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Abstract— Supervised learning is used to build a control
policy for robust, dynamic walking of an underactuated bipedal
robot. The training and testing sets consist of controllers based
on a full dynamic model, virtual constraints, and parameter
optimization to meet torque limits, friction cone, and envi-
ronmental conditions. The controllers are designed to induce
periodic walking gaits at various speeds, both forward and
backward, and for various constant ground slopes, flat ground,
uphill, and downhill. They are also designed to induce aperiodic
gaits that transition among a subset of the periodic gaits in a
fixed number of steps. In experiments, the learned policy allows
a 3D bipedal robot to recover from a significant kick. It also
enables the robot to walk down a 22 degree slope and walk on
sinusoidally varying terrain, all without using a camera.

I. INTRODUCTION

For many control tasks, real-time constrained optimization
is becoming an important means of designing and imple-
menting feedback control policies. With current computa-
tional power, it is not possible to achieve highly dynamic
motions (e.g., running or jumping) or to respond to large
perturbations with this approach. One alternative is to pre-
compute a set of controllers and build an explicit control
policy [1].

This paper proposes an offline approach to design an
explicit model-based feedback control policy using ideas
from parameter optimization and Machine Learning (ML).
The control design process begins by using parameter opti-
mization to generate both training and testing sets of con-
trollers that induce walking gaits in a bipedal robot model.
Virtual constraints provide a convenient parametrization of
the feedback control laws and corresponding gaits [2]. The
training and testing sets include periodic walking gaits at
various speeds, both forward and backward, and for various
constant ground slopes, flat ground, uphill and downhill.
They also include aperiodic gaits that transition among a
subset of the periodic gaits in a fixed number of steps.

Supervised learning is then used to train a state variable
feedback control policy. The feature space for the supervised
learning includes parameters from a reduced-order biped
model (e.g., initial stance leg angle and average speed),
exogenous signals (target walking speed is used here, but
turning angle could be used as well) and perception input
(e.g., terrain height or slope). This policy is compared with a
testing set of optimal gaits in simulation and is subsequently
evaluated on the 3D underactuated robot MARLO. In a
simulation of stepping in place, the learned policy takes
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at most one more step than an optimal gait to recover
from initial velocity and position errors. In experiments, the
learned policy allows MARLO to recover from ≈ 200 N
kick. It also enables MARLO to walk down a 22 deg slope
and walk on the Wave Field, which presents sinusoidally
varying ground height (see Fig. 1).

A. Literature Overview

One of the earliest applications of online optimization
in bipedal walking was done on a 5-degree-of-freedom
simulation model of RABBIT [3], [4]; the computation
time for each sampling period was 37.08 s. More recently,
Model Predictive Control (MPC) was applied in the DARPA
Virtual Robotics Challenge [5]. In that work, the computation
time of the MPC solver was important, and a “real-time
implementation” on a full-order dynamic model of Atlas was
achieved through the use of a novel physics engine and a
relaxed contact map. Experimental results on a humanoid
robot HRP-2 were reported in [6]. The robot did not walk,
but could balance while standing and track a ball with its
hands. MPC was applied to the full kinematics and centroidal
dynamics of Atlas in [7], and resulted in walking at 0.4 m/s.
On a planar biped, higher walking speeds from 0.43 m/s
to 0.97 m/s are achieved in [8] using online Hybrid Zero
Dynamics (HZD) gait generation. The online optimization
generates a new controller based on the commanded speed
and updates it at the beginning of the next step. Average
computational time is 0.4964 s.

The computational burden has been reduced by using

Fig. 1: Bipedal robot MARLO walked on the University of
Michigan’s Wave Field, a sinusoidally varying grass terrain.
Photo was taken by Roger Hart.



reduced-order models to compute CoM trajectories and
swing foot positions. A low-level controller and inverse
kinematics then realize these on the full-order model or
robot. Recent experimental uses of this approach can be
found in [9], [10], [11]. Though a reduced-order model
may provide fundamental insight into the dynamics of a
robot [12], it limits the achievable motions of the robot, and
different tasks, such as walking and running, typically require
different models.

Another means to get around the limitations of online
computation is to pre-compute a set of controllers and design
a control policy to “stitch” them together. The most com-
mon policies in the literature involve switching, finite-state
machines, and interpolation. Switching based on only the
commanded task (target walking speed, running vs walking,
stairs vs flat ground) is used in [13], [14], [15]. A hand-
designed, finite-state machine is used in [16] for rough
terrain. More sophisticated finite-state-machines are designed
using offline reinforcement learning to handle rough terrain
[17] and to reduce settling time to a commanded walking
speed [18]. Interpolation has been used to design transition
gaits among a finite set of controllers for walking at constant
speeds in [14] and to create a continuous family of gaits
in [19], [20]. Supervised learning has been applied in [21],
[22] for gait synthesis; experimental results for quasi-static
walking is reported in [23]. Nearest neighbor is used in
[24] to enlarge the basin of attraction. A review of machine
learning algorithms in bipedal robot control is given in [25].

B. Contributions of the Paper

In many cases, it is computationally expensive to build a
good training set for supervised learning [25]. In previous
work [20], parameter optimization and virtual constraints
are used to design a set of controllers for fixed speeds and
a simple interpolation method was used to build a control
policy. Here, supervised learning is used to build the control
policy from a larger family of controllers, including those
for aperiodic walking.

The novel contributions of the work include:
• using supervised learning to approximate the optimal

gaits from a finite set;
• the training and testing sets are selected from controllers

that induce periodic gaits, aperiodic gaits that effect
transitions among a subset of the periodic gaits, and
perturbations of periodic gaits;

• the feature space for the supervised learning is richer
than standard reduced-order models; indeed it includes
initial conditions from a reduced-order biped model,
exogenous command or reference signals, and quantities
deduced from onboard sensors;

• multiple control policies for different tasks are unified
in one policy;

• experimental deployment on a bipedal robot is demon-
strated;

• compared to previous work in [20], this control policy
significantly improves the ability to reject perturbations
and to walk on uneven terrain.

Fig. 2: Biped coordinates. (a) Lateral plane. (b) Sagittal
plane. (c) Equivalent sagittal model.

C. Structure of the Paper

Section II briefly describes the bipedal robot model used
throughout the paper. Section III outlines the general process
for control policy design using supervised learning tech-
niques. Section IV revisits the speed regulation work done
in [20] and reformulates it as a supervised learning problem.
Section V describes the design of a novel transition control
policy that dramatically increases the range of perturbations
that the robot can handle. Section VI introduces a control pol-
icy design method that accounts for uneven terrain allowing
the robot to walk both uphill and downhill. Lastly, sections
VII and VIII analyze the simulation and experimental results
using these control policies and a unified one.

II. ROBOT DESCRIPTION

A. Robot Configuration

The bipedal robot shown in Fig. 2, called MARLO,
is the Michigan copy of an ATRIAS series robot
and is capable of 3D walking. The configuration vari-
ables for the robot can be defined as q3D :=
(qz, qy, qx, q1R, q2R, q3R, q1L, q2L, q3L) ∈ R9 where the leaf
springs are sufficiently stiff and have been deliberately ne-
glected from the model. The variables (qz, qy, qx) correspond
to the world frame rotation angles: yaw, roll, and pitch; the
variables (q1R, q2R, q3R, q1L, q2L, q3L) refer to local coordi-
nates. These local coordinates are each actuated by a DC
motor, resulting in 6 degrees of actuation u ∈ R6 and 3
degrees of underactuation. A more complete description is
available in [26].

B. Planar Representation

All optimization and control policy designs in this paper
are based on a planar model for simplicity and a fast
optimizer of Ames’s group was not yet available [27].
Experiments on the 3D robot are done by augmenting a
controller designed on a planar model with a lateral con-
troller given in [20]. A planar representation is obtained
from the 3D model by constraining (qy, qz, q3L, q3R) to
zero, [26, Sec. 4.5]. The remaining configuration variables
q := (qx, q1R, q2R, q1L, q2L) ∈ R5 can also be written as



q := (θ, qrightLA , qleftLA, q
right
KA , qleftKA) for control purposes, where

the leg angles are qLA := 1
2 (q1 + q2) and knee angles

are qKA := q2 − q1. The absolute stance leg angle θ is
underactuated.

III. CONTROL POLICY OVERVIEW

The control policy proposed here relates a vector of
features to a set of control parameters. This policy will
be constructed using supervised learning techniques from a
carefully designed training dataset. The process includes:

1) choosing features and control parameters;
2) generating the datasets through optimization;
3) fitting the control policy using a training set with

supervised learning algorithms; and
4) assessing the policy with a testing set and simulations.

The steps are specified in the following sections for
individual policies. Figure 3 shows an overview of the policy
design process.

Fig. 3: Control Policy Design and Implementation

A. Control Policy

A control policy π : Φ → A is a function that maps
a feature vector φ ∈ Φ to a vector of control parameters
α ∈ A. In this paper, α is a set of Bézier coefficients inducing
a desired trajectory, qd(t). A low-level feedback controller
is then used to minimize the tracking error. The specifics of
the feedback controller derivation are given in previous work
[20]. The focus of this paper is to build the control policy.

B. Dataset Generation Through Optimization

Parameter optimization [2, Sec. 6.3] is used to build a
dataset for supervised learning. Each optimization provides
a single dynamically feasible path qd(t) over one or more
steps. α and φ are extracted at each step. Here, the dataset
is constructed from as few as seven to as many as a hundred
optimizations, selected to represent the small number of
behaviors that the control policy is to learn. All optimizations
are set up to respect constraints given in Table I and to
minimize the sum of squared torques. Other constraints
implemented depend on the nature of the control policy that
is to be learned.

TABLE I: Optimization constraints

Motor Toque |u| < 5 Nm

Step Duration T = 0.35 s

Friction Cone µ < 0.6

Impact Impulse Fe < 15 Ns

Vertical Ground Reaction Force > 300 N

Mid-step Swing Foot Clearance > 0.18 m

C. Machine Learning Methods

Once the dataset has been generated, various machine
learning techniques can be used to regress the control policy
π(·). This paper compares three fitting methods: linear
interpolation (LI), support vector machines (SVMs), and
neural networks (NNs). The three methods show similar
performance in fitting quality and speed tracking. Detailed
discussion is available in the simulation section.

1) Linear Interpolation: When the feature φ is a scalar,
linear interpolation can be used as

πLI(φ) = (1− ζ(φ))αi + ζ(φ)αi+1 (1)

ζ(φ) =
φ− φi

φi+1 − φi
, (2)

where φi and φi+1 are features in the training set between
the input φ. It can be extended to bilinear interpolation (BiLI)
if the feature has two variables. Since the method only uses
local data, it is good to fit an evenly distributed data set.

2) Support Vector Machines: Support vector machines
(SVMs) are a common ML technique that can be used
for function regression (also known as SVR). The SVM
algorithm can be used to regress a nonlinear function by
applying the “kernel trick” [28]. In this paper, the regression
was learned using the LIBSVM toolbox with the radial basis
function kernel.

3) Neural Networks: Neural Networks (NNs) are an
increasingly used method for nonlinear function approx-
imation. They rely on a series of connected “neurons”,
usually sigmoid functions, and a set of weights that can
be learned [29]. In this paper, the learning is implemented
using MATLAB’s Neural Network Toolbox with 5 hidden
layers. The networks are trained using the default Levenberg-
Marquardt algorithm.

D. Training and Testing

The training and testing datasets are built separately. For
each of the learning algorithms listed, a control policy π(·) is
learned using only the training dataset. Each resulting control
policy is assessed using the separate testing dataset. The
coefficient of determination (R2) and the root mean square
error (RMSE) provide one way to evaluate how closely
the output of the control policy matches the test data. The
utility of the control policy is further verified by running
simulations.



IV. SPEED REGULATION POLICY

Previous work in [20] designed a velocity gait library
for speed tracking. The discrete set of optimized gaits was
then interpolated to produce a continuously defined feedback
controller. The resulting controller allowed MARLO to walk
forwards and backwards at a variety of speeds. This section
generalizes the library as a control policy and reformulates
the design procedure as a supervised learning problem.

A. Dataset Generation

To generate the training dataset, 13 separate parameter
optimizations are run. Each optimization generates a periodic
gait at different sagittal velocities vavg. The set of gaits is
denoted by

Atrain = {α(vavg) | − 1.2 ≤ vavg ≤ 1.2}, (3)

where vavg increases in steps of 0.2 m/s. A similar testing
set of gaits Atest is designed for the same speed range but
at a finer grid of 0.05 m/s. The optimization is set up to
respect constraints given in Table I and to minimize the sum
of squared torques. Additional constraints for periodicity and
the average velocity are also included.

B. Feature Selection

The only difference among the optimizations is the average
velocity. Therefore, a logical feature choice is φ = {vavg}.

C. Training Methods

Since φ is a scalar quantity, linear interpolation (LI) can
be used to fit the control policy π(·). This is what was used
in [20]. For comparison, support vector machines (SVMs)
and neural networks (NNs) are also used.

V. TRANSITION GAIT POLICY

The speed regulation policy discussed in the last section
“teaches” MARLO how to walk along a steady state, periodic
gait. This section proposes a novel optimization setup to
add the transitions between various periodic gaits into the
learning process.

Fig. 4: A graph of three-step optimization. Given xi and xj ,
the optimization will find a path xi → xi→j

a → xi→j
b → xj

if exists. Blue dots are specified in the optimization while
green dots and path are generated from the optimization.

A. Dataset Generation

Let xi := [q, q̇]>i and xj := [q, q̇]>j be two points in the
robot’s state space corresponding to double support. Denote
by αxi→xj the control parameters, if they exist, that effect a
transition in one step from xi to xj . When xi = xj , we have
a periodic gait, and we also denote the control parameters
by α(viavg), as one of the element in (3), inducing a periodic
gait at velocity vavg. The corresponding state is denoted by
x∗(viavg).

To handle a wide range of transitions, we also consider the
case where two points in the state space cannot be joined
in one step. Specifically, given two points xi and xj , we
also design controllers that effect transitions in three steps1.
Optimization is used to compute two intermediate states
xi→j
a and xi→j

b , and corresponding control parameters, such
that, the robot transitions are

xi → xi→j
a → xi→j

b → xj . (4)

In the language of capture points [31], [32] , xi above is in
the 3-step viable-capture basin of xj . The 3-step transition
gaits are computed for

xj = x∗(vjavg), for vjavg ∈ {−0.4,−0.2, 0, 0.2, 0.4} (5)

xi ∈ {x∗(viavg) | − 0.6 + vjavg ≤ viavg ≤ 0.6 + vjavg}. (6)

When viavg = vjavg, it is noted that αxi→xj = α(viavg), the
control parameters for the periodic gait at speed viavg, given
in (3). To be clear, each 3-step optimization provides three
controllers that are included in the training set.

In this initial study on supervised learning, the testing set
focuses on stepping in place. The three-step optimization
process as in (4) is used to compute controllers given the
terminal point xj = x∗(0) (stepping in place) and initial
points xi that has perturbations of stepping in place. These
perturbations correspond to the robot being in double sup-
port, in which the support leg angle θ is perturbed ±15 deg,
the support leg angle rate θ̇ is perturbed ±34 deg /s, and
the swing leg angle rate q̇sw

LA is perturbed ±114 deg /s, all
independently.

B. Feature Selection

In the speed regulation policy design, the only changed
optimization constraint is the average speed. This led to a
logical choice of the feature being vavg. In contrast, when
optimizing transition gaits, all of the states change. The
feature vector could potentially use the full states, but this
may require a large training dataset. Instead, a small set of
features φ = {vavg, θinit, vtgt} is proposed. Inspired from
the inverted pendulum model, these features capture the two
crucial underactuated degrees of freedom as well as the target
velocity. Kernel principal component analysis (PCA) may be
used in the future to find a low dimensional representation
of the state space to extract features from.

1The number three is motivated by [30]. In case the transition can be
done in two steps, xi→j

b = xj ; similarly for one step.



C. Training Methods

The transition control policies are trained using SVMs
and NNs. These policies are assessed by simulating from
the initial states xi in the testing dataset. The simulation
results are compared against the optimized gaits in the testing
dataset.

VI. TERRAIN ADAPTION POLICY

This section adds periodic gaits for different terrain heights
or slopes to design a terrain adaption policy. It will enhance
the speed tracking performance on sloped terrain and robust-
ness over uneven terrain.

Since the MARLO does not have any vision sensors
to foresee the terrain, proprioceptive sensors are used to
measure the positions of the feet in the double support phase
to estimate the terrain profiles.

A. Dataset Generation

To generate the datasets, a 2D grid of gaits is optimized.
The training dataset includes gaits where vavg ranges [-1.2,
1.2] m/s in 0.2 m/s steps, and h ranges [-0.1, 0.1] m in
0.05 m steps. The testing dataset is designed on the same
range but at a finer grid, 0.1 m/s increments for vavg and
0.02 m increments for h.

B. Feature Selection

1) Sagittal Terrain Adaption: Since the dataset was gener-
ated using varying velocities and step heights, the empirical
choice for the feature vector is φ = {vavg, h}. The controller
is designed using the planar model, thus h is measured as
sagittal terrain height.

2) Lateral Terrain Adaption: In the 3D model, the feet
height and side width in the double support phase can be also
used to estimate the lateral terrain slope βlateral. This paper
shows the preliminary use of this feature in the experiments
Section VIII-C. More sophisticated terrain profile estimation
could be used, though the design of control policy remains
the same.

C. Training Methods

Since the dataset was constructed uniformly on a grid,
shown in Fig. 5, a simple bilinear interpolation can be
implemented. More advanced regression methods (SVMs,
NNs, etc.) could be used, but the authors did not pursue them
for this control policy. However, a unified control policy,
which is described in Section VIII-D, is fit using a neural
network. It combines terrain adaption with speed regulation
and transition gaits

VII. SIMULATION

The control policies are evaluated in two ways: comparing
the control parameters with the testing data, and assessing
the control performance in simulated planar walking.

Fig. 5: Control parameters α are on a uniform grid of
velocities and terrain heights. A bilinear interpolation could
be used to fit the data.
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Fig. 6: Fitting quality of each element in control parameters
α. Every six of them construct a trajectory of configure
variable in qd(t)

A. Speed Regulation Policy

The speed regulation policy is generated by three regres-
sion methods: πLI , πSVM and πNN . The elements in α show
a strong correlation with the testing data in Fig. 6, where
the lowest coefficient of determination R2 is 0.9 and the
biggest root mean square error (RMSE) is 0.5 deg. These
30 elements are 5 sets of Bézier coefficient that induce
qd(t). The biggest RMSE error of qd(t) between the control
policies and optimization is 0.4 deg, where the position
tracking error in experiments is 5 deg on average. The control
policies are subsequently evaluated by tracking a target
velocity in Fig. 7. The three methods give consistent results
indicating that the supervised learning approach proposed in
this paper is not limited to a certain method. Small speed
tracking error comes from a low-level feedback controller.

B. Transition Policy

The fitting quality of the transition policy is deteriorated
because the features are extracted from a reduced order
model in Section V-B, where the biggest RMSE is 8 deg.
Due to page limitations, more discussion will be included
in a journal paper. The control policies are analyzed by
simulating from the three largest initial state perturbations in
the testing dataset {δθ = −15 deg, δθ̇ = 34 deg /s, δq̇swLA =
−114 deg /s}, shown in Fig. 8. The three-step optimization
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Fig. 8: (a) has 15 deg initial error on θ. (b) has 34 deg /s
error on θ̇. (c) has 114 deg /s error on qswLA. The transition
policy takes at most one more step than the gaits from
optimization to recover from these initial errors.
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gives optimal controllers that converge within three steps.
The control policy learned from the training set takes at most
one more step to recover.

The transition policy is compared with the speed regula-
tion policy through a perturbation rejection test. The push
force is 200 N in one step (0.35 s), shown in Fig. 9. The
transition policy converges back to the target velocity faster
and with less overshoot.

C. Terrain Policy

Since the training set includes gaits that function correctly
for sloped ground, the terrain adaption policy improves speed
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Fig. 10: The terrain adaption policy chooses a controller
based on the current velocity and terrain height, which
gives a more consistent speed tracking result than the speed
regulation policy. The slope is ±10 deg.

regulation on both uphill and downhill walking. In Fig. 10,
both the speed regulation policy and terrain adaption policy
are applied to walking downhill and uphill. The 10 degree
slope is the steepest that the speed regulation policy can
handle, though it gains considerable speed going downhill.
In contrast, the terrain adaption policy maintains roughly the
same velocity throughout.

VIII. EXPERIMENTS AND DISCUSSION

For simplicity, the supervised learning policies presented
in Sections III - VII concern the planar model of MARLO.
The control polices are augmented with a lateral controller
as in [20], [33] for implementation on the physical 3D robot.
Controllers for speed regulation were presented in [20]. The
new experiments for this paper are numbers 3 - 11 in Table II.

A. Speed Regulation and Transition

To understand the utility of including the transition gaits
in the learning sets, a first control policy is designed using
only periodic gaits (see Section IV). The asymptotic stability
of the closed-loop system is assured with a foot placement
controller given in [20], [33]. A second policy is then
designed using the same set of periodic gaits augmented with
transitions (see Section V), no extra controller is needed.
Transition gaits represent transient conditions that have been
designed to respect the physical limitations of the robot, and
hence the resulting control policy is better able to avoid foot
slippage during transients than the policy built on steady-
state (periodic) walking. This is demonstrated by comparing
the light push in Experiment 2 to the much stronger kick in
Experiment 3.

B. Sagittal Terrain Adaptation

Experiment 1 uses the speed controller, without transitions,
discussed above. At the end of Experiment 1, MARLO
encounters a 7 deg upward slope, slips, and falls. A new
policy is designed that focuses on ground slope changes
(see Section VI-B.1), and is used in Experiments 4 and 5.
Experiment 4 demonstrates the robot walking down a long,
22 deg, steep slope. The average walking speed is about



TABLE II: Experiment Videos

Number Gait Policy Experiment Link

1 Speed Regulation [20] A Long Walk https://youtu.be/eSllkIptlK0

2 Speed Regulation [20] Light Push https://youtu.be/iOltRR0RqiM

3 Transition Kick MARLO https://youtu.be/YXJQJtcXX4E

4 Sagittal Terrain Walking Down 22 Degree Slope https://youtu.be/gHpXTmyG4mE

5 Sagittal Terrain Random Terrain https://youtu.be/iW9SWPQmYh0

6 Sagittal Terrain Wave Field (First Attempt) https://youtu.be/YErF0cyPI-g

7 Lateral Terrain Practice for the Wave Field https://youtu.be/vEQa1e7lzjQ

8 Lateral Terrain Wave Field (Second Attempt) https://youtu.be/TDFz_0Avc2A

9 A Unified Policy Walking https://youtu.be/xPHMgFiSeu0

10 A Unified Policy Pushing, Random Terrain https://youtu.be/VovWti_wKRU

11 A Unified Policy Walking in the Forest https://youtu.be/uYD99f01aek

0.2 m/s; the safety gantry gets stuck at several points, keeping
the average speed quite low. Walking up the slope has not
been demonstrated because pushing the gantry up a steep
hill is impossible. Walking down is often more challenging
because the robot will gain speed from gravity. Even though
the control policy was designed for constant slopes, in
Experiment 5 the robot is challenged to walk indoors over
randomly varying terrain. In these experiments, the ground
slope is estimated by relative foot height during double
support, which is one of the features used in determining
the control policy for the next step. If the terrain changes
dramatically over a step, a camera is needed to preview the
terrain and this information must be added to the feature set
during supervised learning.

C. Lateral Terrain Adaptation

Without a camera, and using only relative foot height
information in double support, it is not possible to distinguish
between a slope in the sagittal direction, the lateral direction,
or a combination. Using the same control policy as in
Experiments 4 and 5, the robot was taken to the Wave Field
on the University of Michigan Campus; see Experiment 6.
The most frequent failure mode was the robot’s swing leg
hitting the ground prematurely because, when moving the
leg laterally, it assumed the slope was zero. A new policy
was designed under the assumption the relative changes in
foot height are due to a lateral slope only (in the sagittal
direction, the ground is assumed flat); see Section VI-B.2.
Experiment 7 tests the control policy indoors and Experiment
8 is performed on the Wave Field. In the latter, the robot is
able to make two complete passes in the troughs between
the crests, whereas in Experiment 6, it never made it more
than half way down any one of them.

D. Unified Policy

Here, the control policy is designed using periodic gaits,
transition gaits among a subset of them, and terrain slope
changes in the sagittal direction. In Experiment 9, MARLO
walks outdoors at speeds varying from standing to 0.5 m/s.
In Experiment 10, the robot traverses a pile of rubble in

the laboratory. When taken to a a section of woods on the
campus in Experiment 11, the robot walks down sloped
terrain, covered with branches, and encounters stumps. After
about five minutes, MARLO trips on a lateral slope because
of the same failure mechanism in Experiment 6: when
moving the swing leg laterally, premature impact with the
ground occurs.

IX. CONCLUSIONS AND NEXT STEPS

Supervised learning was used to design control polices for
the complete planar model of an underactuated 3D bipedal
robot. The training and testing sets included periodic gaits on
flat and sloped ground and transition gaits. The control policy
designed with supervised learning increased the robustness
of the robot’s gait in comparison to previous control solutions
that focused on asymptotically stable walking at a constant
speed [34], or a solution built by interpolating controllers
from a library of such gaits.

Part of the enhanced robustness comes from including
transient control solutions in the training set. These provide
a means for returning to a target speed after a perturbation,
while satisfying constraints on peak torque, friction cone and
motor speed. Additional robustness comes from including
gaits that functioned correctly on sloped ground. The super-
vised learning formulation allowed a collection of behaviors
to be addressed in a unified manner, when the feature set was
expanded to include initial states of a reduced-order model,
exogenous command signals, and terrain information gleaned
from sensors.

Future work includes extending the method to address the
full 3D dynamic model of the robot. This was not done here
because, when the work was initiated, the fast optimizer of
Ames’s group was not yet available [27]. A camera has been
purchased for the robot to allow more sophisticated terrain
information to be included in the feature set. To date, a very
small number of controllers has been used in the training sets.
It will be interesting to explore the utility of including many
more periodic and aperiodic solutions for different dynamic
behaviors. When this advance is taken, it is worthwhile to
use automatic feature extraction tools.

https://youtu.be/eSllkIptlK0
https://youtu.be/iOltRR0RqiM
https://youtu.be/YXJQJtcXX4E
https://youtu.be/gHpXTmyG4mE
https://youtu.be/iW9SWPQmYh0
https://youtu.be/YErF0cyPI-g
https://youtu.be/vEQa1e7lzjQ
https://youtu.be/TDFz_0Avc2A
https://youtu.be/xPHMgFiSeu0
https://youtu.be/VovWti_wKRU
https://youtu.be/uYD99f01aek
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