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Abstract

The existence and stability properties of periodic orbits
are studied for nonlinear systems with impulse effects.
This is achieved with an extension of the well-known
method of Poincaré. The main result is then applied
to a model of an under actuated, five degree of freedom
biped robot with a torso in order to prove, for the first
time, the existence of an asymptotically stable walking
cycle.

1 Introduction

Limit cycles, that is, isolated periodic orbits, are ubiq-
uitous. They can be desirable, such as a a periodic
motion in a mechanical clock, or undesireable, such as
an automatic transmission cycling between gears un-
der steady state inputs. A common feature of these
two examples is that they can be modeled as nonlinear
systems with impulse effects [1, 28]. In such a model,
the system evolves according to an ordinary differential
equation until the state encounters a switching condi-
tion, at which time, a rapid change in the system state
occurs. In order to avoid the “stiffness” associated with
including a second differential equation to model the
rapid evolution of the state at the switching time, a
model with impulse effects collapses the change to an
instant in time, and allows a discontinuity in the state.
The effect is not unlike an impulse in a linear model,
and hence the name.

The stability properties of equilibrium points in non-
linear systems with impulse effects have been studied
extensively using Lyapunov methods [1, 28]. This com-
municaition extends the method of Poincaré sections to
systems with impulse effects. The result is then used to
study asymptotically stable walking in a planar biped
robot model. Since regular walking can be viewed as a
periodic orbit, the method of Poincaré sections is the
natural means to study its asymptotic stability. How-
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ever, due to the complexity of the associated dynamic
models, this approach has only been applied success-
fully to Raibert’s one-legged-hopper [17, 6, 8], and a
biped robot without a torso [27, 9, 25]. A second con-
tribution of the present work is to show that the control
strategy can be designed in a way that greatly simpli-
fies the application of the method of Poincaré to a class
of biped models, and in fact, to reduce the stability as-
sessment problem to the calculation of a continuous
map from a sub-interval of IR to itself.

2 Background on Systems with Impulse Effects

Consider a differential equation

@(t) = fx(t)) + g(x())u(?), (1)

where 2(t) € X, a connected open subset of IR™, u(t) €
IR™, and f and the columns of g are continuous vector
fields on X. Let S := {r € X | H(xz) = 0}, where
H: X — IR. Finally, let A : S — X. A system with
impulse effects is a model of the form

SE { a(t) = flz(®) +gl@®)u) = (1) €5
1 2T() = Az (1) (1) 65,(2)

where x (t) := lim; ~ 2(7) and @' (¢) := lim,; 4 2(7)
denote, respectively, the left and right limits of the tra-
jectory, x(t). The mathematical meaning of a solution
of the model will be given shortly. In simple words,
a trajectory of the model is specified by the differen-
tial equation (1) until its state “impacts” the hyper
surface S. At this point, the impulse model A com-
presses the impact event into an instantaneous moment
of time, resulting in a discontinuity in the state trajec-
tory. The ultimate result of the impact model is a new
initial condition from which the differential equation
model evolves until the next impact with S. In order
to avoid the state having to take on two values at the
“impact time”, the impact event is, roughly speaking,
described in terms of the values of the state “just prior
to impact” at time “t~”, and “just after impact” at
time “t77”. These values are represented by the left
and right limits, = and x T, respectively.

A function ¢ : [to, ty) — X, ty € RU{oo}, ty > ty,isa
solution' of (2) if 1) (1) is right continuous on [tg, tf),

1The definition is based on [28], except that solutions are
taken to be right continuous instead of left continuous.



2) left limits exist at each point of (t,?s), and 3) there
exists a closed discrete subset 7 C [tg,o0) such that,

a) for every t & T, (t) is differentiable and d";it) =
Flp() + g(e(®)u(t), and b) for t € T, ¢ (1) € S an.
e (t) = A~ (#)). The condition that the set of impact
times is closed and discrete simply means that there is
no “chattering” about an impact point. A solution ()
of (2) is periodic if there exists a finite T' > 0 such that
et +T) = () for all £ € [ty,0). Aset O C X
is a periodic orbit of (2) if O = {p(t) |t > to} for
some periodic solution ¢(t). An orbit is non-trivial if
it contains more than one point.

In the following, it is assumed that w«(t) in (2) is iden-
tically zero, so that one may refer to (2) as being time-
invariant. It is further assumed that solutions to (2),
when they exist, are unique.

A periodic orbit O is stable in the sense of Lyapunov
if for every € > 0, there exists an open neighborhood
VY of O such that for every p € V, there exists a so-
lution ¢ : [0,00) — X of (2) satisfying ¢(0) = p and
dist(¢(t), O) < ¢ for all t > 0. O is attractive if there
exists an open neighborhood V of O such that for ev-
ery p € V, there exists a solution ¢ : [0,00) — X of (2)
satisfying ¢(0) = p and lim;_,, dist(p(t),0) =0. O
is asymptotically stable in the sense of Lyapunov if it
is both stable and attractive. From here on, the quali-
fier, “in the sense of Lyapunov”, will be systematically
assumed if it is not made explicit.

Finally, assume that in (2), S = {x € X | H(z) = 0},
where H : X — IR is continuously differentiable. A
periodic orbit O is transversal to S if its closure in-
tersects S in exactly one point, and for  := O NS,
LyH(z) == 2L (z)f(2) # 0 (in words, at the intersec-
tion, O is not tangent to S, where O is the set closure

of O).

Remark: Note that a periodic orbit of a system with
impulse effects may not be a closed set, since, for t €
T, ¢ (t) & O (if solutions were assumed to be left
continuous, instead of right continuous, then ¢+ (1) € O
). Indeed, a periodic orbit is closed if, and only if,
T = 0. If a periodic orbit does not impact the surface
S, then standard forms of the method of Poincaré can
be applied.

3 Method of Poincaré Sections

Consider a time-invariant system with impulse effects

fozt) = flx(t x (t)gs
= { xf(i) _ A((x(*)()t)) o 8 cs G

where the state space X is an open connected subset
of IR™. The method of Poincaré sections is extended
to the above system for the case of nontrivial periodic
orbits that are transversal to S, under the following
hypotheses:

Hypotheses:

H1) f(z) is continuous on X

H2) a solution of (4) from a given initial condition is
unique and depends continuously on the initial
condition;

H3) there exists a differentiable function H : X — IR
such that S = {z € X | H(x) = 0}; moreover, for
every s € 5, 2 (s) #£0.

H4) A : S — X is continuous, where S is given the
subset topology from X.

Hypothesis H1 implies that at any point 29 € X, a
solution to (4) will exist over a sufficiently small interval
of time [11]. This solution may not be unique, and
may not depend continuously on the initial condition;
whence Hypothesis H2. Hypothesis H3 implies that
S is an embedded submanifold [14], when given the
subset topology. Hypothesis H4 assures that the result
of an impact varies continuously with respect to where
it occurs on S.

As a point of notation, ¢ will be used to denote a solu-
tion of the system (3), while ¢/ will denote a solution
of the associated ordinary differential equation,

&= f(x). (4)

The point of introducing ¢/ is that, firstly, a lot is
known about solutions of ordinary differential equa-
tions with continuous right hand sides [11]; secondly, in
view of the first point, it is convenient to prove proper-
ties of (3) in terms of properties of (4); thirdly, at times
in the proofs, it is necessary to extend a solution of (4)
“through” S, while this does not make sense for (3).

Define the time to impact function, Ty : X — IRU{o0},
by

if 3 ¢ such that
gof (tv xo) € S
o0 otherwise

(5)

Lemma 1 Suppose that Hypotheses H1-H3 hold. Then
Ty is continuous at points xg where 0 < Tr(xg) < 00
and Ly H (¢! (T7(x0),20)) # 0.

inf{t > 0|¢/ (t,20) € S}
T[(xo) =

Proof: Let ¢ > 0 be given. Define z :=
o (T1 (o), 20), and without loss of generality, suppose
that Ly H(z) < 0. Then, from the definition of 77 and
H3, H(f (t,m0)) > 0 for all 0 < ¢ < Ty(xo). This in
turn implies that, for any 0 < t; < Tr(xg),

plty) = inf dist(¢’ (t, 20), ) > 0, (6)
since: (a) o/ (t,20) is continuous in #; (b) the inter-
val [0,1;] is compact; and (c), by H3, S is closed and



equals the zero level set of H. By HI, there exists
€ > 0 such that ¢/ can be continued on [0, Tr(zo) + €],
[11]. Moreover, since LyH(z) < 0, for € > 0 suffi-
ciently small, 1y := T7(20) + €/2 and x5 := ¢/ (12, 20),
result in H(x2) < 0. From H(xa) < 0, it follows
that dist(x2,S) > 0. If necessary, reduce € so that
0 < € < min{e, T7 (o)}, and define #; := Ty(xg) — €/2
and z1 = ¢/ (t1,20). From (6), u(t;) > 0. From
H2, the solutions depend continuously on the initial
conditions. Thus, there exists & > 0, such that, for
all v € B5(x0)7 SUPo< <ty ||<pf(t7 x) - Wf(tva)H

min{dist(xa, S), p(t1)/2}. Therefore, for x € Bs(xyp),
ty < Ty(x) < ta, which implies that |T7(x) — T (zo)| <
€, establishing the continuity of 77 at xg. ™

Hence, under HI-H3, X := {z € X | 0 < Ti(z) <
oo and Ly H (o (Ty(x),z)) # 0} is open. If H4 also
holds, then S := A~1(X) is an open subset of S. It
immediately follows that under H1-H4, the Poincaré

return map, P : S — S by

P(z) = ! (Tr(A()), A(x)), (7)

is well-defined and continuous. Next, note that under
H1-H4, if O is any periodic orbit of (3) that is transver-
sal to S, then O C X. This is essentially by definition.
Thus, there exists xg € S that generates O in the sense
that A(xg) € O; indeed, 1o = O N S. Tt thus makes
sense to denote the orbit by O(A(xg)).

Theorem 1 (Method of Poincaré Sections for
Systems with Impulse Effects) Under HI-H/, the
following statements hold:

a) If O is a periodic orbit of (3) that is transversal to
S, then there exists a point xo € S that generates
0.

b) xo € S is a fired point of P if, and only if, A(xo)
generates a periodic orbit that is transversal to S.

e) xg € S is a stable equilibrium point of xp, 1 =
P(xy) if, and only if, the orbit O(A(xy)) is stable
in the sense of Lyapunov.

d) xy € S is an asymptotically stable equilibrium
point of xpy1 = P(xg) if, and only if, the orbit
O(A(xg)) is asymptotically stable in the sense of
Lyapunov.

The following is needed in the proof of the theorem. For
O a given periodic orbit that is transversal to S, and
x € X, define d(z) := SUPo<¢< 1, () dist (¢~ (£, 2), O).
Note that d vanishes on @. Note also that for 0 < ¢ <
Tl(x)v w (tv x) - (pf (tv x)

Lemma 2 Under HI-H3, d : X — R is well-defined
and is continuous on O.

Proof: For any xy € X, Ty(xo) is finite, and
o/ (t,29) is defined on [0,77(x0)]. This and the
continuity of 7 (f, o) with respect to t imply that
d(xo) is finite. Next, let zg € O and € > 0 be given.
By definition of T7, Z := ¢/ (T7(x0), 20) € S. Without
loss of generality, suppose that LyH(z) < 0. Let
n > 0 be such that for all 0 < t <7, H(¢/(t,2)) <0
and ||z — o/ (t,Z)|] < €/2. Such an 7 exists be-
cause: (1) H1 implies there exists n > 0 such that
@’ can be continued on [0,7r(xo) + n], [11]; (2)
LyH(Z) < 0; and (3) ¢/ (t,Z) depends continuously
on t. Define t3 = Ti{xo) +n and x3 := @/ (I3, 20).
By H2 and Lemma 1, there exists 6 > 0 such
that for all & € Bs(xo), suppci<s, [l¢7(t,20) —
o' (t,7)]] < min{e/2} and T[(JNU) < 3. By
the triangle inequality,  dist(y/ (1, %), O) <
dist(/ (1, %), ¢7 (1, 20)) + dist(¢/ (t,20),0). Hence,
for @ € Bs(7o), supgci<r,(z) dist(y I(t,2),0) <
SUPo< <1, dist(” (£, %), 7 (1, 70)) +
SUPg< <, dist(@f (1,20),0) < €/2 + €/2, which
shows that d(#) < €, and thereby the continuity of d
at xg. |

Proof: (Theorem 1) The first and second statements
are immediate. Since the sufficiency portions of the
statement c) and d) are straightforward, only necessity
is proven here. Suppose that P(xg) = xg, and let O be
the periodic orbit of (3) corresponding to A(zg). By
b), the orbit is transversal to S. Let ¢ > 0 be given.
Since g is a stable in the sense of Lyapunov, for any
€ > 0, there exist §(€) > 0 such that, for all £ >0, Z €
Bse)(20)NS, implies P*(z) € Be(x9)NS, where P* is P
composed with itself k-times. In particular, this implies
that for all £ € Bsez) (o) N S, there exists a solution
©(t) of (3) defined on [0,00), such that ¢(0) = A(Z).
Moreover, an upper bound on how far the solution ¢
wanders from the orbit O is given by

supdist(p(t), 0) < sup
t>0 CL‘EBE(SL‘[))QS

doA(z). (8

By Lemma 2, since O is transversal to S, and since
A(zg) € O, do A is continuous at zg. Since d o
A(zg) = 0, it follows that there exists € > 0 such
that sup,cp_(44)ns @ © A(x) < €. This bound is valid
for all initial conditions in Bz (20) N S. It remains to
produce an open neighborhood of @ for which such
a bound holds. But this is easily done by taking
V := d ([0, 6)), which completes the proof of c). As-
sume in addition that 6(€) > 0 was chosen sufficiently
small so that limy . o, P¥(Z) = xo. Then by continuity
of d and A, limy, . oo doA(P*(2)) = doA(xo) = 0, from
which it easily follows that lim; ., dist(¢(t), O) = 0,
proving d). ™



4 Biped Model and Control Design

This section summarizes a model and a controller for
use in an illustration of Poincaré’s method. The goal
is to study the stability of a walking cycle for an under
actuated, planar, five degree of freedom, biped robot
with a torso. To date, stability of a walking cycle has
only been established for Raibert’s one-legged-hopper
[17, 6, 8], and a biped robot without a torso [27, 9, 25].

4.1 Biped model

The robot consists of a torso, hips, and two legs of
equal length, with no ankles and no knees. It thus
has five degrees of freedom. It is assumed that the
walking cycle takes place in the (sagittal) plane. It is
further assumed that the walking cycle consists of suc-
cessive phases of single support (meaning only one leg
is touching the ground), with the transition from one
leg to another taking place in an infinitesimal length of
time [24, 7]. This assumption entails the use of a rigid
model to describe the impact of the swing leg with the
ground. The model of the biped robot thus consists
of two parts: the differential equations describing the
dynamics of the robot during the swing phase, and an
impulse model of the contact event. This leads nat-
urally to a model as a nonlinear system with impulse
effects.

During the swing phase of the motion, the stance leg
is modeled as a pivot, and thus there are only three
degrees of freedom. In order for the swing leg to move
without touching the ground until the desired moment
of contact, the idea of [19] is adopted here: the swing
leg is assumed to move out of the plane of forward mo-
tion, and into the frontal (coronal) plane. This allows
the swing leg to clear the ground and be posed in front
of the stance leg (think of a person with a cast over
their knee). Tt will be further assumed that the swing
leg is designed to reenter the plane of motion when the
angle of the stance leg attains a given value, 0. Al-
ternate means of achieving leg clearance in rigid legged
robots are discussed in [19, 7].

The definition of the angular coordinates and the dis-
position of the masses of the legs, hips and torso are in-
dicated in Figure 1. In particular, note that all masses
are lumped, and positive angles are computed clock-
wise with respect to the indicated vertical lines. Two
torques, u1 and wug, are applied between the torso and
the stance leg, and the torso and the swing leg, respec-
tively. The system is thus under actuated. The dy-
namic model of the robot between successive impacts
is easily derived using the method of Lagrange [26], and
results in a standard second order system

D(0)6 + C(0,0)0 + G(0) = Bu, (9)

where © = (u1,u2)’, and @ = (01,62,605)": 6; param-
eterizes the stance leg, #2 the swing leg and f#3 the

A B

Figure 1: Schematic indicating the defintion of the gen-
eralized coordinates and the mechanical data
of the biped robot. All masses are lumped.
The legs are symmetric, with length r equal
to the length of the line segment A — O (also,
B — Og). The mass of each leg is lumped at
r/2. The distance from the center of gravity of
the hips to the center of gravity of the torso,
denoted by [, is the distance from Oy to Or.

torso. The matrices D, C, and G are deduced from the
Lagragian [26], which is given in the Appendix. The
second order system (9) is written in state space form
by defining

L. 4d\e w
T { w } - { D1(6) (—C(0, w)w — G(6) + Bu)
=: f(x) + g(x)u. (10)

The state space for the system is taken as X := {x :=
(0,0 | 0€ M, we R*}, where M = (—7,7)3.

The second part of the model involves the impact be-
tween the swing leg and the ground. This is modeled
as a contact between two rigid bodies, and the stan-
dard model from [13] is used. The premises underlying
this model are that: (a) the impact takes place over
an infinitesimally small period of time; (b) the exter-
nal forces during the impact can be represented by im-
pulses; (c) impulsive forces may result in an instanta-
neous change in the velocities of the generalized coordi-
nates, but the positions remain continuous; and (d) the
torques supplied by the actuators are not impulsional.
If one further assumes that the contact of the swing leg
with the ground results in no rebound and no slipping
of the swing leg, and the stance leg naturally lifting
from the ground without interaction, an expression for
2", the position and velocity just after the impact, can
be computed from x~, the position and velocity just



before the impact [13]. Finally, since the coordinate
defintion assumes that #; corresponds to the stance leg
and 02 to the swing leg, it is necessary to do a coordi-
nate transformation after the impact, which amounts
to swapping the first two position coordinates, and the
first two velocity coordinates, respectively. The final
result is expressed as A : S — X, where

S:={(0,w) € X| 0, =0y}, (11)

which clearly satisfies H3 with H(x) = 6, — 6¢, and

0,
ot = Al ) = w?tg‘i”; , (12)
o (z)

with wy", wy and wy specified in the Appendix. It is
clear that H4 is satisfied.

4.2 Controller design

The goal of the control design is twofold: (1) to induce
an asymptotically stable periodic orbit, and (2), to fa-
cilitate the verification of the existence and stability
properties of the orbit. At its most basic level, walk-
ing consists of two things [22]: posture control, that
is, maintaining the torso in a semi-erect position, and
swing leg advancement, that is, causing the swing leg
to come from behind the stance leg, pass it by a cer-
tain amount, and prepare for contact with the ground.
The simplest version of posture control is to maintain
the angle of the torso at some constant value, say 0%,
while the simplest version of swing leg advancement
is to command the swing leg to behave as the mirror
image of the stance leg, that is, 2 = —6;. Thus the
“behavior” of walking will be “encoded” into the dy-
namics of the robot by defining outputs [16, 12, 15, 20].

lwm ] [ m@] _[6-06

y'{yz}'{@(e)}'{@lﬂL@z}’ (13)
with the control objective being to drive the outputs to
zero. Of course, the idea of building in a dynamic be-
havior of a system through the judicious definition of a
set of outputs, which when nulled yields a desireable in-
ternal behavior, is not novel in control [14] nor robotics
[5, 16, 12, 4, 15, 20, 23]. The result for the biped is es-
sentially to use the system itself as its own trajectory
generator, as opposed to tracking pre-computed refer-
ence trajectories. This idea seems to be an essential
step for proving anything about the trajectories of the
closed-loop system [5, 4, 20, 23].
Since the system (10) comes from the second order
model (9), and the outputs (13) only depend upon 6, it
follows that the relative degree of each output compo-
nent is either two or infinite. Direct computation gives

that [14, 18, 21]
i = Lih(z) + Ly Lyh(z)u (14)

and the determinant of the decoupling matrix, Ly Lsh,
is further computed to be

—r (rMyg +rm+ rMp + IMpcos(6; — 6s)) .

Thus, the decoupling matrix is invertible for all z € X
as long as 0 < I Mp < r(m+ My + My ), which imposes
a very mild constraint on the position of the center
of gravity of the upper body of the robot in relation
to the length of its legs. This leads to the following
hypothesis.

Hypothesis CH1): The decoupling matrix is globally
invertible.

From now on, it is supposed that CHI is met. There-
fore, stabilizing dynamics for the output of system (10)
can be assigned. The easiest way to do this is to first
decouple the system [14, 21, 18] and then impose a de-
sired dynamic response. In preparation for doing this,
note that & : M — IR? by

Y1 05 — 05
PO):=| v | =| O1+62 (15)
61 6,

is a diffeomorphism onto its range. With this coordi-
nate transformation, and upon defining

v:=L3h+ Ly Lshu, (16)

the system can be written in the decoupled-form

y | v .
{ b, } - { Co(,5,00,61) + Ci (5,00, b0y |- 1T

The next step is to impose a continuous feedback
v =2(y,¥) on (17), and thus on (2), so that the pair of
double integrators ¢ = v is globally finite-time stabi-
lized [2, 3]. This will collapse the image of the Poincaré
return map to a one-dimensional set.

Hypotheses: The closed-loop pair of double integra-
tors, § = v(y, ), satisfies the following conditions:

CH2) solutions globally exist on IR*, and are unique;

CHS3) solutions depend continuously on the initial con-
ditions;

CH4) the origin is globally asymptotically stable, and
convergence is achieved in finite time;

CH5) the settling time function?, Tye, : IR* — IR by

Tset(Yo,90) = inf{t >0 | (y(t),u(t)) = (0,0),

(4(0),9(0)) = (yo, )}
depends continuously on the initial condition,
(%0, %0)-

2That is, the time it takes for a solution initialized at (yo, %o)
to converge to the origin. The terminology is taken from [2].




Hypotheses CH2-CH4 correspond to the definition of
finite-time stability [10, 2]; CH5 will also be needed,
but is not implied by CH2-CH4 [3]. These require-
ments rule out traditional sliding mode control, with
its well-known discontinuous action. A means of meet-
ing these four objectives can be found in [2, 3]. Let
Wi(xy,22), 1 = 1,2, be any feedbacks for the pair of
double integrators in (17) so that, with

. | (v, )
vi= Wy 9) = { Va2 (y2,92) } ’ (18)

CH2-CHS5 are satisfied for j = v. Define a feedback on
(10), and hence on (2) as well, by

u(@) = (Lo Lyh(x)) ™" (W(h(x), Lyh(z)) — Lih(z)),

(19)
and denote the right-hand side of the closed-loop by
fe(x) := f(x) + g(x)u(x). (20)

Finally, define
Tcl

set

(z) := max{Tser (h1, Lyhy), Toer (ho, Lyho)} (21)

in the obvious way. It follows that T

“,(x) is a contin-
uous function of x.

5 Application of Poincaré’s Method to the
Biped Robot

The model of the biped robot in closed loop with the
controller is thus:

2@ = fa(z(t) (@) €S
Ecl'{ ) = Ax-(1) o Bes 22

In this section, the method of Poincaré sections will
be applied to analyze the existence and stability of pe-
riodic orbits. The finite-time convergence property of
the controller will be exploited to deduce properties of
the solutions of (22) by studying the solutions of

w(t) = fa(z(t)) (23)

corresponding to a one-dimensional subset of initial
conditions.

5.1 Analysis a la Poincaré with a finite-time sta-
bilizing controller

The first step in the analysis is to verify that Hypothe-
ses H1-H4 hold for the closed-loop system (22). Tt
can be readily shown that continuity of the feedback
(18) plus Hypotheses CH1-CH3 imply H1 and H2. Hy-
potheses H3 and H4 were verified in Section 4. Thus
Theorem 1 is applicable. The second step in the anal-
ysis is to simplify the application of the theorem. This
is achieved by studying the image of the Poincaré re-
turn map in the case that the controller has had suffi-
cient time to converge. Convergence of the controller is
equivalent to the outputs, (13), being identically zero.

The internal dynamics of the system (10) compatible
with the output (13) being identically zero is called
the zero dynamics [14], and the state space on which
the zero dynamics evolves is called the zero dynamics
manifold. For the biped model under study, the zero
dynamics manifold is computed from (17) to be

A {(0,w)€X|03:0§, 01+02:0, W3:0,
w1 + w2 =0, —m < b <, wleﬂ%}. (24)

Note that the feedback (19) makes Z an invariant man-
ifold of (10), while the same feedback does not render
Z invariant for (2) since A does not map Z N S into
Z. The zero dynamics itself will not be computed here
since it is not needed directly in the stability analysis.

Lemma 3 Under Hypotheses CH1-CHS, and H3-H/

1. The set

S = {wg€S | Tyer(o) < Tr(zo) < o0,
Ly H(¢ (T1(x0),0)) # 0} (25)

is an open subset of S.

2. Let P: S — S be the Poincaré return map. Then
P:S—5nZ.

The straightforward proof is skipped. Note that in
terms of the original coordinates (6, w) of the robot,

SNZ = {(0,w)€X |05 =0f 0 +0,=0, wg=0,
w1 +we =0, 01:0f, wleﬂ%},

a one-dimensional (embedded) submanifold of X. De-
fine

p:SNZ—SNZhby plz):= P(x). (26)

For z* € S, P(z*) € SN Z. Thus, by the defini-
tion of p, P(z*) = x* if, and only if, * € SN Z and
p(x*) = x*. Suppose that for some zy € S, the se-
quence xp.1 = P(x) is well-defined for ¥ > 0, and
remains in some open neighborhood of xg. Then for
all k> 1, 23,1 = p(xz). It follows that * € S is a
stable (resp., asymptotically stable) equilibrium point
of P if, and only if, it is a stable (resp., asymptotically
stable) equilibrium point of p. Thus, the determination
of the existence and stability properties of periodic or-
bits that are transversal to S can be reduced to the
analysis of a one-dimensional map. These results are
summarized in the following theorem. A numerical il-
lustration on the biped robot is given immediately in
the next subsection.

Theorem 2 (Method of Poincaré for Finite-
Time Control) Consider the biped robot model of
Section 4. Define outputs such that Hypothesis CHI is
met. Suppose that a continuous, finite-time stabilizing
feedback is applied, and that Hypotheses CH2-C'H/ are

met. Define Z, S and p as in (24), (25) and (26),
respectively. Then,



1. A periodic orbit is transversal to S if, and only
if, it is transversal to SN Z.

2. x* € SN Z gives rise to a periodic orbit of (22)
if, and only if, p(x*) = z*.

8. x*eSNZ gives rise to a stable (resp., asymptot-
ically stable) periodic orbit of (22) if, and only if,
x* is a stable (resp., asymptotically stable) equi-
librium point of p.

5.2 Numerical illustration

Consider the biped model with the following values of
the parameters: m = 5, Mg = 15, My = 10,r = 1,1 =
0.5, corresponding to the mass of the legs, the mass
of the hips, the mass of the torso, the length of the
legs and the distance between the center of mass of the
hips and the center of mass of the torso. The units are
kilograms and meters. With the outputs defined as in
(13), Hypothesis CH1 is met. Suppose that the desired
inclination angle of the torso is #§ = /6 and that
impact occurs with the walking surface when 6¢ = /8.
In the feedback (19), suppose that

v [ Tnid ] e

is used, with € = 0.1 and o = 0.9, where ¥, (21, x2)
is given by [2] Yu(71,72) = —sign(zs)lza|® —
Sign(¢a(x17x2))|¢o¢(x17x2)|mv where ¢a(x17x2) =
z1 + 5=sign(zz)|z2|*~*. The parameter ¢ > 0 allows
the settling time of the controller to be adjusted. With
this feedback, CH2-CH5 hold [2, 3].

To determine if this choice of parameters results in an
asymptotically stable orbit that is transversal to S ,
that is, the orbit is transversal to S and the finite-
time stabilizing feedback has had enough time to con-
verge over the walking cycle, the function p of The-
orem 2 must evaluated. This is conveniently done
as follows. Define 0 : IR — SN Z by o(w;) =
(04, —0¢,0%, 0, ,—w; ,0), where w, denotes the angu-
lar velocity of the stance leg just before impact. Define
Ai=oc lopoo.

Figure 2 displays the function ); it also displays the
related function A\ (w; ) := AMw; ) — w; , which repre-
sents the change in velocity over successive cycles, from
just before an impact to just before the next one. It is
seen that A is undefined for w; less than approximately
1.32 radians/second (for initial w; less than this value,
the robot fell backwards). The plot was truncated at 2
radians/second because nothing interesting occurs be-
yond this point (except an upper bound on its domain
of existence will eventually occur due to the controller
not having enough time to settle over one walking cy-
cle). A fixed point occurs at approximately 1.6 radi-
ans/second, and, from the graph of ), it clearly corre-
sponds to an asymptotically stable walking cycle. This
is supported by simulation.

13 14 15 16 1.7 1.8 19 2

Figure 2: From either graph, it is seen that there exists
a periodic orbit and that it is asymptotically
stable.
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6 Appendix

L = (gm + Mg)r?w® + %mrQwQQ + %MTZ2W32 —
%mr2w1<,u2 cos(—0; + B02) + Mrrivywscos(—60; +
f3) — g(%m + Mg + Mr)rcos(fy) + %gmrcos(ﬁg) —

gMrlcos(6f3)

-1 0
The matrix B is given by B = 0 —1
1 1

wi (x) = 3= [ mwi — (4m + 4 My + 2Mp)w; cos(20; —
205) + 2Mrw cos(26) — 263) + 2mws cos(f; — 63) |

wy (x) = 5= [ 2Mpw cos(—0,+203—02)— (2m—+4Mpy+
2MT)(U1 005(01 — 02) —+ Mmws ]

wi (x) = 3=1[2mr + 2Mgr + 2Mpr)w; cos(f3 +
61 — 205) — 2Mprwycos(—6, + 63) — (2mr +
2Mpr)wy cos(—6y + 03) + mrwy cos(—36; + 205 + 5) —
rmwpcos(—B + 03) — (3ml + 4Mpyl + 2M7plws +

2mlws COS(201 — 202) + 2Mplws COS(—202 —+ 293) ]

den = —3m — AMg — 2M1 + 2mcos(20, — 205) +
2 M7 cos(—2605 + 263)



