PRoof of main result

The goal is to find a Lyapunov function V on S for the Poincaré map P^{ε} defined (locally) on the section S associated with the periodic orbit \mathscr{O}. I.e., we seek a Lyapunov function for the discrete-time system $\left(x_{k+1}, z_{k+1}\right)=P^{\varepsilon}\left(x_{k}, z_{k}\right)$ with fixed point $\left(0, z^{*}\right)$. (Here $x^{*}=0$ because $\mathscr{O}=l_{0}\left(\mathscr{O}_{Z}\right)$.) Since \mathscr{O}_{Z} is a periodic orbit transverse to $S \cap Z$, we can view $S \cap Z$ as the Poincaré section and consider the associated restricted Poincaré map $\rho: S \cap Z \rightarrow S \cap Z$ with $\rho\left(z^{*}\right)=z^{*}$; without loss of generality, and for notational simplicity, assume that $z^{*}=0$. Before proving Theorem 1, we first state and prove a lemma establishing a bound of the Poincaré map in terms of the restricted Poincare map and a bound on the time-toimpact function $T_{I}^{\varepsilon}(x, z)$ in terms of $T_{\rho}(z)$. In the following, $B_{\delta}(r)$ denotes an open ball of radius $\delta>0$ centered on the point r, and $P_{z}^{\varepsilon}(x, z)$ is the z-component of $P^{\varepsilon}(x, z)$.

Lemma 1: Let \mathscr{O}_{Z} be a periodic orbit of the hybrid zero dynamics $\left.\mathscr{H}\right|_{Z}$ transverse to $S \cap Z$ and assume there exists a RES-CLF V_{ε} for the continuous dynamics (29) of $\mathscr{H} \mathscr{C}$. Then there exist finite constants $L_{T_{I}}$ and A_{1} (both independent of $\varepsilon)$ such that for all $0<\varepsilon<1$ and for all Lipschitz continuous $u_{\varepsilon}(x, z) \in K_{\mathcal{\varepsilon}}(x, z)$ there exists a $\delta>0$ such that for all $(x, z) \in$ $B_{\delta}(0,0) \cap S$,

$$
\begin{align*}
\left\|T_{I}^{\varepsilon}(x, z)-T_{\rho}(z)\right\| & \leq L_{T_{I}}\|x\|, \tag{44}\\
\left\|P_{z}^{\varepsilon}(x, z)-\rho(z)\right\| & \leq A_{1}\|x\| . \tag{45}
\end{align*}
$$

Proof: In the first step of the proof, we construct an auxiliary time-to-impact function T_{B} that is Lipschitz continuous and independent of ε and then relate it to T_{I}^{ε}.

Recall that $h(x, z)$ is the guard. Let $\mu_{1} \in \mathbb{R}^{n_{x}}$ and $\mu_{2} \in \mathbb{R}^{n_{z}}$ be constant vectors and let $\phi_{t}^{z}\left(\Delta\left(0, z_{0}\right)\right)$ be the solution of $\dot{z}=q(0, z)$ with $z(0)=\Delta_{Z}\left(0, z_{0}\right)$. Define

$$
T_{B}\left(\mu_{1}, \mu_{2}, z\right)=\inf \left\{t \geq 0: h\left(\mu_{1}, \phi_{t}^{z}(\Delta(0, z))+\mu_{2}\right)=0\right\}
$$

wherein it follows that $T_{B}(0,0, z)=T_{\rho}(z)$. By construction, T_{B} is independent of ε and (by the same argument used for $\left.T_{I}^{\varepsilon}(x, z)\right)$ is Lipschitz continuous. Hence, in the norm $\left\|\left(\mu_{1}, \mu_{2}, z\right)\right\|:=\left\|\mu_{1}\right\|+\left\|\mu_{2}\right\|+\|z\|$,

$$
\begin{equation*}
\left|T_{B}\left(\mu_{1}, \mu_{2}, z\right)-T_{\rho}(z)\right| \leq L_{B}\left(\left\|\mu_{1}\right\|+\left\|\mu_{2}\right\|\right) \tag{46}
\end{equation*}
$$

where L_{B} is the (local) Lipschitz constant.
Let $\varepsilon>0$ be fixed and select a Lipschitz continuous feedback $u_{\varepsilon} \in K_{\mathcal{E}}$. We note that $T_{I}^{\varepsilon}(x, z)$ is continuous (since it is Lipschitz) and therefore there exists $\delta>0$ such that for all $(x, z) \in B_{\delta}(0,0) \cap S$

$$
\begin{equation*}
0.9 T^{*} \leq T_{I}^{\varepsilon}(x, z) \leq 1.1 T^{*} \tag{47}
\end{equation*}
$$

where $T^{*}=T_{\rho}(0)$ is the period of the orbit \mathscr{O}_{Z}. Let $\left(x_{1}(t), z_{1}(t)\right)$ satisfy $\dot{z}_{1}(t)=q\left(x_{1}(t), z_{1}(t)\right)$ with $x_{1}(0)=$ $\Delta_{X}(x, z)$ and $z_{1}(0)=\Delta_{Z}(x, z)$, and similarly, let $z_{2}(t)$ satisfy $\dot{z}_{2}(t)=q\left(0, z_{2}(t)\right)$ with $z_{2}(0)=\Delta_{Z}(0, z)$.

Defining

$$
\begin{align*}
& \mu_{1}=\left.x_{1}(t)\right|_{t=T_{I}^{\varepsilon}(x, z)} \\
& \mu_{2}=\left.z_{1}(t)\right|_{t=T_{I}^{\varepsilon}(x, z)}-\left.z_{2}(t)\right|_{t=T_{I}^{\varepsilon}(x, z)} \tag{48}
\end{align*}
$$

results in

$$
\begin{equation*}
T_{B}\left(\mu_{1}, \mu_{2}, z\right)=T_{I}^{\varepsilon}(x, z) \tag{49}
\end{equation*}
$$

because T_{I}^{ε} and T_{B} are locally unique solutions where the guard vanishes (follows from Implicit Function Theorem). We will establish (44) by bounding μ_{1} and μ_{2} and substituting into (46) by virtue of (49), as follows.

Using the fact that V_{ε} is rapidly exponentially stabilizing, we have the bound from (35) given by

$$
\begin{equation*}
\left\|x_{1}(t)\right\| \leq \sqrt{\frac{c_{2}}{c_{1}}} \frac{1}{\varepsilon} e^{-\frac{c_{3}}{2 \varepsilon} t}\left\|x_{1}(0)\right\| \tag{50}
\end{equation*}
$$

Note that $\Delta_{X}(0, z)=0$ and therefore $\left\|x_{1}(0)\right\|=\| \Delta_{X}(x, z)-$ $\Delta_{X}(0, z)\left\|\leq L_{\Delta_{X}}\right\| x \|$. Then making use of (47), we have

$$
\begin{aligned}
\left\|\mu_{1}\right\| & =\left\|x_{1}(t)\right\|_{t=T_{I}^{\varepsilon}(x, z)} \\
& \leq \sqrt{\frac{c_{2}}{c_{1}}} \frac{1}{\varepsilon} e^{-\frac{c_{3}}{2 \varepsilon} 0.9 T^{*}} L_{\Delta_{X}}\|x\| \\
& \leq \frac{2 e^{-1}}{0.9 T^{*} c_{3}} \sqrt{\frac{c_{2}}{c_{1}}} L_{\Delta_{X}}\|x\|
\end{aligned}
$$

The next step is to bound $\left\|\mu_{2}\right\|$ using a Gronwall-Bellman argument. We first note that

$$
z_{1}(t)-z_{2}(t)=z_{1}(0)-z_{2}(0)+\int_{0}^{t} q\left(x_{1}(\tau), z_{1}(\tau)\right)-q\left(0, z_{2}(\tau)\right) d \tau
$$

and thus

$$
\begin{aligned}
\left\|z_{1}(t)-z_{2}(t)\right\| \leq & L_{\Delta_{z}}\|x\|+\int_{0}^{t} L_{q}\left(\left\|x_{1}(\tau)\right\|+\left\|z_{1}(\tau)-z_{2}(\tau)\right\|\right) d \tau \\
\leq & L_{\Delta_{z}}\|x\|+\frac{2}{c_{3}} \sqrt{\frac{c_{2}}{c_{1}}} L_{q} L_{\Delta_{X}}\|x\| \\
& \quad+\int_{0}^{t} L_{q}\left(\left\|z_{1}(\tau)-z_{2}(\tau)\right\|\right) d \tau
\end{aligned}
$$

where (50) has been substituted, integrated, and bounded. Hence, by the Gronwall-Bellman inequality,

$$
\begin{equation*}
\left\|z_{1}(t)-z_{2}(t)\right\| \leq\left(L_{\Delta_{Z}}+\frac{2}{c_{3}} \sqrt{\frac{c_{2}}{c_{1}}} L_{q} L_{\Delta_{X}}\right)\|x\| e^{L_{q} t} \tag{51}
\end{equation*}
$$

and therefore $\left\|\mu_{2}\right\| \leq C_{1} e^{1.1 L_{q} T^{*}}\|x\|$, where C_{1} is the term in parentheses in (51). The proof of (44) is then completed by substituting the bounds for $\left\|\mu_{1}\right\|$ and $\left\|\mu_{2}\right\|$ into (46) and grouping terms.

To establish (45), we first define

$$
C_{2}=\max _{.9 T^{*} \leq t \leq 1.1 T^{*}}\left\|q\left(0, z_{2}(t)\right)\right\| .
$$

It then follows from (44), (47) and (51) that

$$
\begin{aligned}
&\left\|P_{z}^{\varepsilon}(x, z)-\rho(z)\right\| \\
& \leq\left\|z_{1}(0)-z_{2}(0)\right\| \\
&+\int_{0}^{T_{I}^{\varepsilon}(x, z)}\left\|q\left(x_{1}(\tau), z_{1}(\tau)\right)-q\left(0, z_{2}(\tau)\right)\right\| d \tau \\
&+\left|\int_{T_{I}^{\varepsilon}(x, z)}^{T_{\rho}(z)}\left\|q\left(0, z_{2}(\tau)\right)\right\| d \tau\right| \\
& \leq\left(C_{1} e^{1.1 L_{q} T^{*}}+C_{2} L_{T_{I}}\right)\|x\|
\end{aligned}
$$

which establishes (45).

We now have the necessary framework in which to prove Theorem 1.

Proof: [of Theorem 1] The results of Lemma 1 and the exponential stability of \mathscr{O}_{Z} imply that there exists a $\delta>0$ such that $\rho: B_{\delta}(0) \cap(S \cap Z) \rightarrow B_{\delta}(0) \cap(S \cap Z) \rightarrow$ is well-defined for all $z \in B_{\delta}(0) \cap(S \cap Z)$ and $z_{k+1}=\rho\left(z_{k}\right)$ is (locally) exponentially stable, i.e., $\left\|z_{k}\right\| \leq N \alpha^{k}\left\|z_{0}\right\|$ for some $N>0,0<\alpha<1$ and all $k \geq 0$. Therefore, by the converse Lyapunov theorem for discrete-time systems, there exists a Lyapunov function V_{ρ}, defined on $B_{\delta}(0) \cap(S \cap Z)$ for some $\delta>0$ (possibly smaller than the previously defined δ), and positive constants $r_{1}, r_{2}, r_{3}, r_{4}$ satisfying

$$
\begin{gather*}
r_{1}\|z\|^{2} \leq V_{\rho}(z) \leq r_{2}\|z\|^{2} \\
V_{\rho}(\rho(z))-V_{\rho}(z) \leq-r_{3}\|z\|^{2} \tag{52}\\
\left|V_{\rho}(z)-V_{\rho}\left(z^{\prime}\right)\right| \leq r_{4}\left\|z-z^{\prime}\right\|\left(\|z\|+\left\|z^{\prime}\right\|\right)
\end{gather*}
$$

For the RES-CLF V_{ε}, denote its restriction to the switching surface S by $V_{\varepsilon, X}=\left.V_{\varepsilon}\right|_{S}$. With these two Lyapunov functions (motivated by the construction from [16] for singularly perturbed systems) we define the following candidate Lyapunov function

$$
\bar{V}_{\varepsilon}(x, z)=V_{\rho}(z)+\sigma V_{\varepsilon, X}(x)
$$

defined on $B_{\delta}(0,0) \subset S$, where $\sigma>0$ is any constant such that $\sigma>\bar{\sigma}>0$. (We will define $\bar{\sigma}$ explicitly later.) By (32) and (52), it is clear that

$$
\min \left\{\sigma c_{1}, r_{1}\right\}\|(x, z)\|^{2} \leq \bar{V}_{\varepsilon}(x, z) \leq \max \left\{\sigma \frac{c_{2}}{\varepsilon^{2}}, r_{2}\right\}\|(x, z)\|^{2}
$$

Noting that $\|(x, z)\|^{2}=\|x\|^{2}+\|z\|^{2}+2\|x\|\|z\| \geq\|x\|^{2}+\|z\|^{2}$, we therefore need to establish that

$$
\begin{equation*}
\bar{V}_{\varepsilon}\left(P^{\varepsilon}(x, z)\right)-\bar{V}_{\varepsilon}(x, z) \leq-\kappa\left(\|x\|^{2}+\|z\|^{2}\right) \tag{53}
\end{equation*}
$$

for some $\kappa>0$. Since $P^{\varepsilon}(x, z) \in S \subset X \times Z$, denote the X and Z components of P^{ε} by $P_{x}^{\varepsilon}(x, z)$ and $P_{z}^{\varepsilon}(x, z)$, respectively. With this notation,

$$
\begin{align*}
\bar{V}_{\varepsilon}\left(P^{\varepsilon}(x, z)\right)-\bar{V}_{\varepsilon}(x, z) & =V_{\rho}\left(P_{z}^{\varepsilon}(x, z)\right)-V_{\rho}(z) \\
& +\sigma\left(V_{\varepsilon, X}\left(P_{x}^{\varepsilon}(x, z)\right)-V_{\varepsilon, X}(x)\right) \tag{54}
\end{align*}
$$

We begin by noting that, because V_{ε} is a RES-CLF and $u(x, z) \in K_{\varepsilon}(x, z)$, and since $P_{x}^{\varepsilon}(x, z)=\left(\phi_{T_{I}^{\varepsilon}(x, z)}^{\varepsilon}(\Delta(x, z))\right)_{x}$, it follows that

$$
\begin{align*}
V_{\varepsilon, X}\left(P_{x}^{\varepsilon}(x, z)\right) & \leq \frac{c_{2}}{\varepsilon^{2}} e^{-\frac{c_{3}}{\varepsilon} T_{I}^{\varepsilon}(x, z)}\left\|\Delta_{X}(x, z)\right\|^{2} \\
& \leq \frac{c_{2}}{\varepsilon^{2}} L_{\Delta_{X}}^{2} e^{-\frac{c_{3}}{\varepsilon} T_{I}^{\varepsilon}(x, z)}\|x\|^{2} \tag{55}
\end{align*}
$$

where the last inequality follows from the fact that $\Delta_{X}(0, z)=$ 0 and therefore

$$
\left\|\Delta_{X}(x, z)\right\|^{2}=\left\|\Delta_{X}(x, z)-\Delta_{X}(0, z)\right\|^{2} \leq L_{\Delta_{X}}^{2}\|x\|^{2}
$$

with $L_{\Delta_{X}}$ the Lipschitz constant for Δ_{X}. Defining $\beta_{1}(\varepsilon)=$ $\frac{c_{2}}{\varepsilon^{2}} L_{\Delta_{X}}^{2} e^{-\frac{c_{3}}{\varepsilon} .9 T^{*}}$ (with T^{*} defined as in the proof of Lemma 1), we have established that

$$
\begin{equation*}
\sigma\left(V_{\varepsilon, X}\left(P_{x}^{\varepsilon}(x, z)\right)-V_{\varepsilon, X}(x)\right) \leq \sigma\left(\beta_{1}(\varepsilon)-c_{1}\right)\|x\|^{2} \tag{56}
\end{equation*}
$$

where, clearly, $\beta_{1}\left(0^{+}\right):=\lim _{\mathcal{E} \backslash 0} \beta_{1}(\varepsilon)=0$.

As a result of Lemma 1 and the assumption that the origin is an exponentially stable equilibrium for $z_{k+1}=\rho\left(z_{k}\right)$, we have the following inequalities:
$\left\|P_{z}^{\varepsilon}(x, z)-\rho(z)\right\| \leq A_{1}\|x\|$,
$\left\|P_{z}^{\varepsilon}(x, z)\right\|=\left\|P_{z}^{\varepsilon}(x, z)-\rho(z)+\rho(z)-\rho(0)\right\| \leq A_{1}\|x\|+L_{\rho}\|z\|$, $\|\rho(z)\| \leq N \alpha\|z\|$,
where L_{ρ} is the Lipschitz constant for ρ. Thus, using (52),
$V_{\rho}\left(P_{z}^{\varepsilon}(x, z)\right)-V_{\rho}(\rho(z)) \leq r_{4} A_{1}^{2}\|x\|^{2}+r_{4} A_{1}\left(L_{\rho}+N \alpha\right)\|x\|\|z\|$.
Setting $\beta_{2}=r_{4} A_{1}^{2}$ and $\beta_{3}=r_{4} A_{1}\left(L_{\rho}+N \alpha\right)$ for notational simplicity, it follows that

$$
\begin{align*}
V_{\rho}\left(P_{z}^{\varepsilon}(x, z)\right) & -V_{\rho}(z) \\
& =V_{\rho}\left(P_{z}^{\varepsilon}(x, z)\right)-V_{\rho}(\rho(z))+V_{\rho}(\rho(z))-V_{\rho}(z) \\
& \leq \beta_{2}\|x\|^{2}+\beta_{3}\|x\|\|z\|-r_{3}\|z\|^{2} . \tag{57}
\end{align*}
$$

Therefore, combining (54), (56), and (57), we have

$$
\begin{aligned}
\bar{V}_{\varepsilon}\left(P^{\varepsilon}(x, z)\right)-\bar{V}_{\varepsilon}(x, z) \leq & \left(\beta_{2}+\sigma\left(\beta_{1}(\varepsilon)-c_{1}\right)\right)\|x\|^{2} \\
& +\beta_{3}\|x\|\|z\|-r_{3}\|z\|^{2} \\
= & -[\|z\| \quad\|x\|] \Lambda(\varepsilon)\left[\begin{array}{l}
\|z\| \\
\|x\|
\end{array}\right]
\end{aligned}
$$

with

$$
\Lambda(\varepsilon)=\left[\begin{array}{cc}
r_{3} & -\frac{1}{2} \beta_{3} \\
-\frac{1}{2} \beta_{3} & \sigma\left(c_{1}-\beta_{1}(\varepsilon)\right)-\beta_{2}
\end{array}\right] .
$$

Therefore, the goal is to find $\sigma>0$ such that for $\varepsilon>0$ sufficiently small, $\Lambda(\varepsilon)$ is positive definite or, more specifically, $\operatorname{det}(\Lambda(\varepsilon))>0$. With this in mind, consider

$$
\lim _{\varepsilon \searrow 0} \operatorname{det}(\Lambda(\varepsilon))=-\frac{\beta_{3}^{2}}{4}-\beta_{2} r_{3}+\sigma c_{1} r_{3}
$$

Therefore, pick

$$
\sigma>\frac{\beta_{3}^{2}+4 \beta_{2} r_{3}}{4 c_{1} r_{3}}=: \bar{\sigma}
$$

wherein by the continuity of $\Lambda(\varepsilon)$ with respect to ε, there exists an $\bar{\varepsilon}>0$ such that for all $0<\varepsilon<\bar{\varepsilon}, \operatorname{det}(\Lambda(\varepsilon))>$ 0 . Therefore (53) is satisfied with $\kappa=\lambda_{\max }(\Lambda(\varepsilon))$, the largest eigenvalue of $\Lambda(\varepsilon)$, and we have established the local exponential stability of \mathscr{O}.

