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Abstract— Numerous robotic tasks associated with underactu-
ation have been studied in the literature. For a large number of
these in the plane, the mechanical models have a cyclic variable,
the cyclic variable is unactuated, and all shape variables are
independently actuated. This paper formulates and solves two
control problems for this class of models. If the generalized
momentum conjugate to the cyclic variable is conserved, a
set of flat outputs is defined. If the generalized momentum
conjugate to the cyclic variable is not conserved, a feedback that
asymptotically stabilizes an equilibrium is given. The results are
illustrated on a ballistic flip motion and on a balancing task.

I. INTRODUCTION

Underactuated mechanical systems have fewer actuators
than degrees of freedom. Underactuation is naturally associ-
ated with dexterity. For example, the act of standing with one
foot flat on the ground is not viewed as particulary dexterous,
whereas a headstand or sur les pointes (ballet) are considered
dexterous. In headstands or when on pointe, the contact point
between the body and ground is acting as a pivot without
actuation. These are underactuated systems. In these examples,
a typical control task would be to hold an equilibrium pose
with stability, or to execute a motion (e.g., a relevé lent,
battement) without falling over (i.e., with internally bounded
states). Motions that include a ballistic phase are also often
viewed as dexterous. Examples include dismounting from a
highbar or platform diving. In these cases, the underactuation
is manifest in the lack of contact with any surface. The ballistic
phase is normally of short duration since reestablishing contact
with a surface (e.g., ground, mat, water, ...) is an objective of
the maneuver. A typical control problem would be to execute
a predefined motion, with emphasis on achieving a final state
that is compatible with an elegant landing.

The literature on underactuated systems and nonholonomic
systems is vast. A few representative control works include
the study of accessibility in [11], stabilization of equilibria
through passivity techniques in [15], stabilization and tracking
via backstepping in [20], and path planning in [1]. The planar
mechanical systems studied here are motivated in Section II.
The class of systems includes the Acrobot [21], [14], the
brachiating robot of [13], the gymnast robots of [12], [23]
when pivoting on a highbar or when dismounting from the

highbar, the stance and flight phase models of Raibert’s one-
legged hopper [16] as well as RABBIT [4], [3], and the
ballistic phase of the 4-link planar robot in [19]. Though
some are attached to a frictionless pivot and others are
undergoing ballistic motion, these systems have in common
the existence of an unactuated cyclic variable [7]. Their models
are described in a form convenient for analysis in Section Ill.
The key to solving certain control problems associated with
these underactuated systems is the construction of a special
scalar function of the configuration variables that has at least
relative three with respect to one of the control inputs after
an appropriate state variable feedback. Section IV uses this
function to determine a set of flat outputs for systems where
the generalized momentum conjugate to the cyclic variable is
conserved. The result is illustrated on a ballistic flip motion
for a two-link robot. Section V uses this special function to
propose a constructive procedure for stabilizing an equilibrium
point for systems where the generalized momentum conjugate
to the cyclic variable is not conserved. The result is illustrated
on a balancing task for a three-link robot. A more complete
version of these results has been submitted for publication in

[9].

Il. THE STUDIED SYSTEMS

Two classes of systems are considered. The first class
consists of v > 2 planar rigid bodies connected in a tree
structure with the base attached to an inertial reference frame
via a pivot, that is, an unactuated revolute joint. It is supposed
that each connection of two links is independently actuated so
that the system has one degree of underactuation (/N degrees
of freedom with N — 1 independent actuators). It is further
supposed that the pivot is frictionless. Figure la shows an
example of such a system along with the indicated coordinates,
q = (qo, @1, -+, gv—1). The Kinetic energy is quadratic,
K = £¢"D(q)q, with D positive definite. Since the kinetic
energy is independent of the orientation of the reference frame,
D is independent of ¢q; that is 85’(0‘1) = 0. The coordinate gq is
said to be cyclic [7]. The potentiali energy depends only on the

configuration variables. Denote the Lagrangianby L = K -V,




Fig. 1. Two planar tree structures: one is attached to an inertial frame via
a freely acting pivot, one evolves in ballistic motion. All joints between two
links are actuated. A coordinate convention is indicated.

then the dynamic model is:
4oL oL — { 0 k=0 (1)
dtaqk qu Iy k=1,--- N—-1 "
where I'y, is the torque applied on joint k. The model thus
takes the form

DI+ Cadi+G@=| || @

The second class of systems consists of N > 2 planar
rigid bodies, once again connected in a tree structure (each
connection of two links is independently actuated), but this
time, it is assumed that the mechanism is undergoing ballistic
motion. Such a system has three degrees of underactuation:
N + 2 degrees of freedom and N — 1 independent actuators.
Figure 1b shows an example of such a system along with the
indicated coordinates, ¢o = (q,z.,y.). In these coordinates
the dynamics of the body coordinates, ¢, and the Cartesian
coordinates of the center of mass, (z.,y.), are decoupled

DWi+Cai+ G = | ] ]
fe o= 0 @)
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where in a vertical plane g is the gravitational constant. Since
the center of mass coordinates are unactuated, the control of
the system (3) can be reduced to the control of a system having
one degree of underactuation as in (2) by eliminating the trivial
dynamics Z. = 0, §j. = go. The next section presents the
model in a form that is convenient for analysis.

I1l. THE MODEL FORM

With N —1 actuators, it is possible to freely set the accelera-
tion of the vV — 1 actuated variables. Let F'(¢,q) := C(q,¢)¢+
G and partition the generalized coordinates into actuated and
unactuated parts per ¢ = (¢o,@), @ = (¢1,---an—1). This
induces a decomposition of the model (2)
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l? = D171 - D1,0D0,1/d070 (5)
F = F - D170F0/d070

where d ¢ is never zero because D is positive definite. If the

torques are chosen such that

I'=Dv+F, (6)
then the last V — 1 rows of the dynamic model become
q]:’l)] .7:]-7;N_1 (7)

Because qp is a cyclic variable, g—g = 0, the first line of the

dynamic model defined in (1) becomes
oV
—B—QO(Q);

where o0 = g—dLo. Because the kinetic energy is quadratic, and

potential energy does not depend on joint velocities, 3—3/0 =0,
it follows that

®)

o=

N-1
o= Z dok(qr,- -, qN—1)dk, 9)
k=0

where do i, k = 0,---, N —1 are the entries in the first row of
D. In the case of a mechanical system corresponding to Figure
1a, because the reference frame has been attached at the pivot
point, ¢ is in fact the angular momentum about the pivot point.
In the case of a system corresponding to Figure 1b, o is the
angular momentum about the center of mass. Because dg ¢ is
never zero, (9) can be used to solve for the angular velocity
of the cyclic variable in terms of ¢. The dynamic model of
the robot can thus be expressed in the form

. N—-1d .
dgo = dO‘O(QIa'O:VQN—l) _Zkzl ﬁ(ql;"';q]\ffl)qk
g = _B_QQ
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(10)

IV. SYSTEMS WHERE THE GENERALIZED MOMENTUM
CONJUGATE TO THE CYCLIC VARIABLE IS CONSERVED

If the conjugate momentum is conserved, the equation
o = 0 yields a nonholonomic constraint, which significantly
complicates trajectory generation and control of the system
[11], [19]. In particular, the motion of the system is restricted
to a lower dimensional surface that is fixed by the initial
conditions, and thus, whenever possible, motion planning
should be done on-line. In the following a set of outputs is
developed that leads to exact linearization of the controllable
subsystem. Such outputs are said to be flat outputs [18], [5];
they can be used to simplify motion planning [18].

A. Mechanical structure with 2 links

Consider first a mechanical structure consisting of only two
links: J
G = Zoua 2o (@)@
G = v
When momentum is conserved, it is well known that the
only way to act on the rotational speed of the body about the

(11)



center of mass is to modify the inertia. This fact is not directly
evident when the equations are expressed in the form (11). For
an articulated two body system, this fact can be easily seen
if the angular momentum is rewritten in terms of only one
rotational velocity

0 =dyo(g1)do + do,1(q1)d1 = do,o(q1)p1 (12)

where

p1=¢qo+ d—((h)q (13)

do,o
and doo(q1) is the inertia of the mechanism about the pivot
point. The "global orientation” associated with this velocity is

g1
do.y (r)dr.

gr oo

The integral in (14) is well-defined because the integrand is
smooth and the integral is evaluated over a closed and bounded
interval. The same function has appeared in [14] in a different
context. An explicit formula for p; will be given shortly in
the worked example.

Since the control v, acts on the acceleration, ¢, it only acts
on the jerk of p;. Choosing p; as an output, (y; = p;) Yyields

PL=qo —q + (14)

d*(d d(d,
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= - PP (S P gi- (15)
0,0 0,0

If o ((‘11;10) is non-zero, one can use feedback to define a new

control w; by

U(dood (doo) +2(d(d00)) )

9T 1 ’ dq .2
v = (—5—)" (w1 + i),
dg o d&o '
(16)
after which the model of the two-link robot becomes linear
Pt = wr. (17)

In other words, p; is a flat output [18], [5] and the model (11)
can be exactly linearized with the new state variables p;, p1,
1 and the feedback (15). An example based on [6] is given
next.

B. Example: Planar Two link Structure in Ballistic Motion

1) Mathematical representation: The control objective will
be to effect a motion with boundary constraints that are
motivated by bipedal running [4]. The mechanism consists of
three point masses joined by two massless bars in an actuated,
revolute joint. The point masses are given by mg =1, m; = 2,
mo = 1; the bar connecting mo to m; has length L; = 1
and that connecting m; to ms has length L, = 1. The
complete dynamic model is easily obtained using the method
of Lagrange and yields immediately

do,1

G = T " dos (1)@

o = 0

G = v (18)
I, = 0

jjc = 9o,

with control v and

doo(q1) = ago + aoicos(qr)
do1(q1) = @0+ aiicos(qr)
a _ mg(m1+m2)Lf+mg(mo+m1)L§
00 = mo+mi—+ma (19)
apr = 2a11
a _ ma(mot+mi)L3
10 m0+7%1 ma
an — momali Lo

mo+mi+ms "

The strongly accessible portion of the model has dimen-
sion three, and involves qg, ¢1,¢:1. Due to ballistic motion,
there is a five dimensional uncontrollable subsystem given
by z.,ve,Ze, 9., 0. How these two parts interact in a path
planning problem is explained next.

2) Interaction through boundary conditions: The flight
phases of a gymnastic robot, such as a tumbler or a bipedal
runner, are typically short-term motions that alternate with
single support phases. The creation of an overall satisfactory
motion is closely tied to achieving correct boundary conditions
at the interfaces of the flight and single support phases. The
state of the robot at the end of a flight phase is typically more
important than the exact trajectory followed during the flight
phase. At the beginning and end of a flight phase, the robot
is in contact with a surface (assumed here to be identified
with the horizontal component of the world frame). There are
two holonomic constraints that tie the position and velocity
of the center of mass to those of the angular coordinates.
Conservation of angular momentum through ¢ = 0 yields an
additional (nonholonomic) constraint on the angular velocities.
In particular, the desired final joint velocities must be chosen
to satisfy this constraint. The duration of the flight phase,
T, is determined from §. = go, with the initial conditions
coming from the initial positions and velocities of the angular
coordinates at lift-off, and the end condition of the height of
the center of mass coming from the desired final configuration
of the angular coordinates at touch-down.

3) Determining a ballistic motion trajectory in linearizing
coordinates: The new coordinates are constructed from p; and
its first two derivatives. Define p; by (14). Direct computation
leads to

a ago — @
p= o+ 2y + 24 arctan (X 9 n($y) (20)
ao1 at, — a3, 2
where A = =10 — —fo0di
\/0%070%1 ao1 \/a307a31
o
pp = ——————— (21)
ago + ag1 COS(ql)
N oag sin(qr) .
= 5 d1 (22)

(ago + ap1 cos(qr))
To determine the linearizing control, one more derivative is
needed

(3 (2a01 + ago COS(ql) — ag1 cos? (ql))

) — <2 M
D1 oag] (@00 + o1 co8(q1))? qy + My v

(23)
where My, = ao;jgtfz(s‘l(lq))) Wherever My, # 0, a

linearizing feedback can be constructed such that
P =w, (24)




For arbitrary initial and final conditions of the linear model
(24), it is trivial to define a feasible trajectory. Indeed, it
suffices to define a three-times continuously differentiable
function passing from given initial values to given final values.
One could even use a polynomial of order five or greater for
p(t).

Since the change of coordinates going from (11) to (24)
is local, not every solution of (24) can be mapped back onto
a solution of (11). From (21), since ¢ is constant and since
do o is bounded, so is p;. These kinds of constraints, which
must be applied point-wise in time on the trajectories of (24),
are made explicit by computing the inverse of the coordinate
change.

4) Constraints point-wise in time associated with the lin-
earizing coordinates: The calculation of ¢g, g1, ¢; in terms of

p1,P1,P1 yields

_ ﬁ*aoo
g = amrccoi(—a01 ) . q
dGo = p1— gtq—2Aarctan (% tan(2))
00 01
5 __ P1(aoo+ao1 cos(g1))?
no= gag1 sin(g1)
(25)

The first equation only admits a solution for e <P <
aooi—am, and then has two solutions: one for 0 < ¢; < 7
and another for —7 < ¢1 < 0. These two domains for
the cosine define two “configuration classes” of the robot,
with the extreme points of the domains corresponding to the
links being completely folded or unfolded. The sign of ¢; is
determined by continuity (with torque control, there cannot
be discontinuities in the velocity). At the extreme points of
the domains, p; attains an extremum and consequently, j; is
zero. The robot will then pass through the singularity, and
change configuration classes. Consequently, when generating
a motion, two cases can present themselves, according to
whether the motion stays always in the same configuration
class or not. In this paper, the study is limited to motion
with the initial and final configuration in the same configu-
ration class, then a trajectory can be generated by imposing
- < p(t) < aoqiam. Both open—_loop and feed_back
controls are equally easily computed starting from the linear
model. A more complete treatment is given in [9].

For this simulation, the mass m of the robot is supposed
initially in contact with the ground, with configuration defined
by ¢ = 3n/4,¢1 = —n/4, and angular velocities go =
—5,¢; = 0. The objective is to transfer the robot at the end of
a flight phase so that when the mass m- of the robot touches
the ground, its configuration is go = —0.5,¢1 = —x/4 with
angular velocity proportional to o = 1, ¢; = 0. The initial and
final configurations are depicted in Figure (2); they belong to
the same configuration class. From the initial conditions of
the robot and the desired final configuration, the flight time is
computed as 7" = 0.5173. Conservation of angular momentum
implies that ¢o(7") = —5.

The initial and final values of p; and its first two derivatives
were computed from (20), (21), and (22). A fifth-order polyno-
mial of ¢ was defined that satisfied these boundary conditions.
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Fig. 2. The motion of the robot passes from left to right without passing
through a singularity. The initial and final configurations (- —-—) belong to the
same configuration class. The center of gravity follows a parabolic trajectory.

The resulting trajectories of p, py, p1 are depicted in Figure
3; the point-wise in time constraints associated with (25) are
met. The input torque I" for the system was computed using
(23) and (6). The resulting trajectories in terms of ¢ and ¢
are shown in Figure 4 and the evolution of the robot in the
vertical plane is presented in Figure 2. An animation of the
motion is available at [8].
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Fig. 3. Based on the initial and final conditions of the flight phase, a
trajectory for p; and its derivatives is derived. The plot shows that p satisfies
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Fig. 4. The computed open-loop control transfers the robot from its initial
state to the desired final state (shown with * on the graphics).

C. Mechanical structure with N links

The above results can be extended to N-link mechanisms,
though a dynamic feedback is needed to linearize the model.



The complete result form [9] is only sketched here. To define
N — 1 flat outputs, N — 2 of the V — 1 actuated variables
are used, and the last output component is constructed along
the lines of the case of a 2-link mechanism. The generalized
momentum is first expressed as

N— 1
+ Z d— (q1,-- ':qu)qk> .
k=1
(26)
is rewritten in the form

o :d070((I1;"';QN 1) <
Regrouping terms in ¢o and ¢, o

o =doolq, ,qnv-1 ( Zﬁk qus 5 AN—1)dk

(27)
where
q1 d
PL=do—git | (o) (29)
a7
Brlar, - av—1) = [ g B (T, g0, qnor )dr
ddOO(Q1 >QN—1)>
(29)

and p; is given by

_ g
doo(qr,- -

N-1

) + kz:; Br(q; - anv—1)qk- (30)
Since p; does not depend on ¢y, it must be differentiated at
least twice more before v, appears. On the other hand, the
calculation of p{* involves ¢\, and thus a dynamic extension
is needed: v; = pi, i = 2,---, N — 1; also, rename vy = p3.
If the term in p§3> multiplying p; is non-zero, a feedback can
be defined to transform the system into y,(f) =w, 1<k<
N — 1 (see Section V-B), and the methods presented for a
2-link robot can be applied to an N-link mechanism [9].

V. SYSTEMS WHERE THE GENERALIZED MOMENTUM
CONJUGATE TO THE CYCLIC VARIABLE IS NOT CONSERVED

If the conjugate momentum is not conserved, that is,
gT‘;(q) # 0, the robot’s motion is not constrained. Results
presented in [9] indicate that, generally, this class of un-
deractuated systems is not static feedback linearizable, and
results presented in [17] show that generally there do not
exist flat outputs depending only on the configuration variables
(recall that such outputs were used in the previous case where
conjugate momentum was conserved). Said another way, for
this class of models, it is not known how to choose N — 1
outputs that result in an empty zero dynamics (in fact, it is
reasonable to conjecture that such outputs do not generally
exist). Of course if N=2, the situation is clear - the system
is not flat. A realistic goal however is seek a set outputs
such that the associated zero dynamics is one dimensional
and exponentially stable, which is the problem addressed here.
The results are first discussed for a two-link robot and then
sketched for an N-link robot. The result will be illustrated
through stabilization and trajectory tracking on a three-link
robot. The method used in this section can be seen as an

extension of [14] for two-link robots and [2] for robots that
have a star structure.

A. Mechanical structure with 2 links

Since it is a single input system, feedback linearizability
(flatness) is fully characterized. A standard choice of outputs
would be y; = g1 — ¢$, which has relative degree two. Such a
choice leads to a two-dimensional zero dynamics and it can be
shown that the zero dynamics can never have an asymptotically
stable equilibrium [22]. By seeking an output component
with a relative degree higher than two, the dimension of the
zero dynamics can be reduced, opening up the possibility of
creating one that is scalar and asymptotically stable. Using the
previous analysis, two relative degree three functions available
are the conjugate momentum, o defined in (8), and p; defined
in (14). Any function of p; and o also has relative degree
three and p; and o are the only two independent functions
with relative degree three. Since by (12), o is proportional
to p; through the strictly positive quantity dg o, the choice of
output

y1 = K(pr —pi) +o, (31)

where pf is the value at an equilibrium point ¢¢, should yield
the zero dynamics

K
do.o

Since dy is positive, (32) is exponentially stable for all
K > 0. The technical conditions under which all of this holds
are clarified in [9]. The main point is that a feedback controller
that drives the output (31) to zero exponentially fast will
(locally) exponentially stabilize the system when conjugate
momentum is not conserved.

= (p1 — pi)- (32)

B. Mechanical structure with N links

Let (¢¢,0) be an equilibrium of the N-link mechanism
(10). The construction of a set of outputs yielding a one-
dimensional, exponentially stable zero dynamics involves aug-
menting the output (31) with the (N —2) outputs y; = ¢; — ¢,

fori =2,---, N —1, and with p; defined as in (28). Since the
third derivative of y; depends on qZ(S), fori=2,--- N —1,
a dynamic extension is defined:

vzzﬂi;i:27"'7N_]-7 (33)

along with the renaming of v; = p;. Clearly, y,(f) = u, for
2 < k < N — 1. The third derivative of y; can be written as

N-1
v = (@4, 02, on—1) + Mia(q, d)p + Z K Brpik

k=2
(34)
with
N— . .
o 8d0 0 <86k ) 82‘/ do 1 BZV
M —K—— — s )
b d(%o 3(11 Z o 5(13 doo  9q10q0
Define a feedback controlle nw by
—1
= M, Kﬂz...KﬂNl} {w_[f”’ (35)
0 IiN_2)x(N—2) 0



(a) (b)

Fig. 5. Three-link mechanism, connected at a pivot. (a) shows an equilibrium
pose (b) shows the initial condition used in the simulation.

yielding y®) = w. If M, ; is non-zero at the equilibrium point,
the zero dynamics is locally well defined and is given by

K
doo(q1(p1,4°), 45, -

P = )(pl -p7);  (36)

JAN -1
the supporting details are given in [9]. From [10], it imme-
diately follows that a feedback providing (local) asymptotic
tracking with internally bounded states is

2
w = y7(’3) + Z K] (yij) - y(J) (q7 (i; V2, vn)) (37)
j=0

for any choice of constant matrices K that renders the error
equation exponentially stable: e(®) + Z?:o K;el) = 0, for
e:=(yr —y).

C. Example:Planar Three-Link Serial Structure Attached to a
Pivot

This example treats the planar three-link robot depicted in
Figure 5. The robot consists of three point masses connected
by three rigid, massless links, with the links joined by an
actuated revolute joint. The links are labelled L, through L;
starting from the pivot and the masses are similarly labelled
my through ms. The parameter values L; = Ly, = 0.4, L3 =
0.3,n7 = 6.4,my = 13.6,m3 = 12 were selected to
approximate the biped robot RABBIT with the legs held
together [3]. The objective is to demonstrate local exponential
stability and asymptotic tracking about an equilibrium point.

1) Mathematical representation: The complete dynamic
model is easily obtained using the method of Lagrange and
yields immediately

T do,1 - do,2 -

do = @v— m(h - m(b
if = —%(Q) (38)
g = U1
q'Z = U2,
where,
ago = (m1 + ma + m3)L? + (m2 + m3)L3 + m3L3
+2mg Lo L3 cos(gz)

agr = 2(m2 + mg)LlLQ + 2msLq1 L3 COS(QQ)

Qo2 = —2M3L1L3 sin(qg)
a9 = (mg + mg)Lg + mng + mng + 2mgLo L3 COS((]Q)
ail = (mg + mg)L1L2 + m3L1L3 COS(QQ)
12 = —m3L1L3 sin(qg)
52 (@) = —go(ma +my +mz) Ly cos(qo)
—go(ma +m3)La cos(qo + 1) — goms Lz cos(qo + q1 + g2)
d070 = agg + ao1 COS(ql) + ao2 sin(ql)
do,1 = ai0 + a11 cos(q1) + a1z sin(qr)
do 2 = mzL3(Ly cos(qz2) + Ly cos(q1 + ¢2))-

2) Control Law Design: The key to applying the result
is the explicit computation of the function p; in (28) used to
define the outputs. Then for ¢* = 0 and —7 < ¢ < =, (28)
can be evaluated explicitly as

C
P1=qo+ c—lfh + 10 tan(%) + @20 ta‘n(%)a (39)
2

where,

(ago—ag1)z+agz )

p1(x) = 2(“0—130 — S arctan ( s

2C3

pa(x) = W In (aoo(1 + 22) + ap1 (1 — 2?) + 2ap27)

— 224 In(1 + x?)
€1 = Qo1a11 + A12Q02
c2 = ady + ad,
3 = \/ago — agy — g

(40)
An equilibrium point (¢¢, 0) was found from %(q)(qe) =0:
q°¢ = (1.0472,1.4522, —1.4522); see Figure 5 (a).

The control law design consists of the preliminary feedback
(6) needed to place the system in form (10), the selection of
two outputs, the dynamic extension, and a second static state
feedback used to linearize and stabilize the input-output map.

For the three-link robot, the outputs have been selected as

Yy =
Y2 =

K(pl ;p(f) +o (41)
g2 — 43,
where K > 0 is to be chosen.

The dynamic extension is 0o = s, v1 = p1, Which consists
of adding a single integrator on v,. The two outputs then
have relative degree three with respect to u, and the feedback
controller is computed via (35) and (37). For the simulation,
the matrices K ; were arbitrarily chosen to be diagonal and to
place all of the eigenvalues of the error equation at —1. The
free parameter in the output was arbitrarily chosen as K = 5.
Since dy o(¢°) =~ 14.5, the zero dynamics is about one third
as fast as the output error equation.

3) Simulation results: The simulation demonstrates
asymptotic tracking and exponential stabilization. The initial
condition was taken as (1.1,1.42,—1.80,0,0,0), and is de-
picted in Figure 5 (b). For the first forty seconds, the robot
is commanded to track sinusoidal references that cause it
to execute a form of calisthenics, namely, deep knee bends;
at forty seconds, the references are abruptly set to constant
values corresponding to the equilibrium point ¢¢ in order to
demonstrate convergence to a constant set point. The asymp-
totic convergence of the outputs to the commanded references
is shown in Figure 6. The evolution of the configuration



variables and the applied joint torques is shown in Figure 7.
An animation of the motion is available at [8].
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Fig. 6. Demonstration of asymptotic tracking and stabilization for the three-
link mechanism. For the first forty seconds, the motion consists of an initial
transient, followed by tracking of sinusoidal trajectories that correspond to
knee bends. At forty seconds, the reference trajectory is abruptly set to zero,
thereby commanding the system to an equilibrium point.
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Fig. 7. Demonstration of asymptotic tracking and stabilization for the three-
link mechanism; see Figure 6 for details. The plots show the configuration
variables (left), joint torques (right).

VI. CONCLUSIONS

Two novel control results have been presented. When the
generalized momentum conjugate to the cyclic variable was
not conserved, conditions were found for the existence of a
set of outputs that yielded a one-dimensional, exponentially
stable zero dynamics. A controller that achieves asymptotic
stabilization and tracking is then easily constructed. When
the generalized momentum conjugate to the cyclic variable
was conserved, a reduced system was constructed and condi-
tions were found for the existence of a set of outputs that
yielded an empty zero dynamics. A change of coordinates
and controller that achieve input to state linearization are
then easily constructed. The solutions to these two control
problems had a common underlying element: the computation
of a function of the configuration variables that had relative
degree three with respect to one of the input components
after an appropriate state feedback. It was interesting that this
function arose by partially integrating a physical quantity, the
conjugate momentum. The theoretical results were illustrated
on two simple examples.

ACKNOWLEDGMENTS

The work of J.W. Grizzle was supported by NSF grant ECS-
0322395.

[1]

[2]

[3]

[4]

[5]

(6]

[71

(8]

[]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

F. Bullo and K. M. Lynch. Kinematic controllability for decoupled
trajectory planning in underactuated mechanical systems. |EEE Trans-
actions on Robotics and Automation, 17(4):402-412, August 2001.

L. Cambrini, C. Chevallereau, C.H. Moog, and R. Stojic. Stable
trajectory tracking for biped robots. In IEEE Press, editor, Proceedings
of the 39th |EEE Conference on Decision and Control, Sydney, Australia,
pages 4815 -4820, December 2000.

C. Chevallereau, G. Abba, Y. Aoustin, E.R. Plestan, F. Westervel,
C. Canduas-de Wit, and J.W. Grizzle. Rabbit: A testbed for advanced
control theory. IEEE Control Systems Magazine, To appear in October
2003. see [8] for a copy.

C. Chevallereau and Aoustin. Optimal reference trajectories for walking
and running of a biped robot. Robotica, 19(5):557-569, September 2001.
M. Fliess, J. Levine, P. Martin, and P. Rouchon. A lie-backlund approach
to equivalence and flatness of nonlinear systems. |EEE Transactions on
Automatic Control, 44(5):922 -937, May 1999.

T. Geng and X. Xu. Flip gait synthesis of a biped based on poincare
map. In Proc. of the Second International Workshop On Robot Motion
And Control, Bukowy Dworek, Poland, pages 239-243. IEEE Robotics
and Automation Society, October 2001.

H. Goldstein. Classical Mechanics. Addison Wesley, second edition,
1980.

JW.  Grizzle. Publications on  robotics
http: //mamw.eecs.umich.edu/~grizz e/ paper s/roboti cs.htm,
2003.

J.W. Grizzle, C.H. Moog, and C. Chevallereau. Nonlinear control of
mechanical systems with one degree of underactuation. submitted to
IEEE Trans. on Automatic Control, 2003. See [8] for a preprint.

A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag,
Berlin, third edition, 1995.

I. Kolmanovsky, N.H. McClamroch, and V.T. Coppola. New results
on control of multibody systems which conserve angular momentum.
Journal of Dynamical and Control Systems, 1(4):447-462, 1995.

M. Miyazaki, M. Sampei, and M. Koga. Control of a motion of an
acrobot approaching a horizontal bar. Advanced Robotics, 15(4):467—
480, 2001.

J. Nakanishi, T. Fukuda, and D.E. Koditschek. A brachiating robot
controller. |EEE Transactions on Robotics and Automation, 16(2):109—
123, April 2000.

R. Olfati-Saber. Control of underactuated mechanical systems with two
degrees of freedom and symmetry. In Proc. of the American Control
Conference at Chicago, IL, pages 4092-4096, June 2000.

R. Ortega, M.W. Spong, and F. Gomez-Estern. Stabilization of underac-
tuated mechanical systems via interconnection and damping assignment.
IEEE Transactions on Automatic Control, 47(8):1281-1233, August
2002.

M. Raibert. Legged robots that balance. MIT Press, Mass., 1986.

M. Rathiman and R. Murray. Configuration flatness of lagrangien sys-
tems underactuated by one control. SAM J. Control and Optimization,
36(1):164-179, 1998.

P. Rouchon, M. Fliess, J. Levine, and P. Martin. Flatness, motion plan-
ning and trailer systems. In Proceedings of the 32nd IEEE Conference
on Decision and Control, pages 2700 —2705. IEEE, December 1993.
M. Sampei, H. Kiyota, and M. Ishikawa. Control strategies for
mechanical systems with various constraints—control of nonholonomic
systems. In IEEE Conf. on Systems, Man, and Cybernetics, |1, pages
158-167, 1999.

D. Seto and J. Baillieul. Control problems in super-articulated mechan-
ical systems. |EEE Transactions on Automatic Control, 39(12):2442
—2453, December 1994.

M.W. Spong. The swing up control problem for the acrobot.
Control Systems Magazine, 15(1):49-55, February 1995.

E. Westervelt, J.W. Grizzle, and D.E. Koditschek. Hybrid zero dynamics
of planar biped walkers. |EEE Transactions on Automatic Control,
48(1):42-56, January 2003.

M. Yamakita, T. Yonemura, Y. Michitsuji, and Z. Luo. Stabilization of
acrobot in upright position on a horizontal bar. In Proc. of the IEEE
International Conference on Robotics and Automation, Washington, DC,
pages 3093-3098, May 2002.

control.
September

and

|IEEE



