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Symbol

nmod p
SISO
MIMO
BIBO
GCD

LCP

00

SYMBOL TABLE

Meaning

the natural numbers: {1, 2, 3,... }

the rational numbers

an n X m matrix with real-valued entries
the nonnegative integers: {0, 1, 2,... }
for all

n modulo p: p x (fractional portion of n/p)
Single-Input-Single-Output
Multiple-Input-Multiple-Output
Bounded-Input-Bounded-Output
Greatest Common Divisor

Least Common Multiple

Least Common Period

the LCP of a multirate system

the fundamental period of a multirate system
Th

transpose of the matrix A

i,j th element of the matrix A

the n X n identity matrix

an m X m matrix of zeroes

an m X n matrix of zeroes

end of theorem, procedure, example, etc.



CHAPTER 1

INTRODUCTION

Multirate discrete-time systems, systems in which sampling and discrete-time calculations
are performed at two or more rates, arise in a variety of applications. The multirate character of the
system may be intrinsic, due to digital subsystems operating at multiple rates. Alternately, the
multirate nature of the system may be induced by the addition of sensors, actuators, and discrete-
time control structures at different rates for the purposes of economy or performance. Two
practical examples of designs resulting in a multirate system are an idle speed control for an internal
combustion engine (Powell et al., 1987) and a quadruplex videotape recorder (Rao, 1979).

Previous studies of multirate systems began with the study of multirate sampled-data
systems by Kranc (1957), which employed transfer function techniques later improved by Coffey
and Williams (1966) and Boykin and Frazier (1975). These works presented complicated methods
which served the purpose of assessing the stability of a.system composed of continuous-time
subsystems and samplers at multiple rates. Kalman and Bertram (1959) used state space methods
to study sampling systems of great generality. Although Kalman and Bertram demonstrated that a
state space representation exists for almost any hybrid system incorporating a variety of sampling
schemes, the generality of the systems involved precluded the presentation of systematic and
efficient methods of obtaining a state space representation for a given, fixed system. Meyer and
Burrus (1975) introduced the concept of block processing to perform time and frequency domain
analyses on individual single-rate, periodic time-varying and multirate (inputs at one rate, outputs
at another) digital filters. Recently, Araki and Yamamoto (1986) applied a mutation of block
processing to the analysis of a continuous-time system with outputs sampled at multiple rates and
fed back through a constant gain matrix to the inputs, which were sampled and held at multiple
rates. Currently, efficient techniques of analysis and design algorithms for multirate systems
composed of both continuous-time and discrete-time subsystems are not available.

Inspired by Kalman and Bertram (1959) and beginning with methods akin to the block
processing used by Meyer and Burrus (1975), this work presents a systematic, efficient method of
obtaining a “time-invariant” representation, referred to as the T-expanded representation, of a
class of composite multirate systems containing both continuous-time and discrete-time
subsystems. In recent years, results have appeared in the literature pertaining to periodic discrete-



time systems, with multirate systems cited as an (unqualified) example of such a system. In
response, this work proposes a procedure for obtaining a periodic discrete-time representation,
termed the M-varying representation, of a multirate system. Analysis of multirate systems via
the T-expanded representation by time-invariant techniques is shown to reveal important
characteristics of a certain M-varying representation of the multirate system. Examples of the
design of controllers for multirate systems by conventional analytical techniques, with minor
modifications, are presented. The variable component method is applied to multirate systems to
provide an iterative means of building composite controllers.

Chapter 2 develops a notation suited to T-expanded representations and details procedures
useful in obtaining a T-expanded representation. The notation introduced in Chapter 2 is used
throughout the remaining chapters and provides a means of discussing a variety of concepts related
to multirate systems in a concise manner. In addition to describing the behavior of a multirate
system over lengths of time other than its period, the periodic representations developed in
Chapter 3 provide a theoretical tool for deducing the interperiod behavior of a multirate system
from its T-expanded representation. Chapter 4 discusses the stability, controllability,
rcconstructibility, stabilizability, and detectability of multirate systems and emphasizes the
properties which a periodic representation of a multirate system inherits from the T-expanded
representation of that system. Chapter 5 applies the developments of Chapters 2, 3, and 4 to the
analytical design of multirate controllers. A time-invariant technique, the variable component
method, is applied to multirate systems in Chapter 6 via the T-expanded representation. The
material in Chapter 5 and Chapter 6 serves as an example of the manner in which results for
standard discrete-time systems can be extended to multirate systems.



CHAPTER 2

TIME-INVARIANT REPRESENTATION OF MULTIRATE SYSTEMS

This chapter presents a systematic method for obtaining a single time-invariant state space
or transfer function representation, called a T-expanded representation, for members of a class of
composite systems which employ sampling at multiple rates. This method first converts the block
diagram of a multirate system into a structurally similar block diagram of time-invariant discrete-
time subsystems through state space calculations easily performed using any software package
capable of discretization of continuous-time systems at a single rate and matrix multiplication,
addition, and composition. The reduction of this single-rate block diagram to a state variable
description or transfer function matrix is then a standard problem.

2.1 Systems Admissible for Analysis

The methods to be developed will apply to a general class of systems with multiple
sampling rates. To simplify the exposition, the multirate systems considered, unless otherwise
noted, will be as follows:

Assumption 2.1:

a. The ratio of any two sampling periods in the system is a rational number.

b. All samplers are in synchronism at t = 0 and are followed by zero-order
holds of the same period

c. Discrete-time subsystems are envisioned as sampling their inputs and
producing zero-order hold-type outputs (in synchronism with the samplers in part
(b) above att =0.)

d. The outputs of zero-order holds as functions of time are continuous from
the right at their associated sampling instants.

e. The entire system can be partitioned into subsystems which are either
discrete-time or continuous-time subsystems with only samplers, summers, and
branch points (a point on the block diagram where a line branches into two or more
lines) connecting these subsystems together on the block diagram. In addition, if



there is a path on the block diagram between any output of one of these subsystems
and any input to one of these subsystems, then this path must satisfy one or more
of the following: the path originates at a discrete-time subsystem; the path
terminates at a discrete-time subsystem; the path passes through one or more
samplers.

f. There is no path from (to) any external input (output) of the entire
multirate system to (from) any of the continuous-time subsystems in part (¢) above
which does not pass through a sampler. In addition, there is no direct path from an
external input to an external output of the multirate system which does not pass
through a sampler. These properties will be loosely stated in the following as “the
external inputs and outputs of the multirate system are sampled.”

g. The subsystems in part (¢) above are linear, time invariant, and causal,

and may be MIMO.
*e0

Assumption 2.1(a) is the necessary and sufficient condition for a multirate system
composed of time-invariant subsystems to have a finite period. Satisfaction of Assumption 2.1(e)
is possible for essentially any connection of continuous-time and discrete-time elements and may
entail minor block diagram manipulations, to be detailed later in this section. If a system does not
satisfy part (f), the introduction of samplers into the block diagram by modelling judgments may
serve to approximate the actual system adequately and satisfy Assumption 2.1(f). Assumption
2.1(g) will eventually be relaxed to include time-varying periodic discrete-time subsystems. In
summary, the essential assumptions to keep in mind are that all external signals (inputs/outputs) are
sampled and held and that the ratio of any two sampling rates in the system is a rational number.

Although the term “linear multirate discrete composite system” more aptly describes a
system satisfying Assumption 2.1, multirate system will denote such a system hereafter.

Example 2.1:
The multirate system shown in Figure 2.1 appears to violate Assumption
2.1(e) due to the direct link between the two continuous-time subsystems ¢; and
©2; y1(s) passes through a summer and a branch point, but not through a sampler,
before reaching us(s). Let 61 and 0, be represented by the transfer function
relationships

[YI(S)] _ [Nl(s)/Dl(s)

u3(S)]
ya(s)]  LNa(s)/Di(s) '

]ul(S) and y4(s) = [N3(s)/D2(s) N4(s)/Dz(S)][
u4(s)



Figure 2.1. A multirate system.

Using u3(s) = y1(s) + ux(s) and y3(s) = us(s), it follows that

y2(s) Na(s)/Da(s) 0 0 uy(s)

y3(s) | = Ni(s)/Di(s) 1 0 uy(s) |.

ya(s) N3(s)N1(s)/D2(s)D1(s) N3(s)/Da(s) Na(s)/Da(s) || uy(s)
Thus, the multirate system shown in Figure 2.1 may be partitioned by considering
the area inside the dashed line in Figure 2.1 as a single continuous-time subsystem,

03, as shown in Figure 2.2. The multirate system in Figure 2.2 satisfies
Assumption 2.1(e).

I X X
/w0 o y3(s) —
— T WO o, [y Ty |
T2 T5
—p

uy(s) f)’z(s)
AN |
T,

Figure 2.2. The system in Figure 2.1 redrawn.

Example 2.1 provides a clue to a technique for partitioning a multirate system so that
Assumption 2.1(e) is satisfied. If an initial partitioning of the system into continuous-time and
discrete-time subsystems (connected by only summers, samplers, and branch points) does not
satisfy Assumption 2.1(e), then by elimination a path must be connecting a continuous-time
subsystem, 0y, to a continuous-time subsystem, G, which may pass through summers and branch
points, but does not pass through any samplers (] may be the same subsystem as 65.) Define a
new continuous-time subsystem, 03, consisting of the subsystems 6; and 0 and their individual

5



inputs and outputs (uy,u4,y2, and y4 in Example 2.1,) except for the offending pair in question (y;
and u3 in Example 2.1.) The subsystem 03 must also be provided with additional inputs (uz in
Example 2.1) representing other inputs to any summers the path passes through and additional
outputs (y3 in Example 2.1) representing other outputs of any branch points the path passes
through. This process can be repeated until the entire multirate system satisfies Assumption
2.1(e).

2.2 The Least Common Period of a Multirate System

Given a set of N nonzero sampling periods {Tj,...,Tn}, assume that the ratio of any two
of these sampling periods is a rational number. Consider the ratio of each sampling period to a
particular sampling period, say T;:

Ty 115 .
A= -1\,
T Q! N

for some 133, qi; € N, where the Greatest Common Divisor (see Niven, 1980) of ry; and qiiis 1
for each i. Let R; be the Least Common Multiple of the set {ry;:i = 1,...,N}, T; = Ty/Ry, and

_quR; .
Pii= TR i=1,...,N.

Note that p;; € N because Ry/rj; € N. Then

Tiqui _ (T R .

The process of obtaining T; and the py;'s will be referred to as normalization with respect to Tj.
Theorem 2.1:
If the sampling periods are normalized with respect to Ti (giving T; = pyiTk,

i = 1,...,N) and again with respect to Tj (giving T; = p;itj, i = 1,...,N,) then 1 = Tj

and py; = pji, i = 1,...,N. (See proof in the Appendix.)

(X XS
Thus, the sampling periods can be uniquely represented as T; = p;t, i = 1,...,N, regardless of the
particular sampling period used in the normalization process. Each sampling period in the system
is a multiple of t; T will be referred to as the fundamental period of the multirate system.

Since the subsystems in the multirate system are time invariant, the periodicity of the entire
system will be established if it can be shown that the samplers, which are in synchronism at t =0,
are again in synchronism at some time t = T. For a system with sampling periods {T1,.... TN}, let
P=LCM {p;:i=1,..,N}. Attimest=mPt, me Z*, all samplers in the system will sample;

mPT mP

—_—=—c 7t fOl' i= 19""N‘
i Pi



Thus, the multirate system is periodic with period T = Pt; in fact, this is the Least Common Period
(LCP) of the multirate system.
Theorem 2.2:
T=1(LCM {p;:i=1,.,N})=Ptis the shortest length of time over
which a multirate system with sampling periods {Tj,...,Tn} is periodic. (See
proof in the Appendix.)
*o 0
In the remainder of this work, the symbols T, P, <, and p; will be implicitly associated with the
meanings assigned to them above. A procedure is now given for normalizing a set of sampling
periods {T1,...,Tn} as T; = p;t and finding their LCP.
Procedure 2.1: |
a. Arbitrarily choose a sampling period Ty from the set and express the
sampling periods as T; = Tkqyi/rxi , i = 1,..,N , where Jki-Tkxi € N and
GCD {qxi,1xi} = 1 for each i.
b. Set Ry =LCM {ry;:i=1,...,N}
c. Set T = Ti/Rg and p; = qi(Ri/ri), i = 1,...,N.
d. SetP=LCM {p;:i=1,..,N} and T = Pr.

XX
The following result will be the key, in Section 2.8, for establishing a certain modularity
property of multirate systems.
Theorem 2.3:

Let the LCP associated with {Tj,...,Tx} be T(k) and that associated with
{T1,....Tk,Tk+1} be T(k+1). Then T(k+1)/T(k) € N. (See proofin the
Appendix.)

I XX 4

In words, the effect of adding a new sampling period to a multirate system is to increase the LCP
by an integer multiple.

Example 2.2: _
Suppose N = 4 and the sampling periods are: T; = 3/5 sec, T, = 1/7 sec,
T3 =1/3 sec, and T4 = 300 msec. If the periods are normalized with respect to T;,
Procedure 2.1 yields

Ty = (1/1)Ty, T2 = (5/21)Ty, T3 = (5/9)T1, T4 = (1/2)T;
R;=LCM {1,21,9,2} =7x3x3x2=126

T=T1/R; =1/210 sec



p1 = 126(1/1) = 126, py = 126(5/21) =30, p3 = 126(5/9) =70, ps = 126(1/2) = 63
P=LCM {126,30,70,63} = 126 x 5 x 7 = 4410

T =4410(1/210) = 21 sec
The reader may wish to verify that pj,...,ps,T,P, and T are invariant under

normalization with respect to T, T3, or Ty.
XX/

2.3 Expansion of Discrete-Time Signals and Systems

The members of the class of multirate systems under consideration are time varying, but
periodic with period T. Knowledge of the state of such a multirate system at time t = 0 and the
inputs to the system over the interval of time [0,T) is sufficient to determine its state at time t = T
and its outputs over the interval [0,T). By the periodicity of such a multirate system, the manner in
which its state at time t = nT and its output over [(n-1)T,nT) are determined from its state at time
t=(n-1)T and input over [(n-1)T,nT) is identical for each n € N. Thus, the behavior of such a
multirate system over all time is time invariant in terms of the description of the system's behavior
over one period. The price paid for this time-invariant description is that all input values to the
system and all output values from the system during one period must be accounted for. This
entails expanding a single input line into many fictitious inputs which represent its values over the
period.

The result of collecting all values of a discrete-time signal over amounts of time of length L
will be referred to as the L-expanded version of that signal. The signals in question may be
vector signals with individual components at different rates. To prevent the number of components
in the L-expanded version of a signal from changing with time, L must be an integer multiple of the
period of each component of the signal. Discrete-time signals will be denoted by lower-case letters
and the same letter capitalized will represent their expanded versions.

At this point it is convenient to introduce the concept of a signal bundle. A signal bundle
is a vector of discrete-time signals at the same rate which may be a portion of a larger vector of

signals but is distinguished in some manner from the rest of the vector. The block diagram of the
system primarily determines the grouping of signals into bundles. Before applying the methods
presented here, certain manipulations will be performed on the block diagram of the system. The °
lines drawn as inputs or outputs of subsystems in this modified block diagram will each be
designated as a bundle of signals; each line may actually represent an entire vector of signals. Later
developments will reveal the utility of using bundles of signals and properly explain which signals
to place in bundles.



Let L/T1 =1; € N. The L-expanded version of a bundle of signals u(nT;), n = 0,1,... is
the vector of 1; blocks U(kL):
u(kl; Ty)

u((k11+ 1 )Tl)

UKL) = ,k=0,1,..

u((kl;+1;-1)Ty)
U(kL) will be thought of as a bundle of signals with rate 1/L. The set {U(kL) : k = 0,1,...}
contains all of the values in {u(nT;) : n = 0,1,...}, so the expanded version retains all the
information in the original signal. Capital letters will denote expanded versions of signals
hereafter, and the capitalized portion of an expanded signal's argument (L in this case, but T and M
later on) will be a real number which is an integer multiple of T and denotes the interval of time
over which expansion has been performed. As a slight abuse of notation, let u(kL) = u(kl; Ty).
Then the L-expanded version of u(nT;) can be written more conveniently as
u(kL)
UL = u(kL.+T1)

u(kL+L-T;)

The expanded version of a signal may be expanded again to yield an expanded signal. The
procedure for expanding an expanded signal parallels that for expanding a normal signal, with
expanded bundles treated as bundles. As an example, if M/L = m € N, then the M-expanded
version of U(kL) coincides with the M-expanded version of u(nT;) and is given by

U(mL) u(jml; Ty)

U((m+1)L) u((jml;+1)Ty)

UGM) = ,j=0,1,...

U(Gm+m-1)L) u((jml;+ml;-1)Ty)
To see the equivalence, note that the first component of U(jmL) is u(Gm)1; T;) = u(jml; Ty) and the
last component of U((m+m-1)L) is u(((jm+m-1)1;41;-1)T;) = u((jml;+mly-1)T;). The
equivalence of the M-expanded version of a signal and the M-expanded version of the L-expanded
version of that signal obviates the need for additional notation to distinguish between the two.

Let y be a vector of signals
y1

y2

¥q
where each y; is a bundle of signals with period T;. If L is an integer multiple of each T; (for



example, L =LCP {Ty,...,T,},) then the L-expanded version of y is

Y1(kL)

vy =| Y| k=0,

Yq(kL)
where each Yj(kL) is the L-expanded version of y;. Although Y(kL) consists of many of the
bundles y;, Y(kL) will be thought of as being composed of the q bundles Y;(kL). Note that each
bundle of signals has been expanded in place. Thus, the boundaries between bundles have been
maintained.

Repeated iteration of the equations governing a simple discrete-time system reveals the
behavior of such a system over units of time of length L and forms a basis for determining the
behavior of more complex systems over units of time of length L. Consider the single-rate
subsystem with realization (A,B,C,D) and period T;, where u(nT;) and y(nT;) are each a single
bundle of signals:

x((n+1)Ty) = A x(nT;) + B u(nT)
,n=0,1,.... 2.1
y(nT;) = C x(nT;) + D u(nT;)

Since iteration of a discrete-time state equation can only be performed an integer number of times,
let L be chosen so that L/T; =1j € N. Note that x(kL+LT;) = x((k+1)L). Expressions for

x((k+1)L) and Y(kL) in terms of x(kL) and U(kL) are desired. By direct computation,

x(kL+T;) = A x(kL) + B u(kL)
y(kL) = Cx(kL) + D u(kL)
x(kL+2T;) = A x(kL+T;) + B u(kL+T;)
= A2 x(kL) + AB u(kL) + B u(kL+T;)

y(kL+T;) = C x(kL+T;) + D u(kL+T;)
=CA x(kL) + CB u(kL) + D u(kL+T;)

I
x((k+1)L) = x(KL+LT;) = Ai x(kL) + O, [AG™B u(kL+(m-1)T;)]

m=1

I-1
yL+(-1)Ty) = CA%D x(kL) + D u(kL+(;-1)Ty) + 9, CAG™ DB y(kL+(m-1)T;) .
m=1

After placing these equations in matrix form and using the L-expanded versions of u and vy,

10



x((k+1)L) = Alix(kL) + [ A4DB AGPB ... AB B JUKL)

(2.2)
= C - — D 0 0 ... 0T
CA CB D O ... 0
YkL)=| CA? |x(kL)+ CAB CB D ... 0 U(KL) .
| CcAGD_| | cA%2B ... ... CB D

These equations have the form of a time-invariant discrete-time system with period L:
x((k+1)L) = A x(kL) + B, U(KL)
Y(kL) = Ce x(kL) + D U(KL)

k=0,1,...

The matrices (Ae,Be,Ce,De) will be referred to as the single-bundle L-expanded
representation of (2.1), where “single-bundle” refers to the single-bundle nature of the inputs
and outputs. Since in this form the system operates on blocks of input values and produces blocks
of output values, the concepts employed above are often called block processing in the literature;
see Meyer and Burrus (1975) and Burrus (1972).

The L-expanded representation of a single-rate discrete-time system with inputs and outputs
that are vectors of bundles may be derived using manipulations performed in finding single-bundle
L-expanded representations. Later sections will show that multirate discrete-time systems and
multirate sampled continuous-time systems can be expressed as single-rate discrete-time systems,
so the qualifier “single-rate” above does not restrict the applicability of the results in this section.

Letu and y be vectors
up Y1
u2 2
u=| ~|and y= y ;
Un ¥Yq

where each uj, j = 1,...,m and each y;, i = 1,...,q are bundles of signals, and all bundles are at the
same rate, 1/T;. Consider a single-rate discrete-time system at rate 1/T;j:
x((m+1)T) = A x(mT;) + B u(mT))
,m=0,1,.... 2.3)
y(mT;) = Cx(mT;) + D u(mT;))
Let L/Tj € Nand B, C, and D be partitioned to conform with the bundles in u and y:

C1 di; ... dim
B=[by by ... byl], C=| : |, andD=| : :
q dgt - dgm

11



For each j e {1,..m} andie {1,..q]}, let (Ae;bje,Cie.dije) be the single-bundle L-expanded
representation of (A,b;,c;,d;j). By superposition,

x((k+1)L) = A x(kL) + B U(kL)
Y(kL) = Ce x(kL) + D U(KL),

where

Cle d11e cee dlme

Be=[b1e bze ... bme], Ce=| : , and D, = : : ,

Cqe dqle oo dqme
and Y(kL), U(kL) are the L-expanded versions of y and u. In other words, (Ae,Be,Ce,De) is the
L-expanded representation of (2.3). B., C., and D, are partitioned conformal with the
expanded bundles composing U(kL) and Y(KL). As in the case of signals, L-expanded
representations may be expanded again by thinking of (Ae,Be,Ce,De) as a realization for a single-
rate discrete-time system with rate 1/L.

For a system where the inputs and outputs have multiple bundles, finding (A¢,Be,Ce,De)
by merely using the same formulas as for the single-bundle expansion would be much easier, but
this results in values over time L of each signal bundle being widely scattered throughout U(kL)
and Y(kL). By performing the expansion as shown, values over time L of each particular signal
bundle are adjacent in U(kL) and Y(kL). This greatly facilitates the connection of expanded
systems. The partition of U(kL) and Y(kL) into expanded bundles in this form of system
expansion reflects the designation of bundles as input and output lines on a block diagram.

The expanded representation possesses many of the characteristics of the original
realization. It is easily verified that the number of states, stability, reachability, and observability
of the original realization are all preserved by expansion. A feature of expanded representations
that complicates certain control applications is that for a system with no direct feedthrough,
(A,B,C,0), the expanded representation will have D, nonzero in general. Computationally,
expansion involves only multiplication, composition, and storage of matrices. For large 1;, storing
the distended matrices of the expanded representation may present difficulties: B, and C. each
grow linearly with 1;, and the size of D, increases as the square of 1;.

The expanded representation of a subsystem represents a step toward the goal of finding a
time-invariant description of a multirate system. To complete the process of finding a time-
invariant description of a multirate system, the expanded representation of multirate sampled
continuous-time systems will be found, and methods for combining expanded representations will
be developed.
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2.4 Expanding Multirate Sampled Continuous-Time Systems

To find the expanded representation of a multirate sampled continuous-time system, it must
be discretized first. To perform discretization, each input or output of the system must be sampled
at only one rate. Inserting additional samplers that do not alter the behavior of the system at
strategic locations in the block diagram of the multirate system facilitates discretization of the
continuous-time subsystems and will also simplify the operations to be performed in Section 2.5.
Before discretizing a continuous-time system, it is assumed that the following procedure is
followed:

Procedure 2.2:

Assume that the multirate system in question satisfies Assumption 2.1 and that Procedure
2.1 has been performed. The subsystems referred to in the following steps are the subsystems
which result from the partitioning required by Assumption 2.1(e).

a. Insert a sample and hold on each input and output of every discrete-time
subsystem in the block diagram (points b,d,e,g, and i in Figure 2.3); its rate is that

of the respective output or input of that subsystem.

b. Refer to both an output of a continuous-time subsystem and an input to

the entire multirate system as a (system) continuous output point. For each

continuous output point in the multirate system that is not immediately followed by

a sampler (points a and c in Figure 2.3,) let {T1,...,T;} be the set of periods of the

first sampler encountered on each path leaving that continuous output point. Insert

into the block diagram a sample and hold with period

Ty=1(GCD {p1,....pj}) = psT
immediately after that continuous output point.

c. Refer to both an input to a continuous-time subsystem and an output of
the entire multirate system as a (system) continuous input point. For each
continuous input point in the multirate system that is not immediately preceded by a
sampler (points h and j in Figure 2.3,) let {Ty,...,Tj} be the set of periods of the
last sampler encountered on each path leading to that continuous input point. Insert
into the block diagram a sample and hold with period

Ty=t(GCD {p1,....p;}) = pst
immediately before that continuous input point.
d. Refer to an output of a summer not in one of the subsystems composing
the multirate system (points f, g, and j in Figure 2.3) as a (connection)
continuous output point. Repeat the actions performed for system continuous
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output points in step (b) for each connection continuous output point in the multirate
system.
e. Refer to an input of a branch point not in one of the subsystems
composing the multirate system (points a, e, and f in Figure 2.3) as a
(connection) continuous input point. Repeat the actions performed for
system continuous input points in step (c) for each connection continuous input
point in the multirate system.
(X X/
The satisfaction of parts () and (f) of Assumption 2.1 assures the existence of the rates
required in parts (b) and (c) of Procedure 2.2. All possible sources/destinations of signals in the
multirate system are thus followed/preceded by samplers; consequently, the rates required in parts
(d) and (e) of Procedure 2.2 will exist. The application of Procedure 2.2 does not alter the
behavior of the system; each added sampler updates at least at the times that the samplers feeding
from/to it update. By definition of Ty (see parts (b) and (c) of Procedure 2.2,) if a sampler with
period Tj, i € {1,...,j}, samples, the sampler with period Tj also samples; t=nT;, n e Z+ implies
t/Ty = np;t/pyt = n(p/py) € Z*.

/
Ts
o ’/1‘ —» c
T4
o—o—q
a
—o—> d
b Dl ° —o—P
e h

Figure 2.3. C; and C; are continuous-time subsystems, and
D; and D; are discrete-time subsystems.

Example 2.3:
Let D; and D; in Figure 2.3 be single rate with rates 1/T; and 1/T5,
respectively. The application of Procedure 2.2 to the multirate system in Figure 2.3
proceeds as follows:
a: Insert samplers of period Ty, = Tq = T = T; at points b,d, and e and
samplers of period Ty = T; = T, at points g and i.
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b: Insert a sampler of period T, = ©(GCD {p4,pp}) at point a and a sampler
of period T, =1(GCD (ps,p;}) at point c.
c: Insert a sampler of period T;=t(GCD {pe,p;}) at point j and a sampler
of period Ty, = T, at point h. :
d: Insert a sampler of period Tf = T©(GCD {ps,p,}) at point f. Points g and
j are also connection continuous output points, but samplers are already present at
these points.
e: Points a.e, and f are connection continuous input points, but samplers
are already present at these points.
*o0

After applying Procedure 2.2, each input and output line of a continuous-time subsystem
on the block diagram should be designated as a signal bundle. The last sampler an input bundle
passes through or the first sampler an output bundle passes through determines the rate assigned to
that bundle during the discretization process.

Discretization of a multirate sampled continuous-time system is also considered in Araki
and Yamamoto (1986), from a perspective quite different from the one taken here; Araki and
Yamamoto (1986) employ expanded states, as well as expanded signals.

Let the continuous-time system

x=Ax+Bu, y=Cx+Du 2.4)
have the input
u;
u2
u= ,
Um

where each u; is a signal bundle sampled and held at rate 1/T;,i = 1,...,m, and B is partitioned to
be compatible with u: B =[b; b, ... by]. Lety be partitioned into q bundles, with each bundle Y;
sampled with period T}, j=1,...,q; let C and D be partitioned accordingly:

M ¢1 dig ... dim

C
y=|"?|, c=| ?|, and D= :
yq cq dql R dqu‘l

To discretize this system, let L = LCP {Tj,..,Tm, T1,..., Tq}, x(kL) € R™ denote the state of (2.4)
at time kL, and Y(kL) and U(kL) denote the L-expanded versions of yand u. Let

si="T/T;, §=T/T, ®(w)=e", and [(w) = [ eA™gt .
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Then a straightforward but tedious calculation gives
x((k+1)L) = E x(kL) + F U(kL)

(2.5)
Y(kL) =G x(kL) + HU(KL),

where
1. E=®(L).

2. F=[f; f; ... fp], partitioned compatible with U(kL), where
fi = [@(Ti(si-1))I(Tb; | ... | O(THI(Tb; I T(Tb;], i = 1,...,m.

3.
- c: -
g1 !
g2, . ¢ @(T) .
G =| ~ |is partitioned as Y(kL), where gj= ) »J = 1,..q.
& | c®(T(3-1))_
4.
hi1 ... him
H=
hql coe hqrn

is partitioned according to Y(kL) and U(kL), and each subblock hj,i=1,.,q,j=1,.,m,is
composed of blocks (hiprv, T=1,...5, v= 1,...,s;, each having the same dimension as dj; and
where

(0, if (-1)T; < (v-1)T

(hijrv =< dj + I ((r-1DT; - (v-1)Tyb;, if (v-DT; < (r-DT; < vT; .

L a®(@-DT; - vTPL(T)b; , if vT; < (r-1)T

From (2.5) and points 1 through 4 above, the discretized multirate sampled continuous-time
subsystem is a time-invariant single-rate discrete-time system with inputs and outputs that are
vectors of L-expanded bundles. Thus, the methods in Section 2.3 apply to further expansion of
the discretized continuous-time system.

Despite the formidable appearance of the discretized equations, the required calculations can
be performed using any software package capable of discretizing a continuous-time state equation
at a single rate. The quantity I'(w)B is the “B” matrix resulting from discretizing (A,B) at rate 1/w.
The required arguments of ®(.) and I'(.) are all integer multiples of 7. For some values of i, 3 T
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and v, the arguments of ®(.) and I'(.) will coincide, so not every occurrence of ®(.) and I'(.) in the
above equations entails an additional calculation.

A modification to Procedure 2.2, which greatly simplifies the discretization of multirate
sampled continuous-time subsystems, is to place sample/holds of period T on the block diagram at
the inputs and outputs of each continuous-time subsystem, leaving Procedure 2.2 otherwise
unchanged. These added samplers leave the behavior of the system unaltered for the same reason
as that given following Procedure 2.2. This modification has the advantage that discretization can
be carried out uniformly at rate T, but it may result in inputs and outputs of unacceptably large
dimensions after expansion.

Example 2.4:
Let the continuous-time subsystem in Figure 2.4 have the state equation

x() = A x(t) + Bu(t)

®) Ci1 d
[Y1 ] = [ 2:| x(t) +[ 1] u(t).
y20)] Le dz
Additional samplers do not need to be added to discretize this system. Following

the steps above, let
®(w) = €A%, and [(w) = [’ eA™Ddt .

Then
» [ u(n(67)) }
x((n+1)67) = B(67) x(n(67)) + [®BT)['(3T)B I'(31)B]
u(n(6t)+37)
and
[ oy | [ oo -4 0 T
y1(n(6TH71) c19(7) di+ciI'(t)B 0
y1(n(61)}+21) c1P(27) : dy+ciI'(27)B 0
y1(n(67)+37) c19(37) ciI'31)B d o(a(6)
yi(n(6t)+41) | =| c1@(@41) |x(67) +| (I BTB  dp+ciI'(T)B [ }
yi(E+57) | | c1®(59) G®2OTGYB di+ciCpB  |LURED+3D
y2(n(67)) €2 d2 0
y2(n(67)+27) c2®@(27) dy+coI'(27)B 0
_yon(6t)rdr) | Ho2P(0)- L ®@(@I'B3TB  dy+cI(T)B

Note that all of the quantities above could be obtained by normal discretization with
periods 7, 27, and 3t. Also, if the modification to Procedure 2.2 noted above were
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used, the resulting discretized system would have 6 inputs and 12 outputs.
(X X/

/. >
/. —P| cont. Y1 1 /
u .
3 Y2A 27

Figure 2.4. A multirate sampled continuous-time subsystem.

2.5 Connection Matrices

The concept of a connection matrix facilitates the interconnection of subsystems whose
inputs and outputs are expanded bundles of signals which pass through summers, samplers, and
branch points between the subsystems. An individual connection matrix serves to connect a signal
bundle at one rate to a signal bundle at another rate after expansion. The form of the connection
matrix depends only on the rates of the bundles being connected and the amount of time over
which the signals were expanded.

Y1

.. /s, "
| B, [—f—————¥ I, [—
1 2

Figure 2.5. A direct connection between subsystems.

Consider a single-rate subsystem, X, with a bundle of r outputs connected directly to a
single-rate subsystem with a bundle of r inputs, Z;, as shown in Figure 2.5. Let L/T; =1,
L/Ta=13, and 1;,1; € N. Since 1; #1; in general, the number of outputs of the L-expanded
description of X; will not equal the number of inputs of the L-expanded description of Z,. The
mechanism which serves to connect Y;(kL) to Ua(kL) is the sampling ¥, performs on its input:

u(kLA(-1)To) = y1(kL+(-DTy) if (-1)T1 < G-1)T2<jTy,

where i € {1,...12} and je {1,...];}. This relationship can be expressed concisely by defining

Q(L.1,1:2), the connection matrix for L-expanded bundles of r signals from period T to period
T, such that U(kL) = Q(L,r,1:2)Y1(kL). Q(L,r,1:2) is an 1l x rl; matrix of I; X 1; r X r blocks,
where the i,jth block is given by

I, if (j-1p1 < (i-1)p2 < jp:

0, , otherwise .

Q(L,r,1:2); = {

Note thatif 1; =1, =y, then Q(L,1,1:2) = I,
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Example 2.5:
Let T = 31, T3 = 51, and L = 30t. Then

100 000
100 000
~10000 0000077 010 000
01000 00000 010 000
00010 00000 001 000
QL.1.2:3)=| 60000 10000 | 20 QAL.1L3:2)=| 555 100
00000 01000 000 100
| 00000 00010_] 000 010
000 010
| 000 001_

o0

A fact which is easily proven by induction is that if M/T; € N and M/T; € N, then for
some m € N, M = mt(LCM (p;,p2}). In words, any M admissible for expanding signals with
periods T; and T, is an integer multiple of the least common period of T; and T,. Let
T(1,2) =t(LCM {p1,p2}). Since Uz(nT(1,2)) = Q(T(1,2),r,1:2)Y1(nT(1,2)), this connection
matrix may be thought of as a discrete-time system with rate 1/T(1,2), input Y1(nT(1,2)), output
U2(nT(1,2)), and representation (0,0,0,Q(T(1,2),r,1:2)). After finding the M-expanded
representation for this system,

U2(kM) = diag[Q(T(1,2),1,1:2),Q(T(1,2),1,1:2),...,Q(T(1,2),1,1:2)] Y1(kM);
Q(T(1,2),r,1:2) appears m times along the diagonal. Thus,
QM,1,1:2) = diag[Q(T(1,2),1,1:2),Q(T(1,2),1,1:2),...,Q(T(1,2),1,1:2)].

This property greatly reduces the effort required to compute and store connection matrices for large
m. In Example 2.5, m equals 2.

Connection matrices can be systematically placed so that a collection of L-expanded
subsystems is connected according to a given block diagram. Since separate inputs and outputs
drawn on a block diagram were defined as distinct bundles of signals, connection matrices can
effect direct connections between subsystems. Under the assumption that Procedure 2.2 has been
applied to the block diagram, rules for placing connection matrices when the bundles of signals
pass through samplers, summers, and branch points between the subsystems are easily stated.

Define a link as any path from one sampler to another on the block diagram which may
pass through summers and branch points but not through subsystems or other samplers. As a
result of applying Procedure 2.2, in the region between the subsystems a sampler follows each
summer and precedes each branch point. Thus, a link passes through at most one summer and one
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branch point. The steps necessary to connect a collection of L-expanded subsystems together
according to a given block diagram are detailed below.
Procedure 2.3: ,

Assume that all subsystems and signals in the block diagram are in L-expanded form and
that Procedure 2.2 has been applied to the block diagram. For each link in the system to be
connected:

a. Find Q(L,r.f:t), where the r signals on the link flow from a sampler with
period T to a sampler with period T;.
b. Insert the connection matrix in the link according to the type of link as
follows:
i. If the link traverses a branch point and a summer, place
the connection matrix after the branch point and before the summer.
ii. If the link crosses only a branch point, place the
connection matrix after the branch point.
iii. If the link traverses only a summer, insert the connection
matrix before the summer.
iv. If none of the above apply, the link crosses no summers
or branch points, and the connection matrix can be placed anywhere
on the link.
(X X4
As an aid to justifying the connection matrix locations specified in Procedure 2.3, note that their
placement ensures that the dimensions of all inputs of each summer and of all outputs of each
branch point in the block diagram of the expanded system are identical.

—/
N /. /.
_5/_’ Cl 3 D2 3 —>
o—/——c 3
|/
/% D, 3 ¢, |

Figure 2.6. Placement of connection matrices.

20



Example 2.6:
Figure 2.6 shows the placement of connection matrices in the multirate
system in Figure 2.3 after Procedure 2.2 has been performed. The numbers 1, 2,
3, and 4 in Figure 2.6 denote a link of type i, i, iii, or iv, respectively, as described
in Procedure 2.3(b).
(X X/

2.6 The T-expanded Representation of a Multirate System

The preceding sections collectively provide a means of obtaining a time-invariant input-
output or state space description of a multirate system, which will be referred to as the
T-expanded representation. The reader may wish to keep the following general procedure in
mind as a summary of the previous sections.

Procedure 2.4:

a. Starting with a block diagram of the system, verify that Assumption 2.1
is satisfied. The partitioning required in Assumption 2.1(e) may entail a trial and
error approach. For the remaining steps of this procedure, “subsystem” refers
specifically to the subsystems obtained as a result of this partitioning.

b. Assign labels to all sampling periods in the system, and apply Procedure
2.1to find T.

c. Find a state space realization for each continuous-time and discrete-time
subsystem.

d. Apply Procedure 2.2 to the block diagram. Procedure 2.2(b) may be
performed in parallel with Procedure 2.2(c), and Procedure 2.2(d) and Procedure
2.2(e) may be performed in parallel. However, do not reverse the order of these
two pairs of steps.

e. Identify the rates at which the inputs and outputs of continuous-time
subsystems are sampled and discretize these subsystems as described in Section
2.4.

f. Designate lines on the block diagram representing inputs and outputs of
subsystems and inputs and outputs of the entire multirate system as bundles of
signals. Partition the state space realization of each subsystem accordingly.

g. Find the T-expanded representation of each subsystem as detailed in
Section 2.3.
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h. Apply Procedure 2.3 and then delete all of the samplers from the block
diagram.
i. Note that the block diagram obtained in step (h) is a block diagram of
interconnected time-invariant discrete-time systems with period T. The states at
times kT of the subsystems in this block diagram and the input-output behavior of
the entire block diagram as a system are identical to those of the original multirate
system in step (c) (after decomposing the expanded signals into their components.)
Standard methods may now be applied to reduce this block diagram to a single state
space equation or transfer function matrix.
*e 0
Completion of Procedure 2.4(i) will in general involve a matrix inversion to find the state
space description of a feedback structure. Under certain conditions, this inverse may not exist;
hence, a state space representation for such a feedback structure cannot be found. As an example,
the seemingly innocuous system in Figure 2.7 composed of two samplers and two continuous-time
unity gain blocks has no state space description for any choices of T; and T,. This difficulty is
intimately related to the well-posedness problem encountered in transfer function descriptions of
composite systems. See Chen (1984) for a discussion of this problem. If the multirate system as
modeled by the block diagram in Procedure 2.4(a) has the property that each closed path on the
block diagram passes through at least one subsystem which has no direct feedthrough, then it is
suspected that the difficulties described above will not be encountered.

/e T
Tl T2
1 le—

Figure 2.7. An ill-posed multirate system.

2.7 Inclusion of Periodic Subsystems

A slight extension of Procedure 2.4 permits the inclusion of single-rate periodic discrete-
time subsystems in the multirate system. Consider a single-rate discrete-time subsystem with
single-bundle inputs and outputs and a realization which is time varying, but periodic. For all
ne zZt let

Z((n+1)Ty) = E(nTy) = (A(nT),B(nT1),C(nTy),D(nTy)).

Thus, 2(nT}) is periodic with period rT;. As demonstrated in Meyer and Burrus (1975), repeated
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iteration from an initial time of t = 0 of the state equation governing Z(nT}),

x((n+1)Ty) = A(Ty) x(nTy) + B(nT;) u(nTy)
y@Ty) = C(@Ty) x(nTy) + D(Ty) u(nTy),

yields a time-invariant state equation with rate 1/rTy:

x((k+1)rTy) = Ae x(k(rT1)) + B U(k(1Ty))
Y(k(rTy)) = Ce x(k('T1)) + De U(k(rTy)).

Denoting A(nT;), B(nT}), etc. as A(n), B(n), etc. for brevity,
A = A(r-1)A(r-2)...A(1)A(0),
Be = [A(r-1)...A(1)B(0) I...| A(r-1)A(r-2)B(r-3) | A(r-1)B(r-2) | B(r-1)],

C(1)A(0)
Ce=| CRAMAWO)

_C(r-1)A(r-2)...A(0)_

and D, is composed of r X r of the blocks dyj, where
0, ifi<j
D(i-1), ifi=j
%=\ ca-1)BG-1) | ifi=j+1
C(G-1)A(i-2)...A(G)B(-1), ifi>j+1

(2.6)

Thus, (Ae,Be,Ce,De) serves as a single-bundle rT;-expanded representation of Z(nTj). This time-
invariant representation can be further expanded using the technique in Section 2.3. If Procedure
2.4 were applied to a multirate system containing this periodic subsystem, the only alteration of
Procedure 2.4 required would be to include both T; and rT; in Procedure 2.4(b) to find T. In
analogy with Section 2.3, the expanded representation of a periodic discrete-time subsystem
Z(nT;) with inputs u(nT;) and outputs y(nT;) that are vectors of bundles can be expressed in
terms of single-bundle expanded representations by first partitioning B(nT;), C(nT;), and D(nT;)

to conform with the bundles composing u(nT;) and y(nT;).

A multirate periodic discrete-time subsystem may be specified in Ti-expanded form

by both specifying A(kT;), B(kT;), C(kT;), and D(kT;) in its state equation,
x((k+1)Ty) = A(kT;) x(kT;) + B(kT;) U(kT;)
Y(kT;) = C(kT;) x(kT;) + D(kT;) UkTy),
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where Y(kT;) and U(kT;) are Ti-expanded versions of vectors of bundles of signals and A(kT;),
B(kT;), C(kT;), and D(kT,) are rT;-periodic, and by specifying the partition of Y(kT;) and
U(kT)) into expanded bundles and the rates associated with each expanded bundle. Although
discretization of a rT;-periodic continuous-time system with inputs and outputs sampled at multiple
rates would yield a state equation such as (2.7), the state equation (2.7) may not be the result of
discretizing or expanding any subsystem. In the case r = 1, (2.7) may represent the behavior of a
computer program performing concurrent tasks at multiple rates. In Chapter 5, the controllers
designed will take the form of (2.7). The subsystem (2.7) may be expanded over its period, 1T,
and then further expanded over time T during the execution of Procedure 2.4.

The point of the extensions of Procedure 2.4 given above is not to belabor specific
examples but to indicate a general property of Procedure 2.4. If, by some means, a time-invariant
discrete-time description of a subsystem in terms of expanded inputs and outputs can be obtained,
Procedure 2.4 applies to a multirate system in which this subsystem appears as a component. In
this instance, Procedure 2.4 must only be modified by including the period of the time-invariant
description of this subsystem in the set of sampling periods considered when finding the least
common period of the entire multirate system, T.

Example 2.7:
Suppose that a T-expanded representation is desired for the multirate system
shown in Figure 2.8, where T; = 1 sec, T, = 0.5 sec, and g(nT)) is a discrete-time
periodic gain with period T3 = 2Tj:

g1, if nis even
gmTy) ={ e
g2, if n is odd
R > (15 f—y
Tl T2

g, ) [ 4——

Figure 2.8. A multirate system.

Applying Procedure 2.4:

a: Considering the double integrator and the discrete-time gain as
subsystems, parts (a), (e), and (f) of Assumption 2.1 are satisfied. It will be
assumed that the rest of Assumption 2.1 is satisfied as well (with the exception that
a periodic discrete-time subsystem is present.)
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b: Application of Procedure 2.1 yields T = 0.5 sec, p;1 =2,p2=1,p3 =4,
and T = 2 sec.

c: A state space realization for the periodic gain is (0,0,0,g(nT;)), and a
state space realization for the double integrator is

(oo} [i}rrono)

d: If the modified version of Procedure 2.2 (wherein continuous-time

subsystems are sampled with period T (= T)) is applied to the system, Figure 2.9
results.

(1/s) ——y

; \J b
g@T)) [ 4—

Figure 2.9. The system in Figure 2.8 with inserted samplers.

e: Discretizing the double integrator with period T, gives

1 12 B 1/8 c 10 i D0
Ad_[o 1 :|’ d—[l/Z], d_[ ]’an d=V.

f: This part is trivial since all inputs and outputs are drawn as single lines.
g. Denote the T-expanded representation of the periodic gain by K. From

0
K=[g1 ]
0 g

The T-expanded representation of (Ag4,B4,Cq,Dg) can be found using (2.2) with

(2.6),

1, = T/T, = 4:

127 78 5/8 3/8 1/8
SR

01] 12 12 12 12
1 0 - 0 0 0 0
112 180 0 0

C, = _and D, =

=111 "™ PeT as 8 0 0
132 5/8 3/8 1/8 0

h: Let Q; = Q(T,1,1:2), Q2 = Q(T,1,2:1), and Q3 = Q(T,1,2:2). Then
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10

10 1000
01l =[0010:|,andQ3=I4-

01

Q=

After inserting connection matrices and removing samplers, the block diagram of
the T-expanded representation of the system appears as in Figure 2.10.

U(mT) . Y(mT)
o—> Ql (Ae,B e’Ce’De) Q3 —e

Q1<—K<—Q2

Figure 2.10. Block diagram of the T-expanded representation.

i: The system in Figure 2.10 can be reduced to a single state space
equation, the T-expanded representation of the system in Figure 2.8:

4+6g1+g1g2+2g2 4+g, 6+52 l
4 + 7 7 |r um
x((m+1)T) = X(mT) + [ ]
g1 EZ+228 1+2gz 1+g2 2-; g2 1 u(mT+T1)
y(mT) 1 0 0 0
y(mT+Ty) 112 1/8 0 u(mT)
= x(mT) + .
y(mT+2Ty) 1 1 12 0 || u(mT+Ty)
y(mT+3T?) 1 372 1 18

2.8 Modular Expansion of Multirate Systems

A fundamental difficulty encountered in executing Procedure 2.4 is that the T-expanded

representation of the subsystems may involve matrices of large dimensions. A simple example
demonstrates this problem and suggests a method of circumventing it, referred to as modular

expansion.

Consider the multirate system with SISO time-invariant subsystems in Figure 2.11, where

T1=2,T2=1, T3 =25, and T = 50. Straightforward application of Procedure 2.4 yields a
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T-expanded representation for X; with 25 inputs and outputs and a T-expanded representation for
Zy with 50 inputs and outputs. Reduction of the feedback connection of the expanded
representations to a single state equation involves the multiplication and addition of large matrices
and, more importantly, the inversion of two 25 x 25 matrices.

Figure 2.11. A simple multirate system.

As an alternative method, consider ignoring X3 for the moment and finding an expanded
representation for the feedback connection of X; and X, over the least common period of T; and
T2 using Procedure 2.4. Let Tf =LCP {T;,T2} = 2. Calculation of the Te-expanded
representation for the feedback connection involves much smaller matrices and, in particular,
requires the inversion of two 1 x 1 matrices. This savings in computation will be worthwhile if the
T-expanded representation of Zr exists, enabling the T-expanded representations of Z¢ and X3 to be
combined. A Ti-expanded representation can be T-expanded if T/Tfe N. Since Theorem 2.3
asserts that T/T¢=LCP {Ty,T2,T3}/LCP {T;,T2} € N, the T-expanded representation of X¢ can
be computed. This then is the essence of modular expansion.

There is substantial freedom in the steps taken when performing modular expansion on a
multirate system. The following procedure helps explain the notion of modular expansion and
should not be interpreted as the only means by which modular expansion can be performed.
Procedure 2.5: (a modular expansion scheme)

a. Carry out steps (a) through (f) of Procedure 2.4.
b. Focus attention on a collection of subsystems by drawing a path on the

block diagram enclosing one or more subsystems which does not separate any

enclosed continuous output/input point from the sampler immediately

following/preceding it (review Procedure 2.2 for the meaning of these terms.) Call

the enclosed portion of the system the “current collection.” Seti=0 and P(0) = 1.

Let {To,1,To,2,....To,m0)} be the set of m(0) sampling periods and periodic

discrete-time subsystem periods in the current collection.
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c. Set P(i+1) = LCM {P(), p;,1...,.Pi,m(i)} and T(i+1),0 = P(i+1)t. Find

the T(;41),0-expanded representation of each subsystem in the current collection and

insert connection matrices. By standard techniques, find a single discrete-time state

equation with rate 1/T(41),0 to describe the current collection. When finding this

state equation, ignore samplers on the block diagram that are between connection

matrices, subsystems, summers, or branch points in the current collection but retain

samplers on the periphery of the current collection.
d. Seti=i+l.
e. If the current collection is the entire multirate system, stop. Otherwise,

draw a path enclosing the current collection and possibly other subsystems,

following the same restrictions as in step (b) above. Let {Ti1,Ti2,....TimG)} be

the m(i) additional sampling periods and periodic discrete-time subsystem periods

enclosed by this path. Call the portion of the system enclosed by this path the

current collection and return to step (c).

X X4

Procedure 2.5 proceeds by repeatedly adding subsystems to a single collection of
subsystems. Modular expansion may in general start with several collections scattered throughout
the block diagram and repeatedly add subsystems and collections of subsystems to these
collections. The restrictions in Procedure 2.5(b) on the items included in a collection must be
obeyed during the process of enlarging a collection. Each time a new collection is formed, that
collection is expanded and then reduced to a single state equation as in Procedure 2.5(c). The
process terminates when a single collection contains the entire multirate system. The principle that
allows collections of subsystems to be expanded and combined in such a variety of ways is that, as
a simple induction argument and Theorem 2.3 show, the least common period of the union of a
collection of sets of sampling periods is an integer multiple of the least common period of each set
in that collection.

A trade-off between the effort required to combine expanded subsystems and the effort
expended in expanding a representation corresponding to a combination of subsystems complicates
the question of which modular expansion strategy results in the least computational effort for a
given multirate system. Two general heuristics for modular expansion can be offered. To avoid
inverting large matrices, expand subsystems in a feedback connection and obtain a representation
describing this feedback configuration before including it in a larger collection of subsystems. By
choosing collections of subsystems that have fewer input and output lines, the dimensions of the
required “B”, “C”, and “D” matrices are reduced.
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CHAPTER 3

PERIODIC REPRESENTATION OF MULTIRATE SYSTEMS

Representing the behavior of a multirate discrete-time system with period T over intervals
of time of length M, where T/M € Q, results in a description which is time varying and periodic.
Such a description will be referred to as the M-varying representation of the system. The
motivation for examining the M-varying representation is twofold. Not only does it provide a
periodic representation of the multirate system, but with M = =, the M-varying representation
finds use theoretically in investigating the interperiod behavior of a multirate system by examining
its T-expanded representation. Three intrinsic difficulties detract from the practical usefulness of
the M-varying representation presented here. In general, the M-varying representation has more
states than the time-invariant description, is difficult to calculate, and involves padding with false
inputs and outputs to prevent the number of inputs and outputs from varying with time.

Many possibilities exist for the periodic representation of a multirate system. In the
M-varying representation, state transitions occur at regular intervals. A representation like the one
presented in Kalman and Bertram (1959) in which state transitions occur only at the times of
certain events, such as a sampling event or a state transition of a discrete-time element, is perhaps
more appealing from a practical point of view due to reduced storage requirements. However, the
M-varying representations presented here are valid periodic representations of the multirate system
and are easily described in detail.

3.1 The t-varying Representation

In Chapter 2, the system was represented over an interval of time which was an integer
multiple of the period of each sampler. Inputs and outputs were implicitly “held” by retaining their
values as components of time expanded signals. The T-varying representation of a system does not
permit this luxury, and the values stored in most hold circuits must be retained as state variables.

Consider a sample/hold circuit with period T; = P17, input u, and output y. Let x(nt) be
the value stored in the hold circuit at time t = nt. For times t = ngt at which sampling occurs, the
next state is updated; as a consequence of Assumption 2.1(d), the output is set to the input:
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X((no+1)7) = u(not) and y(ngt) = u(ngt).

At all other times, the state remains unchanged and the output is set to the value of the state:

x((n+1)7) = x(nt) and y(n7) = x(n7).
Thus, for a sample/hold with period T;,

x((n+1)7) = a(nt) x(nT) + b(nt) u(nt)

y(n7t) = c(nt) x(nT) + d(nT) u(nt),

where
(0,1,0,1) ,if nmod p; = 0
(1,0,1,0) , if n mod p; # 0

Note that if p; = 1, the representation becomes time invariant, with corresponding state and output
equations x((n+1)t) = u(nt), y(nt) = u(nt). Clearly, x(nt) is superfluous in this case, and states
need not be assigned to sample/holds of period t.

(a,b,c,d)(n7) = {

The following convention is explicitly stated for clarity.
Convention 3.1: (Intermediate state values of discrete-time systems)
Given a single-rate discrete-time subsystem with state x and state transitions
specified at times kT or a multirate discrete-time subsystem with state x specified
in T;-expanded form, define
x(t) = x(kT;), kT; <t < ((k+1)T).
(XX
Due to the multirate nature of the surrounding elements, a T;-varying discrete-time
subsystem must sample its inputs at times t = kT; and maintain its output at y(t) = y(kT;) for
kT; <t < (k+1)T;. Since u(kT;) is required at time t = kT1+(p1-1)T to determine the state
transition, a state variable must be defined to retain u(kT;). Leta periodic T;-varying single-rate
discrete-time subsystem with realization (A(kT;),B(kT;),C(kTy),D(kT;)) have state x € R, input
u € R™and output y(kT;). Define the augmented state

x((kp1+i)7)
u(kT;)
A T-varying representation of this system which satisfies the state and output equations
Z(t+7) = a(t) z(t) + b(t) u(t)
y(®) = c(®) z(t) +d(®) u(®)
for times t = (kp;+i)t,0 <i<p; and k = 0,1,..., is

z((kp;+i)T) =[ } ,0<i<p;,k=0,1,...
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((FI"O 0] C(kT;) 0 DkT) ifi=0
_OO:I,[ImJ,[( l) ]9 ( 1)911—

[I, O 07 ) .
o 1 ], [OJ’ [C(kT;) D(kTy1)],0], if 0 <i < p;-1

( [ AKT;) B(kT;)
. \L O I

(a,b,c,d)((kp1+i)T) =< (

0
], [0], [C(kT;) D(kTy)], 0), ifi =pp-1

(3.1)
The reader may wish to trace through the above representation and note the following facts.
u(kT;) is updated at the time it is available, i = 0, and the following output values and state
transition are determined from this stored value. The output is held at y((kpi+i)t) = y(kT}) for
0 <i<p;. This t-varying representation is equivalent to the T;-varying representation in the
sense that for any z(0) € R**m and input sequence {u(jt): j = 0,1,...}, the resulting output
sequence {y(jT)} and the x portion of the state trajectory {z(jt)} of the T-varying representation are
identical to samples at times t = jt of the output sequence {y(kT;)} and the state trajectory
{x(kT1)}, where x(jt) is obtained from x(kT;) via Convention 3.1, of the T;-varying
representation with initial state x(0) and input u = {u(jt)}.
A periodic multirate discrete-time system specified in T;-expanded form,

x(kTy) = A(kTy) x(kTy) + B(kT;) U(KT,)

Y(kT7) = C(kT1) x(kT;) + D(kT;) U(KTy),
may also be expressed as a T-varying system. It is necessary that D(kT;) be structured so that this
system is causal. The state of the system must be augmented by U(kT;). Although the specific
details of a t-varying representation for a general multirate discrete-time system specified in time
expanded form are too involved to present here, the basic philosophy is the same as that for a
single-rate system. The values comprising U(kT};) are loaded into the augmented state as they
become available, and the state transition occurs during the last T interval of each T; interval, as
specified in Convention 3.1. Strictly as a matter of convenience for developments in Section 3.3,
the following convention should be satisfied by a 1-varying representation of a multirate discrete-
time system specified in time expanded form.
Convention 3.2:

Portions of the augmented state corresponding to input values that are not

yet available are assigned the value zero.
XX

Example 3.1:
A SISO multirate system with a single state is specified in 6t-expanded
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form:
x((k+1)67) = a x(k67) + [b; by] U(k67T)

C1 dl 0
Y(k6T)=| c2 [x(k6t)+| d2 O |U(k67T).
c3 ds dg
The input u is sampled with period 3t and the output y has period 21t:
y(k67)
uk67)
Uk6T) = » Y(k67T) =| y(k67+21)
u(k6t+31)
y(k6t+41)

Note the two 0's in the D matrix required for causality. Define the 3 x 1 augmented
state z:
x((k6+i)7)

U(k67)

As this system has period 67, six sets of matrices are required for the T-varying

representation. These matrices are given as a(t), b(t), c(t), and d(t) for each t
below.

z((k6+i)T) =[ } , 0<i<6,k=0,1,....

100
t=k6t: [ 000
000

0
11, [c100],4d4
0
100 0
t=két+t: | 010 |, I:O], [c1d;0],0

9

000
1007
t=k6t+2t: [ 010 |,
| 0 0 0]
1007
t=k6t+3t: [ 010 |,
| 00 0]

» [c2d20],0

» [c2d20],0

i

100 0

t=k6t+4t: [ 010 |, O:I, [c3 d3 d4], O
001 0
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a by b 0
t=k6t+5t: [ 0 1 O |,]| 0], [c3d3dy],O.
001 0

*ee

A continuous-time subsystem whose inputs and outputs are sampled and held at multiple
rates is readily converted to T-varying form. The continuous-time subsystem is merely discretized
with period T and the surrounding sample/hold devices govern the flow of input and output values
to and from the multirate sampled subsystem. The following procedure details the calculation of
the T-varying representation of a multirate discrete-time system.

Procedure 3.1:

a. Verify that Assumption 2.1 is met, with the exception that periodic
single-rate and multirate discrete-time subsystems may be present. Partition the
entire system into subsystems which satisfy Assumption 2.1(e).

b. Use Procedure 2.1 to normalize all sampling periods and periods of
periodic subsystems and find T = Pr.

c. Find a state space realization for each continuous-time subsystem and
single-rate discrete-time subsystem.

d. Discretize with period T each continuous-time subsystem and find a
T-varying representation for each sample/hold device and discrete-time subsystem in
accordance with Convention 3.1 and Convention 3.2 as described in this section.

e. For each je {0,1,...,P-1}, associate the t = jT value of the T-varying
representation of each subsystem and sample/hold device with the corresponding
subsystems and sample/hold devices in the block diagram of the system. Reduce
this block diagram to a single state spacé equation as if it were the block diagram of
a single-rate system. This gives a T-periodic, T-varying representation for the entire
multirate system: (A(nt),B(nt),C(nt),D(n7)).

XX/
As with Procedure 2.4, difficulties may arise when performing Procedure 3.1(e).

In certain instances, Procedure 3.1(d) can be modified in order to reduce the number of
states of the T-varying representation. For example, if a signal is connected to a sample/hold with
period T or to a single-rate discrete-time subsystem which is T;-sampling the signal and this
signal is the output of a sample/hold with period T, a T2-held output of a discrete-time system, or
the sum of such signals and T,/T; € N, then a state variable need not be assigned to the
sample/hold with period T; or to retain the T;-sampled input value of the discrete-time subsystem.
In this case, a T-varying representation for a T;-varying single-rate discrete-time subsystem is, in
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the notation of equation (3.1),
(In, 0, C(kT;), D(kT;)) ,if0<i<p;-1
(2.b,cd)((kpy +)1) ={ " 1 DO o . G2
(A(kTy), B(kT1), C(kT1), D(kTy)) , if i = p;-1
If some of the inputs to the discrete-time subsystem have this property and others do not, the
proper T-varying representation is a hybrid of (3.1) and (3.2). The justification for this
modification is that when To/T; € N, the inputs to the sample/hold of period T; or the T;-sampled

inputs of a discrete-time subsystem are held constant over the times
t = kT, kT; +1,..., kTy + (p1-1)7;

u(kT)) is available, if necessary, at times after t = kT; for determining outputs and state transitions.

A slight modification of Procedure 3.1 produces a t/q-varying representation, q € N. By’
introducing a fictitious sampling period To = t/q into the normalization process in Procedure
3.1(b), a different set of parameters results: T' = 1/q, P' = P, and p;' = qp;. Utilizing these
parameters in place of T, P, and p; in steps (c), (d), and (e) of Procedure 3.1 then gives a
T'-varying representation.

3.2 The mt-varying Representation

Obtaining an mt-varying representation, m € N, for a multirate system by direct means can
be somewhat tedious. However, a method will be outlined whereby an mt-varying representation
can be obtained via the t-varying representation in a straightforward manner. In the following
procedure, assume that the system is single-bundle input, single-bundle output.

Procedure 3.2:
a. Apply Procedure 3.1 to obtain (A(nt),B(nt),C(n7),D(n7)).
b. Letr =LCM {m,P}/m. Fork =0,1,..., calculate

o(kmt) = A((km+m-1)7)...A((km+1)T)A(kmT),

B(kmt) = [A((km+m-1)7)...A((km+1)T)B(kmt) | ...
.. | A((km+m-1)T)B((km+m-2)t) | B((km+m-1)1)],

C(kmr)
Y(kmt) = C((km+1)t)A(kmt)

9

C((km+m-1)T)A((km+m-2)1)...A(kmT)

and the block m X m matrix 6(kmt), where
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F0,ifi<j
D((km+i-1)7) , if i = j

C((km+i-1)t)B((km+j-1)t) , if i = j + 1

( C((km+i-1)T) A((km+i-2)T)...A((km+j)T)B((km+j-1)t) , if i > j + 1

d;j(kmt) =<

Since a(.), B(.), ¥(.), and 8(.) are periodic with period rmrt, only values for
k=0,.., - 1 are required. With z(nt), u(nt), and y(nt) as the state, input, and
output of the T-varying representation, the mt-varying representation satisfies the
following state and output equation for k = 0,1,... :
z((k+1)mt) = oukmt) z(kmt) + B(kmt) U(kmr)
Y (kmt) = y(kmt) z(kmt) + 8(kmt) U(km).

Y(kmt) and U(kmt) are the mt-expanded versions of u(nt) and y(n7).
*ée
Iteration of the equations governing the T-varying representation confirms the validity of
Procedure 3.2. Note the similarity between these formulas and those for the time expansion of a
periodic discrete-time system in Section 2.7. Y(kmt) and U(kmt) in Procedure 3.2 should not be
confused with the mt-expanded versions of the output and input of the original system. Y(kmt)
and U(kmt) are mt-expanded versions of t-sampled versions of the original system's input and
output. In fact, the representation produced by Procedure 3.2 is the mT-varying representation of
the multirate system with samplers of period © inserted at each input and output of the original
system. These added samplers do not alter the behavior of the system. Since the inputs and
outputs of a multirate system are generally sampled with periods greater than T, many of the
components of U(kmt) are not accessed by the mt-varying representation and many of the
components of Y(kmt) are duplicates. This redundancy serves to pad the inputs and outputs of the
mt-varying representation to a size which is uniform in time.

Example 3.2:
Consider finding the 3t-varying representation of the multirate system in
Example 3.1. Since r = 6/3 = 2, only two values for each of o, B, y, and & are
needed. The t-varying representation of this system was determined in Example
3.1; Procedure 3.2(a) is finished. By straightforward calculations,

k=0:
100 000 c1 00 di 00
oa@= 000 [,pO)=| 100 ,¥0)=] ¢1 00 [,80)=|d; 00 |,
000 000 c200 d, 00
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y(0) u(0)
Y(kmr) =| y(® |, and Ukmr) =| u(t)

y(21) u(27)
k=1:
aby 0 by 0 0 c2d2 0 000
oaBt)=| 010 |,pBr)=| 000 |,y3v)=| c3d30 |,531)=| ds 00 |,
000 100 c3d3 0 ds 00
y(31) u(37)
Y(kmt) =| y(41) |, and U(kmt) =| u(4t)
y(5%) u(51)
Thus,

(o,B,7,8) (0),if k= 0,2,4,..
(,B,7,8) (31) , ifk = 1,3,5,...

Since y has period 27, it should be the case that y(0) = y(t), y(21) = y(31),
and y(4t) = y(5t), which can be verified. Note that only u(0) and u(3t) are
utilized, which is consistent with the fact that u is updated with period 3t by the

(a’Bs'YsS) (k(3‘t)) = {

original multirate system.
L X X4

Procedure 3.2 determines the mt-varying representation of a single-bundle input, single-
bundle output, multirate system. The mt-varying representation of a multirate system with inputs
and outputs which are vectors of bundles results from partitioning B(nt), C(nt), and D(nt) and
repeated application of Procedure 3.2(b) in a manner analogous to the time expansion of such
multirate systems. As noted earlier, T/q-varying representations, q € N, may be obtained using
Procedure 3.1. It follows from the developments in this section that if r € Q and r > 0, Procedure
3.2 may be used to calculate the rt-varying representation of a multirate system, since r = m/q for
some integers m and q.

3.3 Corresponding Representations
A trait common to all periodic representations of multirate systems, but not the T-expanded

representation, is that states corresponding to the contents of some of the hold circuits in the
system must be included in the composite state vector of the system. These added states are of a
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nondynamic nature, and the reader may correctly predict that the lower-dimensional T-expanded
representation of a given multirate system shares many of the qualitative properties of a periodic
representation of that system. The representations described in this section serve as a crucial step
in the investigation in Chapter 4 of the manner in which the T-expanded representation relates to
periodic representations. The properties and results discussed in this section and Chapter 4
regarding T-expanded and t-varying representations could be adapted to almost any periodic
representation of the types of multirate systems under consideration.

For a given multirate system, a relationship exists between the matrices A(nt) of the
T-varying representation obtained from Procedure 3.1 and the matrix A, of the T-expanded
representation obtained from Procedure 2.4, provided that two particular steps of these procedures
are performed similarly. To ensure that such representations exist, let the following assumption be
satisfied.

Assumption 3.1: (well-posedness)
The calculations necessary to complete Procedure 2.4(i) and Procedure

3.1(e) can be performed for the multirate systems under consideration and involve

matrices with bounded elements.

*ee
The state of the T-expanded representation, x(kT), is a composite of the states of all the dynamic
subsystems in the multirate system. The state of the T-varying representation, z(nt), is a composite
of the states of all the dynamic subsystems in the system and hold states (states assigned to
sample/hold circuits and states introduced to retain input values of discrete-time subsystems.) A
T-expanded and a t-varying representation of a multirate system will be called corresponding
representations if these representations are obtained from Procedure 2.4 and Procedure 3.1,
respectively, and the following convention is satisfied.
Convention 3.3:

a. The same system partition and the same state space realization for each

subsystem is used in step (c) of Procedures 2.4 and 3.1.

b. When reducing the composite system to a single state space equation in

Procedure 3.1(e), z(n7) is partitioned into dynamic states, w(nt), and hold states,

h(n7):

I:w(nt)}
z(nT) = .

h(nr)
In addition, Procedure 3.1(e) and Procedure 2.4(i) are performed so that the state of

any given subsystem occupies the same components of x and w.
XX
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If corresponding representations have initial conditions z(0) and x(0), where x(0) = w(0),
and are subjected to the same input, then x(kT) = w(kPt), k = 0,1,..., because x and w each

represent the dynamic states of the system and are structured identically. Hereafter, this fact is
emphasized by writing
x(nt)
z(nT) = ,

h(nrt)
where x(nt) is interpreted through Convention 3.1 as representing the dynamic states of the
subsystems in the multirate system at time t = nf.

Letxbe 6 x 1 and hbe n x 1. As a consequence of the manner in which T-varying
representations were defined in Section 3.1, at time t = O each subsystem and sample/hold
determines its next state and current output solely from the current value of its dynamic states (if
any) and inputs. Thus, at t = 0 the next state z(t) is independent of every component of h(0). If
the inputs to the system are zero, from z(t) = A(0)z(0), it follows that for some E; € R%<3 and

Ey € RNX3,
AQ) E; 0]
- E, 0|

Expressing z(Pt) = z(T) for arbitrary z(0) as

GO
z(pt) = A((P-1)7)...A(T)A(0)z(0) =[ H 0 ] z(0)

for some G € R¥3 and H e R™3, it follows that x(Pt) = Gx(0) for arbitrary x(0). For the
corresponding T-expanded representation, x(T) = A¢x(0) and x(kT) = x(kPt). Thus,

Aex(0) = x(T) =x(Pt) = Gx(0)

for arbitrary x(0), which implies that G = A.. The following theorem results from the discussion
above.
Theorem 3.1:
For corresponding T-expanded and t-varying representations of a multirate
system and some E; € R®3 and E,, H e R"3,

E; O

A(O)=[E2 0

A O
and A((P-1)1)...A(T)A(0) = .
HO
*é0
A T-expanded and a t-varying representation of a multirate system will be called

completely corresponding representations if these representations are corresponding
representations and the following convention is satisfied.
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Convention 3.4:
a. Samplers of period 7 are placed on each input and output of the block
diagram of the system before finding the T-expanded representation.
b. Once the T-expanded representation has been obtained, its input and
output, U(kT) and Y(kT), are restructured to form a new input and output, U(kPt)
and Y(kPr), given by

u(kPr) y(kPt)
U(kP1) = u(kl:t’l:+'t) and Y(kPT) = y(kP.'c+1:)
u((k+1)P1-1) y((k+1)Pt-1)

In essence, the input and output of the system are each treated as a single bundle of
signals. During this operation, the rows, columns, and elements of the matrices of
the representation must be permuted according to the reordering of the inputs and

outputs.
XX

Let the completely corresponding T-expanded representation be denoted by

x((k+1)T) = A x(kT) + B, U(kP1)
Y (kPt) = Ccc x(kT) + D U(kPr).

The primary difference between a corresponding and a completely corresponding T-expanded
representation is Convention 3.4(a); however, the added samplers do not alter the behavior of the
system. In fact, the columns of B, are permutations of the columns of B, interspersed with
columns of zeroes, and the rows of C, contain duplicates and are drawn from the rows of C.. For
a given multirate system, a T-varying representation which is a corresponding representation and
one which is a completely corresponding representation are identical.

The manner in which completely corresponding representations are related is revealed by
defining the following quantities from the matrices (A(nt),B(nt),C(nt),D(n7)) of the T-varying
representation:

o = A((P-1)1)...A(T1)A0),

B = [A(P-1)7)...A(DB(0) | ... | A((P-1)T)B((P-2)7) | B((P-1)1)],

C(0)

- COAO

9

C((P-1)T)A((P-2)7)...A(0)

and the block P x P matrix 8, where
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0,ifi<j
D(G-D7) ,ifi=]j
7Y c-1)9BG-1)T) L ifi=j+ 1
C(G-DT)A((-2)1)...AGT)B(G-D1) ,ifi>j+ 1
Note the similarity of these quantities to the formulas in Procedure 3.2 for a Pt-varying

representation of a multirate system whose inputs and outputs are treated as a single bundle. It
follows that
z((k+1)P1) = o z(kPr) + B U(kP1)
Y(kPt) =y z(kPt) + 8 U(kP1).
For completely corresponding representations with dynamic states which are identical at t = 0 and
input U(kP1), not only will x(kT) = x(kPt), as with corresponding representations, but in addition
their outputs Y(kPt) will be identical. In particular, with z(0) = 0, x(0) = 0, and U(0) arbitrary,

x(T) = Bee U(0), Y(0) = D U(0)
and
x(P1)
h(Pr)
Since U(0) is arbitrary and x(T) = x(Pt), B must be of the form
B
B=[J]

for some matrix J and = D... By the manner in which t-varying representations were defined in

z(P7) =[ ] =B U(0), Y(0) =8 U(0).

Section 3.1, at time t = O each subsystem and sample/hold determines its next state and current
output solely from the current value of its dynamic states (if any) and inputs. Thus, for some
matrices E;, E5, and Es,

A0 =] 2] and c) =[5 0
()—[Ezo] and C(0) = [E3 0].

By definition of v, it follows that for some matrix E4, Y= [E4 0]. Consider setting U(0) = 0 and
letting z(0) and x(0) be arbitrary. Then
x(0)

¥2(0) = [E4 0] [h(o)] = Y(0) = Coo X(O);

therefore, ¥ = [Ccc 0]. The following theorem summarizes the above discussion.

Theorem 3.2:
For completely corresponding T-expanded and t-varying representations of
a multirate system and some matrices H and J,
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A. O Bec
o= [H 0]’ B_I: J :|9 'Y_[CCCOL anda-Dcc:

where o, 3, and 'y are partitioned conformal with the partition of z into dynamic and
hold states.
XX
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CHAPTER 4
ANALYSIS OF MULTIRATE SYSTEMS

The representations developed in the previous two chapters provide a convenient means of
assessing important qualitative characteristics of multirate systems. Of particular value is the fact
that the stability, controllability, reconstructibility, stabilizability, and detectability of the T-varying

representation may be determined by examining the corresponding T-expanded representation of
the system.
In this chapter, only systems that satisfy Assumption 3.1 (well-posedness) are considered.
Throughout, denote the t-varying representation of the multirate system by
z((n+1)7) = A(n7) z(nT) + B(nT) u(nt)
y(nt) = C(n7) z(nt) + D(n7t) u(nr),
where (A,B,C,D) (n7) is T-periodic, and

x(nT)

z(nT) =[ ] e R¥m

h(n7t)
Denote the corresponding T-expanded representation of this system (see Section 3.3 for details) by

x((k+1)T) = A x(kT) + B U(KT)
Y(kT) = Ce x(kT) + De U(KT)

and the completely corresponding T-expanded representation of this system by

x((k+1)T) = A¢ x(KT) + B, U(kP7)
Y(kPt) = Ce x(kT) + Dy, U(kPT),

where x € R% and T = Pt. By Assumption 3.1, the elements of (A,B,C,D) (n1), (Ae,Be,Ce,De),
and (A¢,Bcc,Cec,Dec) are bounded and well-defined.

4.1 Stability

Clearly, a necessary condition for uniform asymptotic stability of a multirate system is that
its T-expanded representation be asymptotically stable, i.e., all the eigenvalues of A, have
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magnitudes strictly less than one. It turns out that this is also a sufficient condition for uniform
asymptotic stability of the corresponding t-varying representation.
Theorem 4.1:
If the eigenvalues of A, have magnitudes less than 1, then the ’c-vafying
representation is uniformly asymptotically stable.
Proof:
Let Z(n,ng,zp) be the zero input state trajectory at time t = nt of the
T-varying representation resulting from the initial state zg at time t = ngt. It suffices
to show that V ng € N and zy € R, I}l_r)réo Z(n,ng,zg) = 0, as this result and the

periodicity of the t-varying representation establish uniformity.
Assume the eigenvalues of A, have magnitudes less than 1. Define the

monodromy matrix at time nt for the T-varying representation as

®O(n) = A(n+P-1)1)...A((n+1)T)A(nT).
Note that ®(n+kP) = ®(n) for k = 0,1,... and that under zero input

z((n+P)1) = ®(n)z(nt) forn =0,1,... .
By Theorem 3.1, for some H € R1%3,

o0 2],

Thus, each eigenvalue of ®(0) has magnitude less than one. Recall that for square

matrices V and W, VW and WV have the same eigenvalues. Repeated application
of this fact leads to the conclusion that ®(0), ®(1),..., and ®(P-1) all have identical
eigenvalues. Letie {1,..,P} and k = 0,1,... and note that

Z(kP+i+ng,ng,zg) = [D(np+i)1¥ A((ng4i-1)7)...A(ngT)zo.

For any zp € R%"M and any np € N, A((ng+i-1)7)...A(ngT)Zo is bounded for each
ie {1,..,P}. Since the eigenvalues of each ®(n) have magnitudes less than 1, for
eachie {1,...,P} Z(kP+i+ng,ng,zg) is bounded and 1li_r)an(kP+i+n0,n0,zo) =(;

Z(n,ng,z¢) is partitioned into P bounded convergent subsequences. Thus,
Z(n,ng,zo) is bounded and for any i € {1,...,P} and € > 0, there is K(i,e) € N
such that || Z(kP+i+ng,ng,zo) Il <€ V k 2 K(i,€). It follows that for any € > 0 there
is K(¢) = 1 + max{K(@,e):ie {1,..,P}} such that Il Z(n,ng,zo) Il < & for all
n 2 K(¢)P + ng, which implies that I}i_r)an(n,no,zo) =0.

¢
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The utility of Theorem 4.1 stems from the fact that T-expanded representations are
generally easier to calculate and are of lower order than T-varying representations. Theorem 4.1
also insures that x(nt), rather than merely x(kT), decays asymptotically to zero for any initial
condition if the T-expanded representation is asymptotically stable. In fact, consider collecting the
states of all continuous-time subsystems in the multirate system into the composite state x.(t). For
k =0,1,... and 0 < ty < Pt, write

Xc (kPt+tp) = ¥(to) z(kP), 4.1)

where ¥(tp) is a dim(xc) X (8+n) matrix. Under the assumption that I'¥'(tp)ll is bounded for each
to € [0,P1), if the eigenvalues of A. have magnitude less than 1, it follows from (4.1) and
Theorem 4.1 that as t — oo, x(t) = 0. As a consequence of Theorem 4.1 and the satisfaction of
Assumption 3.1 by the systems under consideration, if the eigenvalues of A, have magnitudes less
than 1, the T-varying and T-expanded representations are BIBO stable (Chen, 1987).

4.2 Controllability and Reconstructibility

The controllability, reachability, reconstructibility, and observability of linear periodic
discrete-time systems have been investigated in several recent works; see Grasselli (1984), Bittani
and Bolzern (1985), Bittani and Colaneri (1986), Bittani and Guardabassi (1986) and the
references cited therein. The T-varying representation provides a T-periodic description of a
multirate system amenable to analysis by the methods developed in these references. Such an
analysis may be quite involved because the properties of controllability, reachability, etc. of a linear
periodic system are in general enjoyed by only a time-varying subspace of the entire state space.
The analysis here presents two instances in which the T-varying representation inherits a property
of its corresponding T-expanded representation.

The informal definitions which follow are consistent with those of Grasselli (1984). A
linear, discrete-time system is said to be controllable if there exist inputs which drive the system
from any given initial state at any given time to the zero state in a finite amount of time. A linear,
discrete-time system is said to be reachable if there exist inputs which drive the system to any
given terminal state at any given point in time from the zero state in a finite amount of time. A
linear, Tp-varying discrete-time system is said to be reconstructible if the state of the system at
any time t = mT can be determined from knowledge of the inputs and outputs of the system over
some finite interval of time prior to t =mTj. A linear, To-varying discrete-time system is said to be
observable if the state of the system at any time t = mT( can be determined from knowledge of
the inputs and outputs of the system over some finite interval of time beginning at t = mT,.



Determination of the controllability, reachability, reconstructibility, or observability of the
T-expanded representation can be accomplished by considering (Ae,Be,C.) as a time-invariant
triple. A consequence of the Cayley-Hamilton theorem is that at most 8 T-expanded inputs are
required to drive the state x(kT) to zero if the T-expanded representation is controllable or to the
desired terminal state if the T-expanded representation is reachable. In addition, at most &
T-expanded outputs are required to determine a present state x(kT) of the T-expanded
representation if it is reconstructible or to determine an initial state x(kT) of the T-expanded
representation if it is observable.

Theorem 4.2:
The t-varying representation is controllable if the corresponding T-expanded
representation is controllable, and any initial condition z(ngt) = zy € R"*3 can be

driven to the zero state by time t = ngt + (6+1)T.

Proof:
Let ngp = koP -i,ie {0,1,..,P-1}. If i > 0 and the inputs at times
ngf,..., (ng+i-1)t are zero, the system progresses from zy to some state

X(kOPT)J
h(koPT)]

where x(koPt) = x(koT) € R3. Since the T-expanded representation is con-

z(koPT) = [

trollable, there is an input sequence which drives x(koT) to the origin by time
t =koT + OT at the latest. If x(kT) reaches the origin before t = koT + 8T, zero

inputs can be applied to ensure that x(kT) remains at the origin until this time.
Applying this input sequence to the t-varying representation,

0
h((ko+5)P‘C)] ‘
From Theorem 3.1, with u((kg+3)Pt) =0,

z((ko+8)P1) = [

E
z((ko+3)PT+1) =[ E; 8 ] z((ko+0)Pt) = 0.

Thus, an arbitrary state zj has been driven to 0 by time
t = (ng+i+1+0P)T < ngt + (8+1)T.
XX
Theorem 4.3:
The t-varying representation is reconstructible if the corresponding
T-expanded representation is reconstructible, and the state of the corresponding
representation at any time ngf, z(not), may be determined by examining the inputs
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and outputs of the system over a period of time no greater than (§+1)T prior to
t = ngt.
Proof:

Let ng =koP +j,je {1,..,P}. Since the T-expanded representation is
reconstructible, the state x(koT) = x(koPt) may be determined by examining the
input U(KT) and output Y(kT) of the T-expanded representation at the times
(ko-9)T,...,(kg-1)T. From Theorem 3.1,

2((koP+1)) =[ F1 0 ] ["(k"P T)] +B(0) u(koPt) = [El] x(koT) + B(0) u(koPt).
Ez 0 || h(koPT) E;

Thus, z((koP+1)t) may be determined from knowledge of x(koT). It follows that

z((koP+j)T) = z(noT) may be determined for any j € {1,..P} by examining the

inputs and outputs of the system at times (ko-8)PT,...,(koP+i-1)t (recall that Y(kT)

involves values of y at and after time kPt.) Therefore, the T-varying representation

is reconstructible and its present state can be determined by examining inputs and

outputs of the system over a period of time (not - (ko-8)Pt) < (3+1)T prior to

t =noT.

(X X2

Besides the application to determining the controllability or reconstructibility of the
T-varying representation of a multirate system, Theorems 4.2 and 4.3 contain a subtler result.
Results in Grasselli (1984) show that a t-varying, T-periodic, discrete-time linear system of order
& + 1, such as the T-varying representation under consideration, can be driven from z(noT) to the
zero state by at most time t = ngt + (8 + )T if it is controllable and that the state of the system at
time t = ngT can be determined from knowledge of its inputs and outputs over a period of time no
greater than (8 + M)T prior to t = ngt if it is reconstructible. From the special properties of
T-varying representations and their corresponding T-expanded representations, Theorems 4.2 and
4.3 shorten these time bounds by (n-1)T.

4.3 Duality, Stabilizability, and Detectability

In analogy with time-invariant discrete-time state space representations, the reader may
anticipate the existence of stabilizability and detectability properties and dual relationships between
stabilizability and detectability for periodic discrete-time representations. By combining results
from Grasselli (1984), Grasselli and Lampariello (1981), and Weiss (1972), this is seen to be the
case. In the remainder of this section, the argument T will be suppressed.
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The approach taken in defining stabilizability and detectability will be through a
decomposition based on controllability and reconstructibility. The following lemma is a partial
restatement of results in Grasselli (1984).

Lemma 4.1:
A T-periodic coordinate transformation Z(n) = A(n)z(n), A(n) nonsingular
for each n, exists such that if £(n) = (A(n), B(n), C(n), D(n)) is the representation
of X(n) in the new coordinates,

Z(n) = (A(n+1)A(n)A-1(n), A(n+1)B(n), C(n)A-1(n), D(n)),

then
[ Fum) Tan) Fsn) Tm) ] By(n)
Ky = 0 Fpm 0  Au) By =| B
0 0  @33(n) F3(n) 0
L 0 0 0  Aym) d 0
4.1)
C(n)=[0 T,(n) 0 E4m)], and B(n) = D(n).
All of the submatrices appearing in (4.1) are T-periodic and have dimensions which
are constant with n. In addition, @1(n), d33(n), and @44(n) are square and
nonsingular for all n,
A A b
( [ ai(n) ilz(n) ] , [:(n)] 10 Ty ], ﬁ(n)J
0 anm) ba(n)
is controllable, and
A22(n) A(n) it
( [ 2 ] , ["2‘“)] [ Ean) T 1, D<n>}
0  dAyn) 0
is reconstructible.
L XX

As a consequence of the results stated in Lemma 4.1, the subsystems (311(n), B1(m), 0, D(n)),
(@22(n), Ba(n), T2(n), D (n)), (d33(n), 0, 0, B (n)), and (F4s(n), 0, E4(n), D(n)) are, respective-
ly, controllable and unreconstructible, controllable and reconstructible, uncontrollable and
unreconstructible, and uncontrollable and reconstructible. By the nonsingularity of d11(n), d33(n),
and @44(n), any zero eigenvalues of [A(P-1)...A(1)A(0)] must appear in the controllable and
reconstructible subsystem. In light of Theorem 3.1, the controllable and reconstructible portion of
the T-varying representation has dimension of at least . This property may serve to thwart
attempts to lower the dimension of the representation by discarding all subsystems except the
controllable and reconstructible subsystem; the remaining system will have dimension of at least 1.
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It is suspected that a decomposition based on reachability and observability would avoid this
problem; however, the dimensions of subsystems in such a decomposition in general vary with
time.

Based on the decomposition in Lemma 4.1, stabilizability and detectability can be defined.
Definition 4.1:

Z(n) will be said to be stabilizable if its uncontrollable portion is
asymptotically stable; with reference to the decomposition in Lemma 4.1, the
eigenvalues of [d33(P-1)...d33(1) @33(0)] and of [ 44(P-1)...344(1) T44(0)] all
have magnitudes less than 1.

L XX/
Definition 4.2:

Z(n) will be said to be detectable if its unreconstructible portion is
asymptotically stable; with reference to the decomposition in Lemma 4.1, the
eigenvalues of [d33(P-1)...333(1) @33(0)] and of [d1,(P-1)...311(1) 71,(0)] all
have magnitudes less than 1.

(XX
The following lemma, which arises from results in Weiss (1972) and the periodicity of X(n), was
noted in Grasselli and Lampariello (1981).
Lemma 4.2:

2(n) = (A(n),B(n),C(n),D(n)) is controllable (reconstructible) if and only if
the dual of Z(n), 24(n) = (A'(-n),B'(-n),C'(-n),D'(-n)), is reconstructible
(controllable).

I XX/
By making use of the decomposition in Lemma 4.1 and the duality properties in Lemma 4.2,
stabilizability and detectability can be shown to be dual properties.
Theorem 4.4:
X(n) is stabilizable (detectable) if and only if X4(n) is detectable (stabilizable.)
Proof:
Let the dual representation have state {(n) and let

Z4(n) = (A'(-n), B'(-n), C'-n), D'(-n)) = (a(n), B(n), ¥(n), 3(n)).

Consider the coordinate transformation 'C(n) = O(n){(n), where O(n) = [A-1(1-n)]".
The representation of Z4(n) in these coordinates, £ 4(n), is given by

&(n) = O@+1) a(n) O-1(n) = [A-1(-n)]' A'¢-n) [A(1-0)]' = [A(-n)]',
Bm) = ©(n+1) B(n) = [A1(-n)]' C'(-n) = [C(-n)T',
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and similarly, ¥(n) = [B(-n)]' and §(n) = [D (-n)]'. Thus,

A(-n) 0 0 0 0
&) = a'12(-n) az(-n) . 0 0 . By = cZ(O.n) ’
413(-n) 0 ass(-n) 0
L F14(-n) Fpa(-n) Fag(-n) FAg(-n) - S4(-n)

F@) =[Bi(-n) By(-n) 0 01, and §(n)=D'(-n).
From the properties of the submatrices in (4.2) given in Lemma 4.1 and from
Lemma 4.2, it can be seen that '55.3(-n) and '544(-n) determine the dynamics of the
unreconstructible portion of £ 4(n) and '5'11(-n) and '5'33 (-n) determine the
dynamics of the uncontrollable portion of £ 4(n). Note that

Ai(-(P-1))...811(-1) 11(0) = F1x(1)...71(P-1) 712(0)
=[a11(0) 11 (P-1). 211 (D]
Since '5'11(.) is square, the eigenvalues of ‘é"u(-(P-l))...'é"u(- 1 )'5'11(0) are equal
to the eigenvalues of @1;(P-1)...311(1)311(0). A similar relation holds for 5},3( -n)
and '5:;4(-n). Thus, the uncontrollable (unreconstructible) portion of ¥(n) is
asymptotically stable if and only if the unreconstructible (uncontrollable) portion of
£ 4(n) is asymptotically stable. The statement of the theorem then follows from
Definitions 4.1 and 4.2.

4.2)

‘e

The examination of the relationship between corresponding T-expanded and T-varying

representations can now be completed.
Lemma 4.3:
(A(n), B(n), C(n), D(n)) is stabilizable if there exist T-periodic matrices
F(n) such that on applying the state feedback

u(kP+i) = -F(kP+i) z(kP), 0<i<P, k=0,1,...,
the resulting representation is asymptotically stable; that is, the closed-loop
monodromy matrix at time t = 0,
Dc(0) = A(P-1) [...[A(1) [A(0) - B(0) F(0)] - B(1) F(1)]...] - B(P-1) F(P-1),
has eigenvalues of magnitude less than 1.
Proof:

Without loss of generality, it can be assumed that (A(n), B(n), C(n), D(n))
has been transformed into the canonical form in Lemma 4.1; it can be verified that if
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state feedback F(n) = F(n) A(0) is used in the 7 coordinates, then
®(0) = A-1(P) @c(0) A(0) = A1(0) D(0) A(0).

Thus, ®.(0) and ®(0) have the same eigenvalues. Partition (A(n), B(n)) into its
controllable and uncontrollable parts:

A =[ R Kot } S =[§1(n)} |
0 Agp(n) 0

Note that if there is F(n) such that each eigenvalue of
&.(0) = A(P-1) [...[A(1) [A0) - B0) F(0)] - B(1) F(1)]...] - BP-1) BP-1)

has magnitude less than 1, then each eigenvalue of [Ay(P-1)...A25(1) A2(0)] has
magnitude less than 1. This is easily seen by expanding &.(0) as

P-2
&,0) = A(P-1)...A(1) A(0) - 20, [AP-1)...AG+D)BGEG)] - B-1) FP-1)
=

and observing that A(P-1)...A(j+1) is upper triangular for -1 < j < P-2. From the
special form of B(n), ®.(0) is upper triangular with [Az5(P-1)...A52(1) Agx(0)]
appearing on the diagonal. Thus, if the eigenvalues of &.(0) have magnitudes less
than 1, so do the eigenvalues of [Apy(P-1)...A52(1) A32(0)], and (A(n), B(n)) is
. stabilizable.
XX
Theorem 4.5:
The T-varying representation of a multirate system is stabilizable if its
corresponding T-expanded representation is stabilizable.
Proof:
The theorem can be restated equivalently as “the T-varying representation of
a multirate system is stabilizable if its completely corresponding T-expanded
representation is stabilizable,” since the input matrix of the completely correspond-
ing representation, B, is merely a rearrangement of the columns of the input
matrix of the corresponding representation, B, padded with columns of zeroes.
If the completely corresponding T-expanded representation is stabilizable, it
is a standard time-invariant result that there is F.. such that the eigenvalues of
(Ae - BocFec) have magnitudes less than 1. Consider applying state feedback to
the T-varying representation as in Lemma 4.3:

u(kP+i) = -F(kP+i) z(kP), 0<i<P, k=0,1,... .

Suppose u € RPX1, Partition F, into P groups of rows,
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f
Fcc - .1 ’
fp1
where f; € RP*8, Set F(n) =[f, Opxn] and write ®.(0) as

P-2
Dc(0) = A(P-1)...A(1) AQ0) - Y, [A(P-1)...AG+1)BG)EG)] - B(P-1) F(P-1).
=0

In the notation of Theorem 3.2,
F(0)
F(1)
P0) =0 - B .
F(P-1)

From the values of F(n) and Theorem 3.2,

Ae 07 [Be
(DC(O)=|:H 0:|'|: J ][Fcc Oprn]‘

Thus, the eigenvalues of ®(0) have magnitudes less than 1, and by Lemma 4.3,
the T-varying representation is stabilizable.
se0
By using Theorem 3.2, Theorem 4.4, and Lemma 4.3 and proceeding in a manner parallel to
Theorem 4.5, the following theorem can also be established.
Theorem 4.6:
The t-varying representation of a multirate system is detectable if its
corresponding T-expanded representation is detectable.
'
The statements of Theorems 4.2, 4.3, 4.5, and 4.6 all hold with “if” replaced by “only if,”
but the new assertion is rather unimportant and in general trivial to prove. By arguments parallel to
those presented in this chapter, it can be shown that M-varying representations which correspond
to T-expanded representations (in a manner analogous to corresponding t-varying and T-expanded
representations) inherit the stability, controllability, reconstructibility, stabilizability, and detect-
ability properties of the T-expanded representation.
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CHAPTER 5

DESIGN OF MULTIRATE CONTROLLERS

The representations and methods of analysis developed for multirate systems thus far bear
fruit in the form of multirate controllers. The term “multirate controller” need not imply that only
the controller is multirate; candidates for control include all systems to which Procedure 2.4 and its
extensions apply. Although the T-expanded or M-varying representations are not truly time
invariant or periodic due to the time expanded form of their inputs and outputs, this characteristic
offers little or no obstruction to the design and implementation of multirate controllers by
conventional means. The controller designs presented here are intended as illustrations of the
general properties of controller design and implementation using T-expanded and M-varying
representations of multirate systems. The usefulness of these representations is by no means
limited to the controllers examined here.

5.1 T-expanded State Feedback and Observers

Consider a multirate system with the T-expanded representation
x((k+1)T) = A¢ x(kT) + Bye V(kT) + By R(kT)

Y(KT) = Ce X(KT) + Dy, V(KT) + Dye R(KT), (5.1)

where V(kT) is an input intended for control purposes and R(kT) is a reference or load input. On
applying feedback of the form V(kT) = -F x(kT), the state equation becomes
x((k+1)T) = [Ae - BveF] x(kT) + BR(KT).

If a matrix F can be found such that the eigenvalues of [A. - BycF] are all less than 1 in magnitude,
then Theorem 4.1 asserts that this representation, as well as the corresponding t-varying
representation, is asymptotically stable. Conditions for the existence of such a matrix F given
(Ae, Bye) are well known, and methods of calculating F abound.

Although calculation of F by treating (Ae, Bye) as a time-invariant pair using pole

placement or linear quadratic methods serves the purpose of stabilizing the system, two comments
are in order regarding the choice of design parameters for these methods. When choosing pole
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locations for pole placement, bear in mind that these pole locations are in a time scale of T seconds
per transition. An LQ design with even weighting on each member of an expanded bundle of
inputs with period T, say V1(kT), may result in a control law which consistently produces inputs
v1(kT) of magnitude quite different from v,((k+1)T-T;). The cause of this behavior is that if the
subsystems affected by v, have poles far from the origin (close to the origin,) then an input v,(kT)
will have a greater (lesser) effect on x((k+1)T) than an input v;((k+1)T-T;). If such behavior is
deemed undesirable, it can be predicted by examining the columns of By, corresponding to V(kT)
and corrected by appropriate changes in the input weighting matrix.

The design of observers which produce an estimate X(kT) of x(kT) parallels the design of
such observers in the standard time-invariant case, with two minor exceptions. The observer must
produce a predictive estimate, usually denoted by X(kT | (k-1)T), since current estimates,
commonly denoted by x(kT | kT), result in a noncausal observer. The observer must also account
for the Dy, and Dy, terms frequently present in the T-expanded representation.

The state equation for an observer for system (5.1) in predictive form is

X((k+1)T) = AeX(KT) + BveV(KT) + BreR(KT) + K[Y(KT) - CeX(kT) - DyeV(KT) - D.R(KT)].

The estimation error satisfies x((k+1)T) - x((k+1)T) = [A, - KCe](x(kT) - ®(kT)). If K is chosen to
stabilize [A. - KC.] by methods dual to those employed to find F, this error will asymptotically
approach zero as k—oo. The state and output equations for the combined state feedback and

observer pair are
%((k+1)T) = [Ae - KCe - [Bve - KDye]F] X(kT) + KY(kT) + [Bye - KD, JR(KT)

V(kT) = -F x(kT). 5.2

It is easily verified that the principle of separation holds for the state feedback and observer
designs. Equation (5.2) is a multirate discrete-time system specified in T-expanded form with
input [Y(kT)' R(kT)'l' and output V(kKT). As x((k+1)T) is needed at time t = (k+1)T to compute
V((k+1)T) and each component of Y(kT) and R(kT) is available at time t = ((k+1)T - 7) at the
latest, it follows that the controller given above is causal. Although all of the information
necessary to calculate X((k+1)T) may not be present until time t = ((k+1)T - t), the calculation of
[Ae - KCe - [Bve - KDy ]F] X(kT)
is possible immediately after t = kT. From

KY(KT) = K1,1y1(kT) + K1,2y1(kT+Ty) +...+ K3,1y2(kT) + K5 2y2(kT+T>) +...,

where the K;; are groups of columns of K chosen to be compatible with the individual values of
the ith bundle of signals (with period T;) comprising Y(kT) at time t = kT + jT;, the calculation of
KY(kT) and [Bre - KDr]R(kT) can occur progressively as the values of Y(kT) and R(kT) become
available. The implementation of (5.2) involves sampling each component of y(t) and r(t) at the
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appropriate rate and transferring values of -F X(kT) to each component of v(t) at the appropriate
rate and holding each of these values until the next arrives. This behavior is conceptualized as
sample/hold devices at appropriate rates at the inputs and outputs of the controller. The following
procedure summarizes the steps necessary to find a T-expanded multirate state feedback-
observer controller.

Procedure 5.1:

a. Decide upon the rate desired for each of the controller outputs and the
desired rate at which each plant output and reference input is to be observed by the
controller. Place samplers of corresponding periods on the block diagram of the
system after the controller output v and the reference input r and before the
controller input y, as shown in Figure 5.1. Assume that only the components of r
observed by the controller are fed to the summer, as in Figure 5.1. Relaxation of
this assumption is considered after this procedure.

+
r ——p{ S/H's X —1 Plant

+

v
S/H's [4—— Controller '<y— S/H's

)

Figure 5.1. Placement of samplers.

b. Apply Procedure 2.4 and any modifications which apply to find a
T-expanded representation such as (5.1), treating r and v as inputs and y as the
output.
c. Using any method desired, find matrices F and K from the pairs
(Ae, Bve) and (A, Ce) such that each eigenvalue of [A. - ByeF] and [A, - KC,]
has magnitude less than 1. The controller state and output equations are given by
(5.2).
‘e
The assumption in Procedure 5.1(a) that only the components of the reference input
observed by the controller are fed to the summer is necessary for the design procedure but need not
be satisfied in the implementation of the controller. Let rs be the actual sampled and held version of
r applied to the plant, where each component of s has a period which is an integer multiple of ,
the fundamental period used in the execution of Procedure 5.1. Let r, be the sampled version of r
observed by the controller. Since the components of 15 and 1, vary at times which are integer
multiples of T, s can be written rg = 1, + 1y, where the components of r, each vary with period 7.
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The signal ry is the portion of r; unobserved by the controller. Let the plant and controller system
with 1, and r,, as inputs have composite state

«D [X(kT) ]
S =
x(kT)
and state equation
s((k+1)T) = A s(kT) + B, Ro(kT) + B, Ry(kT). (5.3)

A is stable by design; therefore, under the quite reasonable assumption that B, and B, are
bounded, (5.3) is bounded-input bounded-state stable. If it is desired that the controller sample r at
a slow rate, then either r must be fed to the plant at this slow rate, slowing the system's response
time, or r can be fed to the plant at a fast rate, in which case the unobserved portion ry acts as a
disturbance.

The T-expanded multirate controller design has the advantages of ease of calculation by
established methods and being readily implemented. To its disadvantage, this controller exhibits a
rather sluggish response to rapid changes in r if T is large. The state feedback V(kT) = -F X(kT) is
essentially applied open loop over times of length T, leaving the system vulnerable to disturbances
and inputs r, unobserved by the controller. Indeed, if the observer portion is initialized to %(0) = 0,
no control will be applied until time t = T. The design of a T-expanded multirate Kalman filter for
a system with noise at the input which is uncorrelated with the noise at the output is complicated by
the fact that the D, term in the T-expanded representation introduces noise at the output which is
highly correlated with the noise at the input.

3.2 M-varying State Feedback and Observers

With the intent of achieving a faster response to inputs and disturbances, the value of the
state may be estimated and fed back at times t = nt. Consider the T-varying representation of the
multirate system in Figure 5.1 (in the following, the parameter 7 is suppressed):

z(n+1) = A(n) z(n) + By(n) v(n) + B(n) r(n)
y(n) = C(n) z(n) + Dy(n) v(n) + Dy(n) r(n).
After applying state feedback v(n) = -F(n) z(n),
z(n+1) = [A(n) - By(n)F(n)] z(n) + B,(n) r(n).
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If F(0),..., F(P-1) can be found such that each eigenvalue of the closed-loop monodromy matrix at
t=0,
©(0) = [A(P-1) - By(P-1)F(P-1)]...[A(1) - By(1)F(1)I[A(0) - By(0)F(0)],
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has magnitude less than 1, then the system employing F(n) = F(n mod P) as T-periodic feedback
matrices will be asymptotically stable. Such a periodic feedback arises naturally as the solution to
the LQ problem with the cost function

J=1/2 20 [2'(M)W,'(n)W(n)z(n) + v'(n)W,'(n)Wy(n)v(n)], (5.5)
n=

where W (n+P) = W,(n) and W,(n+P) = Wy (n) for each n € Z+. The discrete-time Riccati
equation associated with this problem admits a T-periodic solution which determines the feedback
matrices F(n). Discrete-time periodic Riccati equations have just recently been investigated;
conditions for the existence and uniqueness of their solutions, methods of calculating these
solutions, and conditions under which the resulting feedback is stabilizing are still developing. See

Bittani et al. (1986) and the references cited therein.
In order to make use of the results in Bittani et al. (1986), assume that Wy(n) is square and
nonsingular for each n € Z*. The Riccati equation associated with (5.4) and (5.5) can then be

written
S(n) = A'(m)S(n+1)A(n) + W,'(n)W,(n)

- A'(n)S(n+1)By(n) [I + By'(n)S(n+1)By(n)]! By,'(n)S(n+1)A(n),  (5.6)

where By (n) = By(n)(Wy(n))-1. For state feedback v(n) = -F(n) z(n),
F(n) = (Wy(m))1 [I+ By'(n)S(n+1)By,(n)]! By,'(n)S(n+1)A(n)

= [W,'m)W,(n) + By'(n)S(n+1)By(n)]! B,'(n)S(n+1)A(n). (5.7)
The following theorem is stated without proof; its proof relies on the application of results in
Bittani et al. (1986), the duality properties of discrete-time periodic systems (see Theorem 4.4) and
the assumed nonsingularity of Wy(n).

Theorem 5.1:
Consider the dynamical system represented by

z(n+1) = A(n) z(n) + By(n) v(n)
y(n) = Wy(n) z(n),
where A(n) and By(n) are as in (5.4) and W,(n) is as in (5.5). Then a unique

(5.8)

T-periodic symmetric positive semidefinite solution to (5.6) exists and (5.4) is
asymptotically stable after applying feedback v(n) = -F(n) z(n), where F(n) is given
by (5.7), if and only if (5.8) is stabilizable and detectable; i.e., the uncontrollable
part of (5.8) is asymptotically stable and the unreconstructible part of (5.8) is

asymptotically stable.
'

By Theorem 4.5, the stabilizability of (5.8) can be evaluated by examining the stabilizability of the
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T-expanded representation (with r(n) = 0) corresponding to (5.4). This device cannot be employed
to determine whether (5.8) is detectable; however, if W,(n) is square and nonsingular for each n,
(5.8) is detectable.

A t-varying observer to form an estimate Z(n) of z(n) takes a form identical to the
T-expanded observer:

Z(n+1) = A()z(n) + By(n)v(n) +B(n)r(n) + K(n)[y(n) - C(n)z(n) - Dy(n)v(n) - Dy(n)r(n)].

Since z(n+1) - Z(n+1) = [A(n) - K(n)C(n)] (z(n) - Z(n)), the error z(n) - Z(n) will asymptotically
approach zero if K(n) is chosen in a manner dual to the choice of F(n) for stabilization (see
Theorem 4.4 for the required duality details.) By writing the equations of the combined controller
and plant in terms of z(n) and (z(n) - Z(n)) and finding the T-expanded representation of this
T-varying representation, it can be verified that the principle of separation holds for the state
feedback and observer designs.

The procedure for finding a t-varying, T-periodic state feedback-observer controller via the
discrete-time periodic Riccati equation parallels Procedure 5.1. Comments similar to those
following Procedure 5.1 with regard to reference inputs unobserved by the controller also apply.

Using the periodic description (5.4) for the multirate system, other types of t-varying
controllers can be designed. Let z(n) € R3+, as in Chapter 4. Results in Grasselli and
Lampariello (1981) show that the reconstructibility and controllability of (5.4) (with r(n) = 0) are
necessary and sufficient for the existence of a T-varying, T-periodic state feedback-observer dead-
beat controller for (5.4) which is capable of driving any initial condition to the origin within an
interval of time no greater than 2(3+n)T. In light of Theorems 4.2 and 4.3, it is suspected that a
closer examination of the dead-beat controller problem could reduce this interval to 2(6+1)T for the
representation (5.4). M-varying controllers can be found by utilizing the M-varying representation
of the multirate system in Figure 5.1. As M-varying representations involve M-expanded inputs
and outputs, care must be taken to insure that the controller designed is causal. If the M-varying
controller is of the state feedback-observer type, the controller will be causal if the observer
produces predictive estimates.

Implementation of a T-varying controller requires an interpretation of v(n), r(n), and y(n).
In Procedure 5.1(a), sample/hold devices are placed on the block diagram to represent the effects
of the sampling and “output and hold” operations performed by the discrete controller. The fact
that values of v, r, and y are specified for the controller at times t = nt might suggest that the
T-varying controller be implemented by loading values of r, y, and v into and out of the controller
at times t = nt and physically passing these values through the sample/hold devices following v
and r and preceding y on the block diagram of Procedure 5.1(a). The implementation can be made
much more efficient by bringing the sample/hold devices inside the controller in the following
manner. For each component v;j(n) of v(n), if n corresponds to a time at which the sample/hold
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associated with v; samples, then vj(n) should be output by the controller at time t = nt and held for
the duration of the sampling period associated with v;. For each component yj(@) of y(n), if n
corresponds to a time at which the sample/hold associated with yj samples, then y;(n) should be
acquired by the controller at time t = nt and stored for the duration of the sampling period
associated with y; to provide the values yj(n), yj(n+1),... . The signals r(n) are treated similar to
y(n). Analogous comments hold for M-varying controllers.

A t-varying controller can potentially respond quickly to changes in the input r and, since
the state estimate is updated frequently, reduce the effects of unmeasured disturbances on the
output. The price paid for these attributes takes the form of complexity of design and
implementation; the T-varying representation employed by the controller has more states than the
T-expanded representation, resulting in greater computation and storage requirements. An
M-varying controller, where M is chosen such that T/M € N, may serve as an adequate
compromise between T-varying and T-expanded controllers; by choosing different values of M,
complexity can be traded for response time. The practicality of solving the discrete-time periodic
Riccati equation or finding the feedback matrices required in Grasselli and Lampariello (1981) is
unknown as of the present.

5.3 Transfer Function Controller Designs

By thinking of (5.1) as a time-invariant state and output equation, a transfer function matrix
may be obtained for this system:

V(2) V(z)
Y(z) = (Ce(zl - Ae)! [Bye Bre] + [Dye Dre) )[R(Z)] = 0@ [R(Z)] .

Using MIMO transfer function design techniques, controllers of a variety of structures may be
designed (Kailath, 1980). One such structure is
V(2) = Vy(2) + Vi(2) = Hy(z) Y(2) + H{(z) R(2).

Although details of such a design will not be elaborated upon here, the restrictions imposed on
Hy(z) and Hy(z) by the T-expanded nature of V(kT), Y(kT), and R(kT) warrant discussion. A
state space realization of Hy(z), if it exists, takes the form of a multirate discrete-time system
specified in T-expanded form,
w((k+1)T) = Ay w(kT) + By Y(kT)
Vy(kT) = Cy w(kT) + Dy Y(KT),

where Dy = Hy(e0). For this system to be physically realizeable, the elements of Hy(e) must be

(5.9)

finite; Hy(z) must be proper. For (5.9) to be causal, selected entries in Dy must be zero, and the
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corresponding entries in Hy(z) must be strictly proper. Let Hy(z) be partitioned into i x j blocks
h;j(z) to conform with the signal bundle values v(kT+t;) comprising V(kT) and y(kT+t;)
comprising Y(kT) (this notation is expedient and unrelated to previous notations.) For Hy(z) to be
realizable as a causal multirate system, it must satisfy
0,ift; <t j
hii(><) ={ a matrix of finite numbers , if t;<t; (5.10)

Multirate controllers designed by transfer function techniques possess some of the
advantages of both the T-varying and 1-varying state space controllers. The T-expanded nature of
such a controller simplifies its implementation, and the possibility of incorporating “D” terms into
the state space realization of the controller may allow the controller output during [kT, (k+1)T) to
depend on its inputs during [kT, (k+1)T), avoiding the open loop type behavior of the T-expanded
state space controller with respect to measured disturbances. However, the state of a multirate
controller designed by transfer function techniques is updated only at times t = kT, which may
impair its ability to reduce the effects of unmeasured disturbances on the output. The practical
implications of incorporating the causality constraints (5.10) into MIMO transfer function design
techniques are unknown at the present.

5.4 Comments

The advantages of using a multirate controller as opposed to a single-rate controller depend
greatly on the specific system to be controlled and on an intelligent choice of sampling periods for
the controller. Clearly, if the plant is inherently multirate, conventional methods of analysis and
design are not applicable to controller design. However, multirate systems frequently arise from
attempts to circumvent the “a controller is only as fast as its slowest actuator or sensor” principle of
single-rate sampled-data designs. In such a situation, the simplicity of a single-rate controller must
be weighed against the prospects of making full use of the bandwidth of the actuators and sensors
by multirate control. Results in Barnes and Shinnaka (1980) indicate that implementations of
multirate systems specified in T-expanded form exhibit desirable numerical characteristics, such as
low roundoff noise. A basic property of multirate systems is that as the numbers p; obtained from
the normalization process increase, representation and analysis of the system become more
difficult. Exploiting any freedom in the choice of actuator and sensor rates to reduce the numbers
pi will result in a much simpler multirate controller.
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CHAPTER 6
THE VARIABLE COMPONENT METHOD

APPLIED TO MULTIRATE DISCRETE-TIME SYSTEMS

The variable component method and the method of sensitivity points have been applied to
synthesize and tune linear, time-invariant controllers for linear, time-invariant plants; see Frank
(1978), Kokotovic (1964), Kokotovic (1965), Hung (1985), and the references cited therein. In
this chapter, the variable component method will be extended to the class of multirate discrete-time
systems to which Procedure 2.4 and its extensions apply. A general time-invariant variable
component result will be derived and then related to the T-expanded representation of these
multirate systems.

Consider a time-invariant discrete-time single-rate system with an embedded scalar
parameter k and scalar output y(u(n),k,n) at time n for a given scalar input u(n). The variable
component method and the method of sensitivity points are each based on a block diagram
representation of the system and provide a means of determining the output sensitivity
function, d[y(u(n),k,n)]/dk, by simulation or implementation. These two methods basically
proceed by injecting the input u(n) into the system or a suitable model of the system and extracting
selected signals, as determined by the block diagram, from the system or model and injecting these
signals (or possibly filtered versions of these signals) at selected points of another model of the
system. Alternately, the extracted signals may be stored and injected into the actual system at a
later time. In either case, the response at a selected point of the two connected systems is the
output sensitivity function. In addition to the actual system, the variable component method
requires as many models of the system as there are parameters to be independently varied if the
output sensitivity function for each parameter is to be obtained simultaneously. The method of
sensitivity points allows the output sensitivity functions for any number of parameters to be
obtained simultaneously with only one system—model pair. However, the method of sensitivity
points cannot be applied to MIMO systems (Hung, 1985).

Once the output sensitivity function has been obtained, the response of the system with
parameter value k + Ak, IAkl « Ik, and input u(n) can be approximated by

y(u(n),k+Ak,n) = y(u(n),k,n) + Ak(d[y(u(n),k,n)]/0k).
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The output sensitivity function thus provides information useful for iteratively adjusting the
parameter k so that the output of the system meets or approaches certain time-domain criteria for a
given input u(n). Such adjustments are frequently determined through the solution of an
optimijzation problem by minimizing a measure of the error between the actual output of the system
and the desired output of the system (see Kokotovic (1965) and Hung (1985).) An example of the
use of the variable component method with a multirate system would be the tuning of parameters in
a single-rate sampled-data controller based on intersample values of the output of the controlled
system.

6.1 A Time-invariant Result

In the following, a general variable component method result for time-invariant discrete-
time MIMO systems will be derived. This time-invariant result can then be applied to the
T-expanded representation of a multirate discrete-time system.

Consider a MIMO time-invariant single-rate discrete-time linear system with rate 1/T and a
parameter K = diag[k; kj,...,k;] which can be isolated as shown in Figure 6.1. Let U(z), E(z),
and Y(z) be the vector Z-transforms of U(mT), E(mT), and Y(mT), respectively, and let U(z) be
jx1,E(z) berx 1, and Y(z) be q x 1. The dependence of E(z) and Y(z) on K and U(z) will

not be made explicit at this point.

U(z) Y(z)

3 R(z) E(z)

Figure 6.1. A MIMO time-invariant system.

Assuming that the system in Figure 6.1 is well-posed (see Chen (1984),) there exist transfer
function matrices F(z), G(z), H(z), and J(z) which do not depend on the parameters ki, k..., k;
such that, suppressing the argument z,

R = GU + HKE = GU + HKR.

Thus,
R = (I; - HK)'1 GU. 6.1)

Also,
Y =FU + JKR = FU + JK (I, - HK)-1 GU. (6.2)
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