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Asymptotically Stable Walking for Biped Robots: Analysis
via Systems with Impulse Effects

J. W. Grizzle, Gabriel Abba and Franck Plestan

Abstract

Biped robots form a subclass of legged or walking robots. The study of mechanical legged motion has been motivated
by its potential use as a means of locomotion in rough terrain, as well as its potential benefits to prothesis development
and testing. This paper concentrates on issues related to the automatic control of biped robots, and more precisely,
its primary goal is to contribute a means to prove asymptotically stable walking in planar, under actuated biped robot
models. Since normal walking can be viewed as a periodic solution of the robot model, the method of Poincaré sections
is the natural means to study asymptotic stability of a walking cycle. However, due to the complexity of the associated
dynamic models, this approach has only been applied successfully to Raibert’s one-legged-hopper, and a biped robot
without a torso. The principal contribution of the present work is to show that the control strategy can be designed
in a way that greatly simplifies the application of the method of Poincaré to a class of biped models, and in fact, to
reduce the stability assessment problem to the calculation of a continuous map from a sub-interval of IR to itself. The
mapping in question is directly computable from a simulation model. Secondary contributions of the paper include the
formulation of the robot model as a system with impulse effects, the extension of the method of Poincaré sections to
this class of models, and the use of the analysis methods developed in the paper for the computation of walking cycles
that are optimized with respect to energy consumption.

I. INTRODUCTION

Mechanical biped locomotion has been studied for well over 30 years. A broad overview of the state of
the art until 1990 can be found in [42], [53], [17], along with motivation for studying this class of electro-
mechanical systems. The available literature addresses a wide range of topics, from model formulation,
efficient means of computing the dynamical equations, relations between mechanical legged locomotion
and biological legged locomotion, methods of synthesizing gaits, the mechanical realization of biped
robots, and control.

One can distinguish several control design approaches from the literature. By far, the most common

approach to control is through the tracking of pre-computed reference trajectories. The trajectories
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may be determined via analogy, either with biological systems [53], [1], or with simpler, passive’,

mechanical biped systems [34], [51], [52]; they can be generated by an oscillator, such as van der
Pol’s oscillator [29], or computed through optimization of various cost criteria, such as minimum
expended control energy over a walking cycle [9], [10], [13], [45], [44]. Within the context of tracking,

many different control methods have been explored, including continuous-time methods based on PID
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controllers [39], [16], [17]|, computed torque and sliding mode control [39], [12], [35], [43], [32], or
essentially discrete-time methods, based on impulse control [13]. Other control methods have been
investigated that do not rely on pre-computed reference trajectories for the angular positions; these
include controlling energy, angular momentum, and others [42], [46], [31], [18], [32], [41], [15]. The

control design proposed here will not rely on pre-computed reference trajectories.

To date, for the case of a biped robot with a torso, none of the various control approaches have
produced a closed-loop system with provable stability properties. Proving stability is the primary
goal of this paper. Since regular walking can be viewed as a periodic solution of the robot model,
the method of Poincaré sections is the natural means to study asymptotic stability of a walking cycle.
However, due to the complexity of the associated dynamic models, this approach has only been applied
to Raibert’s one-legged-hopper [31], [11], [15], and a biped robot without a torso [51], [18], [49]. One
of the principal contributions of the present work is to show that the control strategy can be designed

in a way that greatly simplifies the application of the method of Poincaré to a class of biped models.

The stability analysis is built up in several steps. Section Il presents the dynamic model of an under
actuated biped robot with a torso. The model includes two important parts: a mechanical model that
is valid when one leg is touching the ground (supporting the robot) and the other is free (i.e., not
touching the walking surface), and an impulse model of the contact event (the swing leg touching the
ground). The model used here is representative of many biped models found in the literature [51],
[14], [22], [52], [25], [19]. The main contribution of this section is the formulation of the biped model
as a nonlinear system with impulse effects [2], [54], which will be the basis for all of the analysis that

follows.

The main contribution of Section III is the extension of the method of Poincaré sections to systems
with impulse effects. The extension will be done in sufficient generality that it is applicable to more
complex robots than the one treated in Section II. Roughly speaking, the method of Poincaré sections
entails finding a (local) hyper-plane that is transversal to a candidate periodic motion of a continuous-
time system, and then inducing a discrete-time mapping form the plane to itself [40], [30]. The
mapping, called the Poincaré return map, is defined by following the evolution of a trajectory of the
continuous-time system from a point on the plane to its next intersection with the plane. Periodic

motions of the continuous-time system correspond to fixed points of the induced map. In the case of a



GRIZZLE, ABBA AND PLESTAN: ASYMPTOTICALLY STABLE WALKING FOR BIPED ROBOTS 3

biped robot, there is a natural plane to use in the analysis, namely, the constraints corresponding to an
impact with the walking surface. The principal result of Section IV is to show that the freedom in the
control design can be used to reduce the stability assessment problem via the method of Poincaré to the
(numerical) calculation of a continuous map from a sub-interval of IR to itself. This will be achieved
with the use of finite-time stabilizing feedback controllers [20], [3], [4], [5]. The mapping in question,
which is a restriction of the Poincaré return map, is directly computable from a simulation model of
the closed-loop system. Moreover, as will be shown in Section V, the method is sufficiently simple
that it can be used in design, for example, to improve the controller’s performance, or to optimize the

mechanical parameters of the robot itself.

Section VI analyzes the internal behavior of the robot model in closed loop with a finite-time
stabilizing controller, as the gain of the controller tends to infinity. Under bounded control gains, the
classical zero dynamics of the mechanical part of the robot model are not invariant under the impact
model, and hence cannot be used to analyze any of the asymptotic properties of the closed-loop system.
However, in the high gain limit, the invariance of the zero dynamics is recovered. This can be used to

explain certain properties of the Poincaré map.

It is emphasized that all of the above will be illustrated on one of the simplest possible biped robot
models. The robot consists of a torso, hips, and two legs of equal length, with no ankles and no knees.
The two legs are actuated. The reason for this choice of model is two fold: firstly, asymptotically
stable walking has never been proved for such a model, and thus this simplest problem is still open
[14]; secondly, from a pragmatic standpoint, it did not seem advantageous to obscure the main elements

of the control approach with the computational complexity of a more complete biped model.

II. A SIMPLE BIPED MODEL

This section introduces the dynamic model of a simple, planar biped robot. The robot consists of
a torso, hips, and two legs of equal length, with no ankles and no knees. It thus has five degrees of
freedom. Two torques are applied between the legs and the torso, so the system is under actuated.
It is assumed that the walking cycle takes place in the sagittal plane. It is further assumed that the
walking cycle consists of successive phases of single support (meaning only one leg is touching the

ground), with the transition from one leg to another taking place in an infinitesimal length of time
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[45], (48], [14]. This assumption entails the use of a rigid model to describe the impact of the swing leg
with the ground. The model of the biped robot thus consists of two parts: the differential equations
describing the dynamics of the robot during the swing phase, and an impulse model of the contact
event. Such models are very common in the field of biped locomotion. The only contribution made
here will be the formulation of the model as a nonlinear system with impulse effects [2], [54], which
will set up the model for the analysis to follow.

During the swing phase, the stance leg is modeled as a pivot. Between impacts, it is also assumed
that the swing leg does not interact with the ground. This a logically weak link in walking models
without extensible legs of some sort (either angular or prismatic joints at the “knees”): one is obliged
to imagine (postulate) some means for the swing leg to move without touching the ground until the
desired moment of contact. The idea of [34] is adopted here: if for one reason or another, a person’s
knee is immobilized, walking is still possible. The motion consists of flexing the hip and causing the
leg to swing out of the plane of forward motion, and into the frontal plane, normal to the direction of
motion. This allows the swing leg to clear the ground and be posed in front of the stance leg. Here,
it will be further assumed that the swing leg is designed to renter the plane of motion when the angle

of the stance leg attains a given value, 0¢. Alternate means of achieving leg clearance are discussed in

134], [14].

A. Mechanical (swing phase) model

During the swing phase of the motion, the stance leg is acting as a pivot, and thus there are only
three degrees of freedom. The definition of the angular coordinates and the disposition of the masses of
the legs, hips and torso are indicated in Figure 1. In particular, note that all masses are lumped, and
positive angles are computed clockwise with respect to the indicated vertical lines. Two torques, u,
and ug, are applied between the torso and the stance leg, and the torso and the swing leg, respectively.
The dynamic model of the robot between successive impacts is easily derived using the method of

Lagrange [50]. This results in a standard second order system
D(0)0 + C(0)0 + G(0) = B(O)u, (1)

where u = (u1,us)’, and 0 = (01,0,,0s)": 0 parameterizes the stance leg, 0y the swing leg and 05 the

torso. The matrices D, C, G and B are given in Appendix A.
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The second order system (1) can be written in state space form by defining

. d| 0 w
= [ w 1 = [ DY) (—C(0,w)w — G(0) + Buy | — @) Tol@, 2)

where w := 6, and x := (f',w')’. The state space for the system will be taken as X := {(8',w') | 0 €

M, w € IR*}, where M = (—m, m)>.

B. Impact model

The impact between the swing leg and the ground is modeled as a contact between two rigid bodies.
The standard model? from [24] is used. The motion of the robot is only analyzed for the case that
the contact of the swing leg with the ground results in no rebound and no slipping of the swing leg,
and the stance leg naturally lifting from the ground without interaction [24]. The conditions for these
assumptions to be valid will be indicated.

The contact model requires the full five degrees of freedom of the robot. Add Cartesian coordinates
(z1,22) to the end of the stance leg, as indicated in Figure 1. This gives once again a model of the

form

De(qe)Ge + Ce(Ges Ge)Ge + Ge(q) = Be(ge)u + 6 Fiye (3)

where g, = (0,,0,,05, 21, 2;) is the set of generalized coordinates and 6 F* represents the external
forces acting on the robot at the contact point(s). The basic premises in [24] are that: (a) the impact
takes place over an infinitesimally small period of time; (b) the external forces during the impact can
be represented by impulses; (¢) impulsive forces may result in an instantaneous change in the velocities
of the generalized coordinates, but the positions remain continuous; and (d) the torques supplied by
the actuators are not impulsional. With these assumptions, (3) is “integrated” over the “duration” of

the impact to obtain [24]

De(Qe)(Qj - qg) - FeXtv (4)

t+
where F'*' := [ §F***(7)dT is the result of integrating the contact impulse over the impact duration,
A

g is the velocity just after the impact and ¢, is the velocity just before the impact. Since the positions

e *

do not change during the impact, ¢ = ¢

2The model is an extension of the work of [6]. This type of rigid contact model is studied as a limit of a non-rigid contact model

in [38].
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In order to be able to solve for all of the unknowns, the above equations must be augmented with
additional equations that proscribe what happens at the two contact ends. According to [24], since
the stance leg is assumed to detach from the ground without interaction, the external forces acting at
the pivot point are zero. Thus F°*' need only consider the external forces at the end of the swing leg.

To compute it, let T denote the Cartesian-coordinates of the end of the swing leg:

21 + rsin(fy) — rsin(6;)
T(g.) = : ()
29 + 1 cos(01) — 7 cos(fy)
Then
ext li FT
Fep| ], @
where,
Y r cos(0 —rcos(fly) 0 1 0
Lot [ reos() —reos(ty) | -
Jqe —rsin(f;) rsin(fy) 0 0 1

and Fp,Fy are the tangent and normal forces, respectively, applied at the end of the swing leg.
Equation (4) thus represents five equations and seven unknowns; the unknowns are ¢ and F***; ¢
/
is known since it equals (wf,wg,wg, Zy 2’5) , where £= = 0 and 2= = 0 since the stance leg acts as a

pivot before impact. An additional set of two equations is obtained from the condition that the swing

leg does not rebound nor slip at impact, namely, %T(qe) = gTTaq'j = 0; that is,
Eq = 0. (8)

The set of equations (4) and (8) is linear in the unknowns and can be solved for ¢, Fr and Fy.
In Appendix A, it is verified that a unique solution always exists. The result of solving (4) and (8)
yvields an expression for g, in term of ¢, ~, which should then be used to re-initialize the model (2).
In order to do this, a change of coordinates is necessary since the former swing leg is now in contact
with the ground, while (1) and (2) assume that ; parameterizes the stance leg. The final result is an

expression for 7 := (T, w™) in terms of = := (6 ,w™ ), which is written as

The function A is given in Appendix A. It is also proven in Appendix A that A is continuous.
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C. Overall model: system with tmpulse effects

The overall biped model can now be expressed as a system with impulse effects. Assume that the
system trajectories possess finite left and right limits, and denote them by z~ (¢) := lim, » z(7) and
7 (t) :=lim;\ , ©(7), respectively. The model is then:

ety = fl@@) Fglzt)u@) = () €S
w20 - e e "

where S := {(f,w) € X | §; = 69}. The mathematical meaning of a solution of the model will be
made precise in Section III. In simple words, a trajectory of the robot is specified by the mechanical
model until an impact occurs. Impact occurs when the state “attains” the set .S, which represents the
walking surface. At this point, the impact with the surface results in a very rapid change in the velocity
components of the state vector. The impulse model of the impact compresses the impact event into
an instantaneous moment in time, resulting in a discontinuity in the velocities. The ultimate result of
the impact model is a new initial condition from which the mechanical model evolves until the next
impact. In order for the state not to be obliged to take on two values at the “impact time”, the impact
event is, roughly speaking, described in terms of the values of the state “just prior to impact” at time
“t=7, and “just after impact” at time “tT”. These values are represented by the left and right limits,
x~ and x", respectively.

For later use, note that S can be expressed as the level set of a function H : X — IR. Define
H(xz) = 6% — 6y, so that S := {(f,w) € X | H(x) = 0}. Moreover, it can be easily checked that for

each point s € S, ZL(s) # 0 This implies that S is a smooth embedded submanifold of X [26].

111. METHOD OF POINCARE SECTIONS FOR SYSTEMS WITH IMPULSE EFFECTS

Nonlinear systems with impulse effects have not been extensively studied. A stability analysis for
equilibrium points can be found in [2], [54], using Lyapunov methods. However, a walking cycle
clearly corresponds to a non-trivial periodic orbit, and not to an equilibrium solution of the model,
and thus the analysis of [2], [54] is not applicable. This section contains the definition of a solution
of a system with impulse effects, the definition of a periodic orbit, and Lyapunov stability notions for
periodic orbits. With these notions in place, the method of Poincaré sections, an important tool for
analyzing the stability properties of periodic orbits in ordinary differential equations, is extended to

systems with impulse effects. While the basic method carries over nicely to this new setting, the proof
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differs considerably from the standard one in [40], [30], for example. In particular, Section IV will
need a version® of the Poincaré method that is applicable to continuous, but not Lipschitz continuous,
systems. The development will be kept as compact as possible, with all proofs and several lemmas

relegated to Appendix B.

A. Basic definitions

A function ¢ : [to, t;) — X, t; € RU{co}, t; > to, is a solution® of (10) if 1) ¢(¢) is right continuous
on [to,tr), 2) left limits exist at each point of (tp,tr), and 3) there exists a closed discrete subset
T C [to,o0) such that, a) for every t € T, ¢(t) is differentiable and % = f(e(t)) + g(p(t))u(t), and
b) for t € T, ¢ (t) € S and p*(t) = A(¢ (t)). The condition that the set of impact times is closed
and discrete simply means that there is no “chattering” about an impact point. A solution () of
(10) is periodic if there exists a finite T' > 0 such that @(t +T) = () for all t € [tg,00). Aset O C X
is a periodic orbit of (10) if O = {p(t) | t > to} for some periodic solution (t). An orbit is non-trivial
if it contains more than one point.

In the following, it is assumed that u(¢) in (10) is identically zero, so that one may refer to (10) as
being time-invariant. It is further assumed that solutions to (10), when they exist, are unique.

A periodic orbit O is stable in the sense of Lyapunov if for every ¢ > 0, there exists an open
neighborhood V of O such that for every p € V, there exists a solution ¢ : [0,00) — X of (10) satisfying
©(0) = p and dist(p(1),0) < e for all t > 0. O is attractive if there exists an open neighborhood V of
O such that for every p € V, there exists a solution ¢ : [0,00) — X of (10) satisfying ©(0) = p and
limy o dist(p(t), O) = 0. O is asymptotically stable in the sense of Lyapunouv if it is both stable and
attractive. From here on, the qualifier, “in the sense of Lyapunov”, will be systematically assumed if
it is not made explicit.

Finally, assume that in (10), S = {z € X | H(z) = 0}, where H : X — IR is continuously
differentiable. A periodic orbit O is transversal to S if its closure intersects S in exactly one point,
and for 7 := ONS, LyH(z) := ZL(z) f(z) # 0 (in words, at the intersection, O is not tangent to S,
where O is the set closure of ©). In the case of the biped robot, a nontrivial periodic orbit transversal

to S will also be referred to as a periodic walking cycle.

3The standard development assumes that the flow is a local diffeomorphism, while, here, it will not even be a homeomorphism.
4The definition is based on [54], except that solutions are taken to be right continuous instead of left continuous.
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Remark: Note that a periodic orbit of a system with impulse effects may not be a closed set, since,
for t € T, o (t) € O (if solutions were assumed to be left continuous, instead of right continuous,
then ¢ (t) € O ). Indeed, a periodic orbit is closed if, and only if, 7 = ). For a biped robot, a closed
periodic orbit would not correspond to walking because there would be no impact with the walking

surface.

B. Poincaré’s method

The method of Poincaré sections is extended to systems with impulse effects (10), for the case of
nontrivial periodic orbits that are transversal to .S. This will be done in a certain amount of generality
so that a wide class of biped robot models and controllers can be treated. In particular, the finite-time
stabilizing controllers of Section IV will require the use of feedbacks that are continuous, but not
Lipschitz continuous.

Consider a time-invariant system with impulse effects

()¢5 )

o) = f=(t) =
E'{ 1) = (1) €S,

() = Al (
where the state space X is an open subset of IR". The hypotheses that will be used in its analysis are

listed below. As a point of notation, ¢ will be used to denote a solution of the system (11), as defined

in Section I1I-A, and ¢/ will denote a solution of the associated ordinary differential equation,
&= f(x). (12)

The point of introducing @' is that, firstly, a lot is known about solutions of ordinary differential
equations with continuous right hand sides [21]; secondly, in view of the first point, it is convenient to
prove properties of (11) in term of properties of (12); thirdly, at times in the proofs, it is necessary to
extend a solution of (12) “through” S, while this does not make sense for (11) (that is, for the robot,
it does not make sense for its “foot to be stuck in the ground”).

Hypotheses:

H1) f(x) is continuous on X;

H2) a solution of (12) from a given initial condition is unique and depends continuously on the initial

condition;
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H3) there exists a differentiable function H : X — IR such that § = {z € X | H(x) = 0}; moreover,
for every s € S, ZL(s) #£ 0.
H4) A: S — X is continuous, where S is given the subset topology from X.

Hypothesis H1 implies that at any point xy € X', a solution to (12) will exist over a sufficiently small
interval of time [21]. This solution may not be unique, and may not depend continuously on the initial
condition; whence Hypothesis H2. Hypothesis H3 implies that .S is an embedded submanifold [26],
when given the subset topology. Hypothesis H4 assures that the result of an impact varies continuously
with respect to where it occurs on 5.

The first goal is to define the Poincaré return map. Define the time to impact function, T : X —

IR U {oo}, by

; f ; f
Ty(wo) — { infi>0{@’ (t,20) € S} if 3¢ such that ¢’ (t,20) € S (13)

00 otherwise

From Lemma 3 in Appendix B, Hypotheses H1-H3 imply that 7} is continuous at points zy where
0 < Ti(zo) < oo and LyH (¢! (Ty(0), z0)) # 0. Hence, under HI-H3, X == {z € X | 0 < T}(z) <
oo and L H (! (T;(x),2)) # 0} is open. If H4 also holds, then S := A~'(X) is an open subset of S.

It immediately follows that under H1-H4, the Poincaré return map, P: S — S by
P(z) = o (T1(A()), A)), (14)

is well-defined and continuous. In the case of the robot, the return map represents the evolution of the
robot just before an impact with the walking surface, to just before the next impact, assuming that
next impact does occur. If it does not, that is, the robot falls due to the preceeding impact, the point
being analyzed is not in the domain of definition of the return map.

Next, note that under H1-H4, if O is any periodic orbit of (11) that is transversal to S, then
© C X. This is essentially by definition. Thus, there exists zo € S that generates @ in the sense that
A(zy) € O; indeed, 7o = O N S. It thus makes sense to denote the orbit by O(A(x)).

THEOREM 1 (Method of Poincaré Sections for Systems with Impulse Effects) Under H1-H4, the fol-
lowing statements hold:

a) If O is a periodic orbit of (11) that is transversal to S, then there exists a point zo € S that
generates O.

b) xo € S is a fixed point of P if, and only if, A(zg) generates a periodic orbit that is transversal to S.
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¢) 2o € S is a stable equilibrium point of 2,1 = P(xy,) if, and only if, the orbit O(A(z)) is stable in
the sense of Lyapunov.

d) 2o € S is an asymptotically stable equilibrium point of z_; = P(z) if, and only if, the orbit
O(A(xzp)) is asymptotically stable in the sense of Lyapunov.

The proof of the theorem is given in Appendix B.

IV. ASYMPTOTICALLY STABLE WALKING

This section develops a feedback controller for the system with impulse effects, (10), in the particular
case of the biped robot given by the differential equation (2) and the impact model (9). The goal of
the control design is to induce an asymptotically stable walking cycle, and to facilitate the verification
of its existence and stability properties. The verification will be done using the method of Poincaré.
In Section V, the controller design method developed here will be shown to be useful in the search
for walking cycles that are (locally) “optimal” with respect to energy consumption, for example, or
for which the required torques are “physically reasonable”. It is emphasized that, in this section,
no attempt is made to optimize anything. The main focus is simply to propose a controller design
method for which a set of conditions for asymptotically stable walking can be given, and, in addition,
the conditions can be verified in a straightforward manner. In other terms, the reader is asked to be
patient if large torques are initially used in the stabilization process, as this lacuna will be addressed

in the ensuing Section.

A. Encoding a walking pattern

At its most basic level, walking consists of two things [41]: posture control, that is, maintaining
the torso in a semi-erect position, and swing leg advancement, that is, causing the swing leg to come
from behind the stance leg, pass it by a certain amount, and prepare for contact with the ground.
For a “normal” robot with knees, the advancing of the swing leg would also entail preventing it from
contacting the walking surface too soon, and causing the robot to trip, whereas for the rigid-legged
robot, this issue is moot.

The simplest version of posture control is to maintain the angle of the torso at some constant value,
say 03, while the simplest version of swing leg advancement is to command the swing leg to behave as

the mirror image of the stance leg, that is, # = —6;. Thus the “behavior” of walking will be “encoded”
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into the dynamics of the robot by defining outputs

1 hi(6 Qg—ﬁg
y:[l}:[hzgeﬂwez+ellv (15)

with the control objective being to drive the outputs to zero. Driving y to zero will force 6y and 05 to
converge to known functions® of 0, (here, 04, being a constant, should be viewed as a trivial function
of 01). This will be one of the key steps in reducing the stability analysis problem to that of a map
from IR to IR.

Of course, the idea of building in a dynamic behavior of a system through the judicious definition
of a set of outputs, which when nulled yields a desireable internal behavior, is not novel in control [26]
nor robotics [8], [28], (23], [7], [27], [36], [47]. The result for the biped is essentially to use the system
itself as its own trajectory generator, as opposed to tracking pre-computed reference trajectories. This

idea seems to be an essential step for proving anything about the trajectories of the closed-loop system

8], [7], [36], [47].

B. Controller design

Since the system (2) comes from the second order model (1), and the outputs (15) only depend
upon #, it follows that the relative degree of each output component is either two or infinite. Direct

computation gives that [26], [33], [37]
ij = L2h(x) + LyLsh(z)u (16)
and that the determinant of the decoupling matrix, L,Lh, is (see Appendix A, equation (57))
T (TMH +rm + TMT + ZMT COS(Ql — 03)) .

Thus, the decoupling matrix is invertible for all z € X’ as long as 0 < My < r(m+ My + My), which
imposes a very mild constraint on the position of the center of gravity of the upper body of the robot
in relation to the length of its legs. This leads to the following hypothesis.
Hypothesis CH1): The decoupling matrix is globally invertible.

From now on, it is supposed that CHI1 is met. Therefore, due to the global invertibility of the

decoupling matrix, stabilizing dynamics for the output of system (2) can be assigned. The easiest way

5The reason for choosing 8; will be clarified in the next Section. The horizontal position of the hips could also have been used
as the parameterizing variable; this choice would also work for a robot with knees.
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to do this is to first decouple the system [26], [37], [33] and then impose a desired dynamic response.

In preparation for doing this, note that ® : M — IR3 by

W O3 — 9§‘f
(D(Q) = Yo = 01 -+ 02 (17)
0, 0,

is a diffeomorphism onto its range. With this coordinate transformation, and upon defining
v:= L}h+ LyLghu, (18)

the system can be written in the decoupled-form

(-
01 N go(yv yv 017 01) + gl(yv yv 017 01)1}‘

The next step is to impose a continuous feedback v = v(y,y) on (19), and thus on (10), so that the

(19)

pair of double integrators ¢ = v is globally finite-time stabilized [20], [3], [4], [5]. This will collapse the
image of the Poincaré return map to a one-dimensional set.
Hypotheses: The closed-loop pair of double integrators, § = v(y, ¥), satisfies the following conditions:
CH2) solutions globally exist on IR*, and are unique;
CH3) solutions depend continuously on the initial conditions;
CHA4) the origin is globally asymptotically stable, and convergence is achieved in finite time;

)

CHS5) the settling time function®, T, : IR* — IR by

Teer(y0,90) == mf{ > 0 | (y(1),9(t)) = (0,0), (y(0),5(0)) = (90, 90) }
depends continuously on the initial condition, (yo, %o).

Hypotheses CH2-CH4 correspond to the definition of finite-time stability [20], [3]; CH5 will also
be needed, but is not implied by CH2-CH4 [4]. These requirements rule out traditional sliding mode
control, with its well-known discontinuous action. A means of meeting these four objectives can be
found in [3], [4]. The first two parts of the following lemma are proven in [3|. The continuity of the
settling time function is proven in [4] (a continuous upper bound on the settling time function is given
in [3], along with a Lyapunov function).

Lemma 1 (Bhat and Bernstein) Consider the double integrator on IR?
Ztl = XT9

Ztg = . (20)

5That is, the time it takes for a solution initialized at (Yo, ¥o) to converge to the origin. The terminology is taken from [3].
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with scalar input v. Then, for all 0 < o < 1, the feedback

v = a1, 7) = —sign(ws)|zo|® — sign(pa (x1,72))|da (21, 22)| 77, (21)

|2~ satisfies the following:

where ¢o (1, 22) = 21 + ﬁSign(%ﬂ@
P1: v is continuous;
P2: the origin of (20) in closed-loop with (21) is globally finite-time stable;
P3: the settling time function, T, depends continuously on the initial condition.

Let 9 (xy,z2), i = 1,2, be any feedbacks for (20) meeting P1-P3 of Lemma 1. To each double
integrator of (19), apply the feedback v; = 1;(vy;,9;), so that, with

v v = | =)

CH2-CHS5 are satisfied for § = v. Define a feedback on (2), and hence on (10) as well, by
u(x) = (LL k() (V(h(e), Leh(z)) — L2h(x)), (23)
and denote the right-hand side of the closed-loop by

Ja(x) = f(x) + g(z)ulz). (24)

Finally, define
Tcl

set

(x) := max{Ts(h1, Lshy), Tser(ho, Liho)} (25)

in the obvious way. It follows that T¢ (z) is a continuous function of .

set

The model of the biped robot in closed loop with the controller is thus:

Ecl:{ ‘T(t) - fcl(w(

D) =) &S
) = Al . (26)

In the next subsection, the method of Poincaré sections will be applied to analyze the existence and
stability of periodic orbits. The finite-time convergence property of the controller will be exploited to

deduce properties of the solutions of (26) by studying the solutions of

a(t) = falz(t)) (27)

corresponding to a one-dimensional subset of initial conditions.
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C. Analysis a la Poincaré

The first step in the analysis is to verify that Hypotheses H1-H4 hold for the closed-loop system (26).
Lemma 5 of Appendix B shows that continuity of the feedback (22) plus Hypotheses CH1-CH3 imply
H1 and H2. Hypotheses H3 and H4 were verified in Section II-C and Section II-B, respectively. Thus
Theorem 1 is applicable. The second step in the analysis is to simplify the application of the theorem:.
This is achieved by studying the image of the Poincaré return map in the case that the controller has
had sufficient time to converge. Convergence of the controller is equivalent to the outputs, (15), being
identically zero.

The internal dynamics of the system (2) compatible with the output (15) being identically zero is
called the zero dynamics [26], and the state space on which the zero dynamics evolves is called the
zero dynamics manifold. For the biped model under study, the zero dynamics manifold is computed

from (19) to be
Z:{(Q,W)€X|03:Qg, 01+02:0, w3:0, W1+WQ:0, —7T<01<7T, wlelR} (28)

Note that the feedback (23) makes Z an invariant manifold of (2), while the same feedback does not
render 7 invariant for (10) since A does not map Z N .S into Z. The zero dynamics itself will not
be computed here since it is not needed directly in the stability analysis; the zero-dynamics will be
studied in Section VI (see also Appendix A).
Lemma 2: Under Hypotheses CH1-CH5, and H3-H4
1. The set
S = 1o €S | Teer(o) < Tr(wo) < 00, LyH(¢' (Ty(0),20)) # 0} (29)

is an open subset of S.
2. Let P: S — S be the Poincaré return map. Then P: S — SN Z.
The straightforward proof is skipped. Note that in terms of the original coordinates (6,w) of the

robot,
SNZ={(0,w) €X | 03=05, 0, +0, =0, wg =0, w +wp =0, 0y =0, w € R,
a one-dimensional (embedded) submanifold of X'. Define

p:SNZ—SNZbypla) = Px). (30)
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For o* € S, P(z*) € SN Z. Thus, by the definition of p, P(z*) = z* if, and only if, z* € SN Z
and p(z*) = z*. Suppose that for some zy € S, the sequence zj_ := P(z) is well-defined for k£ > 0,
and remains in some open neighborhood of zy. Then for all & > 1, x4 1 = p(zx). It follows that
z* € S is a stable (resp., asymptotically stable) equilibrium point of P if, and only if, it is a stable
(resp., asymptotically stable) equilibrium point of p. Thus, the determination of the existence and
stability properties of periodic orbits that are transversal to S can be reduced to the analysis of a
one-dimensional map. These results are summarized in the following theorem. A numerical example
to the biped robot is given immediately in the next subsection.

THEOREM 2 (Method of Poincaré for Finite-Time Control) Consider the biped robot model of Sec-
tion I, written in the form of a system with impulse effects, (10). Define outputs such that Hypothesis
CH1 is met. Suppose that a continuous, finite-time stabilizing feedback is applied, and that Hypotheses
CH2-CH4 are met. Define Z, S and p as in (28), (29) and (30), respectively. Then,

1. A periodic orbit is transversal to S if, and only if, it is transversal to SnZz.
2. 2* € SN Z gives rise to a periodic orbit of (26) if, and only if, p(z*) = x*.
3. 2* € SN Z gives rise to a stable (resp., asymptotically stable) periodic orbit of (26) if, and only if,

x* is a stable (resp., asymptotically stable) equilibrium point of p.

D. Numerical example

Consider the model (10), with the following values of the parameters:
m=5 Myg=15 Mr=10 r=1 [1=05

corresponding to the mass of the legs, the mass of the hips, the mass of the torso, the length of the
legs and the distance between the center of mass of the hips and the center of mass of the torso. The
units are kilograms and meters. With the outputs defined as in (15), Hypothesis CH1 is met. Suppose
that the desired inclination angle of the torso is #9 = /6 and that impact occurs with the walking

surface when 0 = 7/8. In the feedback (23), suppose that

. E%qvb& (ylv eyl)
Vi) = [ SRS 1 (531)

is used, with ¢ = 0.1 and a = 0.9, where 1, (1, x2) is given by (21). The parameter ¢ > 0 allows

the settling time of the controller to be adjusted. With this feedback, CH2-CHb5 hold. In the impact



GRIZZLE, ABBA AND PLESTAN: ASYMPTOTICALLY STABLE WALKING FOR BIPED ROBOTS 17

model (9), it is supposed that the friction coefficient g > 2/3 (see Appendix A). In the course of the
simulations, it has been verified that the impact model is valid, so this point will not be discussed

further.

To determine if this choice of parameters results in an asymptotically stable walking cycle that is
transversal to 3, that is, the orbit is transversal to S and the finite-time stabilizing feedback has
had enough time to converge over the walking cycle, the function p of Theorem 2 must evaluated.
This is conveniently done as follows. Define o : IR — SN Z by o(wy) = (04, —09,0%, w1, —w; ,0),
where w] denotes the angular velocity of the stance leg just before impact. Define A := o lopoo.
A straightforward procedure for evaluating A on the basis of a simulation model of the closed-loop

system is now given.

Numerical Procedure to Test for Walking Cycles via the Method of Poincaré:

1) For a point w; > 0, compute z~ := o(w; ), the position of the robot just before impact (the
restriction to positive velocities corresponds to the robot walking from left to right).

2) Apply the impact model to z~, that is, compute 7 := A(z™).

3) Use x" as the initial condition in (27), the robot in closed loop with the controller, and simulate
until one of the following happens:

a) there exists a time 7" > 0 where 6,(T) = 6%; then, if T is greater than the settling time of the
controller (in other words, the output y is identically zero), then z* € SN Z, and Mw; ) = w: (T); else,
& SN Z, and Mw; ) is undefined at this point.

b) there does not exist a T > 0 such that 6,(T) = 0¢ (which is normally detected by one of the
angles exceeding +7 during the simulation); in this case, it is also true that ™ & SN Z, and A(wy ) is

undefined at this point.

Figure 2 displays the function A; it also displays the related function éA(w; ) := A(w; ) — wy , which
represents the change in velocity over successive cycles, from just before an impact to just before the
next one. It is seen that X is undefined for w; less than approximately 1.32 radians/second (for initial
w; less than this value, the robot fell backwards). The plot was truncated at 2 radians/second because
nothing interesting occurs beyond this point (except an upper bound on its domain of existence will
eventually occur due to the controller not having enough time to settle over one walking cycle). A fixed

point occurs at approximately 1.6 radians/second, and, from the graph of A, it clearly corresponds
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to an asymptotically stable walking cycle. Figures 3, 4 and 5 display the states and applied torques
of the robot over a few walking cycles, where the initial condition is taken as (—%9%, 6%, 7/10,1,0,0).
For reasons of readability of the plots, only a few cycles of walking are shown. Simulation verifies the
stability claims of the mathematical analysis.

To illustrate the role played by the inclination of the torso, suppose that 6% is reduced by half to
7w/12. Figure 6 displays A and 6 for this case. It is seen that there is no fixed point, and hence no
periodic orbit that is transversal to S. Simulations also support this conclusion, but are not reported
here for reasons of space. For a robot without knees or ankles, the driving force for walking comes

from the inclination of the torso, which couples in the force of gravity.

V. APPROXIMATE OPTIMIZATION IN CLOSED LOOP

The goal of this section is to illustrate how Theorem 2 can be used to improve the choice of the
output functions made in (15), in order to use less energy over a walking cycle, and/or to reduce
the magnitude of the required torques. A reason for seeking to minimize energy consumption is that
this will tend to maximize the autonomy of the biped, assuming that it is powered on-board. The
results will not be developed in any real generality. Instead, a very concrete illustration in terms of the
robot model used in Section IV-D will be pursued. The section starts with a very brief and high-level

overview of the existing literature, and then turns quickly to the problem at hand.

A. Background

A significant portion of the research effort in legged motion is aimed at producing walking motions
that are energetically optimal in some sense. Often, optimization is used as a means to generate
trajectories that correspond to walking with a low consumption of energy per stride, a physically
feasible range of applied torques, or even just to find trajectories that correspond to a periodic motion
of the model [9], [10], [13], [45], [44]. Classical or modern control methods are then applied to achieve
tracking of the so-generated trajectories, and the overall success of the approach is evaluated via
simulation or experiment.

Optimization is, in general, numerically very challenging, but the specific problem that is normally
posed in order to determine walking trajectories is especially difficult. The difficulty arises from to the

necessity to impose boundary conditions that correspond to a periodic solution of the model equations.
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The optimization problem thus consists of minimizing a cost function over control inputs and initial
conditions, with the constraint that the corresponding solution of the model equations be periodic’.
Finding feasible solutions has proven to be very difficult, to the point that several studies of the problem
have made approximations in the models, such as removing Coriolis terms, setting off-diagonal terms of
the inertia matrix to zero, ete. [13], [45]. Such simplifications will not be necessary with the approach

outlined in this section.

B. Trajectory parameterization

It is common in the optimization problems treated in the literature to reduce the problem from
functional optimization to finite dimensional optimization, with constraints [9], [10], [13], [45]. This is
achieved by parameterizing either the inputs, or the trajectories to-be-tracked, in some finite manner,
as functions of time. Typically, one uses polynomials, truncated Fourier expansions, or piece-wise
constant functions of time. Here, a closely related, but importantly different approach will be taken.

Consider a walking motion of the biped, as illustrated for example in Figures 3 and 4. It is clear that
01(t) is monotonically increasing over each cycle; indeed wy(t) > 0 could be considered as part of the
requirement of smooth walking, as opposed to standing, or walking with halts during a step. For any
periodic trajectories 65(t) and 03(t) that express (encode) a desired walking pattern for the biped, it is
thus reasonable to assume that the corresponding trajectory for 6, has the property that w;(¢) > 0 at
each instant of time, or equivalently, that 0;(¢) is strictly monotonic. It follows that 65(¢) and 03(¢) can
each be re-parameterized in terms of #;. That is, without loss of generality, it can be supposed that
05(t) = m(0:(t)) and 05(t) = n2(61(t)), for some functions 7;. A finite parameterization is achieved
by taking 7; to be polynomials, for example. The outputs selected previously in (15) correspond to

n1(0;) = 0% (a constant) and n,(6;) = —0,.

C. Approximate minimization of energy consumption over an asymptotically stable walking cycle

Consider the robot model (10), with parameters and controller as selected in Section IV-D. Let
hi(x) = 03 —n9(0;) and hg(x) = Oy —n%(0,), where each 1 is a polynomial in 6;, and a = (ay, ..., ax)
is a vector of parameters. The objective is to choose the parameter vector a in such a manner that

"One sometimes imposes additional conditions related to the length of the stride or the average linear velocity of the walking
cycle.
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the feedback
u(t) == (LLgh (2 (1)) 1 (W (1)) — L3 (2(1))), (32)
with W as in (31), will induce an asymptotically stable walking cycle, and result in lower energy
consumption over the walking cycle than the feedback based on (15).
From Theorem 2, a necessary condition for the existence of an asymptotically stable walking cycle

is the existence of a pre-impact velocity w; such that A(w; ) > w; . For the biped model as used in

Section IV-D,; A\(1.55) = 1.574 > 1.55. Let w; := 1.55. Define a cost function by

J(a) = /0 DG a2, (33)

where, T := min{T;(A oo (w;)), 2} and u(t) is the result of applying (32) to (10), with initial condition
2o := Ao o(w7) (the upper-bound on 7' is to keep the cost finite for initial conditions not in S). The
cost is an approximation of the average energy consumed over a walking cycle. The goal will be to
minimize J(a), subject to searching over values of a that will (tend to) give an asymptotically stable

closed loop. To do this, the optimization is done subject to constraints ¢ < 0, where

c = w; — 099\ (w;)
e = [yl

cs = |[Fr/Fy|—p

ca = —Z,

and ? is such that 6, () = %9%. The first constraint imposes that there exists a point where A(w; ) > wy ,
helping to assure the existence of a fixed point. The second constraint assures that the finite time
controller has converged before impact (so that Theorem 2 is applicable), and the last two constraints
assure that the impact model is valid.

This problem was set up and solved in MATLAB using the constrained optimization function constr,

from the Optimization ToolBox. The functions n? were taken as
n(0) = al et ai(6) (34)
Me(01) = =01+ (ay+ - +a3(01)7) x (0 +07) x (01 — 67). (35)

The rather particular form of n¢ was arrived at by imposing that h%(0¢) = h$(—0%) = 0, which is the

condition needed for the robot’s legs to have equal length at impact (recall the discussion in Section
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II-B). The initial and final values of the parameters are shown in Table I, along with the cost. Figure
7 presents the corresponding graph of A for the optimized value of the output functions. It is seen that
there is an asymptotically stable orbit at w; a 1.56. Simulation results support this. Figures 8, 9 and
10 present the corresponding plots of #, w and u, respectively, over a few cycles near the stable orbit.
Fortuitously, the peak torque magnitude has been reduced to 85 Nm, without explicitly taking this as
an objective in the optimization. Finite-time feedbacks with explicit magnitude constraints can also
be designed; see [3].

It is possible to pose an optimization problem that more closely reflects the energy used over the
walking cycle, and yet is still free of the fixed-point (or two-point boundary value) constraints that
have plagued previous approaches to trajectory optimization. For example, for a given value of the
parameter vector a, compute a finite-time stabilizing feedback. Evaluate the graph of A. From this,
directly determine whether an asymptotically stable orbit exists or not, and if it does, evaluate the

energy consumed over the orbit via

T(a) = /0 D20 + 20yt (36)

where T is the period of the orbit, and wu(t) is the result of (32) over the periodic orbit; else, if an
asymptotically stable orbit does not exist, set .JJ(a) = oo. This approach was not followed here due to

the increased computational demands, with respect to the previous method.

V1. ANALYSIS OF THE ZERO DYNAMICS IN RELATION TO HicH GAIN CONTROL

The previous sections have provided an effective method for determining the existence of a periodic
orbit, and for analyzing its stability properties. The goal of this section is to analyze more deeply the
internal behavior of the robot model in closed loop with a finite-time stabilizing controller. As pointed
out in Section IV-C, the classical zero dynamics of the mechanical part of the robot model are not
invariant under the impact model, when bounded control gains are used. It is shown here that in the
limit as the gain tends to infinity, the invariance of the zero dynamics is recovered, independent of
the impact model. This can be used to explain certain properties of the Poincaré map, A, such as its
observed strict monotonicity. For reasons of space, the exposition will be more terse than that of the

previous sections.
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A. Zero dynamics

It is easy to verify that the input vector fields of (2) commute; that is, their Lie bracket is zero.
This, in combination with the decoupling matrix being globally invertible, implies that the dynamic
(2), with outputs (15), can be transformed into a particularly simple normal form [26|. An appropriate
coordinate transformation can be found by applying Proposition 1.3, page 237, plus the constructive
proof of the Frobenius Theorem, page 26, in this same reference. The result is the following change of

coordinates, which is a global diffeomorphism under Hypothesis CH1:

0y T

01 + 0y
W3

w1 + we
Wi
v ()

5]
Il
~~
()
\]
p—

where,

5 1
y(z) = (Zmrz + Mgr? + Mpr? — §mr2 cos(fy — 03) + Mprlcos(0; — 93)> W

1 1
+ <1m7’2 — §mr2 COS(Ql — 92)) wo + (MTZ2 + MTT'Z COS(Ql — 03)) ws. (38)

The constructive proof of the Frobenius Theorem shows, in fact, that the function -y is the last row of

the matrix
1

0 w1
B, 10 X DX | wo
1 W3

Note that (Zi‘l, Zi‘g, Zi‘g,[f4) = (hl(ZL’), hg(ZL’), thl (ZL’), thg([L’))
In the Z-coordinates, the state space model of the robot, (2), with the decoupling feedback, (18),

becomes

T3
Ty
U1

v
I I L I (39)
4Mpl (7” cos(z) — x5+ 05) — l) Tz + mre (2 cos(xo — 2x5) — 1) 24 + 476

Ay (mr + Myr + Myr + Myl cos(z, — @5 + eg‘f))
g (MTZ sin(zy + 04) — Lmrsin(z, — 75) + (gmr 4+ Mypr + MHr) sin(fg)))

=1
Il

The zero dynamics is obtained by imposing y(t) = 0. Setting (%1, Ty, T3,Z4) = (0,0,0,0) in (39), and
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relabeling x5 and zg by & and &, respectively, yields
: &
[ 5_1 1 | 7 (mr + Myr + Mpr + Myl cos(—& + Qg)) _ (40)
& g (Mylsin(8) + (mr + My + Myr) sin(€y)

In order to establish the relation between (39) and (40), some properties of a double integrator in

feedback with a finite-time converging controller are needed.

B. Aside on the double integrator

Consider a scalar double integrator, 7j(t) = v, and let v := 1(n,77) be any feedback so that Properties
P1-P3 of Lemma 1 hold. Let Ty be the settling time function and let ¢(t,7) denote the solution of
the closed-loop system corresponding to the initial condition (0,7)). By continuity of the dependence

of the solution on the initial conditions, and the fact that ¢ has bounded support®,

li L, e = 0 41
lim sup (L, o) (41)
lim sup |p(, enp)| = 0. (42)
eNO >0

Since ¢ is a continuous function of ¢, and has bounded support, [5°|&(¢,70)|dt exists and is finite.
Hence, using (42) and the bounded support property, it follows that

[e o]

T set(0,en0) 1
im [ [(t, eo)|dt = lim/ TG, en)|dt = lim/ 15(t, erio)|dt = 0. (43)
eNO0 Jo e\0 Jo

eN0 Jo
Consider again the scalar double integrator, let € > 0, and apply the high gain feedback v =
S(n, en)). Let @c(t,70) denote the solution for the initial condition (0,7). Then it is straightforward

to verify that ¢.(,70) = @(t/€, eno), and thus that ¢ (t,70) = 2o(t /€, erjp). Hence, by (41),
lim sup | (t,70)| = 0, 44
i i) (aa)
and by (43) and a simple substitution of variables,

lim [ | (t,730)|dt — 0. 15
limy | [e(t:70)| (45)

C. High gain control and the zero dynamics

Once again, let v; = ¥;(y;, 9:), i = 1,2, be any feedbacks for the double integrator so that Properties

P1-P3 hold. For any € > 0, a simple time scale argument shows that the high gain feedback v; =

8Indeed, the support is [0, Ts.: (0, €0)].
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E%@Dl(yl, ey;) still results in Properties P1-P3 being met, and, furthermore, results in the closed-loop

settling time function, (25), becoming T (y, v, €) = €T, (y, ey). With this in mind, apply the feedback

1 e
v = [ TREE | o
to (39).

The relationship between the solutions of the closed loop robot model, (39), and the zero dynamics,
(40), is established as follows. Take a point z~ € SNZ. Let Z+ := A(Z ™), where A is the representation
of A in the coordinates (37). It follows that ; = 0 and z3 = 0, because (15) is identically zero on S.
Hence the analysis of Section VI-B is applicable. Letting Z(¢,Z") denote the solution of (39) for the

initial condition Z©, (44) and (45) imply, respectively,

limsup |7;(¢,77)] =0, i = 1,2, (47)
N0 >0
and,
] oo . ] eTscalt(0,0,ei;r,efi) B . )
tim [ o)t = T | 751, |t = 0, = 3,4. (43)

From these two equations, and the fact that z3 and x, appear affinely in the fifth row of (39), and not

at all in the last row, a simple bounding argument® shows that, for ¢ > 0,

lima(t,27) = (0,0,0,0,6 (1,252, alt, 5. 77) ) (49)

where &(t,75 ,Zd ), i = 1,2, denotes the solution of the zero dynamics, (40), for the initial condition

(75,76 )"
D. X under high gain control

It follows that in the high gain limit, that is, as € tends to zero in (46), the function A from the
Poincaré method can be evaluated on the basis of a two dimensional subsystem, namely, the zero
dynamics. Denote the result by Agg. This reduction is interesting for several reasons:

(1) it brings out the structure of the closed-loop system, and shows that the zero dynamics must
encode the notion of a walking cycle;
(2) the uniqueness of the solutions of the zero dynamics implies that Ay is strictly monotonic, which

partly explains the observed monotonicity in A;

“Express the solutions in integral form, compute the norm of their difference, and apply the triangle inequality.



GRIZZLE, ABBA AND PLESTAN: ASYMPTOTICALLY STABLE WALKING FOR BIPED ROBOTS 25

3) Apg is as smooth as the data in the problem (for the biped, it is analytic), whereas X is only
continuous;

(4) the evaluation of Apyq is independent of the particular finite-time stabilizing feedback used. More-
over, it can also be computed by replacing v; in (46) with a globally exponentially stabilizing feedback,
and taking the limit as € tends to zero; in the limit, the Poincaré return map, P, when restricted to
SN 7, takes again its values in S N Z. The consequences of this observation for the study of periodic

orbits under non-finite-time stabilizing feedback control remain to be clarified.

VII. CONCLUSIONS AND PERSPECTIVES

This paper has addressed the problem of establishing the existence of a periodic orbit in a simple
biped model, and analyzing its stability properties. The biped model was first formulated as a nonlinear
system with impulse effects, evolving in a subset of IR®. Poincaré’s method was then extended to this
class of systems. For the biped model considered here, a straightforward application of Poincaré’s
method would require the computation of a discrete-time map from IR® to IR®, which would be a
complicated task. It was then shown that finite-time converging feedbacks could be used to drive the
torso and the swing leg to known functions of the support leg, and thereby collapse the dimension of
the image of the Poincaré map to a one-dimensional set. This led to an effective analysis tool, which
then could be used in design. In the course of the development of these results, it was observed that
the zero dynamics of the biped was not invariant under the impact model. It was subsequently shown

that its invariance could be recovered under high gain control.

The analysis method developed in the paper is quite general. The next step is to apply it to a
more general biped model with knees [39], [19], [16], [17], yielding a seven degree of freedom, under
actuated system. It is conjectured that supplementing outputs (15) with hip height and swing foot
height objectives will lead to a viable control design with provable stability properties; the horizontal
hip position will play the role of #; in parameterizing the outputs to be used in the feedback design. It
also seems likely that the methods developed here can be applied to other under actuated mechanical
systems [36].

The work presented here has assumed a rigid impact model. Non-rigid models have been developed

[45] in the context of biped motion. It seems possible that some of the results of the paper can be
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extended to include such models, though this is more speculative than the previous extension. Finally,
many challenging issues exist in running (which has a fly phase) and three dimensional aspects of

modeling and control of mechanical biped motion.
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VIII. APPENDIX A: MODEL DETAILS

This appendix completes the equations of the biped model, (1). In the following, w := 0.

Mechanical model
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(%m+MH+MT)T2 —%mT2COS(01 —02) MTTZCOS(QJ —03)

D= | —3mrcos(0; — 0;) Tmir? 0 (50)
MTT'Z COS(Q] — 93) 0 Mle
0 —%mr2812WQ MTTlSlgw?,
C = %mr%lgwl 0 0 (51)
—MTT’ZSL?)WJ 0 0
S15 = sin(91 - 0]),j < {2, 3} (52)

G = sgmrsin(0y) (53)
—gMTl 8111(93)
-1 0
B=| 0 -1 (54)
1 1

Impact model

The impact equations (4) and (8), taken together, become

75 (%)

where, F' = (Fr, Fiy)" and the positive definite, symmetric matrix D, has entries

Dil = i (5m + 4MH + 4MT) 7”2 Diz = —%mrz COS(—Ql + 02)

Di?) — MTT'Z COS(Ql - 03) Di4 =1 (Sm -+ 2MH -+ QMT) T COS(Ql)
DY = —%(3m +2My + 2My) rsin(f;) D = %mrQ

D% =0 D* = —Lmr cos(6,)

DSE) = %mr sin(ﬁg) DSB = Mle

D3 = Myl cos(0s) D3 = — Mzl sin(6s)

D¥ = 2m + My + My DB =0

DSE) :2m+MH+MT
The solvability of (55) is equivalent to the invertibility of the matrix on the left hand side. The
invertibility of this matrix follows from the fact that D, is positive definite and E has full rank;

indeed, the determinant of the left hand side of (55) can be computed to be

mMpl?r*

16 (QMT + 3m + 4MH —2m COS(201 — 202) — 2MT COS(QQQ — 203)) 5
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which is non-zero everywhere.

The mapping A is then evaluated by the following steps:
Step 1: solve (55) for ¢, and pick-off w™; since ¢, only depends on w™ (recall that z; = 2, = 0),
and since the positions do not change during the impact (i.e, 6% = 07), the result is w' expressed as
a function of z= = (0", w™')".
Step 2: transform the coordinates so that #; corresponds to the stance leg and 65 to the swing leg; this

means swapping the first two position coordinates, and the first two velocity coordinates, respectively.

The final result is

Al) = | (56)

The implicit function theorem implies that A is as_smooth a; the data in (55), and thus A is analytic
inz .

Remarks: (a) Computing A in closed form would mean inverting a 7 x 7 matrix; hence this is only
done numerically, as part of the simulations. (b) The no-rebound, no-slip condition of the impact, (8),
ensures that the impact results in the end of the swing leg being at rest, and hence, after doing the
coordinate transformation, the end of the stance leg will be at rest. (¢) For the impact model to be
valid, it must be verified a posteriori that no-slipping was a valid assumption (that is, |Fr/Fy| < p),
and that the stance leg lifts from the ground without interaction (that is, before the coordinate
transformation, z;* > 0). This was done for all simulations reported in this paper.

Decoupling matrix

The Lie derivative notation is defined in [26], [33], [37].

1 Ry Rio
LyLih = —— b7
oI det (D) [ Ro1 Roo o)
where,
mr® 2
T (5mr + AMyr + AMpr — dmr cos® (=0, + 02) + 4Mrpl cos(—0; 1 03) )
3
Ry = % (5mr +AMyr + AMpr — 4mr cos® (=01 + 02) + 8Mrl cos(—01 + 0a) cos(—0 + 93))
—mMyplr?
Ry, — _mMrir (14 2cos(—0; + 63)) (rcos(—01 + 5) + 1)

4



30 SUBMITTED TO IEEE TAC: FEBRUARY 1999

— Mrlr?
Rgg — TTT (5ml + 4MHZ + 4MTZ -+ mr COS(—Ql + 03) + 2mr COS(—Ql -+ 02) COS(—Ql -+ 03)

—4 Myl cos®(—0; + 03) + 2ml cos(—0; + 92)> ,

and

mMprtl? 9 9
det(D) — T <5m -+ 4MH -+ 4MT — 4m cos (—01 -+ 02) - 4MT COS (—01 -+ 03)) .

Zero Dynamics

In the coordinates used in (19), the zero dynamics is given by
O = 6o(0,0, 61, 01) =: Cullr) + Go(01)6, (58)

where,

TV e+ Myr + Mpr + Moyl cos(6; — 64)
= MTZ sin(01 — Qg)

01) = . 60
gb( 1) mT+MHT+MTT+MTlCOS(01 —Qg) ( )

IX. APPENDIX B: PROOFS AND TECHNICAL DETAILS

This appendix collects some of the technical development, in the hope of improving the readability
of the main body of the paper.
Continuity of T}
Lemma 3: Suppose that Hypotheses H1-H3 hold. Then 77 is continuous at points xy where 0 <
Ti(mo) < oo and LpH (! (Tr(wo),x0)) # 0.
Proof:  Let ¢ > 0 be given. Define Z := ¢/ (T;(z0), 7o), and without loss of generality, suppose
that L;H(z) < 0. Then, from the definition of T} and H3, H(p/(t,x)) > 0 for all 0 < ¢ < Ty(xo).

This in turn implies that, for any 0 < t; < T7(xo),

u(ty) == inf dist(e! (¢, 20), S) > 0, (61)

0<t<ty
since: (a) ¢/ (t,70) is continuous in ¢; (b) the interval [0, is compact; and (c), by H3, S is closed
and equals the zero level set of H. By H1, there exists ¢ > 0 such that ¢/ can be continued on
10, T7(x0) + €], [21]. Moreover, since LsH(z) < 0, for € > 0 sufficiently small, 5 := Tj(xo) + €/2 and
Ty = ! (t2, 20), result in H(xy) < 0. From H(xs) < 0, it follows that dist(zg, S) > 0. If necessary,

reduce € so that 0 < € < min{e, T;(zo)}, and define ¢, := T;(zo) — €/2 and z, := ¢/ (t1,70). From
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(61), p(t1) > 0. From H2, the solutions depend continuously on the initial conditions. Thus, there
exists 6 > 0, such that, for all x € Bs(xo), supg< <y, ||¢7 (¢, 2) — ©! (t, 20)|| < min{dist(zs, 5), pu(t1)/2}.
Therefore, for v € Bs(xo), t1 < Tr(z) < t2, which implies that |77 (x) — Tr(x0)| < €, establishing the
continuity of T at xg. [ |
Distance of a trajectory to a periodic orbit

Recall that if O is any periodic orbit that is transversal to S, then @ C X. For € X, define
d(r) 1= SuPgcicr, () dist(p (¢, 2), O). Note that d vanishes on O. Note also that for 0 < ¢ < Ti(z),
o () = ¢ (t, 7).

Lemma 4: Under H1-H3, d : X — IR is well-defined and is continuous on O.

Proof-  For any zy € X, Ty(xo) is finite, and ¢/ (¢, x0) is defined on [0,7;(zy)]. This and the
continuity of ¢f(t,z0) with respect to t imply that d(x¢) is finite. Next, let 2o € O and ¢ > 0
be given. By definition of T}, 7 := ¢/ (T;(xg),z0) € S. Without loss of generality, suppose that
L¢H(Z) < 0. Let > 0 be such that for all 0 < ¢ < n, H(p/(t,7)) < 0 and ||z — @/ (¢,7)|| < €/2.
Such an 7 exists because: (1) H1 implies there exists n > 0 such that ¢/ can be continued on
0, Ty (z0) + ), [21]; (2) LyH(z) < 0; and (3) ¢/ (¢,Z) depends continuously on ¢. Define t3 :=
Tr(xo) +n and 23 := o/ (t3,70). By H2 and Lemma 3, there exists § > 0 such that for all Z € Bs(x),

SUPo< <y, |07 (6, 20) — @/ (8, 2)|| < €/2 and T;(Z) < t3. By the triangle inequality, dist(¢/(t, ),

IA

0)
dist(o/ (¢, 2), 07 (t,20)) + dist(¢? (1, 20),O). Hence, for & € Bs(xg), SUPg< <7y (7) dist(o/ (t,7),0) <
SUPo< r< ¢4 dist(of (¢, 2), 0! (t,20)) + SUPo< t<ts dist(f (t,20), O) < €/2 + ¢/2, which shows that d(z) < ¢

and thereby the continuity of d at xg.

Proof of Theorem 1

Proof:  The first and second statements are immediate. Since the sufficiency portions of the
statement ¢) and d) are straightforward, only necessity is proven here. Suppose that P(xq) = xg, and
let O be the periodic orbit of (11) corresponding to A(zg). By b), the orbit is transversal to S. Let
¢ > 0 be given. Since g is stable in the sense of Lyapunov, for any € > 0, there exists 6(¢€) > 0 such
that, for all K > 0, € Bse)(z0) NS, implies P*(Z) € Be(xg) NS, where P* is P composed with
itself k-times. In particular, this implies that for all £ € Bse)(x0) NS, there exists a solution ¢(t) of

(11) defined on [0, 00), such that ¢(0) = A(z). Moreover, an upper bound on how far the solution ¢
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wanders from the orbit O is given by

supdist(p(t),0) < sup  do A(x). (62)

t>0 € Be(xo)NS

By Lemma 4, since O is transversal to S, and since A(xg) € O, d o A is continuous at xy. Since
d o A(xg) = 0, it follows that there exists € > 0 such that sup,cp_ (s @ © A(z) < ¢. This bound is
valid for all initial conditions in Bsg)(ro) N S. It remains to produce an open neighborhood of O for
which such a bound holds. But this is easily done by taking V := d~1([0,6)), which completes the
proof of ¢). Assume in addition that §(€) > 0 was chosen sufficiently small so that limy ., P*(z) = .
Then by contimiity of d and A, lim, ., d o A(P*(z)) = do A(zy) = 0, from which it easily follows that

limy o dist((t), O) = 0, proving d).

Sufficient conditions for H1-H2

The goal is to show that the continuity of the feedback (22) plus Hypotheses CH1-CH3 imply that
Hypotheses H1 and H2 hold for (24). H1 is immediate. Due to the subgroup property of the flow of a
differential equation, it is enough to establish H2 in a local coordinate chart. Since (2) comes from the
second order model, (1), where the matrix B is constant, the input vector fields of (2) commute and
the dimension of their span is constant. These two facts plus the invertibility of the decoupling matrix

(Hypothesis CH1) imply that, about any point xy € X, the system (24) can be locally transformed
into [26], [33], [37]

G o= G
¢2 - \Ij(§17§2) (63)
z = F(§1,§272),

where (i := y, (3 := ¢, ¥ is given by (22) and [ is an analytic function of its arguments (the analyticity
comes from that of (1)). In particular, I' is locally Lipschitz continuous.

Thus, in these coordinates, the system is expressed as a cascade of a system that satisfies H2 feeding
forward into a system that is locally Lipschitz. The Gronwal inequality [30] can therefore be easily
used to establish that H2 holds for the cascade. This is summarized in the lemma below.

Lemma 5: For the closed-loop system (24), Hypotheses CH1-CH3 and the continuity of (22) imply

Hypotheses H1 and H2.
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TABLE 1
RESULT OF OPTIMIZING THE CHOICE OF OUTPUTS FOR MINIMAL ENERGY CONSUMPTION.

7 | al | al | al | ay | J
Original Values

110.523 0 0 0

2 0 0 0 0 1,360

Optimized Values
110512 | 0.073 | 0.035 | -0.819

20-227 | 326 | 311 | 1.89

761

A B

Fig. 1. Schematic indicating the defintion of the generalized coordinates and the mechanical data of the biped robot.
All masses are lumped. The legs are symmetric, with length  equal to the length of the line segment A — O (also,
B — Op). The mass of each leg is lumped at r/2. The distance from the center of gravity of the hips to the center
of gravity of the torso, denoted by I, is the distance from Oy to Or.
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Fig. 2. The top graph presents the function A (bold line) and, for visualization purposes, the identity function (thin
line); the bottom graph presents the function 6\ (bold line) and the zero line (thin line). From either graph, it is

seen that there exists a periodic orbit and that it is asymptotically stable.
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Fig. 3. Plot of joint angles versus time for a finite-time feedback computed on the basis of (15); units of radians.
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Fig. 4. Plot of joint velocities versus time for a finite-time feedback computed on the basis of (15); units of radians per

second.
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Fig. 5. Plot of applied torques versus time for a finite-time feedback computed on the basis of (15); units of newton-

meters.

S A (W,
o
N

15

15

Fig. 6. The top graph presents the function A (bold line) and, for visualization purposes, the identity function (thin
line); the bottom graph presents the function 6\ (bold line) and the zero line (thin line). From either graph, it is

seen that there does not exist a periodic orbit transversal to S.
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Fig. 7. The top graph presents the function A (bold line) and, for visualization purposes, the identity function (thin
line); the bottom graph presents the function 6\ (bold line) and the zero line (thin line). From either graph, it is
seen that there exists a periodic orbit and that it is asymptotically stable.
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Fig. 8. Plot of joint angles versus time for a finite-time feedback computed on the basis of (34)-(35); units of radians.



GRIZZLE, ABBA AND PLESTAN: ASYMPTOTICALLY STABLE WALKING FOR BIPED ROBOTS 37

2r
31 r\/]\/]\_/
0 L L L L L )
0 0.5 1 15 2 25 3

2t
3N 0 W

-2t
0 0.5 1 15 2 25 3

2r

o : \/

op
-1 L L L L L )
0 0.5 1 15 2 25 3

Time

Fig. 9. Plot of joint velocities versus time for a finite-time feedback computed on the basis of (34)-(35); units of radians
per second.
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Fig. 10. Plot of applied torques versus time for a finite-time feedback computed on the basis of (34)-(35); units of
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