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Asymptotically Stable Walking for Biped Robots: Analysis via Systems
with Impulse Effects

J. W. Grizzle, Gabriel Abba and Franck Plestan

Abstract— Biped robots form a subclass of legged or walk-
ing robots. The study of mechanical legged motion has
been motivated by its potential use as a means of loco-
motion in rough terrain, as well as its potential benefits
to prothesis development and testing. This paper concen-
trates on issues related to the automatic control of biped
robots, and more precisely, its primary goal is to contribute
a means to prove asymptotically stable walking in planar,
under actuated biped robot models. Since normal walking
can be viewed as a periodic solution of the robot model, the
method of Poincaré sections is the natural means to study
asymptotic stability of a walking cycle. However, due to
the complexity of the associated dynamic models, this ap-
proach has had limited success. The principal contribution
of the present work is to show that the control strategy can
be designed in a way that greatly simplifies the application
of the method of Poincaré to a class of biped models, and
in fact, to reduce the stability assessment problem to the
calculation of a continuous map from a sub-interval of R
to itself. The mapping in question is directly computable
from a simulation model. The stability analysis is based on
a careful formulation of the robot model as a system with
impulse effects and the extension of the method of Poincaré
sections to this class of models.

I. INTRODUCTION

Mechanical biped locomotion has been studied for well
over 30 years. A broad overview of the state of the art until
1990 can be found in [46], [58], [19], along with motivation
for studying this class of electro-mechanical systems. The
available literature addresses a wide range of topics, from
model formulation, efficient means of computing the dy-
namical equations, relations between mechanical legged lo-
comotion and biological legged locomotion, methods of syn-
thesizing gaits, the mechanical realization of biped robots,
and control.

One can distinguish several control design approaches
from the literature. By far, the most common approach
to control is through the tracking of pre-computed refer-
ence trajectories. The trajectories may be determined via
analogy, either with biological systems [58], [1], or with
simpler, passive', mechanical biped systems [38], [56], [57];
they can be generated by an oscillator, such as van der Pol’s
oscillator [33], or computed through optimization of vari-
ous cost criteria, such as minimum expended control energy
over a walking cycle [10], [11], [14], [49], [48]. Within the
context of tracking, many different control methods have
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1Here, passive is used in the sense that the system is not actuated,
but can walk down an inclined plane.

been explored, including continuous-time methods based
on PID controllers [42], [18], [19], computed torque and
sliding mode control [42], [13], [39], [47], [36], or essen-
tially discrete-time methods, based on impulse control [14].
Other control methods have been investigated that do not
rely on pre-computed reference trajectories for the angu-
lar positions; these include controlling energy, angular mo-
mentum, and others [46], [50], [35], [26], [27], [20], [36],
[45], [16]. The control design proposed here will not rely
on pre-computed reference trajectories.

To date, for the case of an under actuated biped robot
with a torso, none of the various control approaches have
produced a closed-loop system with provable stability prop-
erties. Proving stability is the primary goal of this paper.
Since regular walking can be viewed as a periodic solution
of the robot model, the method of Poincaré sections is the
natural means to study asymptotic stability of a walking
cycle. However, due to the complexity of the associated
dynamic models, this approach has only been applied suc-
cessfully to Raibert’s one-legged-hopper [35], [12], [16], a
biped robot without a torso [56], [20], [53], and to a fully
actuated biped (walking) model in [26], [27]. One of the
principal contributions of the present work is to show that
the control strategy can be designed in a way that greatly
simplifies the application of the method of Poincaré to a
class of under actuated biped models.

The stability analysis is built up in several steps. Section
1T presents the dynamic model of an under actuated biped
robot with a torso, walking on a level surface. The model
includes two important parts: a mechanical model that is
valid when one leg is touching the ground (supporting the
robot) and the other is free (i.e., not touching the walking
surface), and an impulse model of the contact event (the
swing leg touching the ground). The model used here is
representative of many biped models found in the literature
[56], [15], [25], [57], [29], [21]. The main contribution of this
section is the formulation of the biped model as a nonlinear
system with impulse effects [3], [59], which will be the basis
for all of the analysis that follows.

The main contribution of Section III is the extension of
the method of Poincaré sections to systems with impulse
effects. The extension will be done in sufficient general-
ity that it is applicable to more complex robots than the
one treated in Section II. Roughly speaking, the method
of Poincaré sections entails finding a (local) hyper-plane
that is transversal to a candidate periodic motion of a
continuous-time system, and then inducing a discrete-time
mapping form the plane to itself [43], [34]. The mapping,
called the Poincaré return map, is defined by following
the evolution of a trajectory of the continuous-time system
from a point on the plane to its next intersection with the
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plane. Periodic motions of the continuous-time system cor-
respond to fixed points of the induced map. In the case of
a biped robot, there is a natural plane to use in the anal-
ysis, namely, the constraints corresponding to an impact
with the walking surface. The principal result of Section
IV is to show that the freedom in the control design can
be used to reduce the stability assessment problem via the
method of Poincaré to the (numerical) calculation of a con-
tinuous map from a sub-interval of IR to itself. This will
be achieved with the use of finite-time stabilizing feedback
controllers [23], [4], [5], [6]. The mapping in question, which
is a restriction of the Poincaré return map, is directly com-
putable from a simulation model of the closed-loop system.
This results in a sufficiently tractable characterization of
asymptotic stability that it can be efliciently incorporated
into a (numerical) feedback design scheme for computing
an asymptotically stabilizing feedback controller with low
peak torque demands and good efliciency with respect to
average energy consumption over a cycle [22], or to opti-
mize the mechanical parameters of the robot itself.

Section V analyzes the internal behavior of the robot
model in closed loop with a finite-time stabilizing con-
troller, as the gain of the controller tends to infinity. Under
bounded control gains, the classical zero dynamics of the
mechanical part of the robot model are not invariant un-
der the impact model, and hence cannot be used to analyze
any of the asymptotic properties of the closed-loop system.
However, in the high gain limit, the invariance of the zero
dynamics is recovered. This can be used to explain certain
properties of the Poincaré map.

It is emphasized that all of the above will be illustrated
on one of the simplest possible biped robot models. The
robot consists of a torso, hips, and two legs of equal length,
with no ankles and no knees. The two legs are actuated.
The reason for this choice of model is two fold: firstly,
asymptotically stable walking has never been proved for
such a model, and thus this simplest problem is still open
[15]; secondly, from a pragmatic standpoint, it did not
seem advantageous to obscure the main elements of the
control approach with the computational complexity of a
more complete biped model.

II. A SIMPLE BIPED MODEL

This section introduces the dynamic model of a simple,
planar biped robot. The robot consists of a torso, hips, and
two legs of equal length, with no ankles and no knees. It
thus has five degrees of freedom. Two torques are applied
between the legs and the torso, so the system is under actu-
ated. It is assumed that the walking cycle takes place in the
sagittal plane and on a level surface. It is further assumed
that the walking cycle consists of successive phases of sin-
gle support (meaning only one leg is touching the ground),
with the transition from one leg to another taking place
in an infinitesimal length of time [49], [52], [15]. This as-
sumption entails the use of a rigid model to describe the
impact of the swing leg with the ground. The model of
the biped robot thus consists of two parts: the differential
equations describing the dynamics of the robot during the

swing phase, and an impulse model of the contact event.
Such models are very common in the field of biped loco-
motion. The only contribution made here will be the for-
mulation of the model as a nonlinear system with impulse
effects [3], [59], which will set up the model for the analysis
to follow.

During the swing phase, the stance leg is modeled as a
pivot?. In order to avoid the swing leg scuffing the ground
until the desired moment of contact, the idea of [38] is
adopted here: the swing leg is assumed to move out of
the plane of forward motion, and into the frontal (coronal)
plane. This allows the swing leg to clear the ground and
be posed in front of the stance leg (think of a person with
a cast over their knee). It will be further assumed that the
swing leg is designed to renter the plane of motion when the
angle of the stance leg attains a given value, 6¢. Alternate
means of achieving leg clearance in stiff legged robots are
discussed in [38], [15].

A. Mechanical (swing phase) model

During the swing phase of the motion, the stance leg is
acting as a pivot, and thus there are only three degrees
of freedom. The definition of the angular coordinates and
the disposition of the masses of the legs, hips and torso are
indicated in Figure 1. In particular, note that all masses
are lumped, and positive angles are computed clockwise
with respect to the indicated vertical lines. Two torques,
u1 and wug, are applied between the torso and the stance
leg, and the torso and the swing leg, respectively. The
dynamic model of the robot between successive impacts
is easily derived using the method of Lagrange [54]. This
results in a standard second order system

D(6)0 + C(0)0 + G(6) = B(O)u, (1)

where u = (uy,u2)’, and 6 = (01,602, 63)": 6, parameterizes
the stance leg, 02 the swing leg and #3 the torso. The
matrices D, C, G and B are given in Appendix A.
The second order system (1) can be written in state space
form by defining
w

odle]
T { w } N { D 0) (—C(0,w)w — G() + Bu)
= f(x) + g(z)u. (2)

The state space for the system is taken as X = {&x =
0,0 | 0 € M, w € IR*}, where M = (—7,7)3. Of
course, not all points in M correspond to physically reason-
able configurations of the robot (i.e., the robot being above
the walking surface, for example). One possibility, there-
fore, is to further restrict the admissible solutions through
viability constraints [2], [8]. This would be an important
additional consideration for kneed-bipeds, but for the sim-
ple stiff-legged model analyzed here, it is enough to ini-
tialize the model in a physically reasonable configuration
and allow the impact model (see below) to maintain the
trajectory of the robot on the upper side of the walking
surface.

2Reference [17] shows how to compute the forces acting on the
stance leg, and how to verify that the leg does not slip.
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B. Impact model

In the case of a stiff-legged robot on a flat surface, the
notion of the contact point of the swing leg with the walk-
ing surface would appear to be physically ambiguous, since,
without a knee, and with equal length legs, the swing leg
must scuff along the ground if it remains in the saggital
plane. McGeer [38] has shown with his ballistic walkers,
both theoretically and experimentally, that one can basi-
cally ignore the leg clearance issue for stiff-legged models.
He has done this in two ways: in one realization, he puts
additional small motors on the legs that allow him to push
the swing leg just slightly out of the saggital plane during
the swing phase and to pull the leg back into the saggital
plane whenever he wishes to initiate contact. The second
way he has done this is to put small (essentially massless)
flaps on the ends of the legs, and to fold up the flap of the
swing leg during the swing phase, and to unfold it whenever
he wants to initiate contact. With McGeer’s first method
in mind, it is hereafter assumed that contact is initiated
when the angle of the stance leg attains a desired value,
6¢. In order for the lengths of the legs to be equal at con-
tact, it must be the case that #; = —6; at contact. This
will be taken care of in the control design of Section IV.

The impact between the swing leg and the ground is
modeled as a contact between two rigid bodies. There are
many rigid impact models in the literature [2], [7], [8], [28],
[44], and under reasonable hypotheses all of them can be
used to obtain an expression for the velocity of the gener-
alized coordinates after the impact of the swing leg with
the walking surface in terms of the velocity and position
before the impact. The model from [28] is used here. The
motion of the robot is only analyzed for the case that the
contact of the swing leg with the ground results in no re-
bound and no slipping of the swing leg, and the stance leg
naturally lifting from the ground without interaction [28].
The conditions for these assumptions to be valid will be
indicated.

The contact model requires the full five degrees of free-
dom of the robot. Add Cartesian coordinates (z1,2)" to
the end of the stance leg, as indicated in Figure 1. This
gives once again a model of the form

D, (qe)q.e +C. (%7 QS)QS + Ge (Q) = Be (qg)u + 6 Fexs (3)

where q. = (01, 62,03, 21, 2)" is the set of generalized co-
ordinates and 6F°* represents the external forces acting
on the robot at the contact point(s). The basic premises
in [28] are that: (a) the impact takes place over an in-
finitesimally small period of time; (b) the external forces
during the impact can be represented by impulses; (c) im-
pulsive forces may result in an instantaneous change in the
velocities of the generalized coordinates, but the positions
remain continuous; and (d) the torques supplied by the ac-
tuators are not impulsional. With these assumptions, (3)
is “integrated” over the “duration” of the impact to obtain

28]
De(%)@j - qg) - FEXtv (4)

ot
where F' := [ §F*'(7)dr is the result of integrating the
o

contact impulse over the impact duration, ¢I is the velocity
just after the impact and ¢ is the velocity just before the
impact (a more rigorous treatment of this can be found in
[8]). Since the positions do not change during the impact,
@ =4 -

In order to be able to solve for all of the unknowns,
the above equations must be augmented with additional
equations that proscribe what happens at the two contact
ends. According to [28], since the stance leg is assumed to
detach from the ground without interaction, the external
forces acting at the pivot point are zero. Thus F**' need
only consider the external forces at the end of the swing
leg. To compute it, let T denote the Cartesian-coordinates
of the end of the swing leg:

21 + rsin(6y) — rsin(fy)
T(qe) = ’ (5)
22 + rcos(6y) — rcos(f2)
Then
ext _ ! FT
Pt =g { P } , (6)
where,
Ak rcos(f) —rcos(fz) 0 1 O -
" 0¢. | —rsin(6y) rsin(@) 0 0 1

and Fp,Fy are the tangent and normal forces, respectively,
applied at the end of the swing leg.

Equation (4) thus represents five equations and seven
unknowns; the unknowns are ¢ and F°*; ¢ is known
since it equals (wf,wg,wg, z'f,z'g)/, where &~ = 0 and
%2~ = 0 since the stance leg acts as a pivot before impact.
An additional set of two equations is obtained from the
condition that the swing leg does not rebound nor slip at
impact, namely, %T(qe) = g—;qg = 0; that is,

Eq =0. (8)

The set of equations (4) and (8) is linear in the unknowns
and can be solved for ¢, I’r and Fly. In Appendix A,
it is verified that a unique solution always exists. The
result of solving (4) and (8) yields an expression for ¢. ™ in
term of ¢, , which should then be used to re-initialize the
model (2). In order to do this, a change of coordinates is
necessary since the former swing leg is now in contact with
the ground, while (1) and (2) assume that f; parameterizes
the stance leg. The final result is an expression for z 1 =
(0, w™) in terms of = := (07, w™), which is written as

= Alx7). (9)

The function A is given in Appendix A. It is also proven
in Appendix A that A is continuous.
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C. QOwerall model: system with impulse effects

The overall biped model can now be expressed as a sys-
tem with impulse effects. Assume that the system trajec-
tories possess finite left and right limits, and denote them
by @~ (t) :==lim; ~ 2(7) and =" (t) := lim, ; #(7T), respec-
tively. The model is then:

5. { a(t) = fla@)+glz@)ult) = ()¢S

xt(t) = Az (1) x~(t) €S
(10)
where S == {(§,w) € X | 6, = 6{}. The mathematical
meaning of a solution of the model will be made precise
in Section III. In simple words, a trajectory of the robot
is specified by the mechanical model until an impact oc-
curs. Impact occurs when the state “attains” the set S,
which represents the walking surface. At this point, the
impact with the surface results in a very rapid change in
the velocity components of the state vector. The impulse
model of the impact compresses the impact event into an
instantaneous moment in time, resulting in a discontinuity
in the velocities. The ultimate result of the impact model
is a new initial condition from which the mechanical model
evolves until the next impact. In order for the state not
to be obliged to take on two values at the “impact time”,
the impact event is, roughly speaking, described in terms
of the values of the state “just prior to impact” at time

“t=”_ and “just after impact” at time “/7”. These values
are represented by the left and right limits, 2~ and x™,
respectively.

For later use, note that S can be expressed as the level
set of a function H : X — IR. Define H(x) = 6§ — 0y,
so that S := {(8,w) € X | H(x) = 0}. Moreover, it can
be easily checked that for each point s € S, %—Ij(s) £ 0
This implies that S is a smooth embedded submanifold of
X [30].

III. METHOD OF POINCARE SECTIONS FOR SYSTEMS
WITH IMPULSE EFFECTS

Nonlinear systems with impulse effects have not been
extensively studied. A stability analysis for equilibrium
points can be found in [3], [59], using Lyapunov meth-
ods. However, a walking cycle clearly corresponds to a
non-trivial periodic orbit, and not to an equilibrium solu-
tion of the model, and thus the analysis of [3], [59] is not
applicable. This section contains the definition of a solu-
tion of a system with impulse effects, the definition of a
periodic orbit, and Lyapunov stability notions for periodic
orbits. With these notions in place, the method of Poincaré
sections, an important tool for analyzing the stability prop-
erties of periodic orbits in ordinary differential equations,
is extended to systems with impulse effects. While the ba-
sic method carries over nicely to this new setting, the proof
differs considerably from the standard one in [43], [34], for
example. In particular, Section IV will need a version® of
the Poincaré method that is applicable to continuous, but
not Lipschitz continuous, systems. The development will

3The standard development assumes that the flow is a local diffeo-
morphism, while, here, it will not even be a homeomorphism.

be kept as compact as possible, with all proofs and several
lemmas relegated to Appendix B.

A. Basic definitions

A function ¢ : [to, ty) — X, ty € RU{oo}, ty > 1o, is a
solution® of (10) if 1) ¢(t) is right continuous on [fo, t5), 2)
left limits exist at each point of (o, t7), and 3) there exists a
closed discrete subset 7 C [to, t5) such that, a) for every ¢ &
T, (%) is differentiable and M;til = fle(t) + gle(t))u(t),
and b) for t € T, ¢ (t) € S and ¢" (t) = A(¢~ (1)). The
condition that the set of impact times is closed and discrete
simply means that there is no “chattering” about an impact
point. A solution ¢(t) of (10) is periodic if there exists a
finite 7' > 0 such that ©(t +7T) = @(t) for all t € [tg,00). A
set O C X is a periodic orbit of (10) if O = {p(t) |t > 1o}
for some periodic solution (). An orbit is non-trivial if it
contains more than one point.

In the following, it is assumed that w«(t) in (10) is iden-
tically zero, so that one may refer to (10) as being time-
invariant. It is further assumed that solutions to (10), when
they exist, are unique.

A periodic orbit O is stable in the sense of Lyapunou if
for every € > 0, there exists an open neighborhood V of
O such that for every p € V), there exists a solution ¢ :
[0, 00) — X of (10) satisfying ¢(0) = p and dist(¢(t), O) <
€ for all £ > 0. O is attractive if there exists an open
neighborhood V of O such that for every p € V, there
exists a solution ¢ : [0,00) — X of (10) satisfying ¢(0) = p
and lim; o, dist(p(t),0) = 0. O is asymptotically stable
in the sense of Lyapunou if it is both stable and attractive.
From here on, the qualifier, “in the sense of Lyapunov”,
will be systematically assumed if it is not made explicit.

Finally, assume that in (10), S = {z € X | H(z) =
0}, where H : X — IR is continuously differentiable. A
periodic orbit O is transversal to S if its closure intersects
S in exactly one point, and for z := O NS, Ly H(Z) :=
28 (z)f(z) # 0 (in words, at the intersection, O is not
tangent to S, where O is the set closure of O). In the case
of the biped robot, a nontrivial periodic orbit transversal
to S will also be referred to as a periodic walking cycle.
Remark: Note that a periodic orbit of a system with im-
pulse effects may not be a closed set, since, for t € T,
@ (t) € O (if solutions were assumed to be left continu-
ous, instead of right continuous, then 7 (t) € O ). Indeed,
a periodic orbit is closed if, and only if, 7 = (. For a
biped robot, a closed periodic orbit would not correspond
to walking because there would be no impact with the walk-
ing surface.

B. Poincaré’s method

The method of Poincaré sections is extended to systems
with impulse effects (10), for the case of nontrivial peri-
odic orbits that are transversal to S. This will be done in
a certain amount of generality so that a wide class of biped

4The definition is based on [59], except that solutions are taken to
be right continuous instead of left continuous. For a careful study of
the existence of solutions of mechanical systems with shocks, see [8],

[55].
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robot models and controllers can be treated. In particu-
lar, the finite-time stabilizing controllers of Section IV will
require the use of feedbacks that are continuous, but not
Lipschitz continuous.

Consider a time-invariant system with impulse effects

s {20 e oS
i (t) = Al (1) = (t)e€Ss,
where the state space X is an open subset of IR". The
hypotheses that will be used in its analysis are listed below.
As a point of notation, ¢ will be used to denote a solution
of the system (11), as defined in Section III-A, and ¢/
will denote a solution of the associated ordinary differential
equation,
= f(x). (12)

The point of introducing ¢/ is that, firstly, a lot is known
about solutions of ordinary differential equations with con-
tinuous right hand sides [24]; secondly, in view of the first
point, it is convenient to prove properties of (11) in term of
properties of (12); thirdly, at times in the proofs, it is nec-
essary to extend a solution of (12) “through” S, while this
does not make sense for (11) (that is, for the robot, it does
not make sense for its “foot to be stuck in the ground”).
Hypotheses:
H1) f(x) is continuous on X’;
H2) a solution of (12) from a given initial condition is
unique and depends continuously on the initial condition;
H3) there exists a differentiable function H : X — IR such
that S = {x € X | H(z) = 0}; moreover, for every s € S,
52(s) #0.
H4) A: S — X is continuous, where S is given the subset
topology from X.

Hypothesis H1 implies that at any point x5 € X, a so-
lution to (12) will exist over a sufficiently small interval
of time [24]. This solution may not be unique, and may
not depend continuously on the initial condition; whence
Hypothesis H2. Hypothesis H3 implies that S is an em-
bedded submanifold [30], when given the subset, topology.
Hypothesis H4 assures that the result of an impact varies
continuously with respect to where it occurs on S.

The first goal is to define the Poincaré return map. De-
fine the time to impact function, Ty : X — IR U {oo}, by

if 3 ¢ such that
gof (tv xo) € S
o0 otherwise

inf{t > 0|/ (t,20) € S}
T[(xo) =

(13)
From Lemma 3 in Appendix B, Hypotheses H1-H3 imply
that 77 is continuous at points xg where 0 < T7(xg) < 00
and L H(¢! (T (z0), 70)) # 0. Hence, under H1-H3, X' :=
{r € X |0 < Ti(x) < oo and Ly H (¢! (Ty(x),x)) # 0}
is open. If H4 also holds, then S := A~'(X) is an open
subset of S. It immediately follows that under H1-H4, the

Poincaré return map, P : S-S by
P(z) == ¢ (T1(A(2)), A=),

is well-defined and continuous. In the case of the robot,
the return map represents the evolution of the robot just

(14)

before an impact with the walking surface, to just before
the next impact, assuming that next impact does occur. If
it does not, that is, the robot falls due to the preceeding
impact, the point being analyzed is not in the domain of
definition of the return map.

Next, note that under H1-H4, if O is any periodic orbit of
(11) that is transversal to S, then © C X. This is essentially
by definition. Thus, there exists xg € S that generates O
in the sense that A(xg) € O; indeed, 7g = O N S. Tt thus
makes sense to denote the orbit by O(A(xg)).

THEOREM 1: (Method of Poincaré Sections for
Systems with Impulse Effects) Under H1-H4, the fol-
lowing statements hold:

a) If O is a periodic orbit of (11) that is transversal to S,
then there exists a point xg € S that generates O.

b) o € S is a fixed point of P if, and only if, A(zg) gen-
erates a periodic orbit that is transversal to S.

c) xg € S is a stable equilibrium point of 1 = Plag)
if, and only if, the orbit O(A(xg)) is stable in the sense of
Lyapunov.

d) zp € S is an asymptotically stable equilibrium point
of xp11 = P(xp) if, and only if, the orbit O(A(xy)) is
asymptotically stable in the sense of Lyapunov.

The proof of the theorem is given in Appendix B.

IV. ASYMPTOTICALLY STABLE WALKING

This section develops a feedback controller for the sys-
tem with impulse effects, (10), in the particular case of
the biped robot given by the differential equation (2) and
the impact model (9). The goal of the control design is to
induce an asymptotically stable walking cycle, and to facili-
tate the verification of its existence and stability properties.
The verification will be done using the method of Poincaré.

A. Encoding a walking pattern

At its most basic level, walking consists of two things
[45]: posture control, that is, maintaining the torso in a
semi-erect position, and swing leg advancement, that is,
causing the swing leg to come from behind the stance leg,
pass it by a certain amount, and prepare for contact with
the ground. This motivates the direct control of the an-
gles f5 (describing the torso) and 6, (describing the swing
leg). As discussed in the Introduction, the most common
approach to control in the multi-ped literature is through
the tracking of pre-computed reference trajectories. That
is, in the context of the robot model investigated here, the
first step of the control design would be to determine func-
tions of time 63 (t) and #3(t) that express a desired behavior
of the robot. Then, standard control techniques would be
employed to induce “asymptotic” tracking of these trajec-
tories. The resulting closed-loop system is nonlinear, hy-
brid (due to the impact map), time-varying (due to the
time-dependent reference trajectories) and very difficult to
analyze.

On a periodic orbit corresponding to a normal walking
motion, it is clear that the horizontal motion of the hips
is monotonically strictly increasing. For the biped of Fig-
ure 1, this is equivalent to 6,(t) strictly increasing over
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each step of the walking cycle. Thus, for any desired tra-
jectories f5(t) and f5(t) that express (encode) a desired
walking pattern for the biped, it is therefore reasonable to
assume that the corresponding trajectory for 6, has the
property that #(t) is strictly monotonic. Tt follows that
f2(t) and f5(t) can each be re-parameterized in terms of
#,. That is, without loss of generality, it can be supposed
that 85(t) = m(61(t)) and 02 (t) = n2(6; (t)), for some func-
tions 7;.

The simplest version of posture control is to maintain the
angle of the torso at some constant value, say Og‘f, while the
simplest version of swing leg advancement is to command
the swing leg to behave as the mirror image of the stance
leg, that is, 2 = —60;. Thus the “behavior” of walking will
be “encoded” into the dynamics of the robot by defining
outputs

e[ )|

with the control objective being to drive the outputs to
zero. Driving y to zero will force 85 and 63 to converge to
known functions of #; (here, 8%, being a constant, should
be viewed as a trivial function of #;). This will be one of
the key steps in reducing the stability analysis problem to
that of a map from IR to IR.

Of course, the idea of building in a dynamic behavior of
a system through the judicious definition of a set of out-
puts, which when nulled yields a desirable internal behav-
ior, is not novel in control [30] nor walking robots [32],
[26], 9], [31], [40], [51], [16]. However, it is interesting to
note that this idea, which seems to be an essential step for
proving anything about the trajectories of the closed-loop
system, has been best used to analytical advantage in the
monoped (one-legged hopper) literature. This seems to be
due to the fact that accurate, approximate, analytically
tractable models of the hopper exist, and the associated
Poincaré return map can be analyzed in considerable de-
tail [9], [51], [16]. This has led to the determination of
sampled-data control laws (sampling is done synchronously
with impact events) that lead to explicit, low-dimensional
tests for asymptotic stability of a periodic orbit.

i3]

nie) |= | 62 = |

65 — 04
0z —n2(61) ’

0y + 0,

B. Controller design

Since the system (2) comes from the second order model
(1), and the outputs (15) only depend upon 6, it follows
that the relative degree of each output component is either
two or infinite. Direct computation gives that [30], [37],
[41]

§j = Lih(z) + LyLeh(z)u (16)

and that the determinant of the decoupling matrix, Ly Lsh,
is (see Appendix A, equation (51)) is zero if, and only if,
—r (rMpg + rm+ rMrp + [M7 cos(6, — 65)) = 0.

Thus, the decoupling matrix is invertible for all x € X as
long as 0 < My < r(m~+ Mr+ Mp), which imposes a very
mild constraint on the position of the center of gravity of

the upper body of the robot in relation to the length of its
legs. This leads to the following hypothesis.

Hypothesis CH1): The decoupling matrix is globally in-
vertible.

From now on, it is supposed that CH1 is met. Therefore,
due to the global invertibility of the decoupling matrix,
stabilizing dynamics for the output of system (2) can be
assigned. The easiest way to do this is to first decouple the
system [30], [41], [37] and then impose a desired dynamic
response. In preparation for doing this, note that ® : M —

IR? by

Y1 05 — 0§‘f
DO):=| v2 | = | O +62 (17)
0, 6,

is a diffeomorphism onto its range. With this coordinate
transformation, and upon defining

v = Lih+ LgLshu, (18)
the system can be written in the decoupled-form
{ y } - { oY o (19)
01 Co(y, 9,01, 01) + C1(y, 9, 01, 01 ).

The next step is to impose a continuous feedback v =
v(y,9) on (19), and thus on (10), so that the pair of double
integrators § = v is globally finite-time stabilized [23], [4],
[5], [6]. This will collapse the image of the Poincaré return
map to a one-dimensional set.

Hypotheses: The closed-loop pair of double integrators,
i = v(y, ¥), satisfies the following conditions:

CH2) solutions globally exist on /R*, and are unique;
CH3) solutions depend continuously on the initial condi-
tions;

CH4) the origin is globally asymptotically stable, and con-
vergence is achieved in finite time;

CH5) the settling time function®, Ty : IR* — IR by

inf{t >0 | (y(t),4(t)) = (0,0),
(¥(0),9(0)) = (0,%0)}

depends continuously on the initial condition, (%o, %o)-

Hypotheses CH2-CH4 correspond to the definition of
finite-time stability [23], [4]; CH5 will also be needed, but
is not implied by CH2-CH4 [5]. These requirements rule
out traditional sliding mode control, with its well-known
discontinuous action. A means of meeting these four ob-
jectives can be found in [4], [5]. The first two parts of the
following lemma are proven in [4]. The continuity of the
settling time function is proven in [5] (a continuous upper
bound on the settling time function is given in [4], along
with a Lyapunov function).

Lemma 1 (Bhat and Bernstein) Consider the double in-
tegrator on IR?,

Tset(y07 yO) =

il = T2
iy = . (20)

5That is, the time it takes for a solution initialized at (yo,%o0) to
converge to the origin. The terminology is taken from [4].
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with scalar input . Then, for all 0 < « < 1, the feedback

vo= talT1,72) (21)
= —sign(zs)|z2|* — sign(¢a (@1, 22))|da (1, 22) |77,

where ¢ (21, 22) =1 + zi=sign(za)|za[>~, satisfies the
following:
P1: v is continuous;
P2: the origin of (20) in closed-loop with (21) is globally
finite-time stable;
P3: the settling time function, Ts.¢, depends continuously
on the initial condition.

Let ¢; (1, 22), i = 1,2, be any feedbacks for (20) meeting
P1-P3 of Lemma 1. To each double integrator of (19),
apply the feedback v; = v (%,%:), so that, with

U1y, 91) } 7

V2 (Y2, 72) (22)

v Vi) |
CH2-CH5 are satisfied for § = v. Define a feedback on (2),
and hence on (10) as well, by

u(x) := (LyLph(z))~ ' (W(h(z), Lyh(z)) — L?ch(x)) , (23)
and denote the right-hand side of the closed-loop by

Je(x) := f(z) + g(x)u(). (24)

Finally, define

Tcl

set (x) = max{TS@t (hlv Lf hl)v Tset (h27 thQ)} (25)

in the obvious way. It follows that 7¢,(x) is a continuous
function of .

The model of the biped robot in closed loop with the
controller is thus:

Ed:{ #(t) =

at(t) =
In the next subsection, the method of Poincaré sections
will be applied to analyze the existence and stability of
periodic orbits. The finite-time convergence property of
the controller will be exploited to deduce properties of the
solutions of (26) by studying the solutions of

wt) = fa(z(t))

corresponding to a one-dimensional subset of initial condi-
tions.

Jer(x (1))
Az (1))

x (1) &5

x(t) €8S (26)

(27)

C. Analysis & la Poincaré

The first step in the analysis is to verify that Hypothe-
ses H1-H4 hold for the closed-loop system (26). Lemma 5
of Appendix B shows that continuity of the feedback (22)
plus Hypotheses CH1-CH3 imply H1 and H2. Hypothe-
ses H3 and H4 were verified in Section I1I-C and Section
1I-B, respectively. Thus Theorem 1 is applicable. The sec-
ond step in the analysis is to simplify the application of
the theorem. This is achieved by studying the image of the
Poincaré return map in the case that the controller has had

sufficient time to converge. Convergence of the controller is
equivalent to the outputs, (15), being identically zero over
an interval of time.

The internal dynamics of the system (2) compatible with
the output (15) being identically zero is called the zero dy-
namics [30], and the state space on which the zero dynam-
ics evolves is called the zero dynamics manifold. For the
biped model under study, the zero dynamics manifold is
computed from (19) to be

7z = {(0,w)€X|03:0§'f, 01 +60:;=0, w3=0,

w1 +we =0, —7T<01<7T, wleﬂ%}. (28)

Note that the feedback (23) makes Z an invariant manifold
of (2), while the same feedback does not render Z invariant
for (10) since A does not map Z N S into Z. The zero
dynamics itself will not be computed here since it is not
needed directly in the stability analysis; the zero-dynamics
will be studied in Section V (see also Appendix A).
Lemma 2: Under Hypotheses CH1-CH5, and H3-H4
1. The set

S = {xg €5 | Tset(xo) < TI(IO) < 00,

LeH(¢' (Ty(x0), %)) # 0} (29)

is an open subset of S.
2. Let P : S — S be the Poincaré return map. Then
P:S—SnZ.

The straightforward proof is skipped. Note that in terms
of the original coordinates (#,w) of the robot,

SNz = {(Bw)eX |0 =05, 6146, =0, ws =0,

w1 +we =0, 01 :Hf, w1 ER},
a one-dimensional (embedded) submanifold of X. Define

p:SNZ—SNZby p(x) := P(z). (30)
For z* € S, P(z*) € SN Z. Thus, by the definition of
p, P(z*) = z* if, and only if, z* € SN Z and p(z*) =
x*. Suppose that for some zy € S, the sequence Tpi1 =
P(xy) is well-defined for k£ > 0, and remains in some open
neighborhood of 2. Then for all £ > 1, 2.1 = p(xy).
It follows that z* € S is a stable (resp., asymptotically
stable) equilibrium point of P if, and only if, it is a stable
(resp., asymptotically stable) equilibrium point of p. Thus,
the determination of the existence and stability properties
of periodic orbits that are transversal to S can be reduced
to the analysis of a one-dimensional map. These results
are summarized in the following theorem. A numerical
example to the biped robot is given immediately in the
next subsection.

THEOREM 2: (Method of Poincaré for Finite-
Time Control) Consider the biped robot model of Sec-
tion II, written in the form of a system with impulse effects,
(10). Define outputs such that Hypothesis CH1 is met.
Suppose that a continuous, finite-time stabilizing feedback
is applied, and that Hypotheses CH2-CH4 are met. Define
Z, S and p as in (28), (29) and (30), respectively. Then,
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1. A periodic orbit is transversal to S if, and only if, it is
transversal to SN Z.

2. z* € SN Z gives rise to a periodic orbit of (26) if, and
only if, p(x*) = z*.

3.2*esSnz gives rise to a stable (resp., asymptotically
stable) periodic orbit of (26) if, and only if, z* is a stable
(resp., asymptotically stable) equilibrium point of p.

D. Numerical example

Consider the model (10), with the following values of the
parameters:

m=5 Mg=15 Mr=10 r=1 1=05

corresponding to the mass of the legs, the mass of the hips,
the mass of the torso, the length of the legs and the distance
between the center of mass of the hips and the center of
mass of the torso. The units are kilograms and meters.
With the outputs defined as in (15), Hypothesis CH1 is
met. Suppose that the desired inclination angle of the torso
is Hg = 7/6 and that the swing leg has been designed to
re-enter the saggital plane when 0 = 7 /8. In the feedback
(23), suppose that

(31)

W(x) = [ Stba(vn, i) }

E%wa (y2 ) 63}2)

is used, with ¢ = 0.1 and o = 0.9, where ¥, (x, 22) is
given by (21). The parameter ¢ > 0 allows the settling
time of the controller to be adjusted. With this feedback,
CH2-CH5 hold. In the impact model (9), it is supposed
that the friction coeflicient 11 > 2/3 (see Appendix A). In
the course of the simulations, it has been verified that the
impact model is valid, so this point will not be discussed
further.

To determine if this choice of parameters results in an
asymptotically stable walking cycle that is transversal to S ,
that is, the orbit is transversal to S and the finite-time sta-
bilizing feedback has had enough time to converge over the
walking cycle, the function p of Theorem 2 must evaluated.
This is conveniently done as follows. Define o : R — SNZ
by o(w; ) == (64, —0¢,0¢, w; , —w, ,0), where w; denotes
the angular velocity of the stance leg just before impact.
Define X := 0 ' opoo. A straightforward procedure for
evaluating A\ on the basis of a simulation model® of the
closed-loop system is now given.

Numerical Procedure to Test for Walking Cycles
via the Method of Poincaré:

1) For a point w; > 0, compute z~ := o(w; ), the po-
sition of the robot just before impact (the restriction to
positive velocities corresponds to the robot walking from
left to right).

2) Apply the impact model to x™, that is, compute 7 :=
Alxz).

SThe existence and continuity of A has been assured by the theoret-
ical developments of the paper. A numerical simulator is being used
to compute an approrimation of this function. Since the feedback in
(22) can be uniformly approximated by a Lipschitz continuous func-
tion, a standard numerical integrator can be used to approximately
compute A to any desired degree of accuracy.

3) Use ™ as the initial condition in (27), the robot in
closed loop with the controller, and simulate until one of
the following happens:

a) there exists a time T > 0 where 01(T) = 6¢; then,
if T is greater than the settling time of the controller (in
other words, the output y is identically zero), then z& €
SN Z, and Mwy ) = wi(T); else, zt & SN Z, and Aw; ) is
undefined at this point.

b) there does not exist a 7' > 0 such that 6, (T) = ¢
(which is normally detected by one of the angles exceeding
+m/2 during the simulation); in this case, it is also true
that 2 ¢ SN Z, and A\(w; ) is undefined at this point.

Figure 2 displays the function J); it also displays the re-
lated function 6A(w; ) := Alwy ) — wy, which represents
the change in velocity over successive cycles, from just be-
fore an impact to just before the next one. It is seen that
A is undefined for w; less than approximately 1.32 radi-
ans/second (for initial w; less than this value, the robot, fell
backwards). The plot was truncated at 2 radians/second
because nothing interesting occurs beyond this point (ex-
cept an upper bound on its domain of existence will eventu-
ally occur due to the controller not having enough time to
settle over one walking cycle). A fixed point occurs at ap-
proximately 1.6 radians/second, and, from the graph of ),
it clearly corresponds to an asymptotically stable walking
cycle, whose projection is shown in Figure 3.

To illustrate the role played by the inclination of the
torso, suppose that 04 is reduced by half to 7/12. Figure 4
displays A and 6\ for this case. It is seen that there is no
fixed point, and hence no periodic orbit that is transversal
to 5. Simulations also support this conclusion, but are not
reported here for reasons of space. For a robot without
knees or ankles, the driving force for walking comes from
the inclination of the torso, which couples in the force of
gravity.

In [22], it is shown that the stability characterization de-
veloped in this paper is sufficiently tractable that it can be
efficiently incorporated into a (numerical) feedback design
scheme for computing an asymptotically stabilizing feed-
back controller with low peak torque demands and good
efficiency with respect to average energy consumption over
a cycle, or to optimize the mechanical parameters of the
robot itself.

V. ANALYSIS OF THE ZERO DYNAMICS IN RELATION TO
HicH GaIN CONTROL

The previous sections have provided an effective method
for determining the existence of a periodic orbit, and for
analyzing its stability properties. The goal of this sec-
tion is to analyze more deeply the internal behavior of the
robot model in closed loop with a finite-time stabilizing
controller. As pointed out in Section IV-C, the classical
zero dynamics of the mechanical part of the robot model
are not invariant under the impact model, when bounded
control gains are used. It is shown here that in the limit as
the gain tends to infinity, the invariance of the zero dynam-
ics is recovered, independent of the impact model. This can
be used to explain certain properties of the Poincaré map,
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A, such as its observed strict monotonicity. For reasons of
space, the exposition will be more terse than that of the
previous sections.

A. Zero dynamics

Tt is easy to verify that the input vector fields of (2) com-
mute; that is, their Lie bracket is zero. This, in combina-
tion with the decoupling matrix being globally invertible,
implies that the dynamic (2), with outputs (15), can be
transformed into a particularly simple normal form [30].
An appropriate coordinate transformation can be found by
applying Proposition 1.3, page 237, plus the constructive
proof of the Frobenius Theorem, page 26, in this same ref-
erence. The result is the following change of coordinates,
which is a global diffeomorphism under Hypothesis CHI:

!

z=[03—0f 0,+0: wg w+w 06 ~x)],
(32)

where,

V(x) =
Mrprlcos(6) — 03))w1 + (i'mr2 — %mrQ cos(f; — 92))WQ

+(MT12 + Mryricos(6; — 03))w3-

(%mrQ + Myr? + Mpr? — %mrQ cos(f; — 62)+

(33)
The constructive proof of the Frobenius Theorem shows,
in fact, that the function ~ is the last row of the matrix

-1

0 W1
B,| 0 D | ws
1 W3

Note that (fl, T2, T3, f4) = (h,l (I), ho (I), thl (x), thg(x)).

In the Z-coordinates, the state space model of the robot,
(2), with the decoupling feedback, (18), becomes

T = f(z)), (34)
where fi =23, fo=24, fz=v1, fi=wv2
fT - 4MTl(T‘ cos(flff5+0§)7l)53+7m“2(2 Cos(f272f5)71)f4+455
5 = 4 (me+ Mprr+ Mpr+ Mol cos(z, — 25+05) )
fo = o(Mrisin(zi+6%)— dmrsin(zo-z5)

— (%m’l“+1wTT+ 1WH’I“) Sin(f5))

The zero dynamics is obtained by imposing y(t) = 0. Set-
ting (%4, T2, T3,%4) = (0,0,0,0) in (34), and relabeling Zs
and g by & and &2, respectively, yields

. D)
|: §1 :| _ [ r(mr+1WHT+MT'F+IWTl cos(7§1+0§l)) (35)
a(

&2 Ml sin(02)+(mr+Mor+Mar) sin(<1))

In order to establish the relation between (34) and (35),
some properties of a double integrator in feedback with a
finite-time converging controller are needed.

B. Aside on the double integrator

Consider a scalar double integrator, 7(t) = v, and let
v = ¥(n,n) be any feedback so that Properties P1-P3 of

Lemma 1 hold. Let Ti.; be the settling time function and
let ¢(t,79) denote the solution of the closed-loop system
corresponding to the initial condition (0, 7). By continuity
of the dependence of the solution on the initial conditions,
and the fact that ¢ has bounded support”,

lim sup [io(t, ei0)] = 0 (36)
eNO >0
limsup |@¢(t, eno)| = O. (37)
eNO ¢>0

Since ¢ is a continuous function of #, and has bounded
support, [;° (%, 70)|dt exists and is finite. Hence, using
(37) and the bounded support property, it follows that

co T'set(0,en0)

(1, enp)ldt = lim
[@(2 €7o)] ey

1
- i / 16(t, o) |di = 0. (38)

lim

p(t, eng)|dt
tim | (61, )|

Consider again the scalar double integrator, let ¢ >
0, and apply the high gain feedback v = Z(n, ).
Let @ (t,70) denote the solution for the initial condition
(0,70). Then it is straightforward to verify that ¢.(t,70) =
©(t/€, eny), and thus that @ (t,79) = 2¢(t/€, eil). Hence,
by (36),

lim sup |ige (£,70)| = 0, (39)
eND >0
and by (38) and a simple substitution of variables,
li pe(t, o) |dt = 0. 40
tim [ foctt ) (10

C. High gain control and the zero dynamics

Once again, let v; = ;(yi,9:), ¢ = 1,2, be any feed-
backs for the double integrator so that Properties P1-P3
hold. For any ¢ > 0, a simple time scale argument shows
that the high gain feedback v; = %4; (y;, €;) still results
in Properties P1-P3 being met, and, furthermore, results
in the closed-loop settling time function, (25), becoming

T (y,9,¢) = €T, (y,ey). With this in mind, apply the
feedback
1 — —
v W) — | FVEnes) 41
(@)= | Ty (1)
to (34).

The relationship between the solutions of the closed-
loop robot model, (34), and the zero dynamics, (35), is
established as follows. Take a point = € SNZ. Let
zt := A(z7), where A is the representation of A in the
coordinates (32). It follows that ] = 0 and 7] = 0, be-
cause (15) is identically zero on S. Hence the analysis of
Section V-B is applicable. Letting z(¢,z%) denote the so-
lution of (34) for the initial condition z*, (39) and (40)
imply, respectively,

lim sup |2; (£, 27)] =0, i = 1,2,

42
eNO ¢>0 ( )

"Indeed, the support is [0, Tse+(0, ei0)].
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and,
set(070 EIS 761‘1)
lim |x](t zT)|dt = hm/ |Z;(t, 27)|dt =0,
e\.0

(43)
for j=3,4. From these two equations, and the fact that 73
and Z4 appear aflinely in f5, and not at all in fg, a simple
bounding argument® shows that, for ¢ > 0,

(0,0,0,0,¢ (t, 74, 7), &2(t, 74, 7))

(44)
where & (t, 23,75 ), i = 1,2, denotes the solution of the
zero dynamics, (35), for the initial condition (1 ,zg)’.

hmxtﬂc =
E\O( )

D. X\ under high gain control

It follows that in the high gain limit, that is, as € tends to
zero in (41), the function A from the Poincaré method can
be evaluated on the basis of a two dimensional subsystem,
namely, the zero dynamics. Denote the result by Agq.
This reduction is interesting for several reasons:

(1) it brings out the structure of the closed-loop system,
and shows that the zero dynamics must encode the notion
of a walking cycle;

(2) the uniqueness of the solutions of the zero dynamics
implies that Apg is strictly monotonic, which partly ex-
plains the observed monotonicity in A;

3) Agc is as smooth as the data in the problem (for the
biped, it is analytic), whereas ) is only continuous;

(4) the evaluation of Ap¢ is independent of the particu-
lar finite-time stabilizing feedback used. Moreover, it can
also be computed by replacing ; in (41) with a globally
exponentially stabilizing feedback, and taking the limit as
€ tends to zero; in the limit, the Poincaré return map, P,
when restricted to SNZ , takes again its values in SNZ. The
consequences of this observation for the study of periodic
orbits under non-finite-time stabilizing feedback control re-
main to be clarified.

VI. CONCLUSIONS

This paper has addressed the problem of establishing
the existence of a periodic orbit in a simple biped model,
and analyzing its stability properties. The biped model
was first formulated as a nonlinear system with impulse ef-
fects, evolving in a subset of IRS. Poincaré’s method was
then extended to this class of systems. For the biped model
considered here, a straightforward application of Poincaré’s
method would require the computation of a discrete-time
map from IR® to IR?, which would be difficult to analyze. It
was then shown that finite-time converging feedbacks could
be used to drive the torso and the swing leg to known func-
tions of the stance leg, and thereby collapse the dimension
of the image of the Poincaré map to a one-dimensional set.
This leads to an effective analysis tool, which can then
be used in design [22]. In the course of the development of
these results, it was observed that the zero dynamics of the

8Express the solutions in integral form, compute the norm of their
difference, and apply the triangle inequality.

biped was not invariant under the impact model. It was
subsequently shown that its invariance could be recovered
under high gain control.

The analysis method developed in the paper is quite gen-
eral. The next step is to apply it to a more general biped
model with knees [42], [21], [18], [19], yielding a seven de-
gree of freedom, under actuated system. It is conjectured
that supplementing outputs (15) with hip height and swing
foot height objectives will lead to a viable control design
with provable stability properties; the horizontal hip posi-
tion will play the role of ; in parameterizing the outputs
to be used in the feedback design. It also seems likely that
the methods developed here can be applied to other under
actuated mechanical systems [40].

The work presented here has assumed a rigid impact
model. Non-rigid models have been developed [49] in the
context of biped motion. It seems possible that some of
the results of the paper can be extended to include such
models, though this is more speculative than the previous
extension. Finally, many challenging issues exist in running
(which has a fly phase) and three dimensional aspects of
modeling and control of mechanical biped motion.
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VII. APPENDIX A: MODEL DETAILS

This appendix completes the equations of the biped
model, (1). In the following,

w = 0
s1; = sin(f —0;),5 €{2,3}
ci; = cos(bp —0;),7€{2,3}.
Mechanical model
(%m + My + Myp)r? —%m’l“2012 Myrrles
D= %m?“2012 imrQ 0
MTTlclg 0 MTZ2
(45)
0 —%’)’TLT2812WQ Myprlsisws
C = %mr%lgwl 0 0
—Mrprisisw; 0 0
(46)
—29 (2Myg +3m +2Mr)rsin(f;)
G= Lgmrsin(0s) (47)
—gMTlsin(Og)
-1 0
B = 0 —1 (48)
1 1

Impact model
The impact equations (4) and (8), taken together, be-

come / N
De _E QS _ Dqu
R
where, F' = (Fp, Fiy)" and the positive definite, symmetric

matrix D, has entries

DM = (3m+ My + Mp) r?
DF}Q = —%m?“2012 D = —%mr cos(0s)
D! = Mrrics D5 = Lmrsin(6s)
DY = (3m+ My D3 = Mrpl?
JrMTgT cos(f1) D34 Myplcos(f3)
DI =—(8m+ My D§’5 = —Mrlsin(f3)
+MT)TSin(01) D;M =2m+ My + My
D = imy? D¥ =0
D2 =0 D3 =2m + My + My

The solvability of (49) is equivalent to the invertibility of
the matrix on the left hand side. The invertibility of this
matrix follows from the fact that D, is positive definite and
E has full rank; indeed, the determinant of the left hand
side of (49) can be computed to be

mMzltr! (3m ' 2M7 + AMy — 2mcos(201 — 205)
2 My cos(20 — 203)),

which is non-zero everywhere.

The mapping A is then evaluated by the following steps:
Step 1: solve (49) for ¢!, and pick-off w™; since ¢, only
depends on w~ (recall that 2, = %, = 0), and since the
positions do not change during the impact (i.e, 07 = 07),
the result is w™ expressed as a function of x= = (0=, w™').
Step 2: transform the coordinates so that 8, corresponds to
the stance leg and 65 to the swing leg; this means swapping
the first two position coordinates, and the first two velocity
coordinates, respectively.

The final result is

A ):=[0, 07 05 wf (@) wy (@) |’
(50)

The implicit function theorem implies that A is as smooth

as the data in (49), and thus A is analytic in ™.

Remarks: (a) A is computed in closed form in [22]. (b)

The no-rebound, no-slip condition of the impact, (8), en-

wy (x7)

sures that the impact results in the end of the swing leg
being at rest, and hence, after doing the coordinate trans-
formation, the end of the stance leg will be at rest. (c)
For the impact model to be valid, it must be verified a
posteriori that no-slipping was a valid assumption (that
is, |Fr/Fn| < p), and that the stance leg lifts from the
ground without interaction (that is, before the coordinate
transformation, o™ > 0). This was done for all simulations
reported in this paper.

Decoupling matrix

The Lie derivative notation is defined in [30], [37], [41].

1 Riw Ryo
L,L:h— 51
9t det(D) { Ro1 Rao (5D

3
Ry = mi“ i mT(012)2 + MTlclg)
3
Riz = 2 (2mr + Myr + Mypr —mr(ci2)® + 2MT1012013>
2
Rop = #lﬂ (1 + 2012) (7“013 -+ l)
Ryp = =Mzlr® <5ml - AMyl + AMpl+ mircys + 2mrciacys

—4MTl(013)2 i 2mlc12),

and

det(D) — mMpr*? (5 >

2 Zm+MH+MT_m(Cl2)2_MT(013)2
Zero Dynamics

In the coordinates used in (19), the zero dynamics is
given by

01 = o(0,0,01,01) = G (1) + G(01)0F,  (52)
where,
L0 — g (2m + My + My)rsin(61) + Mrl sin(64)
r mr+ Mgr + Mpr + Mrlcos(6, — 6%)
&0 — Mrzlsin(0; — 6%) . (53)

mr+ Mgr + Mrr + Mrlcos(0; — 03)
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VIII. APPENDIX B: PROOFS AND TECHNICAL DETAILS

This appendix collects some of the technical develop-
ment, in the hope of improving the readability of the main
body of the paper.

Continuity of 77

Lemma 3: Suppose that Hypotheses H1-H3 hold. Then
T is continuous at points xg where 0 < T7(x9) < oo and
Ly H(¢ (Ti (o), 20)) # 0.

Proof: Let ¢ > 0 be given. Define # :=
o (Tr(20), 20), and without loss of generality, suppose that
LyH(z) < 0. Then, from the definition of 77 and H3,
H(¢? (t,20)) > 0 for all 0 < ¢t < Ty(x). This in turn
implies that, for any 0 < t; < T7(xo),

. . f
/’L(tl) i Ogl?gftl dlSt((p (tv xo)v S) >0, (54)

since: (a) ¢/ (f,z9) is continuous in #; (b) the interval
[0, #1] is compact; and (c), by H3, S is closed and equals
the zero level set of H. By HI, there exists € > 0 such
that ¢/ can be continued on [0,T7(xo) + €], [24]. More-
over, since LyH(z) < 0, for € > 0 sufficiently small,
ty := Tr(x0)+€/2 and 2 := @/ (12, 20), result in H(xs) < 0.
From H(x) < 0, it follows that dist(xzg,S) > 0. If neces-
sary, reduce € so that 0 < € < min{¢, T (z0)}, and de-
fine t; := Tr(xo) — /2 and x; = ¢/ (t1,20). From (54),
u(t1) > 0. From H2, the solutions depend continuously
on the initial conditions. Thus, there exists § > 0, such
that, for all 2 € Bs(x0), supp< <y, |07 (1, 2) — ! (1, 20)|| <
min{dist(xs, S), p(t1)/2}. Therefore, for x € Bs(xg), t1 <
Tr(x) < tg, which implies that |T7(x) — Tr(xg)| < €, estab-
lishing the continuity of 77 at . |
Distance of a trajectory to a periodic orbit

Recall that if @ is any periodic orbit that is transver-
sal to S, then @ C X. For ¢ € X, define d(z) =
SUPo<¢< 1 (z) dist(¢™ (£, 2), O). Note that d vanishes on O.
Note also that for 0 <t < T7(x), ¢~ (t,2) = @/ (1, 2).

Lemma 4: Under H1-H3, d : X — IR is well-defined and
is continuous on O.

Proof: For any xo € X, Tr(xo) is finite, and

! (t,70) is defined on [0, Tr(x)]. This and the continu-
ity of ¢/ (t,0) with respect to t imply that d(x) is finite.
Next, let g € O and ¢ > 0 be given. By definition of
Tr, & = @/ (T1(x0),70) € S. Without loss of generality,
suppose that LyH(z) < 0. Let n > 0 be such that for
all 0 <t <n, H(p/(t,2)) < 0 and ||Z — &7 (1,2)]] < €/2.
Such an 7 exists because: (1) H1 implies there exists 7 > 0
such that ¢/ can be continued on [0, 7} (xo) + 1], [24]; (2)
LH(Z) < 0; and (3) ¢/ (f,7) depends continuously on
t. Define t3 := T7(20) + n and 23 = ¢/ (t3,20). By
H2 and Lemma 3, there exists § > 0 such that for all
T e B5(x0)7 SUPp< t<t5 ||(pf(t7 xo) - (pf(tv j)H < 6/2 and
T7(%) < t3. By the triangle inequality, dist(¢/ (£, %), 0) <
dist(¢/ (t, %), ¢ (t,20)) + dist(p/ (t,20),0). Hence, for
& € Bs(ro), suPo<icr, (s dist(! (,2),0) < suppcicy,
dlSt((pf (tv j)v (pf (tv xO)) + Sup0§t§t3 dlSt(QOf (tv xO)v O) S
€/2 + €/2, which shows that d(Z) < ¢, and thereby the
continuity of d at xg.

|
Proof of Theorem 1
Proof: The first and second statements are immedi-
ate. Since the sufficiency portions of the statement c) and
d) are straightforward, only necessity is proven here. Sup-
pose that P(xg) = zp, and let O be the periodic orbit of
(11) corresponding to A(xg). By b), the orbit is transver-
sal to S. Let € > 0 be given. Since ¢ is stable in the sense
of Lyapunov, for any € > 0, there exists §(€) > 0 such that,
for all k > 0, & € Bs(e)(20) NS, implies P*(&) € B.(xo)NS,
where P* is P composed with itself k-times. In particular,
this implies that for all Z € Bsz)(0)NS, there exists a solu-
tion (t) of (11) defined on [0, 0), such that (0) = A(Z).
Moreover, an upper bound on how far the solution ¢ wan-
ders from the orbit O is given by

supdist(p(t),0) <
>0

doAlx).  (55)

sup
z€Be(zg)NS

By Lemma 4, since O is transversal to S, and since A(zg) €
0O, do A is continuous at zg. Since do A(xg) = 0, it follows
that there exists € > 0 such that sup, cp_(40)ns doA(x) < e.
This bound is valid for all initial conditions in By (o) N
S. It remains to produce an open neighborhood of @ for
which such a bound holds. But this is easily done by taking
V :=d 1([0, 6)), which completes the proof of ¢). Assume
in addition that 6(€) > 0 was chosen sufficiently small so
that limy,_, .. P*(Z) = 2p. Then by continuity of d and A,
limg oo do A(PF(Z)) = do A(xg) = 0, from which it easily
follows that lim;_. o, dist(¢(t), ©) = 0, proving d).
|
Sufficient conditions for H1-H2
The goal is to show that the continuity of the feedback
(22) plus Hypotheses CH1-CH3 imply that Hypotheses H1
and H2 hold for (24). H1 is immediate. Due to the sub-
group property of the flow of a differential equation, it is
enough to establish H2 in a local coordinate chart. Since
(2) comes from the second order model, (1), where the ma-
trix B is constant, the input vector fields of (2) commute
and the dimension of their span is constant. These two
facts plus the invertibility of the decoupling matrix (Hy-
pothesis CH1) imply that, about any point zg € X, the
system (24) can be locally transformed into [30], [37], [41]

C:l = &
G = (G, &) (56)
z = F((lv (27 Z)v

where (1 := ¥, (2 := ¢, VU is given by (22) and T is an ana-
lytic function of its arguments (the analyticity comes from
that of (1)). In particular, T is locally Lipschitz continuous.

Thus, in these coordinates, the system is expressed as a
cascade of a system that satisfies H2 feeding forward into
a system that is locally Lipschitz. The Gronwal inequality
[34] can therefore be used to establish that H2 holds for
the cascade. This is summarized in the lemma below.

Lemma 5: For the closed-loop system (24), Hypotheses
CH1-CH3 and the continuity of (22) imply Hypotheses H1
and H2.
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A B

Fig. 1. Schematic indicating the defintion of the generalized coor-
dinates and the mechanical data of the biped robot. All masses
are lumped. The legs are symmetric, with length r equal to the
length of the line segment A — Og(also, B — O ). The mass of
each leg is lumped at 7/2. The distance from the center of gravity
of the hips to the center of gravity of the torso, denoted by I, is
the distance from Oy to Op.
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Fig. 2. The top graph presents the function A (bold line) and, for vi-
sualization purposes, the identity function (thin line); the bottom
graph presents the function §A (bold line) and the zero line (thin
line). From either graph, it is seen that there exists a periodic
orbit and that it is asymptotically stable.
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Impact Event

Fig. 3. Projection onto (f1,w1,ws) of a trajectory asymptotically
converging to an orbit. Note that the ‘flat’ portion of the curve
is really an instantaneous transition due to the impact of the
swing leg with the ground. The dot is the initial point.
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Fig. 4. The top graph presents the function A (bold line) and, for
visualization purposes, the identity function (thin line); the bot-
tom graph presents the function 6\ (bold line) and the zero line
(thin line). From either graph, it is seen that there does not exist
a periodic orbit transversal to S.
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