and dynamic properties of all

of the robots links and joints. We then used this URDF with Fast Robot Optimization

and Simulation Toolkit (FROST) [116] to generate the equations of motion for the dynamic

model of the robot. FROST was also used to set up the trajectory optimization problem

and to generate all constraint and cost equations (along with their Jacobians) needed for the

solver. Internally, FROST transcribes the optimization problem into a nonlinear program

using the direct collocation framework developed by Hereid et al. [117]. The constrained

nonlinear program is then solve to a local minima using the Interior Point Optimizer (IPOPT)

software [32].

In general, the direct collocation method [105] breaks the continuous time trajectory

up into a set of discrete nodes. Instead of integrating the dynamics equations during the

optimization (as done in shooting methods), the dynamics are enforced though equality

constraints. Another key element of this particular optimization setup is the inclusion of an

input-output linearization controller (described in Section 3.1.4). This provides an additional

constraint on the relation between the robot’ state and the motor torque.

Let JDR
and JDL

be the costs associated with the right stance domain and left stance

domain respectively. The two-step optimization problem can now be formally stated as,

argmin
z∗

JDR
(z) + JDL

(z) (6.13)

s.t. zmin ≤ z ≤ zmax (6.14)

cmin ≤ c(z) ≤ cmax (6.15)

where zmin and zmax are the lower and upper optimization variable bounds, c(z) is a vector of

constraints, and cmin and cmax are the constraint lower and upper bounds. The optimization

variables at each node include the robot’s generalized position coordinates q, velocities q̇,

accelerations q̈, motor torques u, holonomic constraint forces F, virtual constraint parame-

ters α, and impact forces δF (only needed at the end of the domain). Constraints included

two-step periodicity, left/right step symmetry, joint limits, and torque limits. Additional

constraints used are outlined in Table 6.2.
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Table 6.2: Additional constraints included in the trajectory optimization for Cassie. For each optimized
gait, the average sagittal velocity was constrained to a differing values between −0.5 and 1.0 m/s.

Average sagittal velocity v̄x = vi m/s
Average lateral velocity v̄y = 0 m/s
Step time = 0.4 s
Torque for stance foot pitch = 0 Nm
Friction cone µ < 0.6
Mid-step swing foot clearance > 0.15 m
Absolute swing foot pitch = 0 rad
Distance between feet > 0.2 m
Distance between pelvis and stance foot ∈ (0.5, 1) m
Swing foot velocity on impact (x and y) = 0 m/s
Swing foot velocity on impact (z) ∈ (−1, 0) m/s

The cost was equivalent for both the left and right stance domains:

JD =

∫ τ=1

τ=0

(
||u||2 + c||qpitch||

2 + c||qroll||
2 + c||q1L||

2 + c||q2L||
2 + c||q1R||

2 + c||q2R||
2
)

dτ.

(6.16)

The cost on the torso pitch/roll and the hip roll/yaw angles were multiplied by a large

weight (c = 10, 000). This guided the optimizer to find gaits with minimal movement for

those degrees of freedom. This helped to keep the gaits consistent across the library of gaits.

6.3.2 Sagittal Gait Library

This gait library consisted of 7 gaits where the average velocity in the sagittal plane, v̄x,

ranged from -0.5 m/s to +1.0 m/s in 0.25 m/s increments. Each gait was generated through

trajectory optimization using the costs and constraints outlined above. These optimization

problems were solved sequentially where the only constraint on average velocity was changed.

Each optimization problem took approximately 3 minutes to solve. In a larger number of

gaits was needed, these optimizations could be done in parallel as described by Hereid et al.

[118]. Figure 6.7 shows results of a few of these optimization problems.

These gaits were then used by Gong et al. [91] to develop a feedback controller for

Cassie. First, linear interpolation of these gaits was used to construct a continuous surface

of trajectories based on average velocity. While operating, Cassie’s controller chooses its

current desired trajectory based on the current measured velocity. A foot placement strategy

similar to the work of [59] was used for stabilization. Turning was done through simple offsets

of the hip yaw angle.
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(a) Cassie’s optimized trajectory for −0.5 m/s.

(b) Cassie’s optimized trajectory for 0.0 m/s.

(c) Cassie’s optimized trajectory for 1.0 m/s.

Figure 6.7: Seven gaits were generated for Cassie where the average velocity in the sagittal plane ranged
from -0.5 m/s to +1.0 m/s in 0.25 m/s increments.
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6.3.3 Experimental Results

Using this generated gait library, Cassie was able to walk in place, forwards, and backwards.

The controller was experimentally tested across a wide variety of surfaces, including concrete,

grass, snow, and even sand (as shown in Figure 6.8). A video of these results can be found at

https://youtu.be/UhXly-5tEkc. This controller was also used for all experimental results

in Chapters 4 and 5.

Remark 17. During all experiments, Cassie used a “kinematic only” estimate of velocity

that was computed using the encoders and angular velocity. Due to high amounts of noise

and foot slip, this velocity estimate had to be passed through a low-pass filter before being

used to select a gait from the library. This heavily filtered signal was one of the reasons

numerous heuristic tuning parameters had to be introduced to achieve stability. The work

predated and partially motivated the developed invariant extended Kalman filter (InEKF)

from Chapter 4, which can potentially alleviate some of these issues in future controllers.
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(a) Walking on concrete (b) Walking on grass

(c) Walking on leaves, sticks, and fire during a controlled burn (d) Walking on snow

(e) Walking on sand (f) Walking on mud with shoes and the perception package

Figure 6.8: Cassie walking in a variety of environments. The controller was developed using a library of
gaits that was generated through trajectory optimization. https://youtu.be/UhXly-5tEkc
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CHAPTER 7

Future Research Directions

This chapter outlines several ideas for future research, some of which have already been

tested in simulation. Section 7.1 discusses ideas on how to include terrain information into

the gait library and how we might tackle walking up stairs. Section 7.2 presents a method

for kinodynamic path planning using state lattices constructed from a generated gait library.

Simulated results on MARLO are given. Finally, Section 7.3 concludes this thesis with future

research directions regarding legged robots.

7.1 Including Terrain Information in the Gait Library

Assuming a local terrain map is given (perhaps using the LiDAR mapping results of Chap-

ter 4), we can begin to make progress towards terrain adaptive control. One potential idea

is to extend the gait library with information on how to handle this terrain.

7.1.1 Including Future Slope Information

One simple representation of the terrain is ground slope. Da et al. [60] utilized a gait library

of forwards and backwards walking, along with transitions between them. The gait library

was then utilized to regress a control policy that could stabilize the robot while allowing it to

walk forwards and backwards. The resulting control policy took in the current velocity and

the desired velocity to determine the desired trajectory; π(v, vd). To include slope, we need

to generate a much larger gait library with a 2D grid of periodic gaits (velocity and slope

angle), and potentially all transitions between them. The new regressed control policy takes

in the next step’s slope and previous step’s slope as additional inputs; π(v, vd, sprev, snext). If

all transition gaits are included, even just 5 choices of velocity and slope angle will require

solving 625 trajectory optimization problems. However, we did test this idea on MARLO

with promising simulation results. We generated a gait library with slopes ranging from

−20 deg to 20 deg and velocities ranging from −0.8 m/s to 0.8 m/s. The resulting regressed
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control policy allowed the simulated robot to track velocity while walking up and down slopes.

This is shown in Figure 7.1. A similar controller was developed by Nguyen et al. [175] where

Figure 7.1: Simulated MARLO walking up and down a 20 deg slope.

step length and step height were used in place of slope and velocity.

Although these methods may work for certain scenarios, it is not general enough to work

over all types of potential terrain. For example, this type of control would not work for

stepping over obstacles or walking up staircases where the swing foot might have to take

many different trajectories to remain collision free depending on the location of the rise

relative to the stance foot.

7.1.2 Stair Climbing

Stair climbing requires precise foot placement in addition to maintaining stability. This

applies to both the stance foot (to remain on the stair runs) and the swing foot (to prevent

collision with the stair rises). Therefore, step height alone is not enough information in the

gait library to. This issue is depicted in Figure 7.2. One option is to consider all possible

stance foot locations during the gait library generation. However, this will dramatically

increase the number of gaits needed to cover all required behaviors. Another option is to

simply place a constraint forcing the swing foot to remain behind the stance foot until the

stair rise is cleared. With this constraint enforced, the desired swing foot trajectory will

never collide with the staircase regardless of the stance foot position. This idea was tested

on Cassie by generating a library of gaits for stepping up a 7 inch rise at various forward

velocities. Based on the current velocity estimate, a desired step up trajectory was chosen

through linear interpolation. Figures 7.3 and 7.4 show the results of this experiment.

Although Cassie was able to step up successfully a few times, we had numerous failures
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(a) No swing foot collision (b) Swing foot collision

Figure 7.2: The trajectory of the swing foot (red) needs to be dependent on the location of the step relative
to the stance foot (blue). We have to assume some staircase position for optimization. If this location
relative to the stance foot changes, collision may occur.

Figure 7.3: Simulated Cassie stepping up a 7 inch rise.

Figure 7.4: Cassie stepping up a 7 inch rise. The standard staircase in the United States has a 7 inch rise
and 11 inch run.

due to tracking issues. Even through the desired swing foot trajectory will never collide

with the staircase, the realized path still did. In the future, to achieve reliable step up

behavior, these collision preventing constraints need to be enforced at runtime. CBF offer

one potential method to enforce these constraints [13]. Quan Nguyen et al. [187] used control

barrier functions (CBFs) alongside gait libraries to enforce step length constraints allowing
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their simulated robot to walk over stepping stones. It is not yet clear how to extend these

ideas to stair climbing.

7.2 Global Kinodynamic Planning

Using State Lattices

Assuming a global map of the environment exists (perhaps generated using the ideas of

Chapter 5), motion planning algorithms need to be developed to compute collision free

paths throughout the world. Many general kinodynamic motion planning algorithms exist,

such as the popular rapidly-exploring random tree (RRT) [149, 217]. However, it is often not

possible to directly apply these algorithms on legged robots due to underactuation, multi-

domain dynamics, high degrees of freedom (DOF), and complex constraints (like dynamic

stability).

Trajectory optimization does provides a general for computing a dynamically feasible path

for the robot. However, current implementations are still too slow to solve at runtime when

using the full dynamic model of the robot [118]. Therefore, naively using these trajectory

optimizers in a global motion planning algorithm would be impractical. A common approach

to alleviate this issue is to build a library of “high-quality” motion primitives offline. Motion

planning can then solved though sequential composition of these primitives [87, 163].

This section provides one idea of how gait libraries can be used to enable fast computation

of dynamically feasible, obstacle-free paths. First, an offline library of gaits is designed using

trajectory optimization. This library includes both periodic walking gaits and transitions

between them. This library of gaits will form a set of state lattice motion primitives [180] that

are regularly arranged in state space. This enables the high-dimensional motion planning

problem to be recast as a low-dimensional graph search problem. Next, a discrete version

of Bi-Directional RRT-Connect is used to search over this reduced dimensional space for a

sequence of gaits that bring the robot to the goal while avoiding obstacles. A* search is

used to smooth out the RRT path using a shortcut smoothing algorithm. When executing

the path, A* is also used to find re-plan recovery paths when the robot drifts from the

desired path due to controller imperfections or perturbations. These algorithms were used

to produce dynamically feasible, obstacle-free paths for an underactuated ATRIAS-series

robot with 12-DOF, 6 actuators, and point feet. If each gait is stabilized with an associated

feedback controller, a sequence of controllers can be constructed from the path that allows

stable, dynamic walking to reach the goal.
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7.2.1 Design of Gait Library over State Lattice

To allow for efficient path planning, a library of gaits is computed over a state lattice [180].

Each gait is computed using offline trajectory optimization. This allows the continuous (or

hybrid) high-dimensional motion planning problem to be reduced down to a low-dimensional

discrete search problem. This dimensionality reduction will allow a feasible solution to be

found efficiently, but an optimal solution to the original problem cannot be found. To better

understand this idea, consider the following simple example.

Assume we wish to plan paths for a legged robot capable of moving along one dimension.

Two periodic gaits have been computed for walking at velocities of {−v, v}. When executing

one step of the gaits, the robot moves a distance of −∆x or ∆x respectively. In addition,

four transition gaits are designed that move the robot from the final state on one periodic

gait to the initial state on another periodic gait. These transition gaits also take place over

{−∆x,∆x}. This library of gaits can be visualized as a connected state transition graph,

shown in Figure 7.5a.

(a) Connected graph of dynamically feasible gaits (state
lattice primitives).

(b) State lattice primitives (and position shifted versions)
arranged on a sampled state space.

Figure 7.5: State lattice primitives for a simple one-dimensional walking robot.

The state space is now reduced from a potentially high-dimensional robot to a two-

dimensional (position and velocity) representation. When viewed in this reduced state space,

the gaits make up a set of motion primitives that describe how to transition from one state

to another. In addition, because these gaits are position-invariant, the motion primitives can

be utilized over any position in the search space. The discrete set of states that the robot

can transition to defines the state lattice over which the gait library is designed. Figure 7.5b

shows these primitives arranged over the state space.
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7.2.2 Using Gait Libraries for Discrete Path Planning

Once the gait library (of state lattice primitives) is generated, the high-dimensional motion

planning problem is simplified to searching for sequence of primitives that bring the robot

from xinit to xgoal. Since the gaits were generated over a state lattice, discrete search methods,

such as A*, can be employed. In addition, if the initial and goal position are on the lattice,

the discrete search is not an approximation and an exact path can be found.

7.2.2.1 Discrete Bi-Directional RRT-Connect

In practice, A* tends to be slow if there is a high branching factor or if there are many

obstacles blocking the path from xinit to xgoal. This led to the use of an Bi-Directional

RRT algorithm to speed up path planning [149]. However, when growing the tree, only a

discrete set of transitions can be considered. In addition, the goal tree has to be grown

backwards in time in order for the gait transitions and dynamics to make sense. These small

modification allows Bi-Directional algorithm to be used for discrete state lattice planning.

Collision checking has to be performed over the entire gait, not just at the discrete nodes. For

efficiency, swept bounding boxes of each gait in the library can be precomputed. Collision

checking involves simply checking if this swept volume is in collision with any obstacle.

7.2.2.2 Pruning Tree to Accommodate Terrain Information

Uneven terrain can easily be accounted for through a simple tree pruning modification. Each

gait in the library has a specific footfall pattern. For a robot to use a particular gait, the

upcoming terrain height must match that gait’s footfall pattern. If this pattern does not

match the terrain, this node is not considered a valid successor and is pruned away inside

the RRT’s steer function. This can be thought of as a “reverse collision check”, where the

gait is checked to make sure the feet collide with the ground at the appropriate times.

7.2.2.3 A* Shortcut Smoothing

Standard RRT algorithms do not produce optimal paths, and often contain unnecessary

loops and detours. It is necessary to smooth out the RRT solution path before having a

controller execute it. One way to perform path smoothing is through shortcut smoothing

algorithms. Typically this is done by iteratively selecting two random nodes along the RRT

path and trying to connect them with a straight line path. If this path is collision free, then

it replaces the RRT path between the two nodes.

Since legged locomotion is a nonholonomic problem and the gaits are defined along a

state lattice, straight line paths cannot be used. Instead, A* search can be used to connect
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the randomly selected nodes. To make the smoothing process fast, a max iterations of each

A* search is limited to a small number. The cost function used for A* can either be the

total time or energy expenditure. This algorithm is outlined below.

Algorithm 2: A* Shortcut Smoothing

1: function Smooth(path, K)

2: pathSmooth ← path

3: for k = 1 to K do

4: (x1, x2)← SelectRandomNodes()

5: shortcut = AStar(x1, x2, maxIterations)

6: if shortcutPath 6= ∅ then

7: pathSmooth ← ReplacePath(x1, x2, shortcut)

7.2.2.4 A* Re-planning

The result from discrete path planning with a gait library is a sequence of gaits that when

concatenated together bring the robot from xinit to xgoal. If each gait in the library has an

associated stabilizing controller, then these controllers can simply be concatenated together

to yield a feedback controller that will drive the robot to the goal. However, while exe-

cuting this path, inaccuracies in the robot model, imperfections the feedback controller, or

external disturbances will inevitable cause the robot to diverge from the planned trajectory.

Therefore, it is necessary to automatically re-plan a path so the robot does not collide with

obstacles.

When the robot’s deviation from the path greater than some threshold, an online A*

re-planner is triggered. This A* search will attempt to connect the current robot’s state a

nearby point on the original trajectory using only gaits defined in the library. If a solution is

found, the controller gets updated and the robot gets steered back to the original path. Since

re-planning threshold is usually small (discretization of state lattice), the robot’s deviation

from the original path is likely to be small. Therefore, A* tends to find a path very quickly.

Algorithm 3: A* Re-Planner

1: function RePlan(path, x)

2: xinit ← FindClosestPointOnLattice()

3: xgoal ← FindNearbyPointOnPath(path)

4: recoveryPath = AStar(xinit, xgoal, maxIterations)

5: if recoveryPath 6= ∅ then

6: newPath ← AppendToPath(recoveryPath)
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Number Description Link

1 Maze Navigation from Discrete Bi-Directional RRT-Connect Path https://youtu.be/mvAXEJ7hY88

2 Maze A* Re-Planning from External Disturbance https://youtu.be/Rm_vPjSsvnY

3 Staircase Navigation from A* Computed Path https://youtu.be/rKvSzjuaYqU

Table 7.1: Simulation Video Links for State Lattice Motion Planning

7.2.3 Simulation Results

The presented algorithms were tested on two different environments (maze and steps) with

distinct gait libraries. All algorithms and dynamic simulations were run using MATLAB on

an ATRIAS-series robot. Refer to Section 3.1.2 for more details about the robot. Table 7.1

gives video links to example simulations.

7.2.3.1 Maze Navigation

A flat-ground, “maze-like” environment was used to demonstrate the presented algorithms.

This environment is shown in Figures 7.6 and 7.7. Eleven periodic walking gaits were de-

signed using direct-collocation trajectory optimization. Each of these gaits were 2-step pe-

riodic and had distinct velocities for walking forwards, backwards, sideways, and diagonally.

In addition, 40 asymmetric gaits were optimized that transition (over 4 steps) between a

subset of these periodic gaits. All 51 gaits were designed to have the robot’s position remain

on a discretized grid of 0.2 m in the x direction and 0.25 m in the y direction.

Figure 7.6: Typical Discrete Bi-Directional RRT-Connect solution for MARLO in the maze environment.

Figure 7.6 shows an example solution path. The red marks show the positions that
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Iterations Time Elapsed (s) Path Length (steps)

RRT Search 650.3 8.796 237.4

A* Smoothing 183.412 153.2

Table 7.2: Results from 10 runs in the maze environment. The start and goal states remained the same over
all runs.

the Discrete Bi-Directional RRT-Connect algorithm explored. The resulting path, shown in

blue, is unnecessarily long winding. The smoothed green path shows the result of applying

the A* shortcut smoothing algorithm. Both paths successfully avoid all obstacles, shown in

yellow.

To evaluate the speed and effectiveness of the search algorithm, Discrete Bi-Directional

RRT-Connect and A* Shortcut Smoothing were run 10 times on with identical start and goal

states. Over the 10 trials, the average time elapsed for the RRT search was 8.796 seconds.

The average number of iterations was 650.3 and the average path length of 237.4 steps. A*

Shortcut Smoothing was implemented for 200 iterations, with each A* search timing out

after 200 iterations. With these parameter values, path smoothing took significantly longer

than path searching. The average smoothing time was 183.41 seconds, resulting in a an

average path length of 153.2 steps. These results are summarized in Table 7.2.

The A* re-planner was also tested by simulating a force perturbation on the robot. This

perturbation was enough to push the robot away from the solution path, triggering the re-

planner. The robot was able to quickly re-plan a recovery path back to the original one.

A video link of this simulation is given in Table 7.1. A screen-shot from this simulation is

shown in Figure 7.7.

7.2.3.2 Staircase Navigation

To test the terrain tree pruning, a staircase environment was simulated with the ground

height changing in discrete values of 5 cm, 10 cm, and 15 cm. To allow walking in this envi-

ronment, 13 two-step periodic gaits were designed. These gaits include walking forward at 3

different speeds, and walking up and downhill. In addition, 24 transition gaits were designed

that transition between a subset of the periodic gaits. Figure 7.8 shows the connected state

transition graph for all 37 gaits.

For this environment, the staircases represent the only obstacles. The pruning step checks

the upcoming ground against the potential successor gait to make sure the footfall pattern

is compatible with the terrain. For this simulation, simply using A* to search over the state

lattice was enough to get a solution quickly (3.768 seconds). A video link of this simulation

is given in Table 7.1. A screen-shot from this simulation is shown in Figure 7.9.
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Figure 7.7: When the robot drifts or is perturbed from the solution path, A* is used to quickly plan a
recovery path back to the original path.

Figure 7.8: State transition graph for walking up and down stairs. The circles represent periodic two-step
gaits. The arrows represent two step transition gaits that move between the corresponding periodic orbits.

7.2.4 Discussion

A state lattice motion planning algorithm was presented to allow kinodynamic path plan-

ning for high-dimensional underactuated legged robots. First, a library of stabilized gaits

was generated using direct-collocation trajectory optimization. These gaits include periodic

walking and aperiodic transition gaits that move between the periodic ones. Every gait sat-
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isfies key constraints such as dynamics, joint limits, torque limits, and friction cones. These

gaits are designed in such a way to have the robot’s position and velocity always falling on

a discrete set of values. This reduces the high-dimensional motion planning problem to a

low-dimensional discrete search over a state lattice.

Once the gait library is designed, many different search algorithms can be applied to

find the sequence of gaits (and controllers) that brings the robot from xinit to xgoal. A

Discrete Bi-Directional RRT-Connect algorithm was developed to solve this search problem

efficiently. During the search, a swept bounding box of the robot over each gait was used

for collision checking. A tree pruning step was implemented that trims away successor gaits

that have footfall patterns that do not match the upcoming terrain. A* was used to both

smooth out the RRT path (using shortcut smoothing) and to re-plan when the robot drifts

or is perturbed from the executed path.

Using these algorithms, the final feedback controller that drives the robot from xinit to

xgoal is switching controller constructed from a particular finite sequence of controllers in

the gait library. This may work well for some applications and environments, however, the

discrete nature of the gait library brings some disadvantages. For example, if gaits are

designed to walk up steps of 10 cm and 15 cm, no path would be found if a step of 12cm

comes up. It is possible to discretize the environment to match the available gaits, but

executed controller may perform poorly. If a finer discretization of gaits is used, the time it

takes to build the library and find solution paths grows larger.

Figure 7.9: MARLO navigating down a set of stairs.
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Gait libraries have found success in controller design by allowing a continuous controller

to be regressed from a discrete set of gaits [60, 187]. For example, if gaits are designed to

walk up steps of 10cm and 15cm, a good controller approximation for a 12 cm step could

be a linear interpolation of the 10 cm and 15 cm gaits. It may be possible to perform path

planning over this continuous set of controllers, allowing solutions to be found easier for

more complex terrain and environments.

None of the algorithms in this optimized for efficiency, so it is unclear how fast this

motion planner can be practically implemented. In addition, we assumed perfect knowledge

of the global map and our position within it. More research needs to be done on motion

planning algorithms that utilize the uncertainty of state information to plan conservatively.

This will be import when testing these ideas experimentally.

7.3 Conclusion and Future Directions

This thesis presented several methods for contact-aided state estimation on legged robots.

Both the invariant extended Kalman filter (InEKF) of Chapter 4 and the developed factors

of Chapter 5 utilize Lie group theory to improve upon existing state-of-the-art methods. In

particular, these state estimators assumed only inertial, contact, and encoder measurements,

all of which are readily available on most legged robots. Therefore, the developed estimators

have the potential to become an essential part of these platforms going forward. However,

even with these improvements, legged robots are still far from being ubiquitous in our ev-

eryday lives. We conclude with several ideas on future research directions that can bring us

closer to that reality.

Having a low-drift odometry system is key to realizing practical simultaneous localization

and mapping (SLAM) for any mobile robot. The developed InEKF moves towards this goal

by combining kinematic and contact data to reduce drift from the inertial measurement unit

(IMU)-based dynamics. A key idea behind this filter is the notion of an inferred measurement

informing the system. We have no sensor measuring the velocity of the stance foot, but when

we measure contact, we can infer that the stance foot velocity is zero. I believe it may be

possible to reduce drift even further by utilizing additional inferred measurements. For

example, if the controller is in standing mode, perhaps we can infer that the base velocity

is zero. If the robot is walking on a sidewalk, maybe we can infer that the ground height

remains constant. As shown by Brossard et al. [44], the detection of these mode changes

could reduce drift and improve the state estimation results.

In Chapter 5 we developed a method for incorporating “leg odometry” into the factor

graph framework. Combining the proposed factors with vision-based factors and loop clo-
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sures can potentially provide one solution for legged robot SLAM. While walking, the map

can be constructed while the robot’s pose is being estimated. Loop closures serve to correct

the odometry drift. However, with just these measurements, we are missing a key measure-

ment that I believe will further improve performance. When the robot measures contact, not

only can we assume the foot velocity is zero, but we can assume that the robot is physically

touching a part of the map that is being built. This type of “terrain-based loop closure”

(briefly hinted at Section 5.4) literally grounds the robot to the map. Without this, the robot

could be estimated to be walking above or below the ground, which is of course not physically

possible. This inconsistency could potentially create issues when using the estimate/map for

motion planning and control. One future research direction is to explore formulating terrain

reconstruction and SLAM as a unified problem. These types of measurements could also be

used for pure localization (imagine a blind robot navigating in dark room with a prior map).

One of the main sources of position/yaw drift for both contact-aided filters and smoothers

comes from inaccurate kinematics. Both estimators assume that the kinematic equations

for the robot are perfectly known, and the only uncertainty in forward kinematics comes

from zero-mean Gaussian encoder noise. In reality this is not the case. For improved

performance, uncertainties in the model parameters (leg lengths, joint offsets, etc.) should

be accounted for. Unfortunately, we typically do not know the true mean values for these

parameters, resulting in kinematics functions that are biased. If unaccounted for, these

forward kinematic biases can lead to significant drift for inertial-contact odometry. Similar

to how IMU biases are estimated, it may be possible to use factor graphs to estimate these

kinematic parameters online. This self-calibrating process could be important when legged

robots are mass-produced and used long-term.

To build truly autonomous legged robots we need to solve complex state estimation,

motion planning and control problems. Often, these three problems are imagined to be

completely independent: planning a path under the assumption that the environment is

completely known; developing a feedback controller with the assumption that the state is

perfectly known; or ignoring the potential to improve state estimates through clever choices

in motion plans or control actions. In reality these problems are not separated. For legged

robots, motion planning should be done with knowledge of the set of gaits the controller

can stabilize. Humanoids should plan to grab the hand rail if they know the uncertainty in

relative staircase position can be reduced or if the desired motion becomes easier to track.

Uncertainty in the robot’s pose and map estimate should be used when planning to reduce

the chance of unwanted collisions. The list could go on. Thankfully, the field of robotics has

been moving towards these goals, but as always there are still countless research opportunities

for the future.
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[41] Guillaume Bourmaud, Rémi Mégret, Marc Arnaudon, and Audrey Giremus.
Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated
Gaussian distributions. Journal of Mathematical Imaging and Vision, 51(1):209–228,
2015. ISSN 0924-9907.

[42] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. ISBN 1107394007.

[43] Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for
state–space models. Annals of the Institute of Statistical Mathematics, 62(1):61, 2010.
ISSN 0020-3157.

[44] Martin Brossard, Axel Barrau, and Silvere Bonnabel. Rins-w: Robust inertial naviga-
tion system on wheels. arXiv preprint arXiv:1903.02210, 2019.

[45] Brian G. Buss, Alireza Ramezani, Kaveh Akbari Hamed, Brent A. Griffin, Kevin S.
Galloway, and Jessy W. Grizzle. Preliminary walking experiments with underactuated
3D bipedal robot MARLO. In IEEE International Conference on Intelligent Robots
and Systems, pages 2529–2536, 2014. ISBN 9781479969340. doi: 10.1109/IROS.2014.
6942907.

[46] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
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exponentially stable periodic orbits in systems with impulse effects: Application to
bipedal robots. In Decision and Control, 2005 and 2005 European Control Confer-
ence. CDC-ECC’05. 44th IEEE Conference on, pages 4199–4206. IEEE, 2005. ISBN
0780395670.
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