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Abstract

A useful stability analysis technique from continuous-time nonlinear systems [2]
is extended to the discrete-time domain. The result is illustrated on a practical
example.
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1 Introduction

The use of Lyapunov stability theory in nonlinear control design has undergone
a renaissance with the use of Control Lyapunov Functions (clf) [8,4,7]. The si-
multaneous construction of the feedback and the candidate Lyapunov function
has greatly enlarged the class of systems for which closed-loop stability prop-
erties can be systematically proved. Further 
exibility in this overall design
method has come through the use of positive semi-de�nite Lyapunov func-
tions, which originated in [2] and has been further developed in [7]. The main
advantage is a reduction in complexity in the candidate Lyapunov function
that often occurs in concrete examples when the positive de�nite requirement
is weakened to positive semi-de�nite [2,7].

This paper extends the analysis of positive semi-de�nite Lyapunov functions
to discrete-time nonlinear systems. This is important because Lyapunov func-
tions tend to be even more di�cult to construct for such systems, and hence
the reduction in complexity that comes about by dropping the positive de�-
nite requirement can be even more advantageous. This is illustrated on a spark
ignition engine equipped with fuel injection and in-cylinder air 
ow actuation.
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2 Stability with Positive Semi-De�nite Lyapunov Function in Dis-

crete Time

The key concept in establishing stability of an equilibrium point with the
weaker hypothesis on the Lyapunov function is the notion of conditional sta-
bility [7]. Roughly speaking, a stability property is conditional to a set Z if it
holds for all perturbed initial condition x0 2 Z.

Consider the time-invariant system

x(k + 1) = f(x(k)) (1)

where x 2 R n, and f : R n ! Rn is continuous. For k > 0, let x(k; x0) :=
f (k)(x0), where f

(k) denotes f composed with itself k-times. An equilibrium
point xe 2 R n satis�es f(xe) = xe.

De�nition 1 Conditional stability

Let Z � R n. An equilibrium point xe 2 Z of the system (1) is:

� stable conditionally to Z, if for each � > 0 there exists �(�) > 0 such that

jjx0 � xejj < � and x0 2 Z ) jjx(k; x0)� xejj < �; 8k � 0:

� attractive conditionally to Z, if there exists an r > 0 such that

jjx0 � xejj < r and x0 2 Z ) lim
k!1

jjx(k; x0)� xejj = 0 uniformly in x0:

� asymptotically stable conditionally to Z, if it is both stable and attractive
conditionally to Z. 2

A function V : R n ! R is positive semi-de�nite about xe if V (xe) = 0 and
V (x) � 0 for x 6= xe. The analogue of the derivative a Lyapunov function
along a solution of (1) is �V = V � f � V . Based upon these de�nitions, the
following theorem is proved in discrete time.

Theorem 2 Stability with positive semi-de�nite V in discrete time

Consider the time-invariant system (1). Let x = xe be an equilibrium of
(1) and let V (x) be a continuous positive semi-de�nite function about 1 xe,
such that �V � 0. Let Z be the largest positively invariant set contained in
fxjV (x) = 0g. If x = xe is asymptotically stable conditionally to Z, then
x = xe is stable in the sense of Lyapunov.

1 i.e., V (xe) = 0 and V (x) � 0 for x 6= xe.
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PROOF. The proof follows closely the one given in [7], and is by contradic-
tion. Suppose that x = xe is unstable. Then it can be shown that for every
� > 0 small enough, there exist a sequence (xi)i�1 ! xe in R n and a sequence
(ki)i�1 in N+ (the positive integers) such that

8k 2 [0; ki); jjx(k; xi)� xejj < �; (2)

jjx(ki; xi)� xejj � �: (3)

Using the continuity of f and the fact that f(xe) = xe, it can be arranged that

jjx(ki; xi)� xejj = �: (4)

To show this, consider the functions

�x(�) = �xi + (1� �)xe; � 2 [0; 1] � R: (5)

Then, since jjx(ki; �x(0))�xejj = 0 and jjx(ki; �x(1))�xejj � �, there exists �� 2
(0; 1) such that jjx(ki; �x(��)) � xejj = � by the Intermediate Value Theorem,
and xi can be re-de�ned to be �x(��) so that (4) holds. In case condition (2) is
not satis�ed for the new xi, ki is decremented so that (2) and (3) both hold,
and the above procedure is repeated until the condition is satis�ed (since ki is
�nite, the procedure must converge). From xi ! xe, (4), and the continuity of
f in (1), it follows that ki !1 as i!1.
The new sequence zi := x(ki; xi) belongs to a compact set, and thus there exists
a subsequence zni

:= x(kni
; xni

) that converges to z 2 R n with jjz � xejj = �.
The next step is to construct pre-images of z with certain properties. Since
ki !1, for every K 2 N+, there exists IK <1 such that the sequence zKni

:=
x(kni

�K; xni
), i � IK is well-de�ned. By (2), jjzKni

� xejj < �, and thus there
exists a convergent subsequence; denote the limit by z�K. By construction,
jjz�K�xejj � �. By the continuity of f , it follows that f (K)(z�K) = z. It is now
shown that z and z�K belong to Z. Since V is continuous and non-increasing
along solutions, V (z) := limi!1 V (x(kni

; xni
)) � limi!1 V (xni

) = 0, where
the last equality used the facts that xni

! xe along with V (xe) = 0. Since V is
non-increasing along solutions, V (z) = 0 implies z 2 Z. The same argument
shows that z�K 2 Z.
In summary, it has been shown that for every � > 0 and K 2 N+, there exist
points z�K 2 Z and z 2 Z such that

jjz�K � xejj � �; (6)

f (K)(z�K) = z; (7)

jjz � xejj = �: (8)
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It remains to prove that (6) - (8) cannot hold if the equilibrium xe is asymp-
totically stable conditionally to Z. Because � > 0 can be chosen arbitrary
small, it can be assumed without loss of generality that for any initial condi-
tion x0 2 Z with jjx0 � xejj � � = jjz � xejj, the solution of (1) converges to
xe. So, there exists a constant K = K(�) > 0, independent of x0, such that
jjx(K; x0)� xejj �

�

2
. Because of (6) - (8), one possible choice for x0 is z�K.

But then �

2
� jjx(K; z�K)� xejj = jjx(K �K; z)� xejj = jjz � xejj = � which

is a contradiction. 2

3 Example

Engine control problems are a rich source of discrete-time systems because
the models are typically sampled synchronously with combustion events [1,9].
This section presents an application of the theorem to a simpli�ed model of
an engine with fuel injection and an electro-hydraulically controlled cam [6].
The engine is representative of proto-type spark ignition engine designs. The
electro-hydraulically controlled cam allows the direct control of the mass air

ow rate into the cylinders, with the result that cylinder mass air 
ow rate
can be regarded as an independent control input. The control objective is to
asymptotically regulate engine brake torque to a de�ned value, Tb ref , while
regulating air-to-fuel ratio (A=F ) to stoichiometry 2 , A=Fstoic. Near stoichiom-
etry, the brake torque (Nm) is approximated by

Tb = 410 CAC � 3(A=F � A=Fstoic)� 37:5 + 0:04N � 0:0001N 2 (9)

where CAC and N represent cylinder air charge in grams, and engine speed in
rad/sec respectively. The cylinder air charge can be approximated by cylinder
mass air 
ow rate � T , where T is elapsed time for the intake stroke, which
is equal to �=N seconds.

A simpli�ed model of the system, with the outputs already augmented with
integrators for asymptotic tracking of set-points, is depicted in Figure 1. The

2 The three-way catalytic converter used in modern vehicles to reduce emissions
of CO,HC and NOx is only e�ective if the air-to-fuel ratio is maintained at stoi-
chiometry.
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model equations are

x1(k + 1) = u2(k)

q1(k + 1) = q1(k) + T (Tb � Tb ref)

= q1(k) + T (410Tu1(k)� 3(x1(k)u1(k)� A=Fstoic) + �(N)� Tb ref)

q2(k + 1) = q2(k) + T (A=F � A=Fstoic)

= q2(k) + T (x1(k)u1(k)� A=Fstoic)

where

u1 : Cylinder mass air 
ow rate

u2 : Inverse (amount of) mass fuel 
ow rate

Tb ref : Reference brake torque (Nm)

T : Intake event duration, �

N
(sec)

�(N) : Portion of brake torque that is independent of A=F

and cylinder air charge (= �37:5 + 0:04N � 0:0001N 2 )

(10)

A controller will now be designed on the basis of a positive semi-de�nite Lya-
punov function. Due to the common terms in q1(k + 1) and q2(k + 1), it is
natural to choose a candidate Lyapunov function as

VL1(k) = V 2
1 (k) = (q1(k) + 3q2(k))

2 (11)

so that as long as one of q1 or q2 can be shown to be bounded, the other one
will be bounded also. The di�erence equation of this Lyapunov function is
given by

VL1(k + 1)� VL1(k) = (V1(k + 1)� V1(k))(V1(k + 1) + V1(k))

= T (410Tu1(k) + �(N)� Tb ref)(V1(k + 1) + V1(k)):
(12)

Choosing the control law as

u1(k) =
1

410T

�
Tb ref � �(N)� c1

1

T
V1(k)

�
(13)

with appropriate gain c1 results in

V1(k + 1)� V1(k) = �c1V1(k) (14)
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and makes the di�erence equation of Lyapunov function VL1 negative semi-
de�nite:

VL1(k + 1)� VL1(k) = �c1(2� c1)V
2
1 (k): (15)

In the next step, another candidate Lyapunov function with parameter � is
chosen to force one of the integral states, q2, to be bounded relative to the
state x1:

VL2(k) = V 2
2 (k) = (�q2(k) + x1(k))

2: (16)

Thus, if it can later be proven that any one of x1, q1 or q2 is bounded, then
all of them are. The di�erence equation of Lyapunov function VL2 is given by

VL2(k + 1)� VL2(k) = (V2(k + 1) + V2(k))(V2(k + 1)� V2(k))

= (V2(k + 1) + V2(k))(�T (x1(k)u1(k)� A=Fstoic) + u2(k)� x1(k)):
(17)

Choosing the control law with appropriate gain c2

u2(k) = ��T (x1(k)u1(k)� A=Fstoic) + x1(k)� c2V2(k) (18)

results in

V2(k + 1)� V2(k) = �c2V2(k) (19)

and makes the di�erence equation of Lyapunov function VL2 negative semi-
de�nite:

VL2(k + 1)� VL2(k) = �c2(2� c2)V
2
2 (k): (20)

A composite, positive semi-de�nite Lyapunov function for the model (10) is
given by

VL(k) = VL1(k) + VL2(k) = V 2
1 (k) + V 2

2 (k): (21)

Then the di�erence equation of Lyapunov function VL with inputs (13) and
(18) becomes negative semi-de�nite

VL(k + 1)� VL(k) = �c1(2� c1)V
2

1 (k)� c2(2� c2)V
2
2 (k): (22)
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The goal now is to understand what (22) implies about the stability of the
model (10). When VL1 and VL2 are both equal to zero, the control signals
become

u1(k) �!
Tb ref��(N)

410T

u2(k) �!
�
1� �Tb ref��(N)

410

�
x1(k) + �T � A=Fstoic

(23)

The parameter � is now chosen so that

x1(k + 1) =

 
1� �

Tb ref � �(N)

410

!
x1(k) + �T � A=Fstoic (24)

is asymptotically stable. This can be achieved with

j1� �
Tb ref � �(N)

410
j < 1: (25)

Under this condition, the states of (10) are asymptotically stable conditionally
to the largest positively invariant set contained in Z = fxjVL(x) = 0g. By the
theorem of the previous section, the states of (10) are bounded, and thus
by LaSalle's Theorem [5], they approach the largest positively invariant set
contained in W = fxj�VL(x) = 0g. From (21) and (22), W = Z. In turn, it
follows that the control signals converge to (23), and consequently, the states
converge to constant values. This then gives that the steady state torque and
A=F errors are zero.

Since the states are converging to a constant value, this must be an equilibrium
point. At no point in the analysis was the explicit value of the equilibrium
point required. This is a major bene�t of working with a positive semi-de�nite
Lyapunov function: a positive de�nite Lyapunov function would have required
the explicit value of the equilibrium point. This point is made even more clearly
in [3,10], where the above analysis is extended to a full (ten) state model of
the system.

A simulation of the controller (13) and (18) in closed-loop with the model (10)
is shown in Figure 2. The engine speed was set to 150 rad/sec, the parameter
� was chosen to be 1, and the constant c1 and c2 were each set equal to be
0.5. The stoichiometric value of air-to-fuel ratio was assumed to be 14.6. It is
seen that the states of the system converge, and that the controller achieves
zero steady state error.
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Fig. 1. Simpli�ed engine model.
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Fig. 2. Simulation result at constant engine speed 150 rad/sec. A=Fstoic is equal to
14.6.
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