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Abstract

A novel sensing system based on plasma impedance spectroscopy is compared to

standard RF metrology. The system uses an antenna in the glow discharge to excite

the bulk plasma at a frequency range of27:5MHz to 2:75GHz . Standard RF metrol-

ogy is implemented by measuring 1000 points of the RF power signal using a digital

oscilloscope sampling at 1 GHz. An experiment varying power, pressure,Ar andO2

is constructed. Using a subset of the data to regress a model, standard RF sensing

reconstructs the experimental variables with a best averageR2 of 0:49 , whereas the

novel sensing system results in a best averageR2 of 0:876. A nearest neighbor al-

gorithm is used which results in70% correct identification of process conditions for

standard RF sensing, and99:5% correct identification of process conditions for the

novel sensing system.

I. INTRODUCTION

Ever shrinking geometries and larger substrates are mandating improvements in sensor systems

for control and diagnostics of plasma processing. Experts in industry and academia have recog-

nized the RF signal (13:56MHz ) and its harmonics as a potential source of process information. In
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addition to using the existing RF signal as an excitation source, there has been considerable work

done on plasma impedance analysis via dedicated high frequency test system, often referred to as

plasma impedance spectroscopy. This paper continues the work of Garvinet al. [1] and presents a

more thorough investigation of a unique interpretation of plasma impedance spectroscopy, referred

to as ‘broad band’ sensing.

A number of researchers have used RF metrology as a tool for plasma diagnostics.

Maynard et al. [2] have used RF metrology for end-pointing of an industrial etch process.

Spanoset al. [3, 4] have extensively used RF metrology in their plasma diagnostic and control

work. A number of researchers [5–8] have used ion flux information obtained via RF metrology to

characterize etching. Researchers at the Adolph Slaby Institute [9, 10] have developed a diagnostic

system that uses plasma physics models to infer process - relevant information from the fundamen-

tal frequency exciting the discharge and multiple harmonics resulting from plasma non linearities.

Attempts to model the relationship between measured RF parameters and plasma physics have

been presented in [11–13]. This list is by no means complete, but the common element is the at-

tempt to relate measurement of the13:56MHz signal (and in some cases its harmonics) to plasma,

wafer, and tool conditions.

An alternative to relying on the RF power as a source of excitation for diagnostic and sensing

purposes is to use a low power high frequency source to excite the plasma over a frequency range

typically far above the standard13:56MHz range. Typically, the high frequency source is coupled

to the discharge by means of an antenna. It is possible to measure either reflection from this

antenna or transmission to another antenna in the plasma [14]. The technique has been pursued

both in contained [15] and atmospheric [16] plasmas. More recently, results with more modern

equipment on more process relevant plasmas have been published by Liebermanet al. [17] and

de Vrieset al. [18]. All these approaches to plasma impedance spectroscopy share a common

feature. Regardless of the amount of data taken at an operating point, only one parameter, typically

the frequency of peak power absorption by the plasma, is considered relevant.

This single parameter approach contrasts with the multi parameter approach of plasma har-

monic sensing. In principle, it is possible to infer multiple plasma parameters from the multi-
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ple measured harmonics. Modern network analyzers and computer aided data acquisition meth-

ods make it relatively straight forward to collect the entire frequency signal generated in plasma

impedance spectroscopy as well. Accordingly, it is possible to pursue a form of multi parame-

ter plasma impedance spectroscopy. In fact, initial results suggest that the frequency range over

which typical processing plasmas respond to excitation is on the order of several gigahertz. This

range is much broader than the several hundred megahertz over which the plasma appears to pro-

duce significant harmonics. To underscore the frequency range of the modified plasma impedance

spectroscopy, it is referred to asbroad band sensingwhereas methods relying on the plasma’s RF

signal and its harmonics are referred to asnarrow band sensing.

This article investigates the use of broad band sensing in a micro-electronics processing

plasma. The primary goal is to evaluate the relative observability of the state of the plasma under

standard RF metrology (narrow band) and modified plasma impedance spectroscopy (broad band).

More precisely, the aim of most plasma diagnostics is todetecta change in the plasma state and

to isolatethe source of this change. A first step towards this goal was presented in Ref. [1]. As

in Ref. [1], a simple experiment is conducted to compare the abilities of the two measurement

techniques to detect and isolate plasma changes due to the variation of generator power, chamber

pressure, and gas chemistry. Here a more direct experiment is performed, with more complete

analysis and more conclusive results.

II. EXPERIMENTAL SETUP

An experiment was designed in order to simultaneously collect broad band and narrow band

data as a function of widely varying plasma conditions, as shown in Figure 1. Experiments were

performed on a GEC research reactor, described in Ref. [19]. Power is delivered using an ENI

generator and matching network, and generator power is measured using the built in ENI power

meter. Pressure is measured using an MKS barratron, and gas flow rates are measured with MKS

flow meters with MKS gas correction factors.

Narrow band sensing is implemented using a Werlatone D52812:0MHz to 250MHz direc-
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tional coupler rated at 2 kWatts power with a nominal�50dB coupling between main line and

sensor ports received by a Tektronix TDS 420 digital storage oscilloscope. Groups of 500 points

of both forward and reverse waves are sampled at 1 Gs/sec, resulting in a total of about 7 periods

of each wave. The entire waveform is logged for subsequent processing.

Broad band sensing is achieved by a mono-pole antenna constructed of a length of RG402u

stainless steel rigid coaxial cable. Approximately one inch of center conductor is exposed to the

plasma to act as an antenna. The probe is inserted in the bulk plasma using an O-ring compression

sealed vacuum port. A Hewlett Packard 8753B vector network analyzer drives the resonance probe

over a range of27:5MHz to 2:75GHz at a power level of 0 dBM. A Mini Circuits25MHz high

pass filter is used to isolate the vector network analyzer from the discharge. After calibration, the

complex reflection coefficient (�) is recorded at 201 frequency points linearly uniformly spaced

between27:5MHz and2:75GHz . The set-points of power, pressure and flow rate for the GEC as

well as data acquisition are controlled with a PC running LabVIEW data acquisition and control

software. All data is logged and written to file automatically.

III. EXPERIMENT AND INITIAL RESULTS

The goal of the experiment is to evaluate the ability of broad band and narrow band sensing to

isolate basic plasma perturbations due to changes in power1, pressure and chemistry. Accordingly,

a full factorial experiment is performed, as summarized in Table I. For this investigation, chemistry

is limited toAr andO2 in order to eliminate variability due to polymer build up in the chamber.

Statistical methods are then used to construct a model to predict the variables listed in Table I

based on measured broad band and narrow band data, respectively.

It is informative to consider the response of the two sensing systems to a variation in pressure.

Figure 2 shows both the broad band and narrow band magnitude response to a change in pressure

from 90 mTorr to 100 mTorr with power at a constant 100 W, and a chemistry ofAr at10 sccm

1Power level refers to a generator set point and not a calculated delivered power to the plasma.
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flow rate andO2 at 5 sccm flow rate. In the broad band signal, there is a clear and distinct trend

differentiating the two pressure conditions. As a result of a relatively small change in pressure,

the magnitude, location and even number of absorption peaks changes substantially. Though it

remains to be seen whether this qualitative observation will be elicited in the statistical analysis,

the structure of the response using the broad band sensor suggests that substantial information

about fundamental plasma physics may be embedded in the sensor data. The narrow band signal

is also reported in Figure 2. Because the difference between the two signals is so small, the

difference itself is plotted. It is more difficult to discern a pattern in the narrow band response, but

this by no means indicates that structure is lacking.

IV. EXPERIMENTAL ANALYSIS

The experiment described in Table I results in 16 different treatment combinations, each con-

sisting of a specific level of the independent variables. For each treatment combination, 1000

points of narrow band and 201 complex points of broad band data are collected. The goal of the

experimental analysis is to generate a model from each of the sensor systems to the plasma state as

represented by power, pressure and chemistry. It is assumed that if the same methods are used in

both cases, differences in fit can be attributed to fundamental differences in observability between

the two systems. To present a direct comparison of methods, no additional transformations (such

as using impedance or standing wave ratio representations) are used. The narrow band data is con-

sidered as time domainV+ andV�. The broad band data is considered as real numbers expressed

as magnitude and phase of the reflection coefficient.

The experiment is repeated 6 times, for a total of 96 treatment combinations. For both narrow

band and broad band response, a ‘round robbin’ approach is used for model evaluation. Amod-

eling setcomposed of 5 repetitions is used to develop a model relating measured signal to factor

levels. The remaining repetition forms thetesting setwhich is used to evaluate the model. The

process is repeated 6 times so that each repetition is used as thetesting setand results are reported

as an average of all 6 testing sets.
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Two methods are used to evaluate the information content of the respective measured signal.

One approach is a standard linear regression, as described in [20] or [21]. Since the dimension

of response is larger than the number of experiments, subset selection must be used. Stepwise

regression, as described in [22] is performed. Additionally, the data is analyzed using a ‘nearest

neighbor’ algorithm, as described in [23]. Linear regression results in a globally defined function

relating measurements to inputs. Given the non linear nature of plasma processing, the regression

model can only be expected to be valid over a reasonably small subset of the operating space near

the operating points. The nearest neighbor algorithm has a much more limited goal. It assumes that

only the 16 plasma conditions used in the experiment are possible and given a new measurement

determines which of the 16 ‘standard responses’ it most closely approximates.

Stepwise Regression is a rigorous method for adjusting model size, using the partial F test [20]

to evaluate whether the change in performance associated with the change in model size is sta-

tistically relevant. The specific implementation is as follows. The goal of the experiment is to

build the largest model that produces a statistically significant performance improvement over the

next largest model. Because the experiment is over determined, themodeling setis itself divided

into a 4 repetitionmodel modeling set, and 1 repetitionmodel training set. A model of dimension

n + 1 is regressed on themodel modeling set, and its predictive performance is evaluated on the

model training set. If its performance on themodel training setis sufficiently better than the best

n dimensional model, then the larger model is accepted. Failure to subdivide themodeling set

results in a model of dimension equal to the size of themodeling setbeing chosen by the stepwise

regression algorithm. This model has zero error on themodeling set, but is very unlikely to per-

form well on any other data, as it is likely to be extremely ill-conditioned and overly optimized for

a single data set.

It is common to use an orthogonal projection, such as a singular value decomposition (SVD),

to reduce the dimension of and over determined problem such as this one. The problem with

such an approach is that if variance in the data is distributed non-uniformly, a standard projection

will group ‘good’ points (points that are strongly correlated to the input factors and have low

variability) and ‘bad’ points (points that are weekly correlated to the input factors and have high
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variability) indiscriminately. In the broad band signal, for example, some frequency ranges show

more variability than others. Clearly, the best model will rely on points from a low variability

frequency range and ignore points from high variability regions. Such a choice is impossible if the

points lie in the same basis and are thus projected onto the same coefficient of the new reduced

dimensional space. The approach proposed here is to build a model using individual response

points, where each point is selected based on best error reduction from the existing model. If the

number of points used becomes larger than the test set, then an SVD is used to reduce the problem

dimension.

At its most basic, the nearest neighbor algorithm is a way of determining which vector in the

set [zmdl 1 : : : zmdl n] a vectorztst most closely resembles. Especially ifn is large, the technique

may be very slow, and the question of which norm serves as most effective metric is a difficult

one. Speed is not an issue at this point, and since our goal is to compare relative performance, the

standardL2 norm is sufficient. A transformation seeking to reduce the variation in the data is used

prior to implementing the algorithm, as described as follows.

The problem of reducing the model order is addressed as follows. A simple regression is

performed from factors to measurements, as shown:

bY = X �B; (4.1)

B = (X
0

�X)�1 �X
0

� Y: (4.2)

In equation 4.1,X is:

X = [1; x1; : : : ; x4; x1 � x2; : : : ; x3 � x4; : : : ; x1 � x2 � x3 � x4]: (4.3)

wherexi is theith factor and1 is the mean term. Non linear interaction terms are included in the

standard experimental design fashion [24] as polynomials in the factors.Y is a matrix composed of

row vector, where each row vector,yn is the total number of response points for the measurement

being evaluated (1000 or 402 ) andn is the experimental run being considered.bY is the least

squares estimate ofY . We observe thatbY is not simply the best estimate of the measured response

Y , but can also be considered a partition of the measurement as shown in Eq. 4.4.
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Ymdl = dYmdl + (Ymdl �
dYmdl); (4.4)

) Ymdl = y
inp
mdl + Y dist

mdl : (4.5)

In Eq. 4.5,Y inp
mdl is the least squares estimate of that part of the measurement in themodeling set

which is due to the input andY dist
mdl is that part of the measurement due to disturbances. It is straight

forward to obtain a linear (projection2) operator,Linp to achieve this decomposition directly:

Y
inp
mdl = Linp

� Ymdl: (4.6)

When we apply the projection operator to the measurement data in thetesting set, we obtain an

estimateof Y inp
tst :

d

Y
inp
tst = Linp

� Ytst: (4.7)

Qualitatively, the accuracy of
d

y
inp
tst is a function of the degree to which:

y
inp
tst 2 span(Y inp

mdl): (4.8)

Likewise, the degree to which errors in
d

y
inp
tst affect the accuracy ofbx, the estimate of the input

levels, is a function of the conditioning of the relationship betweenx andyinp. If a change in

factor level results in a small change in response, then small errors in
d

y
inp
tst are very likely to result

in large errors in the estimate ofx.

V. EXPERIMENTAL RESULTS

Table II summarizesR2 performance averaged over all six permutation of experiments where

one repetition of the experiment is used as thetesting setand the other five are used as themodeling

set. Overall broad band performance is borderline. Two factor, power and pressure, are predicted

accurately, while prediction of the chemical factors is less reliable. The difference in performance

between broad band and narrow band performance, however, is very clear. Of the four factors,

2L is the orthogonal projection of spanfdYmdlg onto spanfYmdlg: L can be computed with a standard SVD.
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only power is predicted with reasonable accuracy. The limitations of the power fit at first seem

surprising, but serve to exemplify the limitations of the narrow band sensing. While the magnitude

of the forward voltage signal is proportional to the generator power level, it is also affected by other

factors. Thus the power prediction is unreliable with narrow band sensing. In the case of the broad

band signal, the generator power results in a sufficiently unique response to accurately infer that

factor.

The results in Table II summarize performance using a nearest neighbor algorithm. Differences

here are even more pronounced. Of 96 total experimental runs, only one broad band run was was

mis-identified. In the narrow band case, only power level was correctly identified in all cases.

Pressure and Oxygen levels were correctly identified about65% of the time, and Argon level was

correctly identifiedlessthan50% of the time.

The results of this experiment suggest that there is a fundamental difference in the way that

standard plasma inputs affect the narrow band compared to the way they affect the broad band

measurement. With the factors and levels used in this experiment and modeling methods used in

the analysis, the broad band sensing approach appears to provide substantially more information

about the plasma than the narrow band approach. It should be noted that the response of the

broad band signal, although clear and distinct, is extremely complex. Achieving a more rigorous

relationship between input factors and broad band response is a daunting task.

VI. FUTURE WORK

The promise shown by this experiment motivates several areas of future work. Although com-

monly used, oscilloscopes have severe resolution limitations. It is possible that the weak narrow

band results presented here are due not to fundamental limitations of the approach but rather due

to instrument resolution. Such limitations are not present in a spectrum analyzer. Accordingly, it

would be of value to repeat the experiment with a spectrum analyzer as well as an oscilloscope.

Although results using an intrusive probe are promising, the potential of an intrusive diagnostic

is clearly limited. In order to be practical, a non-intrusive application of broad band sensing is
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needed, as proposed in Figure 3. In this approach, referred to as ‘direct injection’, a high power

high pass filter is used upstream of the matching network to allow a high frequency signal to

pass through to the plasma without allowing the high power low frequency signal to damage the

network analyzer. An implementation of ‘direct injection’ has been implemented on our Lam TCP

and its sensitivity to process relevant variables is currently being evaluated.

Additional theoretical work is warranted both in the design of non intrusive and minimally

intrusive sensors. The design of an antenna to couple to a waveguide is a relatively standard prob-

lem in microwave engineering and a waveguide or resonant cavity may be a reasonably accurate

model for a plasma chamber. Likewise, inferring the relative permittivity of the medium from

the frequency response of the system may be feasible. Finally, a relationship between relative

permittivity and relevant plasma parameters may be determined as well.

VII. CONCLUSION

Power, pressure,Ar andO2 levels relevant to micro-electronics processing were varied using

a full factorial experiment performed on a GEC reference cell. Standard RF sensing (referred to

as ‘narrow band sensing’) was compared to a novel sensing technique based on resonance probes

used in ionospheric research (referred to as ‘broad band sensing’). Standard statistical techniques

were used to regress a linear model against narrow band and broad band data respectively. A much

better fit to the data was obtained using broad band sensing. Suggestions for further work include

using a spectrum analyzer for the narrow band data and methods for designing a non intrusive

broad band system.
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TABLES

TABLE I. Experimental Variables and Levels

Ar O2 Pressure Power

Level 1 10sccm 5sccm 90mTorr 90W

Level 2 20sccm 15sccm 100mTorr 100W

TABLE II. R2 of Broad and Narrow Band Sensor vs Factor Levels

method Ar O2 Pressure Power

Broad Band 0:8207 0:8240 0:9261 0:9330

Narrow Band 0:1809 0:2838 0:4323 0:8201

TABLE III. Nearest Neighbor Success of Broad and Narrow Band Sensor vs Factor Levels

method Ar O2 Pressure Power

Broad Band 96=96 96=96 95=96 95=96

Narrow Band 47=96 62=96 64=96 96=96
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