
A Demonstration of Broadband RF Sensing: Empirical Polysilicon Etch

Rate Estimation in a Lam 9400 Etch Tool

Craig Garvin and J. W. Grizzle

Department of Electrical Engineering and Computer Science,

University of Michigan

1301 Beal Ave, Ann Arbor, MI 48109-2122

fgarv, grizzleg@eecs.umich.edu

Abstract

The sensitivity of a novel broad frequency band (1GHz to 2:25GHz ) RF sensing

system to plasma etching process conditions is demonstrated. This is accomplished

by using the sensing system to estimate polysilicon etch rate in a Lam 9400 etch

tool. A designed experiment varying physical and chemical reactive ion etching

regimes was performed with five repetitions at each experimental point. A model

relating broadband sensor response to etch rate was regressed using four repetitions

of the data and validated on the fifth. Two representations of the broadband data

were considered separately when regressing the models, with subset selection used

in each case to choose the best predictor variables. In one representation, the sensor

data was considered as a vector of 402 real numbers corresponding to magnitude and

phase of reflection coefficient at each of 201 frequencies, resulting in anR2 of etch

rate estimate of0:997. In the other, the broadband response was parameterized on the

basis of a multi modal cavity resonance model. The inferred parameters of natural

frequency, quality factor and resistance were then used as the predictor variables for

regression, resulting in anR2 of 0:962.
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I. INTRODUCTION

A significant trend in microelectronics manufacturing is the movement towards closed loop

control and real-time sensing and diagnostics in order to improve overall equipment efficiency,

commonly referred to as ‘advanced process control’ (APC). This paper presents advances in real-

time RF sensing and diagnostics for reactive ion etching (RIE), a critical microelectronics process

step. RIE employs a plasma of reactive chemicals in a vacuum chamber to achieve precise and

rapid material removal. RF sensing refers to the measurement of electrical properties of the plasma

at radio frequencies (the megahertz to low gigahertz range) for the purpose of diagnostics and

control of the process.

This article presents continued advances in the use of a novel RF sensing system for micro-

electronics process diagnostics, referred to as ‘broadband’ RF sensing. In Ref. [1], we introduced

the broadband concept and demonstrated significantly better sensitivity to plasma parameters than

standard RF sensing in a research reactor using simple chemistries. In this article, we present a

minimally intrusive implementation of the broadband sensor on a Lam 9400, along with a demon-

stration of sensitivity to a process parameter, rather than plasma parameters. Sensitivity to a pro-

cess parameter is demonstrated by obtaining an empirical etch rate estimation based solely on the

broadband sensor response.

There is a long history of investigation of the electrical properties of processing plasmas by

both passive and active means. We use ‘passive sensing’ to refer to methods that rely on the exist-

ing power supply to excite the plasma and add sensors to passively measure electrical character-

istics at the drive frequency and any of its harmonics [2–9]. ‘Active sensing’ refers to approaches

involving a separate frequency source and antenna to drive the plasma. In active sensing, a low

power high frequency source typically drives the plasma over a range of frequencies rather than at

single frequency. Nevertheless, standard active sensing approaches [10–19] have to date only used

a single parameter from the frequency sweep: the frequency of minimum reflection or maximum

transmission as the measured quantity. This ‘resonance’ frequency has been converted to plasma

density [11–13].
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Active sensing of contained plasmas has been described as early as 1952 by Brown and

Rose [10]. The method was briefly considered for processing applications [16–19] in the mid

1980’s, but the work of de Vrieset. al [17] appears to have terminated this line of inquiry.

Their work found poor correlation between the electron density estimated from active sensing

and etch rate, suggesting the diagnostic had limited value. Our work is in complete agreement

with de Vries, but we draw different conclusions. We confirm that when active sensing is used as

a single parameter diagnostic, it does indeed correlate poorly with etch rate. However, we use this

conclusion to motivate the use of the full frequency response spectrum provided by the RF sensor.

By employing multi parameter empirical analysis, similar to Refs. [20–22], we are able to estimate

etch rate to a high degree of accuracy. We are also able to achieve accurate etch rate estimation

with a multi-parameter model of the broadband response that considers changes in resonant fre-

quency and quality factor not just at the primary resonant mode of the cavity, but at several excited

modes.

II. EXPERIMENTAL SETUP

The experimental work involves etching of blanket polysilicon wafers in a LAM 9400 reactor

equipped with broadband RF sensing. A more detailed discussion of each element follows.

As depicted in Figure 1, the spacer plate of our Lam 9400 has been modified with optical ports.

For convenience, we convert one of the unused optical ports to a broadband probe. The optical

port has a 9.5 mm diameter aperture with0� elevation angle, radially aligned with the center of

the chamber. The probe design is shown in Figure 2. A quartz tube sealed by O-rings serves to

insulate the antenna from the discharge. Inside the quartz tube, a length of MIL-17C tin plated

aluminum, semi-rigid coaxial cable acts as a monopole antenna. In its present form, a 13 mm

antenna is used, located 75 mm from the outer wall of the chamber and about 100 mm above the

substrate.

A Hewlett Packard 8753B network analyzer drives the broadband probe over a range of1GHz

to 2:25GHz at a power level of 0 dBM. After calibration, the complex reflection coefficient (�)
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is recorded at 201 frequency points linearly uniformly spaced between1GHz and2:25GHz . The

set-points of power, pressure and flow rate for the LAM 9400 as well as data acquisition are

controlled with PC’s running LabVIEW data acquisition and control software and linked via Data

Socket [23]. The broadband data are acquired at a sample rate of 5 Hz while all other data are

acquired at 10 Hz. Broadband data over the duration of an experiment are averaged on a frequency-

by-frequency basis for the purpose of regressing etch rate. All data are logged and written to file

automatically.

The substrate etched in all experiments is a 6 inch silicon wafer composed of 5000Å unpat-

terned undoped polysilicon, over 300Å thermal oxide, over crystalline silicon. For the purposes

of this experiment, the oxide layer serves as a reflective boundary to enable the determination of

the polysilicon thickness. Thickness was measured before and after each etch using a Leitz SP,

and rate was calculated from thickness and total etch time.

III. EXPERIMENT DESIGN AND INITIAL DISCUSSION

Reactive ion etching consists of two dominant etch mechanisms - physical and chemical. Our

goal in this experiment will be to keep electron density roughly constant while varying the relative

importance of the physical and chemical etch components. Based on the results of Ra [24] in a

chamber similar to ours, we keep electron density constant by maintaining a constant TCP power.

High and low ion energy is achieved through the choice of bias power. The chemical component

of the etch is varied from ‘passivating’ to ‘etching’ by varying the relative flow of HBr and Cl2. In

each case, total flow rate is kept constant in order to maintain a roughly constant overall residence

time. The chosen levels of the experimental variables are shown in Table I. Five repetitions of the

experiment were performed in fully random order, for a total of 20 experiments.

Figure 3 shows a typical response of the broadband sensor for each of the four treatment com-

binations. For each case, we see that the response is composed of two resonant peaks. We will

refer to the lower frequency peak as the primary mode,M1, and the higher frequency peak as the

secondary mode,M2. In keeping with previous work in this area [10–19], we will assume that
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these peaks are due to resonant modes in an enclosure filled with a lossy dielectric. If we assume

the standard perturbation model [25], then each mode is represented as a seriesRLC circuit. With

this model, it is clear that two modes are insufficient to describe the response of Figure 3. We see

that the primary mode,M1, clearly has additional structure beyond the main resonance peak, and

to a lesser extent so doesM2. Accordingly, we propose two additional degenerate modes:M
0

1,

andM
0

2 to account for the additional features in each resonance. Consequently, each mode can

be described by its resonant frequency,!n, quality factor,Q, and minimum reflection coefficient

magnitude,j�min j or resistance1, R. To illustrate the notation,(!n)
0

1 denotes the resonant fre-

quency of the degenerate primary mode, whilej�min j2 denotes the minimum reflection coefficient

of the secondary mode.

Having established the notation, let us now observe that the resonant frequency of the primary

mode,(!n)1, does not correlate with changes in etch rate. Etch rate increases both with the change

from passivating to etch chemistry, and with the change from low to high bias power.(!n)1

increases with the switch from passivating to etch chemistry, butdecreaseswith increasing bias

power. This poor correlation is not surprising, since the experimental goal was to vary etch rate

while keeping electron density, and thus(!n)1, roughly constant. The lack of correlation between

(!n)1 and etch rate confirms the observation of de Vrieset. al and motivates considering more

subtle features of the broadband data.

We note that the prominence of the degenerate primary mode,M
0

1, changes significantly with

process conditions.(j�min j)1, (j�min j)2 andQ2 change as well. All of these can serve as potential

indicators. The question of whether these changes are sufficiently reliable to accurately predict

etch rate is addressed in Section V, with a regression model .

1Using anRLC circuit model,R is equivalent toj�min j, since�min =
R�Z�

R+Z�

. From a plot ofj�j vs!,

j�min j is directly observed whileR is not. Conversely, a transfer function representation is more readily

formulated withR
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IV. BROADBAND PARAMETERIZATION BY MULTI MODAL CAVITY RESONANCE

PERTURBATION MODEL

A single sweep of the broadband RF measurement results in 402 real numbers: the log-

magnitude of the reflection coefficient,log(j�j), and its phase,arg(�), at 201 linearly uniformly

spaced frequency points from1GHz to 2:25GHz . Consequently, the measurement set results in

a vastly over-determined regression problem from RF data to etch rate. We address this over-

abundance of data in two ways. In the ‘purely empirical’ approach, we use a subset selection

methodology [26–28], described in Appendix A, directly on the 402 element vector of RF data.

The result of the subset selection procedure is that magnitudes and phases at specific frequencies

are used for the etch estimate, and all other values of magnitude and phase are ignored. An alter-

native is the ‘parametric’ approach. Here, the broad band frequency sweep is represented by the

circuit parameters of fourRLC circuits, thus reducing 402 points to 12. The same subset selec-

tion methodology is used on these circuit parameters to build a regression model relatingcircuit

parametersto etch rate. The circuit parameters are derived as follows:

It is well established [25] that a cavity filled with a lossless homogeneous dielectric can be

approximated by a seriesLC circuit for each propagating mode, with theLC circuits in parallel to

each other, as shown in Figure 4. For lossy inhomogeneous dielectrics, a perturbation analysis [11–

13, 29] leads to anRLC circuit. In this model, the natural frequency,!n, and quality factor,Q, of

each mode is perturbed by the presence of plasma. A finiteQ can be modeled by the addition a

resistance to eachLC circuit in Figure 4. As we have noted in Section III, four modes, resulting in

fourRLC circuits, appear sufficient to capture the broadband response. Using this model structure,

the complex reflection coefficient as a function of frequency,�(!), is simply the admittance of

four seriesRLC circuits in parallel converted to a reflection coefficient, as we will illustrate:

We begin by calculating the admittance of a seriesRLC circuit:

Y (s) =

2!n
RQ

s

s2 + 2!n
Q
s+ !2

n

(4.1)

Because standard equations [11–13, 29] relate plasma density and collision frequency to natural

frequency and quality factor, we express admittance in terms of!n andQ rather than L and C.
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Since parallel admitances add, the total admittance,Ytot, resulting from fourRLC circuits in

parallel is:

Ytot =
4X

k=1

2(!n)k
RkQk

s

s2 + 2(!n)k
Qk

s+ !2
nk

(4.2)

Since we measure reflection coefficient, and not admittance, we express reflection coefficient in

terms of admittance:

�(!) =
1� Z�Ytot

1+ Z�Ytot

(4.3)

Once we have an expression for�(!) from Eq. 4.3, we use a standard nonlinear optimization

routine to minimize the difference between the modeled and measured reflection coefficient and

obtain the parameters!n,Q andR for each mode. In addition to these three, the mode parameters

were augmented with certain nonlinear transformations described as follows: The quality factor

Q of a given mode corresponds to the amount of damping. Damping is often represented by a

‘damping coefficient’,� = 1
Q

, and bothQ and� are included. In a similar vein,R, j�min j and

VSWR(�min)
2 are all included. The final set of ‘parameter’ broadband data,Mp is:

Mp = [(!n; Q; R; �; j�min j ; VSWR(�min))1 : : :

: : : (!n; Q; R; �; j�min j ; VSWR(�min))
0

2

i
; Mp 2 <

20�24 (4.4)

V. EXPERIMENTAL RESULTS

We first consider the performance of the ‘purely empirical’ model based on the 402 points

of raw RF measurement. The subset selection methodology of Appendix A was used to regress

a model based on 4 repetitions of the data which was then evaluated on the fifth data set. This

was repeated in a round-robin fashion and the ‘goodness of fit’R
2 was determined based on all 5

permutations. The result is an extremely good fit ofR
2 = 0:997, corresponding to anRMSerror

2VSWR(�) =
1+j�j
1�j�j
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of 0:8%. Figure 5 shows the actual etch rate obtained from Leitz SP thickness measurement and

etching time, as well as the etch rate prediction based on the broadband signal. Figure 6 illustrates

typical magnitude and phase points selected to regress the etch rate model. We note that all the

selected points are in areas of relatively low absorption (jlog(j�min j)j < 10dB), which is somewhat

surprising.

We also regress a model based on the parameters of four resonant modes, shown in Eq. (4.4).

The fit achieved with the parameterized approach is almost as good as the purely empirical fit:

R
2 = 0:962. Table II lists the mode parameters in the order than they contribute to fitting etch rate.

The most significant contribution is that of(!n)
0

1, the resonant frequency of thedegenerateprimary

mode. Furthermore,(!n)1, the resonant frequency of the primary mode is veryinsignificant, and

shows up well beyond the cutoff for reasonable model order. However, the other two features

of M1, R1 andQ1, are both significant.R
0

1 is significant, but as a standing wave ratio (VSWR
0

1).

Finally, whereas(!n)1 was not significant, the only significant component ofM2 is (!n)2.

VI. CONCLUSION

A novel RF sensing system based on multi-mode microwave excitation of a plasma chamber

was implemented on a LAM 9400 etch tool. A four level experiment was designed with the goal of

relating polysilicon etch rate to RF measurement. Using only information from the broadband RF

sensor, etch rate was estimated with an an averageR
2 of 0:997, using a purely empirical model,

and anR2 of 0:962 with a model based on an equivalent circuit representation of the broadband

response.

The next step towards process control with broadband RF sensing is to move from accurate

prediction of discrete points to a model that can interpolate over a reasonable operating range.

Once such a model is developed, it will be possible to incorporate the broadband RF response

into an advanced process control strategy. Additionally, more relevant process conditions such as

etching of patterned wafers must be considered.
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APPENDIX A: SUBSET SELECTION

This appendix presents the model regression technique used in this paper. A discussion of

subset selection can be found in [26–28].

In both the ‘purely empirical’ and ‘parametric’ modeling approaches, we begin with a set of

measured variables,Me (empirical) orMp (parametric):

Me = [log j�(!)j); arg(�(!))] ; (A1)

�(!) 2 IC20�201
; Me 2 <

20�402

Mp = [(!n; Q; R; �; j�min j ; VSWR)1 : : :

(!n; Q; R; �; j�min j ; VSWR)
0

2

i
; Mp 2 <

20�24 (A2)

In all cases, the response variable is a vector of 20 values of etch rate,ER. We will partition the

matrix M along both rows and columns and the vectorER by rows.

We partitionMe,Mp andER by rows to form a modeling set and test set:

Me =

2
664
Me

Me

3
775 ; model:Me 2 <

16�402
; test:Me 2 <

4�402
; (A3)

ER =

2
664
Y

Y

3
775 ; model:Y 2 <16�1

; test:Y 2 <4�1
: (A4)

The partition is the same forMp. For all symbols, Roman font is the entire data, italics, the

modeling set and calligraphic the test set. All 5 permutations of a modeling set composed of 4
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repetitions of the experimental conditions and a test set composed of the remaining repetition are

used to evaluate etch estimation. Unless specifically stated otherwise, data guiding model design

is exclusively obtained from[X; Y ] and data on model performance is exclusively obtained from

[X ;Y].

We partitionM by columns to form the matrix of predictor variables,X. A specific column of

M,mi, represents a particular measurement variable. We can use any subset ofM, specified by a

set of indices,�, to form the matrix of predictor variables:

X = [m�1 : : :m�n] (A5)

� = set of indices (A6)

n = model order (A7)

X =

2
664
X

X

3
775 ; model:X 2 <16�n

; test:X 2 <4�n
; (A8)

Given�, we partitionX intoX andX and regress a model,B on the modeling set:

B = (X
0

�X)�1 �X
0

� Y (A9)

We useB to estimate etch rate on the test set:

bY = X �B; (A10)

and quantify estimate performance with:

R
2 = 1�

Pn
k=1(byi � yi)

2Pn
k=1(yi �

�Y)2
; (A11)

Determining the optimal� is a computationally explosive problem [26]. An effective approx-

imation of an optimal� can be achieved by forward selection followed by backwards elimina-

tion [26].

Forward selection is accomplished by the following iterative algorithm:

X
temp
i = [Xbest

j

... xi]; (A12)

cYi = X
temp
i � [(Xtemp

i )
0

�X
temp
i ]�1 � (Xtemp

i )
0

� Y (A13)
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Ei = kY � Ŷik2; (A14)

i
? = ARG[min (Ei)]; (A15)

X
best
j+1 = X

temp
i? : (A16)

We begin withXbest
1 equal to a mean term. We then formXtemp

i , a candidate for the next largest

X
best, using each variable inX in sequence. We then calculate the errorEi obtained using each

candidateXtemp
i and determininĝYi using Eq. A13. We select the best candidateX

temp
i? to be the

next largestXbest. The algorithm is terminated whenXbest contains 16 elements.

Once the subset of variablesXbest has been selected, we re-order it by reversing Equa-

tions A12-A16, resulting in backwards elimination:

X
temp
i = [x1 � � �xi�1 xi+1 � � �xj] j x 2 X

best
j ; (A17)

cYi = X
temp
i � [(Xtemp

i )
0

�X
temp
i ]�1 � (Xtemp

i )
0

� Y (A18)

Ei = kY � Ŷik2; (A19)

i
? = ARG[min (Ei); (A20)

X
ord
j�1 = X

temp
i? : (A21)

We begin withXord
j = X

best
j , j = 16. We form j X

temp
i ’s, each missing theith variable. The

variablexi? is the component ofXbest
j that leastcontributes to fittingY . Accordingly,Xord

j�1 is

formed fromXord
j by eliminatingxi? . Once the process is repeated toj = 1 the result is a set of

variables ordered by their ability to predictY .

An ‘F-test’ is used to determine model order as follows: Given two models of sizen andm,

n > m, and the mean squared error,En andEm, achieved using models of sizen andm the

F-test gives the likelihood that the reduction in error is due to chance. We can apply the F-test to

models based onXord
i j16i=1. Once the probability that the improvement fromXord

i+1 to Xord
i is due

to chance is greater than 5%, we determine that the best model size,n
?, has been reached. For the

‘empirical’ approach,n? = 7, for the ‘parametric’ approach,n? = 5.

We then use the model,B, built with X
ord
1:n? and evaluate it on test set. The process is then

repeated for the four remaining permutations of model and test set in round robin fashion.

11



REFERENCES

[1] C. Garvin, D. S. Grimard, and J. W. Grizzle, J. Vac. Sci. Technol. A17, 1377 (1999).

[2] M. A. Sobolewski, IEEE Transactions on Plasma Sciences23, 1006 (1995).

[3] M. A. Sobolewski, J. K. Olthoff, and Y. C. Wang, J. Appl. Phys.85, 3966 (1999).

[4] J. H. Keller and W. B. Pennebaker, IBM J. Res. Develop.23, 3 (1979).

[5] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, J. Appl. Phys.69, 3455 (1991).

[6] J. W. Butterbaugh, L. D. Baston, and H. H. Sawin, J. Vac. Sci. Technol. A8, 916 (1990).

[7] M. Klick, J. Appl. Phys.79, 3445 (1996).

[8] S. Wurm, W. Preis, and M. Klick, Solid State Tech.42, 103 (1999).

[9] S. Reeves and C. Fullwood, inIEEE/SEMI Advanced Semiconductor Manufacturing Confer-

ence and Workshop(IEEE, Piscataway, NJ, 1994), pp. 298–304.

[10] D. J. Rose and S. Brown, J. Appl. Phys.23, 1028 (1952).

[11] M. A. Heald and C. B. Wharton,Plasma diagnostics with microwaves(John Wiley and Sons,

New York, NY, 1965).

[12] P. E. Vandenplas,Electron Waves and Resonances in Bounded Plasmas(John Wiley and

Sons, London, 1968).

[13] A. Gilardini, Low Energy Electron Collisions in Gases(John Wiley and Sons, New York, NY,

1972).

[14] C. B. Wharton, R. F. Post, and T. Prosser, Lawrence Radiation Lab Report5, 238 (1955).

[15] R. S. Harp and F. W. Crawford, J. Appl. Phys.35, 3436 (1964).

[16] C. B. Fleddermann, J. H. Beberman, and J. T. Verdeyen, J. Appl. Phys.58, 1344 (1985).

[17] C. A. M. de Vries, A. J. van Roosmalen, and G. C. C. Puylaert, J. Appl. Phys.57, 4386

12



(1985).

[18] R. M. Moroney, A. J. Lichtenberg, and M. A. Lieberman, J. Appl. Phys.66, 1618 (1989).

[19] M. Haverlag, G. M. W. Kroesen, T. H. J. Bisschops, and F. J. Dehoog, Plasma chemistry and

plasma processing11, 357 (1991).

[20] R. Shadmehret al., J. Echem. Soc.139, 907 (1992).

[21] R. Chen, H. Huang, C. J. Spanos, and M. Gatto, J. Vac. Sci. Technol. A14, 901 (1996).

[22] D. White, D. Boning, and G. Butler, S. W. Barna, IEEE Transactions on Semiconductor

Manufacturing10, 52 (1997).

[23] P. Klimecky, D. Schweiger, and J. W. Grizzle, inAbstracts of the195th Electrochemical

Society Meeting(Electrochemical Society, Pennington, New Jersey, 1999), Vol. 195, p. 214.

[24] Y. Ra, S. G. Bradley, and C. H. Chen, J. Vac. Sci. Technol. A12, 1328 (1994).

[25] J. C. Slater, Rev. Mod. Phys.18, 441 (1946).

[26] A. J. Miller, Subset Selection in Regression(Chapman and Hall, New York, New York, 1990).

[27] A. Sen and M. Srivastava,Regression Analysis: Theory, Methods, and Applications

(Springer-Verlag, New York, New York, 1990).

[28] J. Neter, W. Wasserman, and M. H. Kutner,Applied Linear Statistical Models(Richard D. Ir-

win, Inc, New York, New York, 1985).

[29] M. A. Biondi and S. Brown, Phys. Rev.75, 1700 (1949).

13



FIGURES

������

Electrostatic Chuck

Optical
Port

Quartz
Cover

TCP Coil

Modified
Spacer
Plate

Pump Port

Side View

Electro-
static
Chuck

Pump Port

TopView

FIG. 1. Schematic of Lam 9400, showing modification of spacer plate to include optical ports
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FIG. 2. Schematic of probe design for Lam 9400, exploiting existing modifications to spacer plate
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FIG. 4. Equivalent circuit model of multiple mode cavity resonator. LC circuits model lossless dielec-

tric, added resistor models lossy dielectric.
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TABLES

TABLE I. Process Input Levels Used for Second Etch DOE

Level Press Bias TCP Cl2 HBr

1 10 mT 130 W 340 W 40 Sccm 100 Sccm

2 10 mT 190 W 340 W 100 Sccm 40 Sccm

TABLE II. Fit Resulting from Parameterized Response Model in Order of Contribution

model order 1 2 3 4 5

factor (!n)
0

1 R1 Q1 VSWR
0

1 (!n)2

R2 0.2382 0.597 0.814 0.911 0.962

20


