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Abstract

Engines equipped with a means to actuate air flow at the intake port
can achieve superior fuel economy performance in steady state.
This paper shows how modern nonlinear design techniques can be
used to control such an engine over a wide range of dynamic condi-
tions. The problem is challenging due to the nonlinearities and de-
lays inherent in the engine model, and the saturation of the air flow
actuator. The control solution has two novel features. Firstly, a sat-
uration recovery method is directly integrated into the nonlinear
control design. The second novel feature is that the control Lya-
punov function methodology is applied to a discrete-time model.
The performance of the controller is evaluated and compared with
a conventionally controlled engine through simulations.

1 Introduction

In the design of an engine controller, one must optimize and make
tradeoffs between fuel economy, drivability (torque management)
and emissions. Since an automobile must meet stringent federal
emissions regulations in order to be sold, emissions control often
is the most important factor. The customer, however, will consider
fuel economy and torque response in making a selection.
The three way catalytic converter is the current technology for
meeting emissions regulations. When operated near the stoichio-
metric point, emission conversion efficiencies of 98 % for hydro-
carbons, carbon monoxide and oxides of nitrogen can be achieved.
However, as seen in Figure 1, deviations of�0:2 air fuel ratio
(A=F) will cause the conversion efficiency of at least one of the
emission components to drastically decrease. Thus an important
control objective is to maintain the air fuel ratio near stoichiome-
try.
In a standard spark ignition engine, the primary actuator is the fuel
injector, which is typically located at the intake port. The mass
flow rate of air entering the intake manifold is measured with a hot
wire anemometer, and the fuel injected into the engine is adjusted
to achieve a stoichiometric mixture; this is clearly a feedforward
control action. In order to compensate for inevitable errors inA=F,
the A=F is measured in the exhaust stream with an exhaust gas
oxygen (EGO) sensor, and a PI feedback control loop is then used
to achieve zero steady state error for constant throttle position and
engine speed.
Extensive research has been done to improveA=F control perfor-
mance of the system. Part of this research has focused on accurate
estimation of transient air flow, thereby improving the accuracy of
the feedforward controller. Another possibility is to control the air
flow into the intake manifold with an electronic throttle [5, 13], or
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Figure 1: Steady state conversion efficiency of TWC.

the air flow into the cylinders. This latter actuation can be achieved
by adjusting the cam timing of the intake valves [1], by implement-
ing independent electro-hydraulically controlled intake valves [6],
by secondary (or port) throttles [7], or by using secondary valves in
series with conventional intake valves [10]. The common element
of these actuators is that they allow control of the air flow into the
cylinders by adjusting the effective area of intake valves. Three of
these methods, namely variable intake cam timing, variable intake
valve control, and series secondary valves can also be used to im-
prove fuel economy. This is because, by controlling the breathing
process of the engine, it is possible to raise the average manifold
pressure, and thereby reduce pumping losses in the engine [6, 10].
The local aspects of joint air and fuel control have been studied in
[7] by designing a linear controller based around a specific operat-
ing point. The torque (drivability) andA=F responses were supe-
rior or equal to that of a conventional engine (with fuel PI control)
for small step changes in the primary throttle position. The major
problem encountered with the linear analysis was that the resulting
closed-loop system went unstable for large changes in the primary
throttle position. This can be traced to two causes: the nonlineari-
ties in the engine model and saturation in the air flow actuator.
This paper will attempt to address these issues by developing a
more global control strategy based on control Lyapunov functions
(clf). This design has two novel features. Firstly, a saturation re-
covery method is directly integrated into the nonlinear control de-
sign. The basic idea is to make the reference signal track the actual
output of the system whenever saturation occurs, thereby avoiding
integrator windup. The second novel feature is that the clf method-



ology is applied to a discrete-time model. The performance of the
controller is evaluated and compared with the conventionally con-
trolled engine through simulations.
An overview of the engine model used in this study is presented in
the next section. Control objectives are summarized in Section 3.
The nonlinear control design is carried out in Section 4. Simula-
tions are presented in Section 5.

2 Engine Model

2.1 Conventional model
The basic engine representation used here is the well-known model
of [3]. This is a nonlinear, continuous-time, mean-valued, phe-
nomenological representation of a conventional, port-fuel injected,
spark ignition, 2.0 L, 4-cylinder, gasoline engine. The dynamic
model of the intake manifold is based on the “Filling and Emp-
tying model” described in [2]. In this approach, the manifold is
regarded as a plenum with a constant volume, where the rate of
change of the manifold pressure (Pm) is proportional to the differ-
ence between the mass air flow rate into the manifold ( ˙mθ) and that
pumped out of the manifold into the cylinders ( ˙mcyl). This relation
is expressed as a first order differential equation,

d
dt

Pm= Km(ṁθ� ṁcyl) (1)

whereKm = R�Tm
Vm

, R is the specific gas constant,Tm is the man-
ifold temperature, andVm is the manifold volume. The mass air
flow rate into the intake manifold through the throttle body is a
function of the primary throttle angle (θ), the upstream or ambi-
ent pressure (Po) and the downstream pressure, which is manifold
pressure. Upstream pressure is assumed to be atmospheric (i.e.,
Po= 1 bar):

ṁθ = f (θ)g(Pm)
f (θ) = 2:821�0:05231θ+0:10299θ2 �0:00063θ3

g(Pm) =

�
1 if Pm� Po=2
2
Po

p
PmPo�P2

m if Pm> Po=2

(2)

In a conventional engine, the mass air flow rate into the cylinders
(ṁf ) is a function of manifold pressure and engine speed (N), and
for the engine under study is given by

ṁf = �0:366+0:08979N �Pm�0:0337N �P2
m

+0:0001N2 �Pm
(3)

The discrete-event nature of the combustion process introduces
transport delays, which are dependent on engine speed. This mo-
tivates discretizing the overall model synchronously with engine
events [8, 9]. That is, the independent variable is transformed from
time to crank-angle, and the model is then discretized at a constant
rate in the crank-angle domain. Here, the model is discretized with
periodπ radians in crank-angle, which corresponds to one engine
event (elapsed time or revolution for the intake stroke, for exam-
ple). This procedure introduces speed dependent terms in the dy-
namics, but it permits standard stability analysis to be applied.
The calculation delay in the injection of fuel and the transport de-
lays between the exhaust manifold and the EGO sensor are in-
cluded in the model. The dynamics of the EGO sensor is modeled
by a first order difference equation; in the time domain, its time
constant is 0.20 sec.
The steady state engine brake torque is affected by many parame-
ters such as ignition delay, EGR and so on. The general relations

between these parameters and brake torque are derived from ex-
perimental data and curve fitting methods [8]:

Tb = �181:3+379:36ma +21:91A=F �0:85A=F2

+0:26σ�0:0028σ2 +0:027N�0:000107N2

+0:00048Nσ+2:55σma�0:05σ2ma+2:36σme

where (4)

ma : mass air charge (g/intake event)

A=F : air-fuel ratio

N : engine speed (rad/sec)

me : EGR (g/intake event)

σ : degrees of spark advance before top dead center

For simplicity in this study, it is assumed that there is no EGR (i.e.,
me=0) and ignition delay (σ) is set to 30�.
The above model was identified [3] at air fuel ratios between 13.6
and 15.6, engine speeds between 80 rad/sec and 625 rad/sec, man-
ifold pressures between 0.35 to 1.0 in bar, and torque from 14 to
135 Nm.
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Figure 2: Nonlinear hybrid engine model.

2.2 Cylinder air charge control
To account for the actuation of the cylinder air charge, the flow
rate into the cylinders is modified as

ṁcyl = α � ṁf (5)

where α represents the normalized effective area of the intake
valves, and is limited between 0 and 1. Depending on the actu-
ation scheme used, more or less manipulation may be necessary to
put the model in this form. However, each scheme has the quali-
tative feature of being able to increase or decrease the air admitted
into the cylinder, over a certain range.
On a practical basis, the choice of the particular air charge actu-
ation scheme will be based on many factors. For example, in the
view of fuel economy, control of the cylinder air charge via intake
valve timing or intake valve open duration reduces pumping losses
by allowing increased intake port pressure, which is essentially
equivalent to intake manifold pressure [6]. On the other hand, sec-
ondary throttles choke the air flow at the intake ports, thereby de-
creasing the intake port pressure, which results in increased pump-
ing losses [2]. Other issues such as reliability and cost must also
be considered. The analysis carried out in this paper is valid for
any actuation scheme that can be modeled by (5).
From the control point of view taken in this paper, the primary dif-
ference between the various schemes lies in the speed of response



of the associated actuator dynamics. For definiteness, this paper
assumes a hydraulic actuator with a time constantτa = 0:001.
When discretized on an engine-event basis, the model is

α(k+1) = (1�
π

Nτa
)α(k)+

π
Nτa

uc(k) (6)

3 Control Problem Description

The major objectives of the control design are:

1. exploit the air flow actuation capability to achieve higher
manifold pressure, thereby reducing pumping losses and
improving fuel economy;

2. achieve a torque response that is as similar as possible to a
conventional engine so that there is no perceptible loss in
drivability;

3. minimize A=F excursions from stoichiometry to maxi-
mize the simultaneous conversion efficiency of the catalyst,
thereby minimizing overall emissions.

The control inputs are intake valve effective area and (amount of)
fuel injection. It is assumed that theA=F is measured by a linear
EGO sensor placed in the exhaust stream, just ahead of the cat-
alyst. In addition, it is assumed that some means of measuring
torque is available.
As stated, the problem has two-inputs, two-measured outputs and
three performance objectives. This imbalance is treated by “squar-
ing down” the performance objectives. At stoichiometry, torque
depends primarily on mass air flow. At low primary throttle angle,
a static mass air flow model is constructed so as to closely match
the steady state torque of the joint-air-and-fuel-controlled engine
to that of the conventional engine, while maintaining the intake
manifold pressure greater than 0.5 bar, in steady state. This also
guarantees control authority over cylinder mass air flow rate [1];
see Figure 3. In this regime, the effective intake valve area is near
0.5 to 0.6. At high primary throttle angles, the manifold pressure
is already high in a conventional engine, and hence, the static mass
air flow model is simply designed to closely match the steady state
torque of the conventional engine.
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Figure 3: Steady state MAF corresponding to the effective intake
valve area at a primary throttle angle of 10�, and an
engine speed of 300 rad/sec.

The static mass air flow model, and hence the static torque model

as well, is a function of the primary throttle angle and engine
speed. The control problem is now defined as in Figure 4: the
objective is to design a controller that achieves zero steady state
error in commanded torque and stoichiometricA=F for constant
throttle inputs. The commanded torque is taken to be a low pass
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Figure 4: Control structure.

filtered version of the static torque model. The time constant,τr

is to be adjusted to trade off drivability (speed of torque response)
with emissions (deviations inA=F from stoichiometry).

xr(k+1) = (1� π
Nτr

)xr (k)+ π
Nτr

ur(k)
ur(k) = Tb;static(N;θ)
Tb;re f = xr (k)

(7)

4 Nonlinear Feedback Control based on Control Lyapunov
Functions

This section follows a recent approach to the design of nonlinear
controllers, namely control Lyapunov functions (clf) and backstep-
ping [11, 12, 14]. A nonlinear feedback controller for the torque
and feedgas portion of the system shown in Figure 5 is developed
based on a positive semi-definite clf. The controller for a simpli-
fied version of this model is investigated first, and then the result is
extended to the full order model. Finally, the resulting control law
is back stepped through the actuator dynamics to obtain the final
result.
One of the novelties in this work is the use of control Lyapunov
functions on a discrete-time system model. Most of the work in
this area has focused on continuous-time models.

4.1 State feedback control for torque and feedgas model
In this subsection and the next, the potential saturation of the air
flow actuator is ignored. This will be remedied in Subsection 4.3.
The torque and feedgas model in Figure 5 includes delays and non-
linearities (air-fuel division and torque generation). To aid in the
feedback design, the torque generation equation (4) is linearized
around stoichiometry, resulting in

Tb = 410:86ma�2:98(A=F�A=Fstoic:)�37:44
+0:0414N�0:000107N2 (8)

Figure 6 shows that approximation error is less than 1 Nm for air
fuel ratios between 13.6 and 15.6, where the nonlinear model is
identified.
To fix the main ideas of the clf design, a simplified version of the
model plus integrators is studied first, as shown in Figure 7. The
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given MAF and engine speed.

control signal∆F is defined as the inverse (amount of) fuel to inject
(i.e.,∆F = 1

Fc
). The state equations are given by

x1(k+1) = ∆F
q1(k+1) = q1(k)+

π
N (Tb�Tb;re f)

= q1(k)+
π
N (δ(N)�Tb;re f +410:86T∆A

�2:98(x1(k)∆A�A=Fstoic:))
q2(k+1) = q2(k)+

π
N (A=FEGO�A=Fstoic:)

= q2(k)+
π
N (x1(k)∆A�A=Fstoic:)

where
Tb;re f : brake reference torque (Nm)
T : intake event duration,πN (sec)
δ(N) = �37:44+0:0414N�0:000107N2

(9)

Sinceq1(k+1) andq2(k+1) have common terms, it is natural to
choose a candidate Lyapunov function as

VL1(k) =V2
1 (k) = (q1(k)+2:98q2(k))

2 (10)

so that these two states are bounded relative to each other; that is,
if one of them is bounded, then so is the other. The difference
equation of this Lyapunov function is given by

VL1(k+1)�VL1(k)
= (V1(k+1)�V1(k))(V1(k+1)+V1(k))
= π

N (410:86T∆A+δ(N)�Tb;re f )(V1(k+1)+V1(k))
(11)

Choosing the control law as

∆A=
1

410:86T
(Tb;re f �δ(N)�c1

N
π

V1(k)) (12)
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Figure 7: Simplified version of torque and feedgas model.

with appropriate gainc1 results in

V1(k+1)�V1(k) =�c1V1(k) (13)

and makes the difference equation of Lyapunov functionVL1 neg-
ative semi-definite:

VL1(k+1)�VL1(k) =�c1(2�c1)V
2
1 (k) (14)

In the next step, another candidate Lyapunov function with pa-
rameterK is chosen to force one of the integral states,q2, to be
bounded relative to the statex1:

VL2(k) =V2
2 (k) = (Kq2(k)+x1(k))

2 (15)

Thus, if it can later be proven that any one ofx1, q1 or q2 is
bounded, then all of them are. The difference equation of Lya-
punov functionVL2 is given by

VL2(k+1)�VL2(k)
= (V2(k+1)+V2(k))(V2(k+1)�V2(k))
= (V2(k+1)+V2(k))(K

π
N (x1(k)∆A�A=Fstoic:)

+∆F�x1(k))

(16)

Choosing the control law with appropriate gainc2

∆F =�K
π
N
(x1(k)∆A�A=Fstoic:)+x1(k)�c2V2(k) (17)

results in

V2(k+1)�V2(k) =�c2V2(k) (18)

and makes the difference equation of Lyapunov functionVL2 neg-
ative semi-definite:

VL2(k+1)�VL2(k) =�c2(2�c2)V
2
2 (k) (19)

A composite, positive semi-definite Lyapunov function for the
simplified version of the torque and feedgas model is given by

VL(k) =VL1(k)+VL2(k) =V2
1 (k)+V2

2 (k) (20)

Then the difference equation of Lyapunov functionVL with inputs
(12) and (17) becomes negative semi-definite

VL(k+1)�VL(k) =�c1(2�c1)V
2
1 (k)�c2(2�c2)V

2
2 (k) (21)

The goal now is to understand what (21) implies about the stability
of the model (9). WhenVL1 andVL2 are both equal to zero, the
control signals become

∆A�! Tb;re f�δ(N)
410:86T

∆F �! (1�K π
N

Tb;re f�δ(N)
410:86T )x1(k)+K π

N A=Fstoic:

(22)



The parameter K is now chosen so thatx1 is stabilized with (22):

j1�K
π
N

Tb;re f �δ(N)

410:86T
j< 1 (23)

Under this condition, the states of (9) are asymptotically stable
conditionally to the largest positively invariant set contained inZ=
fxjVL(x) = 0g, [11]. By Theorem 2.24 of [11] (the discrete-time
version of the theorem and its proof are given in the Appendix),
the states of (9) are bounded, and thus by LaSalle’s Theorem [15],
they approach the largest positively invariant set contained inW =
fxj∆VL(x) = 0g. From (20) and (21),W = Z. From these facts, it
follows that the control signals converge to (22), and consequently,
the states converge to constant values. This then gives that the
steady state torque andA=F errors are zero.
For the full order model, the state equations are

x1(k+1) = T∆A
x2(k+1) = ∆F
x3(k+1) = ∆Ax2(k)
x4(k+1) = (1� π

N
1
τe
)x4(k)+

π
N

1
τe

x3(k)
x5(k+1) = x4(k)
x6(k+1) = x5(k)
x7(k+1) = x6(k)
x8(k+1) = (1� π

N
1
τs
)x8(k)+

π
N

1
τs

x7(k)
q1(k+1) = q1(k)+

π
N (Tb�Tb;re f)

= q1(k)+
π
N (δ(N)�Tb;re f +410:86x1(k)

�2:98(x3(k)�A=Fstoic:))
q2(k+1) = q2(k)+

π
N (A=FEGO�A=Fstoic:)

= q2(k)+
π
N (x8(k)�A=Fstoic:)

where
τe : time constant of exhaust manifold (=0.15)
τs : time constant of EGO sensor (=0.20)

(24)
VL1 andVL2 are simply extended and replaced with

VL1(k) = (410:86π
N x1(k)+q1(k)+2:98(q2(k)+ τex4(k)

+τsx8(k)+
π
N (x5(k)+x6(k)+x7(k))))2

VL2(k) = (x2(k)+K(q2(k)+ τex4(k)+ τsx8(k)
+ π

N (x3(k)+x5(k)+x6(k)+x7(k))))2

(25)
The same argument used with the simplified version can be re-
peated, and it shows that the control signals converge to

∆A�! Tb;re f�δ(N)
410:86T

∆F �! (1�K π
N

Tb;re f�δ(N)
410:86T )x2(k)+K π

N A=Fstoic:

(26)

From this, it can be shown thatx2 !
A=Fstoic:

∆A , and thus,x3 !
A=Fstoic:. Consequently, the other states along the exhaust pipe
and the EGO sensor converge to constant values because they are
asymptotically stable.

4.2 Back stepping
To drive the mass air flow rate into the cylinders ( ˙mcyl) to the de-
sired value (∆A), the control law designed in the previous subsec-
tion is back stepped through the actuator dynamics [14].
The candidate Lyapunov function for back stepping is chosen to
forceṁcyl to the control signal∆A computed in (12):

VL3(k) =V2
3 (k) = (α(k)ṁf (k)�∆A)2 (27)

The difference equation of the Lyapunov functionVL3 is then given
by

VL3(k+1)�VL3(k) = (V3(k+1)�V3(k))(V3(k+1)+V3(k))

where
V3(k+1)�V3(k)
= f1(Pm(k);α(k);xr (k);ur (k);N)+ π

Nτa
f2(Pm(k);N)uc(k)

(28)
A positive semi-definite Lyapunov function for the overall engine
model can be taken as

VL =VL1+VL2+VL3 (29)

Direct calculation shows that the control law

uc(k) =
Nτa
π f2

(� f1�c3V3(k))

Fc(k) = 1
∆F = 1

�K π
N (x1(k)α(k)ṁf (k)�A=Fstoic:)+x1(k)�c2V2(k)

(30)

with appropriate gainc3, makes the difference equation of Lya-
punov functionVL negative semi-definite,

VL(k+1)�VL(k)
=�c1(2�c1)V2

1 (k)�c2(2�c2)V2
2 (k)�c3(2�c3)V2

3 (k)
(31)

If there were no saturation, the stability of the complete system
would be guaranteed from the results of the previous subsection
and the back stepping procedure. However, saturation definitely
does occur and must be addressed. This is done in the next sub-
section.

4.3 Saturation recovery
One way to preserve stability, in the face of saturation, is to consis-
tently force the Lyapunov difference to be negative semi-definite
regardless of saturation. For this purpose, the reference signal,ur ,
in (7), is used like a control input instead of the effective area of
the intake valve. The caseα = 0 is not considered here because
it physically means that engine stops by misfire. The Lyapunov
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Figure 8: Diagram of reference switching structure.

functionVL3 under saturation is equal to

VL3(k) =V2
3 (k) = (ṁf (k)�∆A)2 (32)

The difference equation of Lyapunov functionVL3 then becomes

VL3(k+1)�VL3(k) = (V3(k+1)�V3(k))(V3(k+1)+V3(k))

where
V3(k+1)�V3(k) = f3(Pm(k);xr (k);N)� 1

410:86T
π

Nτr
ur (k)

(33)
The modified reference signal (ur = ur;sat)

ur;sat(k) =
410:86T Nτr

π
( f3+c3V3(k)) (34)



preserves the negative semi-definiteness of the difference equation
of Lyapunov functionVL

VL(k+1)�VL(k)
=�c1(2�c1)V2

1 (k)�c2(2�c2)V2
2 (k)�c3(2�c3)V2

3 (k)
(35)

Even when the reference signal is modified, the control signal for
the intake valve effective area,uc, is still updated by (30) so that
the effective area change of the intake valve can regain control au-
thority when the reference torque from theTb;static is achievable
without saturation. A schematic diagram of the reference switch-
ing structure is shown in Figure 8. Through this scheme,uc can be
shown to be bounded and to converge regardless of saturation.

4.4 Observer based implementation
The above nonlinear feedback was implemented on the engine via
a nonlinear observer. The specific observer used was essentially a
constant gain, extended Kalman filter. In general, the stability of
the resulting observer-based closed-loop system is not guaranteed,
and its analysis is not carried out here. For the purposes of this
paper, the stability will be “checked” via simulation along with
the performance of the controller.

5 Simulations

The performance of the controller designed above was evaluated
through simulations. The parametersc1;c2;c3 andK were set to
be 0.1, 0.1, 0.8 and 4 respectively. The time constant,τr , of the
torque reference model was set to 0:1. +15� step changes were
given in the primary throttle angle, from a nominal position of
5:5�; A=Fstoic: is set to be 14.64, and the engine speed was held
constant at 150 rad/sec.
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Figure 9: Simulations results with constant engine speed 150
rad/sec. NLF and CON stand for designed nonlinear
feedback controller and conventional fuel PI controller,
respectively.

First, the controller was simulated on the nominal model, which
includes the nonlinear torque representation, (4). The torque and
A=F responses were compared to the conventional engine, with
fuel controlled by the standard PI controller. The results, displayed

in Figure 9, show that the engine with joint air and fuel control
achieves similar torque response to the conventional engine, and
almost equivalentA=F performance.
Figure 9 also displays the intake manifold pressure. The possibil-
ity of controlling the cylinder air charge process has resulted in
the ability to maintain a higher manifold pressure than that of the
conventional engine, resulting in a potential reduction of pumping
losses at low primary throttle angles. As discussed previously, this
potential would be realized if the actuation were implemented with
variable valve timing or height, secondary valves, or via variable
cam timing, but would not be realized in the case of secondary
throttles. The steady state torque value is approximately equal to
that of the conventional engine, even in higher intake manifold
pressure, because mass air flow into the cylinders saturates at in-
take manifold pressures lower than around 0.5 bar.
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Figure 10: Simulations results with model errors. Transmission
is in third gear.

In the second simulation, shown in Figure 10, errors were delib-
erately introduced into the simulation model. Specifically, the air
flow actuator dynamics has a steady state error of 2%, and the fuel
puddle dynamics developed in [4] is included in the fuel path after
injection delay. In addition, the engine rotational dynamics was in-
cluded, and engine speed was allowed to vary.+15� step changes
were given in the primary throttle angle, from a nominal position
of 10�. It is seen that the controller achieves comparable perfor-
mance even in the presence of model errors.
In both simulations, during tip-in, saturation occurs. However,
saturation is promptly recovered by the modified reference signal
without any harmful effect onA=F excursions, as can be seen in
Figure 9.

Appendix

Discrete-time version of Theorem 2.24 in [11]

Consider the time-invariant system

x(k+1) = f (x(k)) (i)

where x2Rn and f : Rn!Rn is continuous. Let x= 0 be an equi-
librium of (i) and let V(x) be a continuous positive semidefinite



function such that∆V � 0. Let Z be the largest positively invariant
set contained infxjV(x) = 0g. If x = 0 is asymptotically stable
conditionally to Z, then x= 0 is stable.

Proof : The proof follows closely the one given in [11], and is
by contradiction. Letx(K;x0) := f (K)(x0), where f (K) denotes
f composed with itselfK-times. Suppose thatx = 0 is unstable.
Then it can be shown that for everyε> 0 small enough, there exist
a sequence(xi)i�1 ! 0 in Rn and a sequence(ki)i�1 in N+ (the
positive integers) such that

8k2 [0;ki); jjx(k;xi)jj< ε and jjx(ki ;xi)jj � ε (ii)

Using the continuity off and the fact thatf (0) = 0, it can be ar-
ranged thatjjx(ki ;xi)jj = ε, and moreover, it can be shown that
ki ! ∞ as i ! ∞. The new sequencezi := x(ki ;xi) belongs to a
compact set, and thus there exists a subsequencezni := x(kni ;xni )
that converges toz2 Rn with jjzjj= ε.
The next step is to construct pre-images ofz with certain proper-
ties. Sinceki !∞, for everyK 2N+, there existsIK < ∞ such that
the sequencezK

ni
:= x(kni �K;xni ), i � IN is well-defined. By (ii),

jjzK
ni
jj< ε, and thus there exists a convergent subsequence; denote

the limit by z�K . By construction,jjz�Kjj � ε. By the continuity
of f , it follows that f (K)(z�K) = z. It is now shown thatzandz�K

belong toZ. SinceV is non-increasing along solutions,V(z) =
0) z2 Z. SinceV is continuous and non-increasing along so-
lutions,V(z) := lim i!∞V(x(kni ;xni ))� lim i!∞V(xni ) = 0, where
the last equality used that facts thatxni ! 0 along withV(0) = 0.
The same argument shows thatz�K 2 Z.
In summary, it has been shown that for everyε > 0 andK 2 N+,
there exist vectorsz�K 2 Z andz2 Z such that

jjz�Kjj � ε (iii)

f (K)(z�K) = z (iv)

jjzjj = ε (v)

It remains to prove that (iii) - (v) cannot hold if the equilibrium
x = 0 is asymptotically stable conditionally toZ. Becauseε > 0
can be chosen arbitrary small, it can be assumed without loss of
generality that for any initial conditionx0 2 Z with jjx0jj � ε =
jjzjj, the solution converges to zero. So, there exists a constantK =
K(ε) > 0, independent ofx0, such thatjjx(K;x0)jj �

ε
2. Because

of (iii) - (v), one possible choice forx0 is z�K . But then ε
2 �

jjx(K;z�K)jj= jjx(K�K;z)jj= jjzjj= ε which is a contradiction.
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