
Obstacle Avoidance for Low Speed Autonomous Vehicles

Yuxiao Chen *a
, Huei Peng

 a
, Jessy Grizzle

 b

* Corresponding author. Phone +7347801768
a Dept. of Mechanical Engineering, University of Michigan, {chenyx, hpeng}@umich.edu

b
 Dept. of Mechanical Engineering, University of Michigan, grizzle@eecs.umich.edu

Abstract

 This paper presents an obstacle avoidance algorithm for low speed autonomous vehicles (AV), with guaranteed safety.

A supervisory control algorithm is constructed based on a barrier function method, which works in a plug-and-play fashion

with any lower-level navigation algorithm. When the risk of collision is low, the barrier function is not active; when the

risk is high, based on the distance to an “avoidable set”, the barrier function controller will intervene, using a mixed integer

program to ensure safety with minimal control effort. This method is applied to solve the navigation and pedestrian

avoidance problem of a low speed AV. Its performance is compared with two benchmark algorithms: a potential field

method and the Hamilton-Jacobi method.

Key words: obstacle avoidance; barrier function; autonomous vehicles

1. Introduction

 Automotive companies are actively pursuing

autonomous vehicles (AVs) to realize their potential in

improved safety and mobility. Some of the efforts targets

high speed applications, while others focus on low speed

applications, such as airport transport, driverless pods on

urban streets, museum tours, etc. In 2013, Hitachi

announced their development of a single-passenger

mobility-support robot "ROPITS", which uses stereo

cameras and multiple laser radar sensors to

navigate(IIMURA and YAMAMOTO 2014). In Britain,

LUTZ Pathfinder has tested a driverless 'pod' vehicle.

(Transport Systems Catapult 2015) Indoor autonomous

robots have also been tested, including museum guiding

robots Minerva (Thrun et al. 1999) and KAPROS

(Yamazaki et al. 2009).

The main contribution of this paper is the following: (1)

we propose the polar algorithm, a novel method that

automatically computes the avoidable set given the

dynamics which provides safety guarantee to the vehicle;

(2) we propose a mixed integer programming (MIP) based

implementation of control barrier function that impose the

safety requirement above the navigation of the vehicle as a

supervisory control scheme.

 Low speed autonomous vehicles differ from high speed

ones in two ways: (1) there are no lane boundaries; (2) they

share space with multiple pedestrians and stationary

obstacles. A basic problem is to navigate the AV from an

initial point to a target point within a reasonable time, while

avoiding collision with obstacles. Many methods have been

proposed for obstacle avoidance of high speed autonomous

vehicles, such as Model Predictive Control (Gray et al.

2012)(Yoon et al. 2009), Fuzzy logic (Fernandez Llorca et

al. 2011), and motion primitive method (Frazzoli, Dahleh,

and Feron 2002), but they usually cannot guarantee safety.

This is partly because of the high operating speed of the

vehicles.

On the other hand, when the operating speed is low, the

problem of robot navigation with static or moving obstacle

has been studied extensively. Cell decomposition was used

in Minerva (Thrun et al. 1999) and tested with real tourists

interacting with the robot. Bis et al. extended the cell

decomposition concept to deal with moving obstacle with

known speeds. The potential field method, originally

developed for stationary obstacles, was also extended to

moving obstacles (Khatib 1985)(Shimoda, Kuroda, and

Iagnemma 2005). However, none of these methods provide

safety guarantee. Van den Berg et al proposed reciprocal

collision avoidance which provides collision avoidance

guarantee under the assumption that the vehicle speed can

be controlled instantaneously; however, this assumption is

not usually valid in the real world. Usually motor torque is

the control variable, i.e., acceleration can be directly

controlled, but not the speed. Dynamic window Approach

(DWA) was proposed in (Fox, Burgard, and Thrun 1997)

which guarantees that the vehicle will not collide with

static obstacles. The DWA idea was further developed in

(Ogren and Leonard 2005) and in (Mitsch, Ghorbal, and

Platzer 2013) for moving obstacles, with heavy use of

braking. The method we propose can guarantee safety of

low speed autonomous vehicles by steering and braking,

and steering is preferred if it is not necessary to brake.

The safety assurance is rooted in the concept of

reachable sets. The key challenge of this control concept is

the computation of the reachable set based on the system

dynamics. Multiple methods of computing the reachable set

have been proposed in the literature. Prajna et al. proposed

a barrier certificate concept that computes an outer

approximation of the reachable set via sum of square

programming (Prajna et al. 2004). Mitchell et al. proposed

a Time-Dependent Hamilton-Jacobi method, which is

applicable to two player differential games with given final

time (Mitchell, Bayen, and Tomlin 2005). Henrion et al.

proposed the occupation measure method to calculate an

outer approximation of the reachable set via Moment

Programming for polynomial dynamic systems (Henrion

and Korda 2014)(Majumdar et al. 2014). The polar

algorithm computes a polytopic avoidable set whose

compliment is an outer approximation of the reachable set,

and controlled invariant. The conservativeness serves as a

safety buffer for the reachable set. Then a control barrier

function is constructed based on the avoidable set, and

implemented as supervisory controller using MIP.

 In the remainder of this paper, Section 2 introduces the

dynamic model and defines the problem to be solved;

Section 3 presents the supervisory control structure. Section

4 introduces the polar algorithm; Section 5 discusses the

implementation of polar algorithm on low speed

autonomous vehicles, and the simulation results are shown

in Section 6. Finally, conclusions are presented in Section

7.

2. Dynamic Models and Problem Formulation

2.1. Dynamic models

 Two dynamic models are used in this study. The first

model describes vehicle motion in the Earth-fixed

coordinates; the second model records the relative motion

between the vehicle and a moving obstacle. When there

are multiple obstacles, we will create a copy of the second

model for each obstacle. For each type of obstacle, a

maximum velocity and a geometric size is defined.

 A unicycle model is used to represent the dynamics of

the autonomous vehicle:

sin

c

os vv

Y v

X a

r



 

 






 ,

(1)

where X and Y are the global Cartesian coordinates,

v denotes the vehicle velocity and  is the heading angle.

The inputs to the vehicle are acceleration a and yaw rate r .

  ,u a r
. (2)

The following constraints are used in this paper:

   

 

max max max

2 2 2 2 2

max max

0, ,

,

v r r r

a

v

a a a v r g

  

   
,

(3)

where  is the fiction coefficient and g is the

gravitational constant.

 The motion relative to a moving obstacle is described

by the following model:

1

1

2 2 2 2

tan

tan

si

c

n

os

sin

dx dy

dx

dy

v v

v v

Y

X
X

Y
Y

X

Yv Xv
r

X Y X Y

v
a












 
  

 




  
  

   
    
         
 

 
   

 

  
 
    


   
 
 
  

,

(4)

where X and Y denote the relative position of the

obstacle with respect to the vehicle in the global

coordinates:

 ,
d dx

d dd y

dX X X

Y Y YY

X v

v

 



  
 
    

, (5)

dX and dY are the coordinates of the obstacle.
 dv , velocity

of the obstacle, is a disturbance input and dxv and dyv are its

components in X and Y directions.  is the difference

between the AV heading angle and the yaw angle of the

obstacle.

1tan

Y

X
    
   

 
(6)

Fig. 1. Coordinate system of the relative dynamic model

Both  and  are restricted between  and . In the

remainder of this paper, we will denote the dynamic system

in Eq. (4) as 0 , and the set for state, input and disturbance

are denoted as 0S , 0U and 0D , respectively.

2.2. Problem Formulation

 The goal of the AV is to reach a destination without

colliding with any obstacle. Strictly speaking, under some

circumstances, collision is inevitable, for example, when

the AV is surrounded by hostile pursuers. Macek et al.

proposed the concept of ‘passive safety’ and ‘passive

friendly safety’ in (Macek et al. 2009). In this paper, we

adopt the idea of ‘passive friendly safety’ and extend it to

multiple moving obstacles. We assert the following rules:

(1) When the AV is stopped, any conflict is not considered a

collision caused by the AV.

(2) When a obstacle runs into the AV from behind, it is not

considered a collision caused by the AV .

 The definition of collision from behind is

2


 

(7)

 The second rule is not needed for single obstacle case,

since the vehicle can accelerate and avoid the collision. But

in the case of multiple moving obstacles, when an AV is

threatened by an approaching obstacle from behind, neither

accelerating (risk to others in front) nor slowing down

(escalating the situation) is safe. These two rules are

applied for all simulations in this paper.

 For simplicity, it is assumed that all obstacles are

pedestrians, and both the vehicle and pedestrians are

assumed to have a round shape with radius vR and pR ,

respectively. In simulations, collision is detected by the

following rule:

    2 2 0
2

v pX Y R R v



 

         
 

(8)

 In this study, the on-board sensors are assumed to

measure all states accurately. The speed of the pedestrians

is assumed to be bounded:

 2 2

maxd dx dy dv v v v   (9)

3. Supervisory Control and Avoidable Set

3.1. Supervisory Control

Fig. 2. Block diagram of supervisory control

The overall control system consists of two parts: the

navigation controller and the supervisory controller. The

navigation controller guides the AV to the destination, and

its design is not the focus of this paper. A model predictive

control algorithm will be used in the simulation part. The

goal of the supervisory controller (the focus of this paper)

is safety and safety only. It modifies the input of the

navigation controller with minimum interference to

guarantee safety. This means the supervisory controller is

inactive if there is no threat, and action is taken only to

keep the vehicle safe. This concept is realized through the

following formulation

 0 , . .
Q Bminimize u u s t x P , (10)

where BP is the “avoidable set” to be defined later in this

paper. Q is the matrix defining the norm:

    
2

0 0 0

T

Q
u u u u Q u u    , (11)

which is tuned for desired performance.

3.2. Definition of avoidable set

The goal of the supervisory control is to avoid collision
under all possible disturbance input, i.e., Eq. (8) is not
violated by any obstacle at any time. We first define three
sets.

(1) Infeasible set: As shown in Fig. 3, the infeasible set is
the region where collision is not always preventable,
i.e., there exists a disturbance under which a collision
will happen for any control input. However note that if
the pedestrian is not hostile or not shrewd enough to
choose this disturbance value, collision may not occur.
Once the AV is inside the infeasible set, it should slow
down and stop immediately. The infeasible set is

denoted as InX in the remainder of the paper.

(2) Avoidable set: To guarantee that the AV never enters
the infeasible set, we will construct a superset, which

encloses the infeasible set, and its complement is
controlled invariant. For a state in the avoidable set and
outside of the infeasible set, collision can be avoided by
taking emergency action, to be explained later. If
possible, the state should be driven out away from the
avoidable set.

The controlled invariant set: The complement of the

avoidable set. Because it is control invariant, any state

outside of the avoidable set can stay outside under all

possible disturbances.

 Denote the system dynamics as

  , , , , ,xx f x u d S u U d D   

(12)

where x , u and d are the state, control input and the

disturbance input, respectively. The mathematical

conditions for a set P to be avoidable is then

     

   

0 , 0, s 0, , ,

, . .

Bx P t t

s t x t

d s D

u s U P

       

  
 (13)

If set BP is the zero level set of a real-valued function

 b x (i.e., BP is characterized as   0b x ), then the set

invariance condition becomes a boundary condition:

   

 

     

0,

, 0 , ,

.

; 0,

. , , 0
T

B

x

Bb x

x b x d D u U

s

x P b x

t b x b f u

x

x d

P

   

     

 

  

 (14)

 Suppose at a given point 0x is on
BP , i.e., the boundary

of BP , the normal vector exists. Denote the normal vector

pointing outwards from BP as
0xn , then the geometric

condition of (14) is equivalent to

  
00. . , , ,, 0xs t fd D u U x u d n     (15)

where , denotes the inner product of two vectors.

Infeasible
set

Avoidable
set

Controlled
invariant

set

Fig. 3. Different stages of obstacle avoidance.

4. Polar Algorithm

The key challenge of the supervisory control is to find

an avoidable set that contains the infeasible set. To solve

this problem, a polar algorithm is proposed. The infeasible

set is represented by a bounded polytope containing the

collision set (Eq. (8)), then the polar algorithm solves for

another polytope that contains the infeasible set and

satisfies the boundary condition (Eq. (13)). The polar

algorithm is applicable to the dynamics in the following

form

 , , ,x u dG U dxE S u D    , (16)

where S , U and D are polytope; E and G are constant

matrices. Note that there is no state dependent term in the

state derivative. The dynamic model in Section 2 is

simplified to this form by viewing all state dependent terms

as disturbance, which is explained in detail in Section 5.

4.1. Polar of a polytope

In this section, we introduce the polar algorithm, which

is built based on the dual property of polytope. A polytope

P has two important elements: vertices and facets. For

simplicity, only bounded polytopes with a finite number of

vertices and bounding hyperplanes are considered. Given a

vector space nX  , a bounded polytope P with the

origin in its interior can be represented as set of the convex

combination of its vertices:

 1,| , 0,
i

i i i

i

iv iP x x   
 

   





  , (17)

where   .iv PV is the set of vertices of P . It can also be

represented as an intersection of finitely many closed half

spaces:

  | 1
i

T

i

H

P x H x  , (18)

where  1| T

ix H x  are the bounding half spaces. We

further denote  #

iH X as the set of linear functionals that

corresponds to the half spaces:

   T

i iH x H x . (19)

  # |: X fX f linear  is the algebraic dual of the

vector space X . Since the algebraic dual of a Euclidean

space is also an Euclidean space, we treat the linear

functionals in #X as vectors in the dual space and denote the

set iH as .P H . In addition, half spaces and polytopes can

also be defined in #X . The bounding hyperplane

corresponding to a bounding half space  | 1Tx H x  is

defined as

  | 1T

ix H x  . (20)

And the corresponding facet is defined as

    | 1T

i iF H P x H x   . (21)

For polytopes, the normal vector of facet  F H is

simply H , which simplifies the condition in Eq. (15).

The polar of P is a polytope in the dual space
#X defined as

  | 1,TP H H x x P    . (22)

 The vertices of the original polytope are mapped to the

facets of the polar, and it is easy to check that the facets of

the original polytope are mapped to the vertices of the

polar.

P H PV P V P H   (23)

Polar provides a convenient way of imposing the

inclusion of polytopes:

 1 2 2 1.P P P H P  

(24)

And we will use this property in the polar algorithm.

We included more detailed properties of polar in Section

A.1 in the appendix. For more information, see (Ziegler

1995).

 In our problem, i.e., finding an avoidable set for the

infeasible set
InX , the set inclusion condition is enforced

by the following constraint:

 . nB IP H X  , (25)

4.2. Hyperplane Orientation and boundary condition

 The boundary condition of the avoidable set is

interpreted as an orientation condition for the bounding

hyperplanes. For each facet of a polytope P , suppose that

the corresponding bounding hyperplane is 1TH x  , the

normal vector that points outwards from P is simply H .

For the dynamic system in Eq. (16), the avoidable set

boundary condition in Eq. (15) becomes

. ,

. . , 0

,H P H d D

u s t Eu Gd HU

   

  
. (26)

 In order to find all bounding hyperplane orientations that

are valid for an avoidable set, first we fix input u . For a

bounding hyperplane 1TH x  to satisfy the boundary

condition of the avoidable set with fixed input u , the

following inequality must hold:

   0,TH Eu Gd d D    . (27)

 Since D is a polytope and the system dynamics are

linear, Eq. (27) is simplified to checking only its vertices:

   0, .TH Eu Gd d DV    . (28)

 Eq. (28) defines a polytope in #X and it is easy to check

that   | 0, .
Tu

HsP H Eu Gd H d DV     contains all

the functionals corresponding to the bounding hyperplanes

valid under input u .

Define

.

u

Hs

u U V

Hs PP
 

 (29)

 This union may not be convex, but using the linearity of

the dynamics, we claim the following:

Claim 1. HsP is the maximal set of linear functionals that

satisfies the boundary condition of an avoidable set for the

dynamic system shown in Eq. (16).

The proof is shown in the A.1 in Appendix.

Recall that there are two requirements for the avoidable

set: set inclusion and boundary conditions. The set

inclusion requirement is simplified to picking bounding

hyperplanes from the polar of the infeasible set InX ; the

boundary conditions requirement is simplified to picking

bounding hyperplanes from HsP . Therefore it is natural to

intersect the two sets. Define

 H Hs InP P X   . (30)

 This set may not be convex since it is the intersection of

a convex polytope and a nonconvex union of polytopes.

Further define

  B HP Conv P


 , (31)

where  Conv  denotes the convex hull of a polytope.

Then
BP possess the following properties:

Claim 2.
BP is an avoidable set that contains

InX .

Claim 3. BP is the minimal avoidable set.

Claim 4. If the origin is in the interior of

InX and
IIn nX X c  , where c is a constant shifting

vector, then
B BP P c  where

BP is the constructed

avoidable set based on
InX .

The above claims mean that
BP is the minimal avoidable

set that satisfies both set inclusion condition and boundary

condition, and it is invariant with respect to the change of

origin position.

The proofs of all claims are shown in A.3, A.4 and A.5

in the Appendix.

5. Avoidable Set for Low Speed Autonomous Vehicles

 In this section, the avoidable set for a single moving

obstacle is solved using the polar algorithm.

5.1. Infeasible set

 The obstacle avoidance problem with a single moving

obstacle can be formulated as a pursuit-evasion problem. In

general, the vehicle can use both steering and braking to

avoid collision (and both are used in the control

implementation). In the computation of the infeasible set,

however, we only use braking. This allows easy extension

to multiple pedestrians cases.

For a given initial condition, an obstacle’s future

position is bounded by:

            
2 2 2

max0 0d d d d dX t X Y t Y v t   

(32)

 Then the vehicle’s position is calculated by applying the

maximum brake. By checking whether a collision happens

before the vehicle stops, the points in the state space can be

then identified as either feasible (safety is guaranteed) or

infeasible (safety cannot be guaranteed). We select a grid

with certain resolution in the state space and compute

whether collision happens or not for each grid point. A

polytope InX is then found that contains all the infeasible

grid points by computing their convex hull.

5.2. Avoidable set for autonomous vehicle

 Consider the relative dynamics shown in Eq. (4). It is

rewritten as:

32 2

1

2

sin

X

Y

r d
X Y

d

d

a
v








 
  

 
   
   
    
   
   
     

(33)

where

  

  

1

1

1

2

2

3 2

cos

sin

tan /

tan /

dx

d

dy dx

y

Y X

Y X

X

d

v

v v

d v v

d
Yv

X Y









  

  

 








 




(34)

It is then easy to find the bounds of the disturbance:

 
2 2

max m

2 2

1 2 ax max

max

3
2 2

d

d

v v v

d

d

v

d

X Y

  


  



(35)

From the collision avoidance condition,

  2 2 max

3

d

v p

v p

v
X Y R R d

R R

 
      

  

 (36)

Therefore, the dynamic is simplified as

2 2

sin
0 0 0

x Eu Gd k

k
X Y



  

 
     

. (37)

where

 
2 2

max max max

m

2

a

2

1

x

3

2

d

d

v p

vd d v v

v
d

R R

  






. (38)

 Although the constraint for
1d and

2d is a circle and

nonlinear, it can be outer approximated by a polygon. As the

number of vertices grows, the approximation becomes more

accurate. Therefore, the disturbance
1 2 3

T

d d d d    is

bounded by a polytope.

The input constraints are

 

 

 

max max

max max

22 2 2

max

,

,

a a a

r r r

a v r g

 

 

 

, (39)

where  is the tire-road friction coefficient, and g is the

gravitational constant. A polygon is again used to

approximate the circular constraint, so that the set to

constrain U is also approximated by a polytope.

 Denote the dynamic system in Eq.(37) by  , and the

set of disturbance is denoted by D .

Claim 5. If a set P is an avoidable set for system  , then

it is an avoidable set for 0 in Eq. (4).

The proof is shown in A.6 in the Appendix.

The last term k in Eq. (37) provides additional safety

margin. When 0  , the obstacle is on the right hand side

of the vehicle. To avoid collision,  must increase.

Similarly, when 0  ,  must decrease for safety. Both of

these conditions are helped by k .

Denote the dynamic system that ignores the last term k

as
1 1: x E u G d  

Claim 6. Suppose a polytope P is an avoidable set for  .

Additionally, for any point x on the boundary of P

where
4 0x   , the bounding hyperplane

 1 2 3 4 1TH x H H H H x  at that point satisfies

4 0H  , and for any point where
4 0x   ,

4 0H  holds,

then P is an avoidable set for  .

The proof is shown in A.7 in the Appendix.

With Claim 6, the problem is simplified to finding an

avoidable set for  , and check whether the condition in

Claim 6 holds.

By applying the procedure described in Section 4, the

avoidable set
BP is obtained and shown in Fig. 4. Because

the dimension of the state space is 4,
BP is projected to

three 3-D plots. The parameters used in generating the

avoidable set are listed in TABLE III.

Fig. 4. The avoidable set (yellow) and the infeasible set (red)

5.3. Control Barrier Function

 Aaron et al. proposed the concept of control barrier

function (CBF) in (Ames, Grizzle, and Tabuada 2014),

which guarantees that the state does not enter a given set,

and it works with a control Lyapunov function through a

quadratic program. The control barrier function idea forms

the basis of the supervisory control of this paper. First, a

control barrier function is applied to a single half-space

generated from a facet of the avoidable set, a Mixed Integer

Program (MIP) is used to deal with multiple facets.

 Let’s focus on one of the half-space of the polytope of

the avoidable set. If the state must stay outside of the half-

space  | 1Tx H x  to ensure safety, the control barrier

function is defined as

    
 

 
1, log

1

T
b x

B xb
x

x
b

H x  


 

.
(40)

 It can be seen that  B x goes to infinity as x approaches

the bounding hyperplane. When x is far from the boundary,

 B x is positive but small. If the derivative of  B x is

always finite, then  B x is finite, and x remains outside of

the half-space. In particular, the following constraint is

enforced by the supervisory controller:

    1 /B x c B x , (41)

where 1c is a positive constant. This constraint is loose when

x is far away from the boundary, and becomes tighter as

x approaches the half-space. Consider the influence of

sampling, the condition is modified to

  
 

1

1

, ,T

s

c b
H f x u d

B x c T
 


 (42)

where
sT is the sampling time. The derivation of (42) is

shown in A.8 in the Appendix.

5.4. Mixed Integer Program

 For each bounding hyperplane H of BP , if the state

satisfies 1TH x  , then H is said to be active, otherwise, it

is said to be inactive. Since avoidable set BP is the

intersection of all bounding half-spaces, the state x is

outside BP if and only if there exists at least one active

bounding hyperplane, i.e.,

 0 0. , 1T

B Bx P H P H H x     (43)

 When  x t is outside the avoidable set, each active

bounding hyperplane generates a linear constraint, in the

form of Eq. (42), and we require at least one constraint is

satisfied. Since this is a logic disjunction, combining the

supervisory control structure in Eq. (10), we form an MIP

with slack variables:

  
 

 
1

1

2

1

0 , . .

, , ,

1 0,1,

j

j

P

Q

j

N

j j

HT

j j a

H s

Pj

c b
H f x u d c H H

B x c T

N

minimize u u s t

s

s s



   



  





, (44)

where  js are slack variables, and 2c is a large positive

number. When 1js  , the corresponding inequality is

automatically satisfied; when 0js  , the original barrier

inequality is enforced. aH is the set of all active bounding

hyperplanes and PN is its cardinality. The condition

1
1

PN

jj Ps N


  ensures that at least one of the original

barrier inequalities is satisfied.

5.5. From single obstacle to multiple obstacles

 When there are multiple moving obstacles, one can

follow the same approach to calculate the avoidable set by

expanding the state space to

  1 1 1 n n n

T
x X Y X Y v     . (45)

 Because the computation complexity grows

exponentially with the dimension of the state space, this

naive approach is not scalable to a large number of

pedestrians. Therefore, we need a simpler way. The key

innovation is that the AV is only allowed to brake when

calculating the infeasible set, as mentioned in Section 5.1.

With this assumption, the infeasible set can be computed for

one obstacle, and then applied to multiple obstacles since

the emergency action to avoid all obstacles are the same. If

steering is allowed, this will no longer be the case.

Recall the concept of responsibility in Section 2.2, let

InX be the set outside of which the vehicle can come to a

full stop before hitting the obstacle for all obstacle

movement. In the multiple-obstacle case, as long as all

obstacles are outside of InX , the vehicle is always able to

stop before hitting any one of the obstacles.

 For each pedestrian, there is a set of state as described

in Eq. (4) representing the relative dynamics between the

pedestrian and the AV. Now the task is to keep multiple

states outside of a single avoidable set.

Ped1

Ped4

Ped3

Ped2

Fig. 5. Multiple-pedestrian cases with a single infeasible set (red)

and avoidable set (yellow)

When there are multiple obstacles, the avoidable set is

not always avoidable. Nevertheless, the supervisory control

developed for a single pedestrian can still be used with the

following modifications: (i) the constraint in Eq.(44) must

be checked for each of the pedestrians; and (ii) when any

obstacle breaches the “avoidable set,” braking is applied

until either the states for all pedestrians are outside the

avoidable set, or the AV comes to a complete stop.

Although braking is used to guarantee safety in multiple

pedestrian case, the simulation shows that the supervisory

control does not rely on braking heavily. The vehicle only

comes to full stop when it’s trapped by multiple

pedestrians.

6. Simulation Results

6.1. Simulation results

 The goal of the AV is to reach a destination from a

fixed starting point without colliding with any pedestrian.

The initial positions and velocities of the pedestrians are

random, and they walk randomly. All objects stay in a

predefined rectangular region    lim lim lim lim, ,X X Y Y   .

The random-walk is generated with Gaussian distributed

acceleration in X and Y directions:

   

~ 0, ~ 0,

px px py py

px p ayyax

v a v a

a N a N 

 
. (46)

 The velocity must also satisfy the boundedness

constraint in Eq. (9). To keep the pedestrians inside the

rectangular region, the following (reflection) rule is used

lim

lim

lim

lim

;

;

;

, .

,

,

,

px px p

px p

py py p

py

p

p

x

py

v v if X

v if X

v

X

v if Y

v if

v X

Y

v YY



  



  

 

 
 (47)

 A greedy Model Predictive Controller is used as the

navigation controller. The detail of MPC is shown in A.10

in the Appendix. The control structure is shown below:

Fig. 6 Control structure for simulation

The simulation parameters are listed in TABLE I.

TABLE I SETTINGS OF THE SIMULATION RUNS

Number of pedestrians 7

Region of pedestrian movement    5,5 5,5  

Initial Position of the vehicle  1, 7

Initial velocity of the vehicle 2m/s

Initial yaw angle / 2

Destination (0,5)

A sample simulation is illustrated in Fig. 7. The blue

circles are snapshots of the position of the vehicle; the

green circles show the positions of the pedestrians; and the

red square is the destination. The color of the snapshots

changes from light to thick as time flows.

Fig. 7. Sample simulation results

 The control inputs from the navigation controller and the

supervisory controller are shown in the first 2 subplots in

Fig. 8, where 0

xa and 0r are the acceleration and yaw rate

command from the navigation controller; 1

xa and 1r are the

command from the supervisory controller. maxd denotes the

distance from the state to the avoidable set, and was plotted

in the third subplot. Different colors correspond to
maxd for

different pedestrians.

 max
.

1
max

T

H P H

H x
d

H


 (48)

Fig. 8 Control input and minimum distance to avoidable set

Based on the difference between MPC input and Barrier

input, the simulation was divided into 5 stages. In stage 3

and 5, the supervisory controller detects little danger, so the

two control inputs stay close; in stage 1 and 4, the

supervisory controller manage to follow similar acceleration

command, but use different yaw rate to avoid collision. This

is because we put more weight on acceleration difference

than yaw rate difference when defining Q matrix in Eq.

(11). In stage 2, both acceleration and steering are changed

by the supervisory control to ensure safety. Compare the

input plot and maxd plot, the time when supervisory control

changes the MPC input corresponds to the time when the

smallest maxd among 7 pedestrians is small, which indicates

danger.

6.2. Comparison to two benchmark methods

 The performance of the polar algorithm is compared to

two benchmark methods: the potential field method

(Shimoda, Kuroda, and Iagnemma 2005) and the Hamilton

Jacobi method (Mitchell, Bayen, and Tomlin 2005). The

details of both benchmark methods are included in the

Appendix.

 In order to compare the performance, we repeat the

simulation 1000 times with the same setting shown in

TABLE I. In each trial, the vehicle starts at the same

location and tries to reach the same destination, while the

pedestrians appear at random position and does random

walk. A simulation trial is marked as “stuck” if the AV

failed to reach the destination within 25 seconds; and a trial

is marked as “crash” if Eq.(8) is satisfied at any time.

TABLE II KEY PERFORMANCE INDICES OF THE THREE

METHODS IN 1000 SIMULATION TRIALS

Method
Average

time
Collision Stuck trips

Polar Method 10.88s 0 25

Hamilton Jacobi 14.93s 0 171

Potential Field 8.47s 436 0

 The statistics of the 1000 trials are shown in TABLE II.

Both the polar method and the Hamilton Jacobi method can

ensure safety, i.e. no crash, while the potential field method

crashes in about half of the trials. The Polar method reaches

the destination in a much shorter time, and with fewer

“stuck” cases compared with the Hamilton Jacobi method,

indicating that the proposed method is as safe as, but much

less conservative than the Hamilton Jacobi method.

7. Conclusion and Discussion

 This paper proposed a polar algorithm to design

collision avoidance algorithms for low speed autonomous

vehicles. The concept is based on the construction of an

“avoidable set,” which is an extension of the commonly

used concept of a controlled invariant set. A Mixed Integer

Programming based supervisory control structure is

proposed to implement this algorithm. Safety can be

guaranteed for both single moving obstacle and multiple

moving obstacles while liveness is maintained. The safety

guarantee was verified with simulations.

Acknowledgment

 The work is supported by NSF Contract #CNS-1239037.
It is part of the Cyber-Physical System project participated
in by the University of Michigan; University of California,
Los Angeles; Georgia Institute of Technology; and Carnegie
Mellon University.

References

Ames, Aaron D., Jessy W. Grizzle, and Paulo Tabuada.

2014. “Control Barrier Function Based Quadratic

Programs with Application to Adaptive Cruise

Control.” In 53rd IEEE Conference on Decision and

Control, 6271–78. IEEE.

Evans, L C, and P E Souganidis. 1983. “Differential Games

and Representation Formulas for Solutions of

Hamilton-Jacobi-Isaacs Equations.,” March.

Fernandez Llorca, David, Vicente Milanes, Ignacio Parra

Alonso, Miguel Gavilan, Iván Garcia Daza, Joshué

Perez, and Miguel Ángel Sotelo. 2011. “Autonomous

Pedestrian Collision Avoidance Using a Fuzzy

Steering Controller.” IEEE Transactions on

Intelligent Transportation Systems 12 (2): 390–401.

Fox, Dieter, Wolfram Burgard, and Sebastian Thrun. 1997.

“The Dynamic Window Approach to Collision

Avoidance.” IEEE Robotics and Automation

Magazine 4 (1): 23–33

Frazzoli, Emilio, Munther A. Dahleh, and Eric Feron. 2002.

“Real-Time Motion Planning for Agile Autonomous

Vehicles.” Journal of Guidance, Control, and

Dynamics

Gray, Andrew, Yiqi Gao, Theresa Lin, J Karl Hedrick, H

Eric Tseng, and Francesco Borrelli. 2012. “Predictive

Control for Agile Semi-Autonomous Ground

Vehicles Using Motion Primitives.” In American

Control Conference (ACC), 2012, 4239–44.

Henrion, Didier, and Milan Korda. 2014. “Convex

Computation of the Region of Attraction of

Polynomial Control Systems.” IEEE Transactions on

Automatic Control 59 (2): 297–312.

IIMURA, Taiki, and Kenjiro YAMAMOTO. 2014. “2A1-

H03 Development of Single-Passenger Mobility-

Support Robot”

Khatib, O. 1985. “Real-Time Obstacle Avoidance for

Manipulators and Mobile Robots.” Proceedings.

1985 IEEE International Conference on Robotics and

Automation

Macek, Kristijan, Dizan Alejandro Vasquez Govea, Thierry

Fraichard, and Roland Siegwart. 2009. “Towards

Safe Vehicle Navigation in Dynamic Urban

Scenarios.”

Majumdar, A., R. Vasudevan, M. M. Tobenkin, and R.

Tedrake. 2014. “Convex Optimization of Nonlinear

Feedback Controllers via Occupation Measures.” The

International Journal of Robotics Research 33 (9):

1209–30.

Mitchell, I.M., A.M. Bayen, and C.J. Tomlin. 2005. “A

Time-Dependent Hamilton-Jacobi Formulation of

Reachable Sets for Continuous Dynamic Games.”

IEEE Transactions on Automatic Control 50 (7):

947–57.

Mitsch, Stefan, Khalil Ghorbal, and André Platzer. 2013.

“On Provably Safe Obstacle Avoidance for

Autonomous Robotic Ground Vehicles.”

Roboticsproceedings.Org.

Ogren, P., and N.E. Leonard. 2005. “A Convergent

Dynamic Window Approach to Obstacle Avoidance.”

IEEE Transactions on Robotics 21 (2): 188–95.

Prajna, Stephen, Stephen Prajna, Ali Jadbabaie, and Ali

Jadbabaie. 2004. “Safety Verification of Hybrid

Systems Using Barrier Certificates.” Hybrid Systems:

Computation and Control 2993: 477–92.

Shimoda, Shingo, Yoji Kuroda, and Karl Iagnemma. 2005.

“Potential Field Navigation of High Speed

Unmanned Ground Vehicles on Uneven Terrain.”

Proceedings - IEEE International Conference on

Robotics and Automation 2005 (April): 2828–33.

Thrun, S., M. Bennewitz, W. Burgard, A.B. Cremers, F.

Dellaert, D. Fox, D. Hahnel, et al. 1999.

“MINERVA: A Second-Generation Museum Tour-

Guide Robot.” Proceedings 1999 IEEE International

Conference on Robotics and Automation

Transport Systems Catapult. 2015. “Autonomous Vehicles

Hit the Streets in the UK’s First ‘Driverless Pod’

Trial- The Inquirer.”

Yamazaki, Keiichi, Akiko Yamazaki, Mai Okada,

Yoshinori Kuno, Yoshinori Kobayashi, Yosuke

Hoshi, Karola Pitsch, Paul Luff, Dirk Lehn, and

Christian Heath. 2009. “Revealing Gauguin :

Engaging Visitors in Robot Guide ’ S Explanation in

an Art Museum.” In CHI ’09 Proceedings of the

SIGCHI Conference on Human Factors in

Computing Systems, 1437–46.

Yoon, Yongsoon, Jongho Shin, H. Jin Kim, Yongwoon

Park, and Shankar Sastry. 2009. “Model-Predictive

Active Steering and Obstacle Avoidance for

Autonomous Ground Vehicles.” Control Engineering

Practice 17 (7): 741–50.

Ziegler, Günter M. 1995. Lectures on Polytopes.

Appendix 0

A.1. Additional properties of Polar

The polar of a polytope P X is a polytope in the

algebraic dual space #X defined as

  | 1,TP H H x x P    . (A.1)

Because of the convexity and linearity of polytopes,

a simpler definition is

  | 1, .i

T

iP H H v v PV    . (A.2)

The vertices of P are mapped to the facets of P , and

the facets of the P are mapped to the vertices of P , as

shown in the following example.

Fig. 9. Example of polar

For a bounded polytope P with the origin in its interior,

the following hold:

(1) The polar of P , denoted as P , is a bounded
polytope with the same dimension as P and
containing the origin in the interior.

(2) The polar of P , denoted as P , is the original
polytope, i.e., P P  .

(3) For any H P , P is completely contained in the
half space  1| Tx H x  , i.e.,

 , , 1TH P x P H x     (A.3)

(4) For any point H outside P , P is not completely
contained in the half-space  1| Tx H x 

 , , 1TH P x P H x     (A.4)

 Because of the properties above, the polar concept

provides a clear condition for polytope inclusion:

 1 2 2 1.P P P H P  

(A.5)

A.2. Proof of Claim 1:

 For any bounding half space 1TH x  that satisfies Eq.

(27), since U is a convex polytope, it can be rewritten as a

convex combination of the vertices of U :

 

, , . ,

0, 1: 0

i i i

T

i i

d D u u u U V

H Eu Gd



 

    

   





(A.6)

 Note that .U V is a set with finite elements, so

 
.V

max
i

T

i
u U

H Eu


exists, and

  
.V

max
i

T T

i
u U

H Eu H Eu




(A.7)

 Therefore, let  
.V

arg max T

m
u U

u H Eu


 ,

 mu

HHs sH P P 

(A.8)

 Eq. (A.8) proves that HsP contains all linear functionals

corresponding to bounding half spaces satisfying the

boundary conditions.

A.3. Proof of Claim 2:

 First, write  HConv P as

   

 
.

H Hs

u

Hs

u

In

In

U V

Con

Conv P Conv X

Pv

P

X









 
 




 


 (A.9)

 Recall the fact that for any union of polytopes i

i

P , the

vertices of its convex hull is a subset of the union of the

vertices of all polytope components.

  ..i i

i i

Conv P VV P
 

 
 

(A.10)

 Therefore,

    
.

. .u

H Hs I

u V

n

U

Conv P V P X V



 

(A.11)

 Recall the definition of a polar; it follows that

    
.

. .. i

i

u

HsB H In

u U V

P XP H Conv P V V



 

(A.12)

 Therefore the bounding hyperplanes of BP lie inside the

intersection of InX 
and HsP , and BP is an avoidable set that

contains InX .

A.4. Proof of Claim 3:

 First, we show that for all HH P , 1TH x  is not a

valid bounding hyperplane for the avoidable set

containing InX . Then we show that for all HH P , the half

space 1TH x  contains BP . In other words, BP is minimal.

For all
HH P , by definition, sn HIH X H P   .

If InH X  , then from Eq.(A.4), 1TH x  is a half space that

does not contain dX . If HsH P , from Claim 1, H does

not satisfy the boundary conditions.

 For all
HH P ,  H HH P H Conv P  , so

  , 0, 1, .i i i i i HH H H Conv P V      
(A.13)

For all
0 Bx P , 0 0

TT

i iH x H x . Since
0 Bx P , it

follows that

 0

0 0

1, .

1

T

i i H

TT

i i

H x H Conv P V

H x H x

  

  

(A.14)

Eq. (A.14) implies that adding 1TH x  as a half space to

BP will not reduce any point from
BP , so

BP is minimal.

A.5. Proof of Claim 4:

 Let HP be the polytope consisting of all feasible

bounding hyperplanes H for an avoidable set BP . HP may

not contain the origin in its interior. Normalize the

expression of its bounding hyperplanes to

1, 1,

0, 1,

v

T

j

T

i i N

H j

v H

N





 

 

(A.15)

where the first category denotes bounding hyperplanes

corresponding to facets that do not contain the origin, and

the second category denotes those facets that contain the

origin. vN and N are the number of linear constraints for

each category.

 Let  v iH v and  iH  denote the two groups of

bounding hyperplanes in Eq. (A.15). Since HP is constructed

by intersecting HsP , where every facet contains the origin,

and InX 
, where every facet does not contain the origin, it is

clear that . .v IIn nH X H X V  . Recall that shifting a

polytope is equivalent to shifting all the vertices. It follows

that

  . , .IIn nX H v c v X V


   

(A.16)

Since the construction of HsP is an invariant of the

shifting operation in the state space, HsP remains the same

after shifting InX . It then follows that
HP has the following

bounding half spaces:

  1,

0,

v

T

T
v c v H

H

H

H 

  

  

 



(A.17)

 For any vertex 0H of
HP , it is the intersection of N

facets, where N is the dimension of the state space. Assume

the linear equations corresponding to 0H is

 

0

1 1

,

1 1 0 0

T

p pM q qN M

T

AH a

A v v

a

  



   



(A.18)

 Since Eq. (A.18) has a unique solution
0H , A is

invertible and 1

0H A a . In addition, since 0 HH P ,

1 0

1 0

, , , 1

, , , 0

T

v p pM

T

q qN M

v H v v v v H

H H    

    

    

(A.19)

 Now consider the corresponding vertex
0H of

HP . If it

exists, it satisfies

   0

TA ac H a 

(A.20)

 If the matrix  TA ac is invertible, and

 
1

TA ac a


 satisfies all inequalities of
HP ,then

0H exists

and is a vertex of
HP .

From the matrix inversion lemma, if A and
11 Tc A a are invertible, then  TA ac is invertible and

    
1 1

1 1 1 11T T TA ac A A a c A a c A
 

       (A.21)

 Clearly A is invertible; 11 Tc A a is a scalar. Since

IIn nX X c  contains the origin, c is inside InX . 0H is a

vertex of HP , so  0 1TH c  . It follows that

1

01 1 0T Tc A a c H    (A.22)

 Therefore

  
1

1 1

0 1 TH c A a A a


   (A.23)

 Now we need to determine whether
0H is inside

HP .

For all 1, ,v p pMv H v v v   :

      
1

1 1 1

0 1
T T T Tv c H c A a v A a c A a


     

(A.24)

 From Eq.,
1

0 1T Tv A a v H   . It follows that

  
1

0 1

1
1

1

T
T

T

c A a
v c H

c A a






  


(A.25)

 For all 1, ,q qN MH       ,

  
1

1

0 01 0T T T

i iH c A a H 


  

(A.26)

 Therefore
0H is a vertex of

HP . Since the mapping

from the vertices of HP to the vertices of
HP is established,

the only thing left to check is whether B H BP P P c


   .

Note that

 

     

   

 

0

1
1 1

1 1

1

1

1 1

0

1

1 1

1
1

1

1 1

1

T

T
T T

T T
T T

T

T
T

T T

T

H x c

c A a a A x c

a A x a A c

c A a

a A x

c A a c A a

H x


 

 





 

 

   


 



 
 

 

(A.27)

 Eq. (A.27) proves that for each facet of BP , a

corresponding facet of
BP exists by shifting the facet with

vector c , i.e.,
B BP P c  .

A.6. Proof of Claim 5:

 is actually a differential inclusion of the original

system 0 , which implies:

   

0 0, , , ,

. . , , , ,s t

x S d D u U d D

x f x u d f x u d

      

 

(A.28)

This means for any , ,x u d in 0 , there exists d D that

reproduce the state derivative in system  with the same

state and input. Therefore any avoidable set under

dynamic is also an avoidable set under dynamic 0 .

It follows that P is also an avoidable set for 0 .

A.7. Proof of Claim 6:

 Only the case when 0  is proved. The case when

0  follows the same reasoning. For any point x at the

boundary of P , suppose 0  , then 4 0H  . P is an

avoidable set w.r.t. the dynamic system . Therefore,

  1 1, : 0Td D u U H E u G d     

(A.29)

 Since

 

 

 

1 1

4

1 1 2 2

1 1

sin

0

T

T

T

H E u G d k

H
H E u G d

X Y

H E u G d



 

  
  

  

(A.30)

 It follows that P is also an avoidable set w.r.t.  .

A.8. Derivation of Eq. (42)

 From the definition of the barrier function in Eq. (40),

the derivative of  B x is

  
B b

B x x
b x

 

 

(A.31)

 Assuming that x is constant within the sampling time sT ,

  
0

T

b
d x

d H xx

dt dt

 
 
 

 

(A.32)

 It follows that

      
n

nn T

n

B
B x H x

b





(A.33)

 For this certain function,
n

n

B

b




has an explicit expression:

     

 

1 1 ! 1

1

n n n
n

n n n

n b bB

b b b

      


 

(A.34)

 Given a sampling time sT , the barrier function at the next

time step can be calculated using the Taylor expansion:

       

 
   

 
 

1

1

1

!

1 11

1

i i

s si

i i i

i
T i

sii i

B t T B t B t T
n

b b
B t H x T

n b b









  

   
 

 






(A.35)

 It follows that

    
1

i
T T

s s

s T
i s

H xT H xT
B t T B t

b b H xT





  
    

 
 (A.36)

 Recall Eq. (41), we have

1 1

11

T

s

T

sT

ss

H xT

c c bb T H x
B c T BH xT

b



   




(A.37)

A.9. Simulation setup

 The parameters for simulations are listed in TABLE III.

TABLE III SIMULATION PARAMETERS

Parameter Value Meaning

maxdv 1.2 /m s Maximum obstacle speed

maxr 3.4 /rad s Maximum yaw rate

maxa 24 / secm Maximum acceleration

maxv 2 /m s Maximum vehicle speed

vR 0.5m Radius of AV

pR 0.3m Radius of pedestrians

sT 0.05s Sampling time
 0.7 Friction coefficient

ax , ay 1
Standard deviation of pedestrian

acceleration on X and Y direction

 The simulations are conducted using Matlab. The
toolboxes used are shown in Table II.

TABLE IV TOOLBOXES USED

Polytope Calculation Multi-Parametric Toolbox 3

Mixed Integer Programming Gurobi 6.0.4

Hamilton Jacobi Calculation Level Set Toolbox 1.1.1

A.10. MPC design

The greedy MPC navigates the vehicle to the destination

without any knowledge of the pedestrians. The nonlinear

unicycle model of the vehicle is linearized for MPC.

   

   
0 0

0 0

00 0 cos sin

00 0 sin cos

0 0 0 0

0 0 0 0

XvX

YvY

v av

r

 

 



       
       
        
       
       
       

 (A.38)

where

  0 0 0 t       (A.39)

 This linearized model is then discretized and used for

the MPC, with prediction horizon 5predN  and control

horizon 1conN  .

A.11. Potential field controller design

 We adapted the method proposed by Shimoda et al. in

(Shimoda, Kuroda, and Iagnemma 2005) and tune the

parameter to enhance its performance. The potential field

is built on the trajectory space, which is the Cartesian

product of velocity and yaw rate (different from the

original trajectory space in (Shimoda, Kuroda, and

Iagnemma 2005) because of the different inputs of the

dynamic model). The potential field function used is

     

 

 
 

22

1

1 2

2

,

1

1 exp /
2

v

ped

k

g des v des

N o ov

i
i

oi i

oa d odi

f v r K r r K v v

K K v

r r
K A K d v





    



  
  
 
 



(A.40)

where dA , or , d and  are defined in the following

  

   

1 2

2 2

2 1

arctan arctan

1

2

des d

d

des d

o

d d v p

Y Y Y Y
A

X X X X

r

r

r r

d X X Y

r

Y R R



 
 

 

 

 



 



 

(A.41)

 1r and 2r are the maximum and minimum yaw rate that

will lead to collision, as demonstrated in Fig. 10. See

(Shimoda, Kuroda, and Iagnemma 2005) for more details.

Fig. 10. Maximum and minimum yaw rates leading to collision

(original figure in (Shimoda, Kuroda, and Iagnemma 2005))

 The parameters for the potential field method are listed

in TABLE V.

TABLE V PARAMETER OF THE POTENTIAL FIELD

CONTROLLER

gK

5

1vK
 15

2vK
 2

oK
 100

oaK
 0.1

ovK
 0.1

odK
 2

A.12. Hamilton Jacobi controller design

 The control problem is formed and solved as a pursue-

evade game. First, we solve a reachability set for a single

obstacle and restrict the vehicle’s input to only braking,

then apply this reachability set to multiple obstacles (the

same “trick” used in our polar method). It should be noted

that the coordinate for relative dynamics in the Hamilton

Jacobi method differs from that for the polar algorithm.

cos sin

sin cos

L

L

X

x Y

v v

X Y

X Y

 

 

   

   

   
   

 
   
      

(A.42)

where LX and LY are the relative position of the

obstacle in the local frame attached to the vehicle.

Theoretically, the three states in Eq. are sufficient for

describing the relative dynamics between the AV and the

obstacle. The reason for using four states are used in polar

algorithm is that the model shown in Eq. (4) is more similar

to double integrators, which makes the simplification in the

polar algorithm easier. The dynamic equation for the states

in Eq. (A.42) is

L Ldx

L Ldy

v

x

a

Y r v

X r v

 

 

  
 

 
 
  

(A.43)

where Ldxv and Ldyv are the longitudinal and lateral

projection of the obstacle’s speed in the local coordinates.

The dynamics are then reversed in time to calculate the

backwards reachable set.

The value function is defined as

     
0

, t min max 0
b

t

ta
x dt x t

 
 

(A.44)

and  x satisfies:

  

 

 

 

2
2 2

2
2 2

2
2 2

0,

0,

0,

L L v p

L L v p

L L v p

X Y R R

x X Y R R

X Y R R

    

   




 

    




(A.45)

 The Hamiltonian of the reversed dynamics allowing

only brake is solved analytically:

    

 

 

 

 

2 2

1 2

1 3 max

3 max

3 3 max max

3 xmax ma

, , , , ,

,
2

min 0, ,

, ,

mi

min max

0

0

n 0, ,

T

b a

d

p f x t a x t b x t

p p
p v k p v v

p a

k p v p a

v

v

H

v

v vp a

 




 




  




 
 

(A.46)

where a and b are the strategy for the vehicle

and obstacle, respectively. p
x





 is the conjugate

momenta;  3 ,k p v ensures that the vehicle speed is within

the limit. To enforce the responsibility rules presented in

Section 2.2,

  0 0 0LX v H     

(A.47)

 The final time is chosen as 10T s .The calculated zero

level set is shown in Fig. 11.

Fig. 11. Hamilton Jacobi reachability set

 The result is calculated numerically and stored in a

look-up table. In the implementation, local regression is

performed to obtain the value and the gradient of . Then

the following constraint is enforced:

      , ,
T

x f x u xd   

(A.48)

where  is the gradient at that point and  is a positive

constant. For more details, please refer to (Evans and

Souganidis 1983) and (Mitchell, Bayen, and Tomlin 2005).

	Obstacle Avoidance for Low Speed Autonomous Vehicles
	1. Introduction
	2. Dynamic Models and Problem Formulation
	2.1. Dynamic models
	2.2. Problem Formulation
	(1) When the AV is stopped, any conflict is not considered a collision caused by the AV.
	(2) When a obstacle runs into the AV from behind, it is not considered a collision caused by the AV .

	3. Supervisory Control and Avoidable Set
	3.1. Supervisory Control
	3.2. Definition of avoidable set

	4. Polar Algorithm
	4.1. Polar of a polytope
	4.2. Hyperplane Orientation and boundary condition

	5. Avoidable Set for Low Speed Autonomous Vehicles
	5.1. Infeasible set
	5.2. Avoidable set for autonomous vehicle
	5.3. Control Barrier Function
	5.4. Mixed Integer Program
	5.5. From single obstacle to multiple obstacles

	6. Simulation Results
	6.1. Simulation results
	6.2. Comparison to two benchmark methods

	7. Conclusion and Discussion
	Acknowledgment
	References
	Appendix 0
	A.1. Additional properties of Polar
	A.2. Proof of Claim 1:
	A.3. Proof of Claim 2:
	A.4. Proof of Claim 3:
	A.5. Proof of Claim 4:
	A.6. Proof of Claim 5:
	A.7. Proof of Claim 6:
	A.8. Derivation of Eq. (42)
	A.9. Simulation setup
	A.10. MPC design
	A.11. Potential field controller design
	A.12. Hamilton Jacobi controller design

