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Abstract  

 This paper presents an obstacle avoidance algorithm for low speed autonomous vehicles (AV), with guaranteed safety.  

A supervisory control algorithm is constructed based on a barrier function method, which works in a plug-and-play fashion 

with any lower-level navigation algorithm.  When the risk of collision is low, the barrier function is not active; when the 

risk is high, based on the distance to an “avoidable set”, the barrier function controller will intervene, using a mixed integer 

program to ensure safety with minimal control effort.  This method is applied to solve the navigation and pedestrian 

avoidance problem of a low speed AV. Its performance is compared with two benchmark algorithms: a potential field 

method and the Hamilton-Jacobi method. 
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1.  Introduction  

 Automotive companies are actively pursuing 

autonomous vehicles (AVs) to realize their potential in 

improved safety and mobility. Some of the efforts targets 

high speed applications, while others focus on low speed 

applications, such as airport transport, driverless pods on 

urban streets, museum tours, etc. In 2013, Hitachi 

announced their development of a single-passenger 

mobility-support robot "ROPITS", which uses stereo 

cameras and multiple laser radar sensors to 

navigate(IIMURA and YAMAMOTO 2014). In Britain, 

LUTZ Pathfinder has tested a driverless 'pod' vehicle. 

(Transport Systems Catapult 2015) Indoor autonomous 

robots have also been tested, including museum guiding 

robots Minerva (Thrun et al. 1999) and KAPROS 

(Yamazaki et al. 2009).   

The main contribution of this paper is the following: (1) 

we propose the polar algorithm, a novel method that 

automatically computes the avoidable set given the 

dynamics which provides safety guarantee to the vehicle; 

(2) we propose a mixed integer programming (MIP) based 

implementation of control barrier function that impose the 

safety requirement above the navigation of the vehicle as a 

supervisory control scheme. 

 Low speed autonomous vehicles differ from high speed 

ones in two ways: (1) there are no lane boundaries; (2) they 

share space with multiple pedestrians and stationary 

obstacles. A basic problem is to navigate the AV from an 

initial point to a target point within a reasonable time, while 

avoiding collision with obstacles. Many methods have been 

proposed for obstacle avoidance of high speed autonomous 

vehicles, such as Model Predictive Control (Gray et al. 

2012)(Yoon et al. 2009), Fuzzy logic (Fernandez Llorca et 

al. 2011), and motion primitive method (Frazzoli, Dahleh, 

and Feron 2002), but they usually cannot guarantee safety. 

This is partly because of the high operating speed of the 

vehicles.  

On the other hand, when the operating speed is low, the 

problem of robot navigation with static or moving obstacle 

has been studied extensively. Cell decomposition was used 

in Minerva (Thrun et al. 1999) and tested with real tourists 

interacting with the robot. Bis et al. extended the cell 

decomposition concept to deal with moving obstacle with 

known speeds. The potential field method, originally 

developed for stationary obstacles, was also extended to 

moving obstacles (Khatib 1985)(Shimoda, Kuroda, and 

Iagnemma 2005). However, none of these methods provide 

safety guarantee. Van den Berg et al proposed reciprocal 

collision avoidance which provides collision avoidance 

guarantee under the assumption that the vehicle speed can 

be controlled instantaneously; however, this assumption is 

not usually valid in the real world. Usually motor torque is 

the control variable, i.e., acceleration can be directly 

controlled, but not the speed. Dynamic window Approach 

(DWA) was proposed in (Fox, Burgard, and Thrun 1997) 

which guarantees that the vehicle will not collide with 

static obstacles. The DWA idea was further developed in 

(Ogren and Leonard 2005) and in (Mitsch, Ghorbal, and 

Platzer 2013) for moving obstacles, with heavy use of 

braking. The method we propose can guarantee safety of 

low speed autonomous vehicles by steering and braking, 

and steering is preferred if it is not necessary to brake. 

The safety assurance is rooted in the concept of 

reachable sets. The key challenge of this control concept is 

the computation of the reachable set based on the system 

dynamics. Multiple methods of computing the reachable set 

have been proposed in the literature. Prajna et al. proposed 

a barrier certificate concept that computes an outer 

approximation of the reachable set via sum of square 

programming (Prajna et al. 2004). Mitchell et al. proposed 

a Time-Dependent Hamilton-Jacobi method, which is 

applicable to two player differential games with given final 

time (Mitchell, Bayen, and Tomlin 2005). Henrion et al. 

proposed the occupation measure method to calculate an 

outer approximation of the reachable set via Moment 

Programming for polynomial dynamic systems (Henrion 



and Korda 2014)(Majumdar et al. 2014).  The polar 

algorithm computes a polytopic avoidable set whose 

compliment is an outer approximation of the reachable set, 

and controlled invariant.   The conservativeness serves as a 

safety buffer for the reachable set. Then a control barrier 

function is constructed based on the avoidable set, and 

implemented as supervisory controller using MIP. 

 In the remainder of this paper, Section 2 introduces the 

dynamic model and defines the problem to be solved; 

Section 3 presents the supervisory control structure. Section 

4 introduces the polar algorithm; Section 5 discusses the 

implementation of polar algorithm on low speed 

autonomous vehicles, and the simulation results are shown 

in Section 6.  Finally, conclusions are presented in Section 

7. 

2. Dynamic Models and Problem Formulation 

2.1. Dynamic models 

 Two dynamic models are used in this study. The first 

model describes vehicle motion in the Earth-fixed 

coordinates; the second model records the relative motion 

between the vehicle and a moving obstacle.  When there 

are multiple obstacles, we will create a copy of the second 

model for each obstacle. For each type of obstacle, a 

maximum velocity and a geometric size is defined.  

 A unicycle model is used to represent the dynamics of 

the autonomous vehicle:  
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where X and Y are the global Cartesian coordinates, 

v denotes the vehicle velocity and  is the heading angle. 

The inputs to the vehicle are acceleration a and yaw rate r .  

  ,u a r
. (2) 

The following constraints are used in this paper:  
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where  is the fiction coefficient and g is the 

gravitational constant. 

 The motion relative to a moving obstacle is described 

by the following model: 
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(4) 

where X and Y denote the relative position of the 

obstacle with respect to the vehicle in the global 

coordinates: 

 ,
d dx

d dd y

dX X X

Y Y YY

X v

v

 



  
 
    

, (5) 

dX and dY are the coordinates of the obstacle.
 dv , velocity 

of the obstacle, is a disturbance input and dxv  and dyv are its 

components in X and Y directions.  is the difference 

between the AV heading angle and the yaw angle of the 

obstacle. 
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Fig. 1. Coordinate system of the relative dynamic model 

Both  and  are restricted between   and . In the 

remainder of this paper, we will denote the dynamic system 

in Eq. (4) as 0 , and the set for state, input and disturbance 

are denoted as 0S , 0U and 0D , respectively. 

2.2. Problem Formulation 

 The goal of the AV is to reach a destination without 

colliding with any obstacle. Strictly speaking, under some 

circumstances, collision is inevitable, for example, when 

the AV is surrounded by hostile pursuers. Macek et al. 

proposed the concept of ‘passive safety’ and ‘passive 

friendly safety’ in (Macek et al. 2009).  In this paper, we 

adopt the idea of ‘passive friendly safety’ and extend it to 

multiple moving obstacles. We assert the following rules: 

(1) When the AV is stopped, any conflict is not considered a 

collision caused by the AV. 

(2) When a obstacle runs into the AV from behind, it is not 

considered a collision caused by the AV .   

 The definition of collision from behind is  
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(7) 

 The second rule is not needed for single obstacle case, 

since the vehicle can accelerate and avoid the collision. But 

in the case of multiple moving obstacles, when an AV is 

threatened by an approaching obstacle from behind, neither 

accelerating (risk to others in front) nor slowing down 

(escalating the situation) is safe. These two rules are 

applied for all simulations in this paper. 

 For simplicity, it is assumed that all obstacles are 

pedestrians, and both the vehicle and pedestrians are 

assumed to have a round shape with radius vR and pR , 



respectively.  In simulations, collision is detected by the 

following rule: 
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(8) 

 In this study, the on-board sensors are assumed to 

measure all states accurately. The speed of the pedestrians 

is assumed to be bounded: 

 2 2

maxd dx dy dv v v v    (9) 

3. Supervisory Control and Avoidable Set 

3.1. Supervisory Control  

 

Fig. 2. Block diagram of supervisory control  

The overall control system consists of two parts: the 

navigation controller and the supervisory controller.   The 

navigation controller guides the AV to the destination, and 

its design is not the focus of this paper.  A model predictive 

control algorithm will be used in the simulation part.  The 

goal of the supervisory controller (the focus of this paper) 

is safety and safety only. It modifies the input of the 

navigation controller with minimum interference to 

guarantee safety.  This means the supervisory controller is 

inactive if there is no threat, and action is taken only to 

keep the vehicle safe.  This concept is realized through the 

following formulation 

 0 , . .
Q Bminimize u u s t x P , (10) 

where BP  is the “avoidable set” to be defined later in this 

paper. Q is the matrix defining the norm: 

    
2
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T

Q
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which is tuned for desired performance. 

3.2. Definition of avoidable set 

The goal of the supervisory control is to avoid collision 
under all possible disturbance input, i.e., Eq. (8) is not 
violated by any obstacle at any time.  We first define three 
sets.   

(1) Infeasible set: As shown in Fig. 3, the infeasible set is 
the region where collision is not always preventable, 
i.e., there exists a disturbance under which a collision 
will happen for any control input.  However note that if 
the pedestrian is not hostile or not shrewd enough to 
choose this disturbance value, collision may not occur.  
Once the AV is inside the infeasible set, it should slow 
down and stop immediately. The infeasible set is 

denoted as InX in the remainder of the paper. 

(2) Avoidable set: To guarantee that the AV never enters 
the infeasible set, we will construct a superset, which 

encloses the infeasible set, and its complement is 
controlled invariant.  For a state in the avoidable set and 
outside of the infeasible set, collision can be avoided by 
taking emergency action, to be explained later. If 
possible, the state should be driven out away from the 
avoidable set. 

The controlled invariant set: The complement of the 

avoidable set.  Because it is control invariant, any state 

outside of the avoidable set can stay outside under all 

possible disturbances. 

 Denote the system dynamics as 

  , , , , ,xx f x u d S u U d D   
 

(12) 

where x , u and d are the state, control input and the 

disturbance input, respectively. The mathematical 

conditions for a set P to be avoidable is then  
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If set BP is the zero level set of a real-valued function 

 b x  (i.e., BP is characterized as   0b x  ), then the set 

invariance condition becomes a boundary condition: 
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 Suppose at a given point 0x is on
BP , i.e., the boundary 

of BP , the normal vector exists. Denote the normal vector 

pointing outwards from BP  as 
0xn , then the geometric 

condition of (14) is equivalent to 

  
00. . , , ,, 0xs t fd D u U x u d n      (15) 

where , denotes the inner product of two vectors. 
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Fig. 3. Different stages of obstacle avoidance.  

4. Polar Algorithm 

The key challenge of the supervisory control is to find 

an avoidable set that contains the infeasible set. To solve 

this problem, a polar algorithm is proposed. The infeasible 

set is represented by a bounded polytope containing the 

collision set (Eq. (8)), then the polar algorithm solves for 

another polytope that contains the infeasible set and 

satisfies the boundary condition (Eq. (13)). The polar 

algorithm is applicable to the dynamics in the following 

form 

 , , ,x u dG U dxE S u D    , (16) 

where S , U and D are polytope; E and G are constant 

matrices. Note that there is no state dependent term in the 



state derivative. The dynamic model in Section 2 is 

simplified to this form by viewing all state dependent terms 

as disturbance, which is explained in detail in Section 5. 

4.1. Polar of a polytope 

In this section, we introduce the polar algorithm, which 

is built based on the dual property of polytope. A polytope 

P  has two important elements: vertices and facets. For 

simplicity, only bounded polytopes with a finite number of 

vertices and bounding hyperplanes are considered. Given a 

vector space nX  , a bounded polytope P  with the 

origin in its interior can be represented as set of the convex 

combination of its vertices: 
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where   .iv PV is the set of vertices of P . It can also be 

represented as an intersection of finitely many closed half 

spaces: 
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i
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H
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where  1| T

ix H x  are the bounding half spaces. We 

further denote  #

iH X as the set of linear functionals that 

corresponds to the half spaces: 

   T

i iH x H x . (19) 

  # |: X fX f linear  is the algebraic dual of the 

vector space X . Since the algebraic dual of a Euclidean 

space is also an Euclidean space, we treat the linear 

functionals in #X as vectors in the dual space and denote the 

set iH as .P H . In addition, half spaces and polytopes can 

also be defined in #X . The bounding hyperplane 

corresponding to a bounding half space  | 1Tx H x  is 

defined as 

  | 1T

ix H x  . (20) 

And the corresponding facet is defined as  

    | 1T

i iF H P x H x   . (21) 

For polytopes, the normal vector of facet  F H  is 

simply H , which simplifies the condition in Eq. (15). 

The polar of P is a polytope in the dual space 
#X defined as  

  | 1,TP H H x x P    . (22) 

 The vertices of the original polytope are mapped to the 

facets of the polar, and it is easy to check that the facets of 

the original polytope are mapped to the vertices of the 

polar.  

 . .            . .P H PV P V P H    (23) 

Polar provides a convenient way of imposing the 

inclusion of polytopes:  

 1 2 2 1.P P P H P  
 

(24) 

And we will use this property in the polar algorithm. 

We included more detailed properties of polar in Section 

A.1 in the appendix. For more information, see (Ziegler 

1995). 

  In our problem, i.e., finding an avoidable set for the 

infeasible set 
InX , the set inclusion condition is enforced 

by the following constraint: 

 . nB IP H X  , (25) 

4.2. Hyperplane Orientation and boundary condition 

 The boundary condition of the avoidable set is 

interpreted as an orientation condition for the bounding 

hyperplanes. For each facet of a polytope P , suppose that 

the corresponding bounding hyperplane is 1TH x  , the 

normal vector that points outwards from P is simply H . 

For the dynamic system in Eq. (16), the avoidable set 

boundary condition in Eq. (15) becomes 
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 In order to find all bounding hyperplane orientations that 

are valid for an avoidable set, first we fix input u . For a 

bounding hyperplane 1TH x  to satisfy the boundary 

condition of the avoidable set with fixed input u , the 

following inequality must hold: 

   0,TH Eu Gd d D    . (27) 

 Since D is a polytope and the system dynamics are 

linear, Eq. (27) is simplified to checking only its vertices: 

   0, .TH Eu Gd d DV    . (28) 

 Eq. (28) defines a polytope in #X and it is easy to check 

that   | 0, .
Tu

HsP H Eu Gd H d DV     contains all 

the functionals corresponding to the bounding hyperplanes 

valid under input u . 

Define 
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 This union may not be convex, but using the linearity of 

the dynamics, we claim the following: 

Claim 1. HsP is the maximal set of linear functionals that 

satisfies the boundary condition of an avoidable set for the 

dynamic system shown in Eq. (16). 

The proof is shown in the A.1 in Appendix. 

Recall that there are two requirements for the avoidable 

set: set inclusion and boundary conditions. The set 

inclusion requirement is simplified to picking bounding 

hyperplanes from the polar of the infeasible set InX ; the 

boundary conditions requirement is simplified to picking 

bounding hyperplanes from HsP . Therefore it is natural to 

intersect the two sets. Define  

 H Hs InP P X   . (30) 

 This set may not be convex since it is the intersection of 

a convex polytope and a nonconvex union of polytopes. 

Further define 



  B HP Conv P


 , (31) 

where  Conv   denotes the convex hull of a polytope. 

Then
BP possess the following properties:  

Claim 2. 
BP is an avoidable set that contains

InX . 

Claim 3. BP is the minimal avoidable set. 

Claim 4. If the origin is in the interior of 

InX and
IIn nX X c   , where c is a constant shifting 

vector, then 
B BP P c  where

BP is the constructed 

avoidable set based on
InX . 

The above claims mean that 
BP is the minimal avoidable 

set that satisfies both set inclusion condition and boundary 

condition, and it is invariant with respect to the change of 

origin position. 

The proofs of all claims are shown in A.3, A.4 and A.5 

in the Appendix. 

5. Avoidable Set for Low Speed Autonomous Vehicles 

 In this section, the avoidable set for a single moving 

obstacle is solved using the polar algorithm. 

5.1. Infeasible set 

 The obstacle avoidance problem with a single moving 

obstacle can be formulated as a pursuit-evasion problem. In 

general, the vehicle can use both steering and braking to 

avoid collision (and both are used in the control 

implementation). In the computation of the infeasible set, 

however, we only use braking. This allows easy extension 

to multiple pedestrians cases.   

For a given initial condition, an obstacle’s future 

position is bounded by: 

            
2 2 2

max0 0d d d d dX t X Y t Y v t   
 

(32) 

 Then the vehicle’s position is calculated by applying the 

maximum brake. By checking whether a collision happens 

before the vehicle stops, the points in the state space can be 

then identified as either feasible (safety is guaranteed) or 

infeasible (safety cannot be guaranteed). We select a grid 

with certain resolution in the state space and compute 

whether collision happens or not for each grid point. A 

polytope InX  is then found that contains all the infeasible 

grid points by computing their convex hull.  

5.2. Avoidable set for autonomous vehicle 

 Consider the relative dynamics shown in Eq. (4). It is 

rewritten as: 
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where  
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It is then easy to find the bounds of the disturbance: 
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From the collision avoidance condition,  
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Therefore, the dynamic is simplified as 

  
2 2

sin
0 0 0

x Eu Gd k

k
X Y



  

 
     

. (37) 

where  
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 Although the constraint for 
1d and

2d is a circle and 

nonlinear, it can be outer approximated by a polygon. As the 

number of vertices grows, the approximation becomes more 

accurate. Therefore, the disturbance 
1 2 3

T

d d d d    is 

bounded by a polytope. 

The input constraints are 
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where  is the tire-road friction coefficient, and g is the 

gravitational constant. A polygon is again used to 

approximate the circular constraint, so that the set to 

constrain U is also approximated by a polytope.  

 Denote the dynamic system in Eq.(37) by  , and the 

set of disturbance is denoted by D .  

Claim 5.  If a set P is an avoidable set for system  , then 

it is an avoidable set for 0  in Eq. (4). 

The proof is shown in A.6 in the Appendix. 

The last term k  in Eq. (37) provides additional safety 

margin. When 0  , the obstacle is on the right hand side 

of the vehicle. To avoid collision,   must increase. 

Similarly, when 0  ,  must decrease for safety. Both of 

these conditions are helped by k . 

Denote the dynamic system that ignores the last term k  

as 
1 1: x E u G d    



Claim 6. Suppose a polytope P is an avoidable set for  . 

Additionally, for any point x  on the boundary of P  

where
4 0x   , the bounding hyperplane 

 1 2 3 4 1TH x H H H H x   at that point satisfies 

4 0H  , and for any point where
4 0x   ,

4 0H   holds, 

then P is an avoidable set for  .   

The proof is shown in A.7 in the Appendix. 

With Claim 6, the problem is simplified to finding an 

avoidable set for  , and check whether the condition in 

Claim 6 holds. 

By applying the procedure described in Section 4, the 

avoidable set
BP  is obtained and shown in Fig. 4. Because 

the dimension of the state space is 4, 
BP is projected to 

three 3-D plots.  The parameters used in generating the 

avoidable set are listed in TABLE III. 

 

Fig. 4.  The avoidable set (yellow) and the infeasible set (red)   

5.3. Control Barrier Function 

 Aaron et al. proposed the concept of control barrier 

function (CBF) in (Ames, Grizzle, and Tabuada 2014), 

which guarantees that the state does not enter a given set, 

and it works with a control Lyapunov function through a 

quadratic program. The control barrier function idea forms 

the basis of the supervisory control of this paper. First, a 

control barrier function is applied to a single half-space 

generated from a facet of the avoidable set, a Mixed Integer 

Program (MIP) is used to deal with multiple facets.  

 Let’s focus on one of the half-space of the polytope of 

the avoidable set.  If the state must stay outside of the half-

space  | 1Tx H x   to ensure safety, the control barrier 

function is defined as  

    
 

 
1, log

1

T
b x

B xb
x

x
b

H x  


 

. 
(40) 

 It can be seen that  B x goes to infinity as x approaches 

the bounding hyperplane. When x  is far from the boundary, 

 B x is positive but small. If the derivative of  B x is 

always finite, then  B x is finite, and x remains outside of 

the half-space. In particular, the following constraint is 

enforced by the supervisory controller: 

    1 /B x c B x , (41) 

where 1c is a positive constant. This constraint is loose when 

x is far away from the boundary, and becomes tighter as 

x approaches the half-space. Consider the influence of 

sampling, the condition is modified to  

  
 

1

1

, ,T

s

c b
H f x u d

B x c T
 


 (42) 

where 
sT is the sampling time. The derivation of (42) is 

shown in A.8 in the Appendix. 

5.4. Mixed Integer Program  

 For each bounding hyperplane H of BP , if the state 

satisfies 1TH x  , then H is said to be active, otherwise, it 

is said to be inactive. Since avoidable set BP is the 

intersection of all bounding half-spaces, the state x is 

outside BP if and only if there exists at least one active 

bounding hyperplane, i.e.,  

 0 0. , 1T

B Bx P H P H H x      (43) 

 When  x t is outside the avoidable set, each active 

bounding hyperplane generates a linear constraint, in the 

form of Eq. (42), and we require at least one constraint is 

satisfied. Since this is a logic disjunction, combining the 

supervisory control structure in Eq. (10), we form an MIP 

with slack variables: 

  
 

 
1

1

2

1

0 , . .

, , ,

1 0,1,

j

j

P
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j

N

j j

HT

j j a

H s

Pj

c b
H f x u d c H H

B x c T

N

minimize u u s t

s

s s



   



  





, (44) 

where  js are slack variables, and 2c is a large positive 

number. When 1js  , the corresponding inequality is 

automatically satisfied; when 0js  , the original barrier 

inequality is enforced. aH  is the set of all active bounding 

hyperplanes and PN is its cardinality. The condition 

1
1

PN

jj Ps N


   ensures that at least one of the original 

barrier inequalities is satisfied. 

5.5. From single obstacle to multiple obstacles 

 When there are multiple moving obstacles, one can 

follow the same approach to calculate the avoidable set by 

expanding the state space to  

  1 1 1 n n n

T
x X Y X Y v     . (45) 

 Because the computation complexity grows 

exponentially with the dimension of the state space, this 

naive approach is not scalable to a large number of 



pedestrians. Therefore, we need a simpler way. The key 

innovation is that the AV is only allowed to brake when 

calculating the infeasible set, as mentioned in Section 5.1. 

With this assumption, the infeasible set can be computed for 

one obstacle, and then applied to multiple obstacles since 

the emergency action to avoid all obstacles are the same. If 

steering is allowed, this will no longer be the case.   

Recall the concept of responsibility in Section 2.2, let 

InX be the set outside of which the vehicle can come to a 

full stop before hitting the obstacle for all obstacle 

movement.  In the multiple-obstacle case, as long as all 

obstacles are outside of InX , the vehicle is always able to 

stop before hitting any one of the obstacles.  

 For each pedestrian, there is a set of state as described 

in Eq. (4) representing the relative dynamics between the 

pedestrian and the AV. Now the task is to keep multiple 

states outside of a single avoidable set.  

Ped1

Ped4

Ped3

Ped2

 

Fig. 5. Multiple-pedestrian cases with a single infeasible set (red) 

and avoidable set (yellow) 

When there are multiple obstacles, the avoidable set is 

not always avoidable. Nevertheless, the supervisory control 

developed for a single pedestrian can still be used with the 

following modifications: (i) the constraint in Eq.(44) must 

be checked for each of the pedestrians; and (ii) when any 

obstacle breaches the “avoidable set,”  braking is applied 

until either the states for all pedestrians are outside the 

avoidable set, or the AV comes to a complete stop. 

Although braking is used to guarantee safety in multiple 

pedestrian case, the simulation shows that the supervisory 

control does not rely on braking heavily. The vehicle only 

comes to full stop when it’s trapped by multiple 

pedestrians.  

6. Simulation Results  

6.1. Simulation results 

 The goal of the AV is to reach a destination from a 

fixed starting point without colliding with any pedestrian. 

The initial positions and velocities of the pedestrians are 

random, and they walk randomly.  All objects stay in a 

predefined rectangular region    lim lim lim lim, ,X X Y Y   . 

The random-walk is generated with Gaussian distributed 

acceleration in X  and Y directions: 

 
   

              

~ 0,     ~ 0,

px px py py

px p ayyax

v a v a

a N a N 

 
. (46) 

 The velocity must also satisfy the boundedness 

constraint in Eq. (9). To keep the pedestrians inside the 

rectangular region, the following (reflection) rule is used 
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 (47) 

 A greedy Model Predictive Controller is used as the 

navigation controller. The detail of MPC is shown in A.10 

in the Appendix.  The control structure is shown below: 

 

Fig. 6 Control structure for simulation 

The simulation parameters are listed in TABLE I.  

TABLE I SETTINGS OF THE SIMULATION RUNS 

Number of pedestrians 7 

Region of pedestrian movement    5,5 5,5    

Initial Position of the vehicle  1, 7  

Initial velocity of the vehicle 2m/s 

Initial yaw angle / 2  

Destination (0,5) 

A sample simulation is illustrated in Fig. 7. The blue 

circles are snapshots of the position of the vehicle; the 

green circles show the positions of the pedestrians; and the 

red square is the destination. The color of the snapshots 

changes from light to thick as time flows.  

 

 
Fig. 7. Sample simulation results 

 The control inputs from the navigation controller and the 

supervisory controller are shown in the first 2 subplots in 

Fig. 8, where 0

xa  and 0r are the acceleration and yaw rate 

command from the navigation controller; 1

xa and 1r are the 

command from the supervisory controller. maxd denotes the 

distance from the state to the avoidable set, and was plotted 



in the third subplot. Different colors correspond to 
maxd for 

different pedestrians. 

 max
.

1
max

T

H P H

H x
d

H


  (48) 

 
Fig. 8 Control input and minimum distance to avoidable set 

Based on the difference between MPC input and Barrier 

input, the simulation was divided into 5 stages. In stage 3 

and 5, the supervisory controller detects little danger, so the 

two control inputs stay close; in stage 1 and 4, the 

supervisory controller manage to follow similar acceleration 

command, but use different yaw rate to avoid collision. This 

is because we put more weight on acceleration difference 

than yaw rate difference when defining Q matrix in Eq. 

(11). In stage 2, both acceleration and steering are changed 

by the supervisory control to ensure safety. Compare the 

input plot and maxd plot, the time when supervisory control 

changes the MPC input corresponds to the time when the 

smallest maxd among 7 pedestrians is small, which indicates 

danger.  

6.2. Comparison to two benchmark methods 

 The performance of the polar algorithm is compared to 

two benchmark methods: the potential field method 

(Shimoda, Kuroda, and Iagnemma 2005) and the Hamilton 

Jacobi method (Mitchell, Bayen, and Tomlin 2005). The 

details of both benchmark methods are included in the 

Appendix. 

 In order to compare the performance, we repeat the 

simulation 1000 times with the same setting shown in 

TABLE I. In each trial, the vehicle starts at the same 

location and tries to reach the same destination, while the 

pedestrians appear at random position and does random 

walk. A simulation trial is marked as “stuck” if the AV 

failed to reach the destination within 25 seconds; and a trial 

is marked as “crash” if Eq.(8) is satisfied at any time. 

 

 

 

 

 

TABLE II KEY PERFORMANCE INDICES OF THE THREE 

METHODS IN 1000 SIMULATION TRIALS 

Method 
Average 

time 
Collision  Stuck trips 

Polar Method 10.88s 0 25 

Hamilton Jacobi 14.93s 0 171 

Potential Field 8.47s 436 0 

 The statistics of the 1000 trials are shown in TABLE II. 

Both the polar method and the Hamilton Jacobi method can 

ensure safety, i.e. no crash, while the potential field method 

crashes in about half of the trials. The Polar method reaches 

the destination in a much shorter time, and with fewer 

“stuck” cases compared with the Hamilton Jacobi method, 

indicating that the proposed method is as safe as, but much 

less conservative than the Hamilton Jacobi method. 

7. Conclusion and Discussion 

 This paper proposed a polar algorithm to design 

collision avoidance algorithms for low speed autonomous 

vehicles. The concept is based on the construction of an 

“avoidable set,” which is an extension of the commonly 

used concept of a controlled invariant set.  A Mixed Integer 

Programming based supervisory control structure is 

proposed to implement this algorithm. Safety can be 

guaranteed for both single moving obstacle and multiple 

moving obstacles while liveness is maintained. The safety 

guarantee was verified with simulations. 
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Appendix 0 

A.1. Additional properties of Polar 

The polar of a polytope P X  is a polytope in the 

algebraic dual space #X defined as  

  | 1,TP H H x x P    . (A.1) 

Because of the convexity and linearity of polytopes, 

a simpler definition is  

  | 1, .i

T

iP H H v v PV    . (A.2) 

The vertices of P are mapped to the facets of P , and 

the facets of the P are mapped to the vertices of P , as 

shown in the following example.  

 

Fig. 9. Example of polar 

For a bounded polytope P with the origin in its interior, 

the following hold:  

(1) The polar of P , denoted as P ,  is a bounded 
polytope with the same dimension as P and 
containing the origin in the interior. 

(2) The polar of P , denoted  as P , is the original 
polytope, i.e., P P  . 

(3) For any H P , P is completely contained in the 
half space  1| Tx H x  , i.e.,  

 , , 1TH P x P H x      (A.3) 

(4) For any point H  outside P , P is not completely 
contained in the half-space  1| Tx H x   

 , , 1TH P x P H x      (A.4) 



 Because of the properties above, the polar concept 

provides a clear condition for polytope inclusion: 

 1 2 2 1.P P P H P  
 

(A.5) 

 

A.2. Proof of Claim 1: 

 For any bounding half space 1TH x  that satisfies Eq. 

(27), since U is a convex polytope, it can be rewritten as a 

convex combination of the vertices of U : 
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(A.6) 

 Note that .U V is a set with finite elements, so 

 
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i
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(A.7) 

 Therefore, let  
.V

arg max T

m
u U

u H Eu


 , 

 mu

HHs sH P P 
 

(A.8) 

 Eq. (A.8) proves that HsP  contains all linear functionals 

corresponding to bounding half spaces satisfying the 

boundary conditions. 
 

A.3. Proof of Claim 2: 

  First, write  HConv P as 
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 (A.9) 

 Recall the fact that for any union of polytopes i

i

P , the 

vertices of its convex hull is a subset of the union of the 

vertices of all polytope components. 
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Conv P VV P
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(A.10) 

 Therefore,  
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(A.11) 

 Recall the definition of a polar; it follows that  
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(A.12) 

 Therefore the bounding hyperplanes of BP lie inside the 

intersection of InX 
and HsP , and BP is an avoidable set that 

contains InX .  

 

A.4. Proof of Claim 3: 

 First, we show that for all HH P , 1TH x  is not a 

valid bounding hyperplane for the avoidable set 

containing InX . Then we show that for all HH P , the half 

space 1TH x  contains BP .  In other words, BP is minimal. 

For all
HH P , by definition, sn HIH X H P   . 

If InH X  , then from Eq.(A.4), 1TH x  is a half space that 

does not contain dX . If HsH P , from Claim 1, H does 

not satisfy the boundary conditions. 

 For all
HH P ,  H HH P H Conv P  , so 

  , 0, 1, .i i i i i HH H H Conv P V        
(A.13) 

For all
0 Bx P , 0 0

TT

i iH x H x . Since
0 Bx P , it 

follows that 
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(A.14) 

Eq. (A.14) implies that adding 1TH x  as a half space to 

BP will not reduce any point from
BP , so 

BP is minimal.  

 

A.5. Proof of Claim 4: 

 Let HP be the polytope consisting of all feasible 

bounding hyperplanes H for an avoidable set BP . HP  may 

not contain the origin in its interior. Normalize the 

expression of its bounding hyperplanes to 
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(A.15) 

where the first category denotes bounding hyperplanes 

corresponding to facets that do not contain the origin, and 

the second category denotes those facets that contain the 

origin. vN and N are the number of linear constraints for 

each category.  

 Let  v iH v and  iH  denote the two groups of 

bounding hyperplanes in Eq. (A.15). Since HP is constructed 

by intersecting HsP , where every facet contains the origin, 

and InX 
, where every facet does not contain the origin, it is 

clear that . .v IIn nH X H X V  . Recall that shifting a 

polytope is equivalent to shifting all the vertices. It follows 

that  

  . , .IIn nX H v c v X V


   
 

(A.16) 

Since the construction of HsP is an invariant of the 

shifting operation in the state space, HsP remains the same 

after shifting InX . It then follows that 
HP has the following 

bounding half spaces: 
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 For any vertex 0H of 
HP , it is the intersection of N 

facets, where N is the dimension of the state space. Assume 

the linear equations corresponding to 0H is 



 

 

0

1 1

,

1 1 0 0

T

p pM q qN M

T

AH a

A v v

a

  



   



 

(A.18) 

 Since Eq. (A.18) has a unique solution
0H , A is 

invertible and 1

0H A a . In addition, since 0 HH P , 
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(A.19) 

 Now consider the corresponding vertex 
0H of 

HP . If it 

exists, it satisfies 

   0

TA ac H a 
 

(A.20) 

 If the matrix  TA ac is invertible, and 

 
1

TA ac a


 satisfies all inequalities of 
HP ,then 

0H exists 

and is a vertex of 
HP . 

From the matrix inversion lemma, if A and 
11 Tc A a are invertible, then  TA ac is invertible and  

    
1 1

1 1 1 11T T TA ac A A a c A a c A
 

        (A.21) 

 Clearly A is invertible; 11 Tc A a is a scalar. Since 

IIn nX X c  contains the origin, c is inside InX . 0H is a 

vertex of HP , so  0 1TH c  . It follows that 
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 Therefore  
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 Now we need to determine whether 
0H is inside 

HP . 

For all 1, ,v p pMv H v v v   : 
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 From Eq., 
1

0 1T Tv A a v H   . It follows that 
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 For all 1, ,q qN MH       , 
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(A.26) 

 

 Therefore 
0H is a vertex of 

HP . Since the mapping 

from the vertices of HP to the vertices of
HP is established, 

the only thing left to check is whether B H BP P P c


   .  

Note that 
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(A.27) 

 Eq. (A.27) proves that for each facet of BP , a 

corresponding facet of 
BP exists by shifting the facet with 

vector c ,  i.e., 
B BP P c  . 

 

A.6. Proof of Claim 5:  

  is actually a differential inclusion of  the original 

system 0 , which implies: 
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This means for any , ,x u d in 0 , there exists d D that 

reproduce the state derivative in system  with the same 

state and input. Therefore any avoidable set under 

dynamic  is also an avoidable set under dynamic 0 . 

It follows that P is also an avoidable set for 0 . 

 

A.7. Proof of Claim 6: 

 Only the case when 0  is proved. The case when 

0   follows the same reasoning. For any point x  at the 

boundary of P , suppose 0  , then 4 0H  . P is an 

avoidable set w.r.t. the dynamic system .  Therefore, 

  1 1, : 0Td D u U H E u G d     
 

(A.29) 

 Since 
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 It follows that P is also an avoidable set w.r.t.  . 
 

A.8. Derivation of Eq. (42) 

 From the definition of the barrier function in Eq. (40), 

the derivative of  B x is  

  
B b

B x x
b x
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(A.31) 

 Assuming that x is constant within the sampling time sT ,  
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 It follows that 
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 For this certain function, 
n

n

B

b




has an explicit expression: 
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 Given a sampling time sT , the barrier function at the next 

time step can be calculated using the Taylor expansion: 
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 It follows that 
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 Recall Eq. (41), we have 
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A.9. Simulation setup 

 The parameters for simulations are listed in TABLE III. 

TABLE III SIMULATION PARAMETERS 

Parameter Value Meaning 

maxdv  1.2 /m s  Maximum obstacle speed 

maxr  3.4 /rad s  Maximum yaw rate 

maxa  24 / secm  Maximum acceleration 

maxv  2 /m s  Maximum vehicle speed 

vR  0.5m  Radius of AV 

pR  0.3m  Radius of pedestrians 

sT  0.05s  Sampling time 
  0.7 Friction coefficient 

ax , ay  1 
Standard deviation of pedestrian 

acceleration on X and Y direction 

 The simulations are conducted using Matlab.  The 
toolboxes used are shown in Table II. 

TABLE IV TOOLBOXES USED 

Polytope Calculation Multi-Parametric Toolbox 3 

Mixed Integer Programming Gurobi 6.0.4 

Hamilton Jacobi Calculation Level Set Toolbox 1.1.1 

A.10. MPC design 

The greedy MPC navigates the vehicle to the destination 

without any knowledge of the pedestrians. The nonlinear 

unicycle model of the vehicle is linearized for MPC. 
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where  

  0 0 0               t        (A.39) 

 This linearized model is then discretized and used for 

the MPC, with prediction horizon 5predN  and control 

horizon 1conN  . 

A.11. Potential field controller design 

 We adapted the method proposed by Shimoda et al. in 

(Shimoda, Kuroda, and Iagnemma 2005) and tune the 

parameter to enhance its performance.  The potential field 

is built on the trajectory space, which is the Cartesian 

product of velocity and yaw rate (different from the 

original trajectory space in (Shimoda, Kuroda, and 

Iagnemma 2005) because of the different inputs of the 

dynamic model). The potential field function used is 
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(A.40) 

where dA , or  , d  and  are defined in the following 
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(A.41) 

 1r and 2r are the maximum and minimum yaw rate that 

will lead to collision, as demonstrated in Fig. 10. See 

(Shimoda, Kuroda, and Iagnemma 2005) for more details. 

 

Fig. 10. Maximum and minimum yaw rates leading to collision 

(original figure in (Shimoda, Kuroda, and Iagnemma 2005)) 



 The parameters for the potential field method are listed 

in TABLE V. 

TABLE V PARAMETER OF THE POTENTIAL FIELD 

CONTROLLER 

gK
 

5 

1vK
 15 

2vK
 2 

oK
 100 

oaK
 0.1 

ovK
 0.1 

odK
 2 

A.12. Hamilton Jacobi controller design 

 The control problem is formed and solved as a pursue-

evade game. First, we solve a reachability set for a single 

obstacle and restrict the vehicle’s input to only braking, 

then apply this reachability set to multiple obstacles (the 

same “trick” used in our polar method). It should be noted 

that the coordinate for relative dynamics in the Hamilton 

Jacobi method differs from that for the polar algorithm.  
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(A.42) 

where LX and LY are the relative position of the 

obstacle in the local frame attached to the vehicle. 

Theoretically, the three states in Eq. are sufficient for 

describing the relative dynamics between the AV and the 

obstacle. The reason for using four states are used in polar 

algorithm is that the model shown in Eq. (4) is more similar 

to double integrators, which makes the simplification in the 

polar algorithm easier. The dynamic equation for the states 

in Eq. (A.42) is 
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where Ldxv and Ldyv  are the longitudinal and lateral 

projection of the obstacle’s speed in the local coordinates. 

The dynamics are then reversed in time to calculate the 

backwards reachable set. 

The value function is defined as 
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and  x satisfies: 
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 The Hamiltonian of the reversed dynamics allowing 

only brake is solved analytically: 
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where a  and b are the strategy for the vehicle 

and obstacle, respectively. p
x





 is the conjugate 

momenta;  3 ,k p v ensures that the vehicle speed is within 

the limit. To enforce the responsibility rules presented in 

Section 2.2, 

  0 0 0LX v H     
 

(A.47) 

 The final time is chosen as 10T s .The calculated zero 

level set is shown in Fig. 11. 

 

Fig. 11. Hamilton Jacobi reachability set  

 The result is calculated numerically and stored in a 

look-up table. In the implementation, local regression is 

performed to obtain the value and the gradient of . Then 

the following constraint is enforced: 

      , ,
T

x f x u xd   
 

(A.48) 

where  is the gradient at that point and  is a positive 

constant. For more details, please refer to (Evans and 

Souganidis 1983) and (Mitchell, Bayen, and Tomlin 2005). 
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