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Abstract— Provably asymptotically-stable running-gaits are constraints, plus an event-based action that lands thet robo
developed for the five-link, four-actuator bipedal robot, RABBIT. in a pre-determined configuration and with a velocity that
A controller is designed so that the Poincae retum map jies in g pre-determined direction; see Section V. The dese

associated with the running gait can be computed on the basis L S . .
of a model with impulse-effects that, previously, had been used loop behavior is studied in Section VI, where the existence

only for the design of walking gaits. This feedback design leads to @nd stability of periodic orbits are proved. Simulationg ar
the notion of a hybrid zero dynamics (HZD) for running and to  provided in Section VII.

the closed-form computation of the Poincae return map on the

zero dynamics. The main theorem is illustrated via simulation. Il. RELATED WORK

Animations of the obtained running motion are available on the

web In the early 1980’s, Raibert proposed an elegant concep-

tualization of running in terms of a one-legged, prismatic-
I. INTRODUCTION kneed hopper [25, 26]. He decomposed his control actiows int
This paper addresses the design and analysis of asyriijjee parts—hopping height, foot touchdown angle, and body
totically stable running gaits for RABBIT, a five-link, four posture—and emphasized the role of symmetry in designing
actuator, planar, revolute-jointed, bipedal robot [4]alseries Stable running motions. The remarkable success of Rabert’
of papers, the authors and colleagues have developed rf@ptrol law motivated others to analytically characteritse
feedback control strategies [3,6,12,24,32,33] that aehiestability [2,10, 19] with the method of Poin@rand to further
provably asymptotically-stable walking gaits in undewact investigate the role of passive elements in achieving effici
ated bipeds, such as RABBIT, and demonstrated many fgnning with a hopper [1]. Raibert's control scheme has been
them experimentally [30,31]. In regards to running, operdugmented with leg-coordination logic to achieve running i
loop trajectories have been studied in [5,7]. An objectife @rismatic-kneed bipeds and quadrupeds [15, 25].
this paper is to develop #me-invariant feedback controller In late 2003, both Iguana Robotics and Sony announced
that realizes these open-loop running trajectorieprasably (Separate) experimental demonstrations of running foedap
asymptotically-stable orbitsvery roughly speaking, the con- robots with revolute knees, and in early 2004, running was
troller will be “clocked” to events on a periodic orbit andgannounced for another humanoid robot, HRP-2LR [18]. The
not to time. Hence, when perturbed away from the orbit, ttigaders are invited to seek videos of these robots on the web.
robot’s links regain “synchrony” with respect to the rolsot’ The controller of the Sony robot is based on the ZMP, that
position on the orbit and not with respect to time. In thigf Iguana Robotics is based on central pattern generators
sense, the work here is philosophically similar to [2, 10, 1¢CPGs), and HRP-2LR uses “resolved momentum”. To our
21,25, 26, 28] and diametrically opposed to most other woliest knowledge, only two other bipeds with revolute knees
in the legged-locomotion literature. have been designed to perform running—Johnnie in Munich
The robot model is described for each distinct phase Bf7,23] and RABBIT in Grenoble [4,27]—and running has
a running gait in Section Ill. The transition from the stancgot yet been attempted on either robot.
phase to the flight phase is modeled as a control decision
involving a torque discontinuity at the joints. The traisit .
from the flight phase to the stance phase is modeled a®aThe biped
rigid impact. A hybrid model that integrates these phases isThe studied bipedal robot evolves in the sagittal plane with
given in Section IV. During the stance phase, the control isspect to a flat surface; see Fig. 1. The flat surface will
based on virtual constraints [33], which create a one degree referred to as the ground. The robot is composed of five
of freedom invariant sub-dynamics, called zero dynamigs. tigid links with mass, connected through ideal (i.e., rigiad
the flight phase, the control action is comprised of virtudtictionless) revolute joints to form a torso and two ideati

IIl. M ECHANICAL MODEL OF A BIPED RUNNER



Introducing the state vectar; := (g;, ¢;), the Lagrangian
model (1) is easily expressed as

i = fr(zr) + ge(ze)u. (4)

The state space is taken @ := {x := (¢f,4;) | ¢ €
9, ¢ € IR"}, where the configuration spag is a simply-
connected, open subset @7 corresponding to physically
reasonable configurations of the robot.

C. Lagrangian model for stance

(@) (b) ©) For the stance phase, the generali'zed coordinates can be
taken asy := (¢1,,95)" = (q1,--- ,¢5)". Since the robot's legs
Fig. 1. Different phases of running with coordinate coniemt labeled. are identical, in the stance phase, it will be assumed withou
The robot is shown (a) at the end of the stance phase; (b)glliight; and |gss of generality that leg-1 is in contact with the ground.
(c) at the beginning of the stance phase just after impact.véad eclutter, Moreover, the Cartesian position of the stance Ieg end will b

the coordinate conventions have been spread out over thke siopport and - . .
flight phases even though they apply to all three phasesliegresented in identified with the origin of the world frame.

bold. All angles are positive in the clockwise direction. The position of the center of mass can be expressed in terms
. : af ¢ per

legs, with each leg articulated by a knee. Each leg end |sq P Zom(q)

terminated in a point so that, in particular, the robot does n [ Yorm (q) } = fi(q), (5)

have feet.

The robot is said to be iflight phasewhen there is no where f; is determined from the robot’s geometric parameters
contact with the ground, and istance phasavhen one leg (link lengths, masses, positions of the centers of massjcéle

end is in stationary contact with the ground (that is, the leg Isys

end is acting as an ideal pivot) and the other leg is free. For Gt [ of ] q (6)

the stance phase, the leg in contact with the ground is called Bq

the stance legand the other leg is thewing leg The method of Lagrange results in

B. Lagrangian model for flight Ds(qv)d + Cs(qv, )¢ + Gs(q) = Bsu, )]
A convenient choice of configuration variables is depicteghere

in Fig. 1. The vector of body coordinateg consisting of df1(q)" 9f1(q)

the relative anglesqi, q2, g3, ¢1) describes the shape of the Ds(qn) = Algn) + ma—q o (8)

biped. The biped’s absolute orientation with respect to the

world frame is given byys. The biped’'s absolute position isand Lixs

specified by the Cartesian coordinates of the center of mass, Bsu = { 0 ] ©)

(Zem, Yem )- The vector of generalized coordinates is denoted o o ) )
asqr = (¢}, 45, Toms Yorm)' Because the kinetic energy is invariant under rotationshef t
A b b cm»s Jcm .

A dynamic model, body, Dy d_epends only omy,. . _
Introducing the state vectar; := (¢/,¢’), the Lagrangian
D¢(gv)Gs + Ct(gv, 4¢)gr + Ge(gr) = Byu, (1) model (7) is easily expressed as

is easily obtained with the method of Lagrange whBsds the &g = fo(s) + gs(xs)u. (10)
inertia matrix, the matri>xC; contains Coriolis and centrifugal
terms, andG; is the gravity vector. In these coordinates, th
inertia matrix has the special form

The state space is taken &% := {zs := (¢,¢') | q €
QQS, ¢ € IR%}, where the configuration spagg, is a simply-
connected, open subset @° corresponding to physically
D — [ Algy)  Osx2 } @ reasonable configurations.

O2x5  mlax2 D. The impact model

wherem is the total mass of the robot antidepends only on  The Cartesian position of the end of leg-2 can be expressed
qv, because the total kinetic energy is invariant under ratatiojn terms of the Cartesian position of the center of mass and
and tranS|ati0nS Of the body The principle Of Virtual Worlfhe robot’s angu'ar Coordinates as

yields that the external torques are
x Tem
= ] - ), v

y2 yC m

where f, is determined from the robot’s parameters (links
wherew is the vector of actuator torques applied at the fodengths, masses, positions of the centers of mass); see (5).
joints of the robot. When leg-2 touches the ground at the end of a flight phase,

Bru = [ Lixa ]u, 3)
034



an impact takes place. The impact model of [16] is used, which IV. HYBRID MODEL OF RUNNING
represents the ground reaction forces at impact as impulsesrhe overall biped robot model can be expressed as a

The impact is assumed inelastic, with the velocity of thgonlinear hybrid system containing two state manifoldéiéda
contact leg end becoming zero instantaneously; furtheemofcharts” in [13]):

after impact, the contact leg end is assumed to act as an ideal

pivot. This model yields that the robot's configuratign is A= T
unchanged during impact, and there are instantaneous ebang g ) Fiid = fe(@e) + ge(@e)u
in the velocities. The velocity vectors just before and afsér £ S; = {xr e TQs¢ | Hi(xs) =0}
impact, are denoted, , ¢~ andg;", ¢ respectively. Tear = Al(ap)
The robot’s vector of angular velocities just after impagt i ° f (18)
T 0ROR] T (0 i, % = 1o,
¢ = dq Oq 1 g | Yem |) o Fsids = [o(ws) + gs(as)u
. o (12) St = {z2,€TQ | Hi(x,) =0}
which, for later use, is written as T xf NG
gt = Algr,dp) (13) where, for exampleZ; is the flow on state manifolct;, S7
is the switching hyper-surface for transitions betweégnand
E. Some linear and angular momentum relationships Xs, TP+ S§ — A is the transition function applied when
A few linear and angular momentum properties of théf £ St

The transition from flight phase to stance phase occurs
when leg-2 impacts the ground. Hendé; (z;) = y»; recall
(11). The ensuing initial value of the stance phase,

is determined from the impact model of Section IlI-D. A
relabeling matrixR is applied to the angular coordinates to
account for the impact occurring on leg-2 while the stance

mechanical models are noted. Let, denote the angular
momentum of the biped about itenter of massin the flight
phase,c., can be computed by, = B—I.if = Asq, where
As is the fifth row of A. The model (1) yields conservation
of angular momentum

Fa— (14) model assumes leg-1 is in contact with the ground:
Rq~™
and in addition, Af(zy) = ~ , (29)
RA(zy)
Fem =0 and Jem = —g, (15)  where (13) has been used.

The transition from stance phase to flight phase can be

which correspond to the linear momentum balance theorenisiated by causing the acceleration of the stance leg end
Leto; denote the angular momentum of the biped alibet 5 pecome positive. If torque discontinuitleare allowed—
end of legt, for i = 1,2. The three momenta are related by 55 they are assumed to be in this paper—when to transition
. . into the flight phase becomes a control decision. Here, W vie
01 = Oem + 1 (Yo = Yi)Tem — (Tem = 2i)Jem) - (18) ot simplifying the analysis of periodic orbits in Section, e
- oK. _transition is assumed to occur at a fixed point in the stance
For the stance phase; can de determined by, = 5; phase. Hence’{: — 0.(q)—6-, wheref.(q) :zp%+qz+q5 i

Ds 5, where Ds 5 is the fifth row of Ds. The impact ?Flodel ; le of the hi it it d of the st |
of [16] yields conservation of angular momentum about t €angie o 76.‘ Ips with respect o end of the stance leg .(SGG
ig. 1) andé; is a constant to be determined. The ensuing

impact point, the end of leg-2, meaning the valuecefis . 2. . T : ;

unchanged during the impact. Since the stance phase deﬁ\a_' V"?"”? of the ﬂ'ght phases, S defmgd S0 as tp achieve
c ptlnwty in the position and velocity variables, using &d
&

assumes that the stance leg is leg-1, the conservation
momentum relation is best expressed as

q_
s+ _  f— { fl (q_)
L= 4 A= | (. | (20)
to reflect the swapping of the roles of the legs; see (19). { %fl(qﬂ ‘—
Remark 1: The notations+ emphasizes that; is being a4

evaluated at thbeginning of the stance phaaad the notation Continuity of the torques is not imposed, and hence neither i
f— emphasizes that, is being evaluated at thend of the continuity of the accelerations. It is assumed that the robnt
flight phase If no confusion is possible, the notatignand— law in the flight phase will be designed to achiejg > 0;
will be used. For examplesi~ would be redundant becausesee [5].

the subscript already indicates the stance phase. On tee oth

hand, for a variable such as,,,, it is important to distinguish ,.ator dynamics. It is assumed here that the actuator tinstartris small
amongzst, x5-, ft andaxl . enough that it need not be modeled.

cm? cm? cm?

1This is a modeling decision. In practice, the torque is camtirs due to



V. CONTROL LAW DEVELOPMENT From [33, Eq. (59)], (27) has Lagrangi@)c.o := Kero —

A. Stance phase control Viero, Where

As in [33, Sec. V], define the output Kyero = =(01)? (30)

Ys = hs(q) == qv — ha,s © 0s(q) (21)

on (7), where the twice continuously differentiable fuoaoti
has : IR — IR* encodes the stance-phase gait. It is assumedd the choice of the lower limit is arbitrary. Consequently,

O
Vi) = — / [(©)mgren(©)de (31)

+
s

that the associated decoupling matrix is invertilile(¢) := the generalized total energy,cro + Vyero iS cOnserved in the
[h.,6]" is a diffeomorphism, stance phase zero dynamics. For later use, define
Zs:={xs € TQs | hs(xs) =0, Ly hs(zs) =0} (22) { Az(q57) } :: afl(qgf)qs, (32)
Ay(g57) g 07

is an embedded two-dimensional submanifold7a®,, and,
SfnZ, is an embedded one-dimensional submanifol@gf,. so that

The feedback control is chosen to be continuous and to “TZ@ } = [ )‘m(qz):) ]UT_- (33)
renderZ, invariant under the closed-loop dynamics as well as Yem SiNZ, Aylag )
attractive in finite-time (the exact hypotheses are CH2—CI—I55 .
. Flight phase control

in [33, IV.C]):
The overall goal of the flight-phase controller is to land the
Uug(zs) = (Lg Ly, hs(25)) " (v(hs(xs), Ly hs(s)) robot in a favorable manner for continuing with the stance
_ Lf[ hs(:rs)), (23) phase. It will turn out that a particularly interesting adijee
° is the following: if the robot enters the flight phase from the
wherew renders the origin ofj; = v globally asymptotically stance-phase zero dynamics manifolfl, control the robot
stable with finite-convergence time. The closed-loop syste so that it lands orZ in a fixed configuration. The analytical

denoted motivation for this objective is that it allows the duratiohthe
fars(ms) i= fo(@s) + gs(ws)us(zs). (24) flight phase to be determined from the state of the robot at the
end of the stance phase, which in turn allows the deternoinati
The feedback control of the evolution of the uncontrollable variables in (14) and

. _ (15), and ultimately, the state of the robot at the beginmihg
ui(ws) = —(Lg, L. hs ()~ L} ho(s) @5 the ensuing stance phase. The feasibility of landing in alfixe
rendersZ, invariant under the stance-phase dynamics; that fonfiguration will be illustrated in Section VI with a feeaitk
for everyz € Z, controller that depends ary and the final value of the state
of the preceding stance phase. To realize such a contraler a
Jrero(2) = fs(2) + gs(2)ug (2) € T. Zs. (26) a state-variable feedback, the flight-state vector is angede
) ) ) ) with dummy variablesg¢ = 0, whose value can be set at the
Zs is cal!ed thestance-phase zero dynamics ma_nlfahﬂz_ = transition from stance to flight. Let; € A := IR?, p > 1.
frero(2) s called thestance-phase zero dynamiéllowing | gther regards, paralleling the development of the stance
the dgvelopment in [_4, 33](bs, 01) is a valid set of Iocal_ phase controller, define the output
coordinates foZ; and in these coordinates the zero dynamics

has the form 1 yr = he(ge, ar) == g — ha,t(Tem, ar), (34)
b = I(6y) o (27) Whereh,; is at least twice differentiable. Then the following

can be easily shown: for any value &f,

61 = mgrem(bs), : _ _ :
1) the decoupling matrixL, Ly hs, is everywhere invert-
where I(6;) plays the role of an inertia. Moreover, in these ible:
coordinatesSt N Z; is given by 2) ®; := [}, 5, Tem, Yem| 1S @ global diffeomorphism on
ey s _ Sy s s s s Or;
s S S . 1 S— __ S s s
{7 ) g =2,7(0,67), ¢ =gy o7, o] € g%’) 3) the flight-phase zero-dynamics manifold,
where o Zy := {xs € TOs | he(we, ag) =0, Ly he(xs, ar) = 0},
s— % 04)(1 . (29) (35)
o 5 o 1 ’ is a six-dimensional embedded submanifoldZads;
= 4) S§NZ; is a five-dimensional embedded submanifold of

in other words, on the zero dynamics, the robot transitions  T'Qy;
from stance to flight from a known configuration and with a 5) (g5, Zems Yem, Oem, Lem, Yem) 1S @ Set of global coordi-
velocity proportional tog;™ . nates forZ;; and



6) the flight-phase zero dynamics is given by (14), (15) awdhere ¢ 5(t, zo) is an integral curve of (24) corresponding
t0 @1 5(0, x0) = xo. From [12, Lemma 3]} ¢ is continuous

G5 = K1,£(Tem; Tem, Tem, ar) (36) 4t pointszy where0 < Ty 4(z9) < oo and the intersection
where (36) arises from evaluating with S{ is transversal. HenceX; := {z; € & | 0 <
A Trs(zs) < oo and Ly, Hi(pes(Trs(xs),zs)) # 0} is
. _Oem Asi(q) . 37) open and consequentlyg? := A} ~'(X;) is an open subset
o Ass(p) = A55(qb)% of S¢. It follows that thegeneralized Poincd stance map
B P, : S§ — S! defined by
on Z;. )
The feedback controller is defined as Py(w1) := pas(T1s(Af (1)), Af (1)), (42)
— ([ L. -1 is well'-defined. and continuous (the' terminology of a
ur(ze, ar) (Lge L gihi (e, ar) ( phi(e, ar) generalized-Poincd mapfollows Appendix D of [22]).

P;: Sf — S3, is defined by
where §r + Kq9¢ + Kpys = 0 is exponentially stable. Let ¢ ¢ ¢ ¢
T = (2},a})" and denote the right-hand side of (4) and thett (@) = @ere (Tre (Ag(@s), wi(25)), Ag(s), wy(ws)). (43)

+ KaL g he(xs, ar) +L?cfhf(xf,af)), (38) In analogous fashion, thgeneralized Poincd flight map

dummy variablsi¢ = 0 in closed loop with (38) by In [22, Appendix D], it is proved thatP; is continuously
- differentiable. ThePoinca® return mapP : Sf — Sf for
_ xg) + Te)us(T s s
fore(Te) = [ (J;f( £) + ge(@e)ur (@) ] (39) (40) is defined by

P:=P,0F;. (44)
C. Closed-loop hybrid model

The closed-loop hybrid model is B. Analysis of the Poincérreturn map

Theorem 1 (Connecting running to walking): Let P be

X = TQrxA the Poincag return map defined in (44) for the hyrbid running
5 Fagf: 2 = fcu(if) model in (40).P is also the Poincérreturn map for the system
£ S8 = {(xf,ar) € X | Hi(2¢) = 0} with impulse effects
Te ot = ANzy) = ANay) { B(t) = fas(@(t) = ()¢S
s Ya SV _ 45
(40) P\t = Al@) aes, @O
X = T whereS := S and A := Ajo P;.
) Fas:ds = fas(zs) The proof follows immediately from the construction of the
Us St = {a,eTQ, | Hi(zs) =0} Poincaé return map in [12, Eqg. (14)]. The first row of (45) is
Ttiat = Afar), af = wi(as) the closed-loop stance phase dynamics while the last litheis
s b T Tsls o T s ls integration of the closed-loop flight phase dynamics coragdos
wherew! is at least continuously differentiable. with the impact map. This result is important because models

of the form (45) have been studied in the context of walking
gaits. Under certain conditions on the impact map, powerful

The Poinca@ return map is a well known tool for de-analysis and feedback design tools have been developed for
termining the existence of periodic orbits and their stgbil this class of models [32,33], and the viability of the feed-
properties; for its use in hybrid systems, see [9, 12, 14, 2@jack designs has been confirmed experimentally [30, 31]. The
This section first defines the Poinéasection and the Poindar identification of running with walking indicates how certai
return map that will be used for analyzing periodic orbitgesults developed for walking may be extended to running.
of (40). Analytical results are then developed that allow k this section and the next, several results along this dine
practical means for characterizing stability of certainning reasoning are developed and illustrated on an asymptgtical
gaits. stable running gait.

Suppose thah : SNZ; — Z,, whereZ; is the stance-phase
zero dynamics manifold. Then, from [33], (45) has a hybrid
Following [12], define thestance-time-to-impact functién zero dynamics, which may be called thgbrid zero dynamics

VI. EXISTENCE AND STABILITY OF PERIODIC ORBITS

A. Definition of the Poincdr return map

Tr:TQs — IRU {0}, by of running

1nf{t > 0|§0C175(t,x0) € Si} if 3¢ such that z = fzero(z) - ¢ SN Zs (46)
Trs = @cl,s(t7$0) S S§ zt = AZero(zi) 27 € SN Zs,

o0 otherwise, 41) where the restricted impact map 8,cro = Alg,, and

fzero 1S given by (26). The key properties in walking gaits

2Flows from one surface to another are sometimes called impac$ orap that led to a rich analytic theory We@ﬁ"nva”ance A :_S_ﬂ
functions. Tt could also be called théme-to-flight function Zs — Zs, and what one may catfonfiguration determinism



mo A(S N Z) consists of a single point, where: TQ; —  stable periodic orbits of the hybrid model (45), and henoe, t
Q, is the canonical projection. asymptotically stable running gaits.

Let ¢~ be as defined in (28) and defing™ = w o Theorem 3 (Closed-form for p): Suppose thatA(S N
A(gS™,#). Use (5) to define the positions of the center ofs) C Z; andmoA(SNZs) = {g5t}. Let (65 ,057) € SNZ,
mass at the beginning of the stance phdsé/,y5h), and and set( := (o} )2. Then

the end of the stance phades,, 5. ). In the following, it _ B -
is assumed that the center of mass is behind the stance leg at P(E) = 0e(6) = Vaero(05), (®3)
the beginning of the stance phase, and thus, < 0. with domain of definition

Theorem 2 (Restricted impact map characterization): D, = {¢ >0 6.(¢) — V2 > 0,2a¢ + (26¢)2 > 0},
Suppose that\ : SN Z; — Z; andmo A(SN Zs) = {¢5T}. T (54)

In the coordinategt;, o7~ ) for SN Z;, the restricted impact \yhere s, is defined in (50), and
map is given by

VieeX:= max  Vgero(6s). (55)
o e oF 03 <0.<65
Agero (0 ’gi )= S ) (47) . . . L,
d(o57) Moreover, the first derivative of the restricted Poircagturn
where map 1S
s d do. a+ 432
05 = bs(a") (48) d_Z(C) & Q) =K*+p% - ﬁiéw (56)
6(c17) = xoi —y/(Bo1 )* +q, The proof is given in [8]. The following corollary is
and immediate.
o sinas st s Corollary 1 (Exponentially stable fixed points):
a=—=2m"g(x5n) " (Yom — Yom) Suppose that* € D, is a fixed point of p. Then it is
B =mait A\, (¢57) (49) exponentially stable if, and only if,
= 1+ magAy(gy ) +m(Yem — Yem)Aa (95 )- a+ 46%¢*
The proof is g|ven |n [8]. pi=(* +6%) - 20C* + (2B(*)2
Remark 2:
1) Whena = 0, that is, the center of mass has the sanie atISfIES|,LL| <l
height at the beginning and end of the stance phase, VII. I LLUSTRATION ON RABBIT
6(o77) = (x — [Bl)o7™ is linear, exactly as in walking.  Using the method proposed in [5], a time-trajectory of (18),
2) In terms of the coordmate(sﬁs ,¢ == 3(07)?), where corresponding to an average running speetl on/s, was de-

the (generalized) kinetic energy of the stance- phase zgspmined for RABBIT (see [4] for details on the planar, biped
dynamics is used instead of the angular momentum, thghot, RABBIT). A stick-figure diagram corresponding to the
second entry in (47) becomes running motion is given in [29]. Denote by the path traced
@ out by this trajectory in the state spaces of the hybrid model

8.(¢) = (xX* + 5%)¢ — xv/2a¢ + (26¢)? + 3 0 ot the robot.o intersectsS! and S; exactly once each; define
rf = ONS; andxl = O N SL The objective is to design
a time-invariant state-feedback controlkeda Section V that
has O as its asymptotically-stable periodic orbit. Recall that
designing the controller is equivalent to specifying thépot
functions in (21) and (34) and the parameter update-law in

3) Implicit in the construction of5 := Sg is the condition
2a¢ + (26¢)? > 0. Also a part of the construction of
S is the condition thafl; ¢ is a positive real number;
under the assumptions made @n this is equivalent
to checking thats! > 5, and \,(¢;") < 0 do not

simultaneously occur. In this case, the flight tinde, (40).
can be computed as A. Stance Phase Controller Design
g o - On the stance phase of the running trajectaky,varies
Yem \/(ycm) — 29(yem — yem) betweend; = 1.2758 rad andd; = 1.8849 rad. As in [24],

tr="g T g ’ (51) an outputys = hs(q) := ¢q» — has o 05(q) is designed so
Let P : S — & be the Poincar fetur map for (45), and that it vanishes (nearly) along the stance phase of thedierio
hence, also for (40), and suppose that SN Z; — Zs. Then orbit, and thus the orbit will correspond (approximately)n
P 5NZ; — SN Z. Define the restricted Poindareturn jntegral curve of the stance-phase zero dynamics. Forttfgs,
mapp: SNZs— SNZ by function h, s was selected to be a fourth-order polynomial
pi= P . (52) in 0. The design method in [5] that is used to compute
SNZs the periodic orbit essentially guarantees that the teahnic
The restricted Poincarreturn map is important for at leastconditions of Section V are satisfied fag; nevertheless, the
two reasons: a) it is scalar; and b), under the control laws ofnditions are formally verified. Oncé, is known, so is
Section V, by [12, Theorem 2] (see [33, Sec. 1V]), asympZ,, and, by construction® N TQ, C Z,. Define Sinit =
totically stable fixed points of it correspond to asymptalfic  {(q, ¢) | 6s(q) = 65 }.



B. Stability of the periodic orbits the real-valued function varies betweerd and 1 and. can be
The data required to determine the restricted Poincaap Used to parameterize trajectories frafm Zs to S N Z

p in Theorem 3 can be computed directly frama This was N & neighborhood of the periodic orbit. Choose a function

done and yieldedy = 27.3270, 3 = —0.0129, y = 0.9549, fen(ar,---,as): [0,1] — IR* such that

andV,.,, = —257.68. Computingp results in(* = 801.5 and fen(ay, -+ ,a5)(0) = a
© = 0.7855. Sincey < 1, if a flight-phase controller can be dfen
determined to meet the conditions of Theorem 3, the orblt wil dr (a1, ,05)(0) = ap (64)
be asymptotically stable. A plot of the restricted Poigcarap fen(ay, -+ ,a5)(1) = as
is provided in [29]. i

. : o (ar, - a5)(1) = ag,
C. Flight Phase Controller Design ) i

and there exist}, - -- ,a} for which g, — fen(aj, - -+, af)(7)

The flight phase controllerys = h¢(gr,af) = qp —
hat(Tem,ag), af = wi(x7), is to be designed so that(S N
Zs) C Zs and 7o A(S N Zs) is a single point. These two

(nearly) vanishes orQ. Here, this was accomplished with
a fourth order polynomial. Off of the orbit, use (64) to

dit il hold if. and onlv if solve foraq,---,a4 as functions ofs}~ so thatg,(r) =
conditions will hold if, and only if, fen(ag, -+, as5)(7) satisfies the constraints on the body coor-
A(SNZ,) C Z,n S, (57) dinates imposed by (62). Specifically, sat= (g5 )s, a3 =
—1 s+ _ 1 (s— s— _ 1 (= s+ S—
Analogously to (28) and (29)7, N Si*i* is given by I(D]Zfin(éo Jor a2 = 77(dy o1 o @nday = 7:(Go(de™, 017 ))o-

s+ s+ st _ 1 + s+ _ s+ s+ s+
(@™ ¢ [a" =25 7(0,65), ¢°" =43707", of" € R}, ha t(@em, 05, as) == fen(ay, - - , as)(7) (65)

(58)
where ) with a;, 1 = 1,...,4, andr as determined above, ang free.
a_ [ Fe Oax1 (59) Definess(0) = (g5 )s and @ =(R'q5")s.
o As . 1 ’ In the second step, the goal is to selegtas a function of
o}~ so that thegs-component satisfies the constraints. This is
From Theorem 2, it follows that (57) is equivalent to done as follows. The output (65) satisfies all of the condgio
A 605 = (@, @t 6(057)), (60) of Section V, and hence the evolution gfin the flight-phase

zero dynamics is given b¥s = k1.t(0ems Tem, Tem, 05 5 A5)-
which gives specific boundary conditions, juster impact, |n the flight phase,o., and &, are constant and can
to be met by the design of the flight phase controller. Ige substituted by their values frofi§ N Z,). In addition,
particular, recalling thay = (g, ¢s)’, it is seen that (60) z.,(t) = 25, + tA.(¢ " )os . Hence,js = &1¢(t,05 , as).
places constraints on the body configuration variablesr theetting o denote the value of~ on the O, ¢¢ = ¢5(0) +
derivatives, and;;, while the constraint ogs is equivalent to f(ff R1£(t,01,a%)dt is satisfied because, by construction of
oyt = 8(a77), if the other constraints are met. the output, the orbit corresponds to an integral curve of the

For the purpose of computation, it is convenient to tramsforfjight-phase zero dynamics. Finally, it is verified (numatiy)
(60) to conditions inT'Q; instead of T'Q. This is done as that

follows: the boundary conditions (60) specify the height of

ty
the center of mass at impact, and from this information, the Pas (qg —¢5(0) —/ i%l,f(t,af,as)dt) #0,
flight time, ¢, is computed for any initial condition i8'N Zg, a5 0 as=as*

(66)
gﬁd thus by the implicit function theorem, there exists a@rop
subset about} and a differentiable functions! such that

. ‘:C;m £ 7) =af and
{ CL.'Cm(tf) ] _ ey wg(o7) = az y
Yem (tr) —\/(y'&n)2 —29(ydm — Yem) q¢ = ¢5(0) +/ For(t, o5, (a57))dt. (67)
0
Using (61) and the impact model, a functign(¢jt, o5 ") is
determined such that (60) is equivalent to

see (51), and from (15), the velocity of the center of mass
the end of the flight phase is determined

Since (67) is scalar whiles has four components, there exist
an infinite number of solutions fow{. Hence, a numerical
N (R—lqgﬂ(jo(qgﬂg;*))’ (62) optimization was performed to find, for each point in a

. . ) neighborhood of}, a value ofas that steersy; to ¢¢, while
where the right-hand side of (62) gives the angular states rﬂfnimizing llas — az||. The flight-phase control design is

the robot just before the impact at the er_1d of the flight p_hasceompleted by formally defining.f(qe, ar), as := (05, al ),
The design ofhy ¢ can now be given in two steps. First, dwt(z=) = (65~ @t (o5~ )Y
" ’ an ws(xs ) E (01 7ws(01 ) ) '

definé . _
R — Tem — D. Simulation

T(Tem, 07 ) = L (g ) (63)  The controller has been simulated on a model of RAB-

o 0 BIT. Assuming no modeling error and initializing the closed

3Note thatzlf, = 255 loop system off of the periodic orbit—with an error in the
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Fig. 2. The torso angle (x-axis) in units of radians verssiwélocity (y-axis) [10]
in units of radians per second in the stance and flight phamtce that the
flight-phase controller has regulated the torso angle tdetsred value ofg
at impact. The plot indicates that a limit cycle is achieved. [11]
[12]

velocity—yields the simulation data presented in Fig. 2. iAdd
tional plots and animations of the running motion are atdéa
at [29]. The robustness of the controller is being evaluated [13]
the compliant contact model used in [24]. The preliminary
results are encouraging. [14]

VIIl. CONCLUSIONS (15
A time-invariant feedback control strategy has been devel-

oped for a bipedal runner. The flight-phase portion of tk@s
control strategy was designed to create a generalized tmp c]
map with properties similar to those of the impact maps
that occur in models of walking. This led to the deliberat&7]
design of a hybrid zero dynamics of running, that is, a |°V‘{18]
dimensional, invariant, sub-dynamic of the closed-looprid/
system. Asymptotically stable orbits of the hybrid zero d
namics are asymptotically stabilizable orbits of the fuitler
hybrid model. Using the idea of a restricted Poilecagturn
map—that is, the Poincarreturn map restricted to the hybrid
zero dynamics—an explicit criterion for the existence of B1]
periodic orbit was given, as well as an explicit charactgion
of its stability properties. The principal results wereigirated
on a five-link, four-actuator planar biped with revolutenjtsi.
In further work [8], the performance of the controller desig[23]
method has been evaluated on slower and faster running
motions. [24]

g

[20]

(22]
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