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Abstract

Automotive emissions are stringently regulated. Since
1980, a three-way catalyst (TWC) has been used to
convert harmful emissions of hydrocarbons, carbon
monoxide, and oxides of nitrogen into less harmful
gases in order to meet these regulations. The TWC’s
efficiency of conversion of these gases is primarily de-
pendent on the mass ratio of air to fuel (A/F) in the
mixture leaving the exhaust manifold and entering the
catalyst. This paper develops a method by which a dy-
namic TWC model can be used for diagnostic purposes.
This diagnostic method is analyzed in the context of a
hypothesis test that is based on the oxygen storage ca-
pacity of the TWC. The Neyman-Pearson criterion is
used as the basis for this hypothesis test. It is initially
applied in the case of a single sample where the vari-
ance of the data is assumed to be known. This is then
expanded to a multiple-sample case through the use of
Student’s ¢ test. The improved fidelity of the ¢ test is
demonstrated, and it is shown that larger sample sizes
provide further improvement in the quality of the hy-
pothesis test.

1 Introduction

Part of the increasingly tight automotive emissions con-
trol standards includes a requirement to monitor the
condition of the catalyst. In addition to the require-
ment that a specific tailpipe emissions level be met,
automobile manufacturers are required to diagnose de-
ficiencies in the performance of the emissions control
system.

This paper proposes a method for diagnosis of a three-
way catalyst (TWC), the major component of the emis-
sions control system. Using a dynamic TWC model,
a hypothesis test is proposed that provides a basis for
statistical confidence in the condition of the TWC. Sec-
tion 2 provides a brief description of the TWC model
that is used for this study. Sections 3 5 provide a basic
description of the general hypothesis testing problem
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and its relevance to this work, applying the hypothe-
sis testing framework to the TWC diagnostics problem.
Section 6 enhances this work by showing the improve-
ment that results through the use of multiple samples.

2 Oxygen storage model

The model that is summarized here was initially pro-
posed in [3] and was developed further in [1, 2], based
on initial work in [8]. The reader is referred to these
works for a more detailed discussion.

Oxygen storage and release, the property of oxygen at-
taching to metal and cerium sites in the catalyst under
lean conditions, thereby decreasing the A/ F (or enrich-
ing the mixture), and the release of oxygen under rich
conditions, thereby enleaning the mixture, is an impor-
tant feature of modern catalytic converters for vehicle
applications. The goal of the oxygen storage model is
to capture this property in a concise and sufficiently
accurate manner.

Let 0 < ©® <1 be the fraction of oxygen sites occupied
in the catalyst, alternately denoted ROT. (which stands
for relative oxygen level). The oxygen storage capacity
is modeled as a limited integrator in the following way:

R Ara
0= 0<6<1

0 otherwise

(1)

where

e O represents %;

o M AF denotes the mass air flow rate, used to ap-
proximate the flow rate of the mixture entering

the TWC;

e (' represents the effective catalyst “capacity,” or
the volume of active sites for oxygen storage, ex-
pressed in terms of the mass of oxygen that can
be stored in the catalyst;

e p describes the exchange of oxygen between the
exhaust gas and the catalyst;

e and XA denotes the relative air-fuel ratio, or equiv-
alence ratio, with stoichiometry at A = 1 (the
subscript F'G refers to the feedgas, or pre-catalyst
measurement).



The effective TWC volume parameter, C', is expressed
as a function of M AF in order to account for an ob-
served increase in effective volume at high flow rates.
The breakthrough times at medium flow and high flow
rates are the same, but the breakthrough times at low
flow rates are longer. This would seem to indicate that
the effective volume increases as flow rate increases
past a certain point. This effect is discussed in detail
in [1, 2]. One possible physical explanation is that at
higher flow rates, the air-fuel mixture is able to deposit
or extract oxygen from more of the catalytic material
than is accessible at the lower flow rates. This can be
handled mathematically by setting C' to a constant at
low flow, then past a specific threshold (found to be 80
by, /hr), C would be increased by a quantity sufficient
to maintain the same breakthrough time. In order to
simplify the model structure, this effect is combined
with the M AF term by applying a saturation function
to the MAF input value. A function fg,(MAF) is
created that is exactly equal to M AF below 80 1b,, /hr
but maintains the value of 80 lb,, /hr when M AF > 80
b, /hr.

The function p is modeled as

OéLfL(@>
PAra,0) = { onfr(©)

with 0 < fr < 1 representing the fraction of oxygen
(combined or free) from the feedgas sticking to a site
in the catalyst, and 0 < fr < 1 representing the frac-
tion of oxygen being released from the catalyst and
recombining with the feedgas. In (2), fr, and fr vary
with the percentage of occupied oxygen sites. In the
model, fr is assumed to be monotonically decreasing,
with value one at ©® = 0 and zero at ©® = 1, and fgr
is assumed to be monotonically increasing, with value
zero at © = 0 and one at © = 1. The parameters oy,
and ag are included to represent the fact that the cata-
lyst’s storage and release rates of oxygen are different,
with the release rate normally being higher than the
storage rate. The difference in breakthrough times can
be handled by allowing C to take different values on
different sides of stoichiometry. The differences in ad-
sorption and desorption rates are due to the difference
between the processes by which oxygen is adsorbed and
released [4].

>\FG>1
Arg <17

(2)

The specific equations that have been selected for fr,
and fg, are as follows:

_ (60

fL(©) = 26—71 +1 (3)
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The quantity 0.21 x MAF x (1 — ﬁ% which can be

rearranged to 0.21 x M AF x A/C_ZG, represents the dif-
ferential mass flow rate of oxygen (combined or free) in

the feedgas with respect to stoichiometry. When mul-
tiplied by p, it gives the mass flow rate of oxygen that
is deposited in (or released from) the catalyst. After
some manipulations, one arrives at the following equa-
tion for direct computation of tailpipe A/F":

)\TP = >\FG — ,O(AFG,@) X ()\FG — 1) (5)

The A/F of the exhaust feedgas (pre-catalyst) is a
well-defined quantity since mass is conserved during
the combustion process. The notion of the “A/F” of
the tailpipe exhaust (post-catalyst) is less clear be-
cause mass is not instantaneously conserved through
the TWC; indeed, oxygen is stored and released in the
catalyst. By A/F for a given volume of exhaust gas at
the tailpipe is meant the mass ratio of oxygen to hydro-
gen and carbon, whether free or combined, divided by
0.21. When applied to the feedgas for standard gaso-
line, this yields the standard measurement. If the fuel
is oxygenated (reformulated gasoline), a one- to two-
percent correction to this would need to be added.

For this oxygen storage model, the effects of feedgas
and catalyst temperature are not included. The block
diagram representation of the oxygen storage submodel
is shown as Fig. 1.
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Figure 1: Structure of the oxygen storage submodel.

3 Basics of hypothesis testing

In a typical hypothesis testing problem, a decision has
to be made regarding the source of an observation or a
set of observations. A hypothesis can be thought of as a
statement about the source of the observations. In this
paper, the problem will be limited to a decision between
two possible sources of observations, knowu as a binary
hypothesis test [9]. In this case, the two hypotheses will
be represented as Ho and Hy. Hy is assumed to be the
original assertion, or the null hypothesis. H; is called



the alternate hypothesis. In general, Hp is assumed to
be true until sufficient statistical evidence is gathered
to reject Hp, correspondingly accepting Hi, given the
observations.

A common use of hypothesis testing is in radar detec-
tion. Hy corresponds to the assertion that a target is
not present, and H; corresponds to the assertion that
a target is present. In this paper, Hy represents the
assertion that the TWC is functioning properly, and
H, represents the assertion that the TWC is not, func-
tioning properly. Just as a target is assumed to be
absent until evidence “proves” one to be present (with
a certain degree of statistical confidence), the TWC
is assumed to be properly functioning until statistical
evidence shows a deficiency in the TWC’s operation.

Suppose that corresponding to each hypothesis there is
an observation, a random variable, 7, that is generated
according to some probabilistic law. The hypothesis
testing problem is one of deciding which hypothesis is
the correct one, based on a single measurement, z, of
this random variable. The range of values that z takes
constitutes the observation space. The binary decision
problem essentially consists of partitioning this one-
dimensional space into two regions, Ry and R;, such
that whenever z lies in Ry, it is decided that Hy was
the correct hypothesis, and whenever z lies in Ry, it is
decided that H; was the correct hypothesis. The re-
gions Ry and Ry are known as decision regions. When-
ever a decision does not match the true hypothesis, it
is said that an error has occurred. The problem lies
in choosing the decision regions such that the fewest
errors are obtained with several realizations of 7. [9]

More generally, one may have a set of observations,
z = (21, 22, ..., 2n). In this case, the observation space is
n-dimensional. The binary hypothesis testing problem
is essentially the same as with a single measurement.
However, this paper will highlight different methods for
handling the cases of single and multiple observations.

In the decision-making process, there are two possible
errors that can be made. If the alternate hypothesis is
chosen when the null hypothesis is true, this is called a
false alarm. The opposite type of error is called a miss.
The typical measurements of the fidelity of a hypothesis
test are Pp, the probability of false alarm, and Pp, the
probability of detection (correctly choosing the alter-
nate hypothesis). Ideally, Pr should be kept as small
as possible, with Pp as large as possible. Realistically,
a choice is made for Pp, and Pp is maximized for this
Pp. The receiver operating characteristic (ROC) is a
plot of Pp vs. Ppg, which graphically shows the rela-
tionship between these two quantities.

4 Application to TWC diagnostics

In order to formulate a hypothesis testing problem, a
specific hypothesis test is required. In the most general

problem statement, it is desired that the null hypoth-
esis be that the TWC is functioning properly and the
alternate hypothesis be that the TWC is malfunction-
ing. The idea is then to ascertain a degree of confidence
in the assertion of a TWC failure and, based on that,
decide whether to declare a failure of the TWC.

The work in this paper focuses on the TWC failure
mode of depleted oxygen storage capacity. In reality,
deterioration of a TWC would show up in more than
just the oxygen storage capacity. For example, it is
very likely that TWC deterioration would show up in
the steady state conversion efficiency. However, for the
purposes of this study, it is assumed that a depletion in
oxygen storage would accompany or precede any other
TWC failure modes, and thus it is sufficient to detect
this failure mode.

Since the effective TWC volume cannot be measured
directly, another quantity will need to be measured, one
that adequately represents the effective TWC volume.
Assume that feedgas and tailpipe air-fuel ratios can be
measured with linear exhaust gas oxygen sensors. One
can then pursue a measurement of the time required to
empty or fill the oxygen storage capacity of the TWC,
using input test signals such as those in Figs. 2 and 3.
Since test data was not available for “marginal” TWC’s
(catalysts with degraded oxygen storage capacity), for
all analysis performed here, data was generated with
the SIMULINK model of Section 2, for a given effective
TWC volume.
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Figure 3: Input triangle
wave signal.

Figure 2: Input square
wave signal.

Figures 2 and 3 show the input signals used for the
square and triangle wave signals, respectively. Both of
them use an initial lean period to set the initial condi-
tion of ©, the relative oxygen level of the TWC. The
modulation is begun after the oxygen storage capac-
ity is filled by the initial enleanment. In each case, a
nominal amount of noise is added to the air-fuel ratio
signal to represent realistically observed air-fuel ratios;
specifically zero-mean, white, Gaussian noise with a

standard deviation of 0.01 A (0.145 A/F) is assumed.

For a sufficiently slow square wave input signal, the
empty/fill time could be represented as the rise or fall
time of the tailpipe A/F response. Figure 4 shows
the 10-90% rise times for square wave tests at differ-
ent effective TWC volume points. The plot is based
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Figure 4: Square wave re-
sponse rise times vs. effec-
tive TWC volume.

Figure 5: Triangle wave
empty /fill times vs. effec-
tive TWC volume.

on 1000 simulations of the TWC model, with the noisy
square wave of Fig. 2 at the input and a similar zero-
mean, white, Gaussian noise with standard deviation
of 0.01 X (0.145 A/F) added to the output (i.e., the
computed tailpipe air-fuel ratio). The solid line repre-
sents the mean of the rise times at each TWC volume
point, while the dashed lines represent one standard
deviation above and below the mean. It can be seen
that the relationship between square wave response rise
times and effective TWC volume is fairly linear, cer-
tainly reasonable enough to establish a hypothesis test
based on these results.

A square wave test might be deemed to be too drastic,
because it would require sudden changes in A/F, and
hence in torque. Thus, a triangle wave test, such as the
one plotted as Fig. 3, was also pursued as a less intru-
sive alternative. Since the rise time is not a clearly dis-
tinguishable measurement for a triangle wave response,
a slightly different approach was pursued. The feedgas
and tailpipe estimates were subtracted from each other,
and the duration of the departure from zero of this dif-
ference was measured. Figure 5 shows this approach
to be reasonable, highlighting a fairly linear relation-
ship with the effective volume. The issues of the wider
standard deviation shown will be explored later in this
paper as part of the trade-off with the square wave test.

Since the empty/fill time measurements have a direct
correspondence with the effective TWC volume, the
evaluation of the hypotheses is based on the observa-
tions of the time required to empty or fill the oxygen
storage capacity of the TWC. In the next section, the
Neyman-Pearson criterion is outlined. Tt is then used
to evaluate the usefulness of the hypothesis test, under
a variety of conditions, on the basis of a single sample.
After this, Student’s ¢ test is introduced and used to
improve the fidelity of the hypothesis test through the
use of multiple samples.

5 Neyman-Pearson criterion

In some hypothesis testing problems, there are specific
costs associated with each decision, most notably with
misses and false alarms. This can lead to an optimiza-
tion problem in which a threshold of detection is cho-

sen that minimizes the total cost over the observation
space. If it is known, prior probability information is
used to set the threshold of detection. However, there
are many problems for which a priori probability infor-
mation is not available and the costs of misses and false
alarms are not clearly known. In addition, it may be
desired to have more direct control over the false alarm
probability. This is the case with the radar detection
problem as well as the TWC failure detection problem.
For these cases, an alternate method is used.

The Neyman-Pearson criterion provides the frame-
work for the hypothesis test used here. It is based on
a binary test of simple hypotheses, but its results can
be extended to composite hypothesis tests, as will be
shown in the next section. The Neyman-Pearson cri-
terion employs a constrained optimization framework
which seeks to maximize Pp subject to a chosen Pp.
This section will outline the basic idea of the appli-
cation of the Neyman-Pearson criterion to the TWC
failure detection problem. A more detailed discussion
of this and other methods for hypothesis testing can be
found in [9] or any other textbook on detection theory.

In this initial application, the observed signal (the
empty/fill time) is assumed! to be distributed as a
normal random variable with wnknown mean m and
known variance o2. The mean depends on the TWC
effective volume, as shown in Figures 4 and 5. TIf the
variance is not assumed known, then multiple samples
are required, and Student’s ¢ test can be used for the
hypothesis testing problem, as will be discussed in Sec-
tion 6. The null hypothesis, denoted Hp, is that the
TWC is functioning properly, meaning that its effec-
tive volume is greater than a specified quantity. The
alternate hypothesis, Hy, is that the TWC is malfunc-
tioning, meaning that its effective volume is smaller
than what is required to meet emissions regulations.

The hypothesis testing problem can be stated as fol-
lows:

HO m S mg Or 1 =1mg Or 7 = mo + V (6)
Hy:m>mg or m=my or Z=m+V (7)

where —m is the actual (uncorrupted measurement of
the) empty/fill time, —myg is the “bad” threshold for
the empty/fill time, —my is the empty/fill time of an
alternate TWC for which Pp will be determined, V is a
random variable normally distributed with zero mean
and variance o2, and Z is the random variable repre-
senting the fill/empty measurement corrupted by V|
and thus Z is normally distributed with mean m and

In order to simplify the analysis, specifically for construc-
tion of detection probabilities, it is desirable to assume that the
empty /fill times for each effective TWC volume point are reason-
ably approximated by Gaussian random variables. An analysis
of this can be found in [1], where is it concluded that the Gaus-
sian approximation, while imperfect, is reasonable enough for the
work in this paper.



variance ¢2. The reason for the “—” sign is to state

the problem in such a way that mq > mo, keeping it
in line with standard statements of hypothesis testing
problems. A short empty/fill time would be the fail-
ure condition, so use of the additive inverse keeps the
inequality in the “standard” direction.

In order to completely apply the Neyman-Pearson cri-
terion, both Hy and H; must be simple hypotheses
(equalities). If H; is composite (inequalities), the
Neyman-Pearson criterion can still be applied with a
specified Pp constraint, but it becomes impossible to
calculate a corresponding Pp, unless a choice of my is
made. The choice of m; does not affect the choice of
the detection threshold, since that calculation is based
on the choices of mg and Pg, independent of my. The
application of the Neyman-Pearson criterion provides
a maximum Pp for any choice of my > my.

The following is a step-by-step procedure that can be
used to obtain probabilities of failure declaration for
any given TWC effective volume. A derivation of these
equations can be found in [1] or any standard textbook
on statistics. For calculations in MATLAB, the inte-
grals are converted to be in terms of the error function
(erf), defined as follows:

erf(z) = /01” iefé dt. (8)

Step 1: Choose mg (based on the TWC volume thresh-
old) and Pp (the allowable “false alarm” probability).
This P is the probability that a TWC with the given
empty/fill time, and hence, effective volume, will be

declared bad.

Step 2: Use these choices to calculate v, the threshold
of detection, as follows:

(= mo>2
P — / S )

27r(7
:5——ef<’y\/_r:0> (10)
7:m0—|—\/_aerf (1—-2Pp). (11)

Threshold: (z is the observed empty/fill time)

Hy
22y (12)

Hg

Step 3: Use «y to calculate Pp for a choice of mq > my :

>~ 1 (z=mq)?
Py = / e~ T dz (13)
y 2ro
1 1 v —my )
=—-——erf . 14

In (14), if my is chosen less than mg, then Pp is no
longer the detection probability, but rather the proba-
bility that a TWC with an empty/fill time of —m, will

be declared bad. In fact, for the TWC application, for
any value of m1, Pp then becomes the probability that
a TWC with empty/fill time —my is discarded (i.e.,
declared bad) on the basis of the hypothesis test, (7).

The empty/fill times for the square and triangle waves
are measured as described in Section 4. The sam-
ple means and standard deviations are calculated from
the 1000 simulations that were performed at each data
point. Based on these numbers and the assumption of
normality, probabilities of failure declaration are tab-
ulated. The threshold of failure declaration is then
calculated based on the chosen probability of detec-
tion/false alarm, and the other probabilities are cal-
culated based on this detection threshold. A graphical
representation of this probability spectrum is known as
the receiver operating characteristic (ROC). Two sam-
ple ROC plots can be found as Figs. 6 and 7. In those
plots, the volume threshold for a good catalyst is cho-
sen to be 0.5 (i.e., only half of the oxygen storage sites
are usable).
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0.5). (centered at 0.5).

The graphs show the results of the hypothesis tests
for a range of true catalyst volume from 0.1 to 1.0, in
increments of 0.1. The curves closest to 0.5 are labeled
with their corresponding volumes. It is observed in
Fig. 6 that if mg corresponds to a volume of 0.5 and a
Pp of 0.3 is tolerated (i.e. it is acceptable to discard
30% of the TWCs with oxygen storage volume of 0.5),
then the Pp for a 40% TWC is greater than 0.9 (i.e.
greater than 90% of the 40% TWCs will be discarded),
while only about 1% of the 60% TWCs will be declared
bad. On the other hand, if one wishes to be more
aggressive in discarding questionable TWCs, it may be
deemed acceptable to set Pg to 0.9 (so one now discards
90% of the 50% TWCs). Again, from Fig. 6, one can
see that this will discard about 99% of the 40% TWCs,
but it will also discard 20% of the 60% TWCs. A way to
improve upon these results it to use multiple samples;
this is pursued next.

6 Student’s ¢ test

Around the turn of the century, W. S. Gossett (publish-
ing under the pseudonym “Student”) obtained results
for the distribution of sampled Gaussian data. An im-



portant test statistic, ¢, is calculated on the basis of
N independent ohservations with sample mean 7 and
variance 52 as follows:

where

One such hypothesis test for which this is useful is the
following:

HO 10 = mo (18)
Hy:0>mg (19)

If Hy is true, ¢ has the Student-Fisher ¢ distribution
with N — 1 degrees of freedom; and the null hypothe-
sis is rejected for a test of size o if ¢ > ¢4, n—1, Where
ta:N—1 18 the upper 100« percentage point of the ¢ dis-
tribution. These values are typically available in tables,
and they can also be found through use of a statisti-
cal software package, such as the Statistics Toolbox in

MATLAB.

The shape of the Student-Fisher ¢ distribution is in-
dependent of mg and o. It is dependent only on the
so-called degrees of freedom, the number of “free” ob-
servations. In this example, since one parameter is be-
ing estimated, the number of degrees of freedom, v, is
one less than the number of samples, N, sov =N —1.
The difference between the ¢ distribution and the stan-
dard normal distribution tends to zero as v increases.

This test also follows the Neyman-Pearson criterion,
but its use of information from multiple samples allows
for improvement in test fidelity, even without a pri-
ori knowledge of . The ¢ tests, like the single sample
Neyman-Pearson tests of Section 5, provide a statisti-
cal measure of the likelihood of the alternate hypothe-
sis. The statistical significance is the probability that
the measured event would occur by chance under the
null hypothesis. This significance is calculated from
the Student-Fisher ¢ distribution, and it is analogous
to the chosen Pp and calculated Pp from the Neyman-
Pearson criterion.

The statistical significance provides the basic decision
mechanism for rejection of the null hypothesis by pro-
viding a measurement of confidence in the null hypoth-
esis. For example, if the criterion is to be 95% sure
that the null hypothesis is false hefore rejecting it and
accepting the alternate hypothesis, then the alternate
hypothesis is accepted when the significance of the null

hypothesis is less than 0.05. Similarly, a 99% confi-
dence requirement would mean that the significance of
the null hypothesis would have to be less than 0.01 for
the alternate hypothesis to be accepted.

Another possible idea is to use a 50% confidence inter-
val. This might be useful in cases where it is desired to
reject half of the items that are close to the threshold,
for example when the null and alternate hypotheses are
inequalities on opposite sides of the threshold and are
assumed to have equal probability of being true. In this
application, such a threshold would declare a failure in
half of the TWC’s with an effective volume of 0.5 (or
any other specified borderline volume). The detection
probabilities at other TWC volumes can be calculated
based on this, increasing the probability of detection at
smaller TWC volumes and decreasing the false alarm
probability at larger TWC volumes.

Figures 8 and 9 show the probabilities of failure dec-
laration for varying numbers of samples for TWC ef-
fective volumes of 0.4, 0.5, and 0.6. These plots are
centered at 0.5, indicating that the threshold of de-
tection is set hased on the statistical significance of
the TWC performance at half of its effective volume.
They are based on the cumulative distribution func-
tion (CDF) of this significance, which, for this data, is
also the ROC. Figures 8 and 9 show the results for the
square and triangle wave test signals of Figs. 2 and 3,
respectively. All of these plots are created from ¢ test
results of 3, 5, and 10 samples. These can be compared
to the Neyman-Pearson ROC’s of Figs. 6 and 7, to see
the level of improvement in detection fidelity that is
achieved through the use of the ¢ test.

Figure 10 is based on the same square wave input sig-
nal as Fig. 8 but for this plot, the failure threshold
is 0.9, indicating a greater constraint on TWC perfor-
mance. Similarly, Fig. 11 shows the detection probabil-
ities based on the triangle wave test signal. Figures 10
11 show results for tests based on 1, 3, 5, and 10 sam-
ples. The single sample test is a Neyman-Pearson test
based on Section 5, while the multiple sample tests are
t tests.
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In all of these figures, the increased fidelity from the use
of multiple samples is highlighted. Larger sample sizes
bring the ROC curves closer to their ideal of a perfect
(unity) probability of detection for any TWC effective
volume less than the threshold and a zero probability
of detection (false alarm) for any TWC volume greater
than the threshold.

7 Conclusion

The TWC diagnostics problem was approached from
the perspective of a hypothesis test, based on the time
required to empty or fill the catalyst’s oxygen storage
capacity. All of the figures in this paper are based on
simulated data. Unfortunately, marginal TWC’s, ones
which actually have depleted oxygen storage capacity,
were not available for testing. This prevents hardware
validation of the results in this paper. However, the
model’s demonstrated performance against actual data
[2, 3] and the physical relevance of the model param-
eters suggests that this approach is still a reasonable
one. The work in this paper can be performed using
any desired TWC model, as long as the model includes
an adjustable parameter for effective storage capacity
and A/F as an output.

When only a single data sample was collected, a priori
knowledge of variance was needed. It was then demon-
strated that the additional information from multiple
samples could be used in the framework of Student’s ¢
test to improve the fidelity of the test as the number
of available samples increases. In addition, Student’s
t test does not require a priori knowledge of the vari-
ance.

Another benefit of the hypothesis test presented here is
that it can be applied directly with a switching HEGO
sensor. In that case, one could simply measure the
time between feedgas and tailpipe switching in a square
wave test. This would correspond roughly to a 0-50%
rise time instead of a 10-90% rise time, but it would
still lend itself to a hypothesis test through use of the
methodology presented in Sections 5 and 6.

Finally, in [1], the robustness of the hypothesis testing
problem to the addition of an unknown constant bias
(a normally distributed random number, again with
mean zero and standard deviation 0.01 A) to the input
A/F signal (square or triangular) was studied. This
was done to account, for the possibility of a bias in the
feedgas A/F sensor. This biased A/F signal was run
through the TWC model, but the distribution func-
tions and diagnostic information were generated based
on the assumption of an unbiased input signal. The re-
sulting degradation in performance was quantified and
shown to be “moderate.”
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