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The Extended Kalman Filter as a Local
Asymptotic Observer for Discrete-Time
Nonlinear Systems*
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Abstract

The convergence aspects of the extended Kalman filter, when
used as a deterministic observer for a nonlinear discrete-time sys-
tem, are analyzed. Systems with nonlinear output maps are treated,
and the conditions needed to ensure the uniform boundedness of the
error covariances are related to the observability properties of the
underlying nonlinear system. Furthermore, the uniform asymptotic
convergence of the observation error is established whenever the non-
linear system satisfies an observability rank condition and the states
stay within a convex compact domain. This last result provides a
theoretical foundation for this classic, approximate nonlinear filter.
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1 Introduction

Designing an observer for a nonlinear system is quite a challenge. Thus,
as a first step, it is interesting to see how classical linearization techniques
work with nonlinear systems and what their limitations are. In [4], Baras
et al. describe a method for constructing observers for dynamic systems
as asymptotic limits of filters. They discuss the method as applied to the
linear case, and a class of nonlinear systems with linear observations!, in
the continuous-time domain. Essentially the extended Kalman filter(EKF)
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1See also [13] for the case of nonlinear outputs.
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2 The Kalman Filter: A Global Asymptotic Observer
for Linear Time-Varying Systems

It is well known that, under stochastic controllability and observability
assumptions, the Kalman filter for a linear time-varying system with arti-
ficial noises can be used as a global asymptotic observer for the underlying
deterministic system [9]. This fact can be also seen from the duality of
a linear optimal regulator problem [18, p. 535]. In this Section, we give a
new, simple proof, which is essential for setting up the analysis on nonlinear
systems done in Section 3 through Section 5.
Consider a linear system:

ZTp41 = Apzp+ Brup, o unknown, @1)
v = Cizy, :

where A; is assumed invertible?, and consider also the associated “noisy”
system:

Zk41 = Arzi + Brur + Nwy, (2.2)
& = Cizr + Rug, '

where the design parameters N and R are to be chosen as positive definite
matrices. Then the Kalman filter equations for (2.2) are given as follows

(1.
Measurement update:

& = Zi+ Ki(& — CiZ), (2.3)
P7t = P7'+ CL(RRT)™'Cy, .

Time update:
Zryr = AxZk + Brug, (2.4)
Pk+1 = AkPkA{'i‘NNT, )
Ki = P.CT(RRT)™! = P.CT (CL P.CT + RRT)™!

where P, and P; are the a priori and a posterior: error covariances, and
Z; and Z; the a priori and a posteriori estimates of the state at time k,
respectively. The filter is initiated with Zo and P, ; P, is used as a design
parameter, assumed also positive definite.

2This assumption can be relaxed to singular state transition matrices if a linear
system is considered [25]. Toward nonlinear systems, however, we make this stronger
assumption here.
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Remark 2.2 The conditions (2.11) and (2.12) imply that the “noisy” sys-
tem (2.10) is stochastically controllable and observable [3]. It is easily
seen that the positive definiteness of N implies the stochastic controlla-
bility through the condition (2.11). For linear systems, this requirement
can be weakened to stabilizability [2] or even to nonstabilizability under a
few more assumptions [7]. For the ease of presentation and the nonlinear
systems to be considered later, however, we use this stronger assumption
here. On the other hand, let’s take R = I, R being a design parameter;
then condition (2.12) is satisfied if the deterministic part of the system
(2.10), i.e., the pair (Ag, Ct), is uniformly completely observable [18]. D

Remark 2.3 Under the above conditions, it can be also shown that P; is
bounded from above and below. Indeed, from (2.4),

1Pell < (ea + 1/B)IIAI? + |IN]1%.
Also, from (2.3),

_ 1
P> P > ——1.
e k—ﬂ2+1/02

Therefore,

1

ﬂz-l-—l/azI <SP <{(en+ 1/8)IIA|? + |IN|I?} .

It is obvious that P;"! and P! are both bounded from above and below.
0

Remark 2.4 Deyst and Price [9] have also shown that, under stochas-
tic controllability and observability assumptions, the homogeneous filter
equations of the a posteriori estimates are uniformly asymptotically stable.
Since, in [9), AT A; is assumed bounded from above and below in norm,
and Zp41 = AxZr when the control variable is not considered, uniform
asymptotic stability also holds for the homogeneous filter equations of the
a priori estimates (2.5), which is exactly the same as the error dynamics
2.7).

Baras et al. [4] have also obtained bounds for the error covariances in
continuous-time via dual optimal control problems under some “stronger”
observability and controllability assumptions (see conditions (28) and (29)
in [4] ) and used the bounds to show the convergence of the error. Similar
methods yield bounds for the error covariances in discrete-time. Bounds
for the case of linear time invariant systems are explicitly shown in [26], but
in this case they follow simply from the detectability of the pair (A4, C) and
the invertibility of A. In Section 4 we will discuss how the observability of
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where
Ke = P.CT(CP.CT + RRT)™!,
Ay = ‘g—i(ﬁk),
Cr := %(-ﬁ)-

The Riccati equations for the error covariances are the same as in (2.8) and
(2.9) with the above matrices.

To begin with, we make the following assumptions for setting up the
analysis. Section 4 addresses how Assumption 3.1.1 is implied by an ob-
servability property of (3.1); the other conditions are addressed in Section
5.

Assumption 3.1

1. The linearized system along the estimated trajectory of the ertended
Kalman filter is uniformly observable, that is, (Ax,Cy) of (3.3) and
(3.4) satisfies the uniform observability condition.

2. A(z) = %ﬁ(z) is invertible at each z € R".
3. The following norms are bounded;

lAll := sup [lA(z)Il, I|47"]| == sup [I[A(=)]7H,
z€R® z€R™

Oh
‘—az(z)ll, NID*flll = sup [[ID*f(=)Ill,
z€ER™

IID?A||| = sup |[|D*h(=)||l-
z€ER™

|H|| := sup ||R™
z€R"

4. Letg(z,y) := h(z)—h(y)— S (z)(z—y), and suppose that there erists
9 < oo such that |g(z,y)| < gll|D?h||| |z - yI* for all z,y € R™.

Assumption 3.1.1 implies that the error covariances are uniformly
bounded. Thus let 0 < ¢,p1 < oo be the corresponding bounds for er-
ror covariances, that is, || P¢|| < ¢ and ||P;}|| < p1 for all k > 0 . For later
use we derive a few more bounds. From (3.3)

Py =Py —HLHpy,
thus giving
1Pl < 1P |+ I1HN < 1 + [|HI := p.
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where
1,1
B = // sz(z":k+rség)sé'kdrds
0Jo
Iy = —ArKigr+ Bipé:.
Hence,
ek Piiere = (eF (I - KiCu)TAT + )P} (A(I — KiCr)er + It)

= ef (I - KkCi)T A P Ax(I — KiCi)ex

+Hi P Ak x (I - KiCi)ex

+ei (I — KiCo)T AT Pk + T P L.
Using the linear results,
AV(k,ex) = e{_,_ll_’;_'_lleb.,.l - e{ﬁ;lek

< - PN PT + AT(NNT) A P e + 1T PO A1
—KiCi)ex + ef (I — KeCe)T AT P e + I BLL L.

With the definition of g; = g(zx, Zx), since

= |(I — KiCi)er — Kige|
< M = KiCel| lex| + || Kkl lge
< (pg + 69ll|DA|| lex])lex],

€k

and

1,1
1Bell = |l / / D?f(2r + rséy)sérdrds||
0Jo

1 p1
< 1 <
< [ [ 0 Alsardsles] = S11D% 1l 12,
it follows that

[Tk | = AeKirgi + Bréx|

< ¢lexl, DA, ILD?AII) e

and
I{P,;}I Ak(I - Kka)ek + e{(I — Kka)TA{p;_l_lll), + I{P{:llk
2331 e 2AAN N = KeCrll lex] + lel)

plexPé(lex, DA, 1 D?RI1){2pqll Al
+é(lexl, D £, DRI lexl}.
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If we assume further that ATAr > vI > 0 Vk, then condition (4.1) is
equivalent to the following condition: for some 7,72, 0 < 71 < 13 < 00,

’hI < OT(k - M) k)O(k - M) k) S 772[’ (4'2)

where
Cr-m

Cr-M+14x-
Ok - M.E) := ‘I: M+14k-M

CrAg-1---Ak-m

In order to apply this linear observability condition to the EKF (3.3) and
(3.4) and, ultimately, to relate this to observability properties of the un-
derlying nonlinear system, let’s represent O(k — M, k) in terms of the EKF
variables in (3.3) and (3.4), i.e.,

22 (Ze-m) ,
) o ) S (Ze-m+1) 3L (Ze-m)
Oc(zk—Mr"')zk)zk—M)"')xk-l) = .

S (22) 8L (2k-1) - - &L (32-m)
(4.3)
Define the map H : R* — (RP)" by

H(z) := (h(z), h(f(2)),---, h(f*" ()T (44)

A system is said to satisfy the observability rank condition at zo [24] if the
rank? of the map H at z¢ equals n. A system satisfies the observability rank
condition on O if this is true for every z € O; if O = R", then one says
that the system satisfies the observability rank condition. By the chain
rule,

8h
3;(30)8
OH | 52(z0)3k(20) 45
E(-"-‘O) = : (4.5)
8 (zn-1)Z(zn-2)- - & (z0)
OH

=: 3;;(30, Z1, ", &Tn-1)

where zx41 = f(zx), k=0,1,---,n—2. It follows that O, = % if Z; and
£} are equal to the true state z;, for k =0,1,--.,n— 1. By continuity, we
can argue that if the system (3.1) satisfies the observability rank condition,
then its associated EKF satisfies the observability condition (4.2), for M =

4Recall that the rank of H at zo equals the rank of % (z) evaluated at zq.
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Remark 4.3 Suppose that the system (3.1) satisfies the observability rank
condition and that the output y is scalar valued. Then z = H(z) is a local
diffeomorphism. In the #- coordinates, the system (3.1) is transformed into
a local, observer canonical form:

Zi(k+1) = Z(k)
Foa(k+1) = En(k) (.7)
Ea(k+1) = S(E1(k),- -, Za(k))

y = il(k)

A simple computation shows that the linearized observability condition
(4.2) is always satisfied for a system in the form (4.7); indeed, O(k—M, k) =
I, for M = n — 1. This is in marked contrast to the situation analyzed in
Proposition 4.1, and underlines the coordinate dependence of the extended
Kalman filter in general, and the linearized observability condition (4.2) in
particular.

5 Applicability of EKF as an Observer for Nonlinear
Systems

In this section we seek to remove Assumption 3.1 by applying the EKF on a
convex compact subset of the state space. Before we begin, a few notations
are mentioned. Let O be a (not necessarily small) convex compact subset
of R*, ~ O the complement of @, and € > 0 a positive constant. Define
d(z,~0)=inf{lz—y|:y €~ O0},and O = {z € O : d(z,~ O) > €}.

Since O is compact, ||A4]| := sup ||—f(z)|| and ||Dh|| := sup ||z—(z)|| are
zco 0T c€o Oz
bounded. Let a = maz(1,||A||) and

k
b = (1+|RllIDAIPIIR?)a* TT{1 + IDAIP R
=1
x (AP N Poll + INTPAIAIPED + AP + - + 1))}

First we consider a sufficient condition to keep the estimates Z; and Z
near the true state x; over a finite time period.

Lemma 5.1 Consider the system (3.1) and its associated EKF (3.3) and
(3.4). Suppose that the following conditions hold.

1. z € O, for some e >0, 0<k<M.

2. leo| = |20 — zo] < % for some 0 < 6 < ¢/2.
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Therefore, for 2 < k < M,
|Zk — zk| < be-1leo| < 6.
Also,

12k =zl < (1+|IKkll - |DAI])|ZE — 2|

< bileo < 6.

This completes the proof. O

Since we have conditions which keep the EKF estimates close to the
true state, we can now use the results of Theorem 3.2, Proposition 4.1, and
Lemma 5.1 to show the convergence of the EKF on a convex compact set
without Assumption 3.1. It is only required that the system (3.1) satisfy the
observability rank condition on a convex compact set @, and that [3L(z)]~!
exist at each z € 0.

2
Note that on a compact set @ C R, |||D*f||| := sup |||g—z£-(z)||| and
€0

2
[I|D?A|| := sup Illg—z’;(z)ul are bounded, and Assumption 3.1.4 holds for
z€0

all z,y € O. Let aq = |[N|2(1 + ||AIf? + [|A]I* + - - + ||4]P*-2), a3 =
minimum eigenvalue of NN*, a = maz(1,||4]|), and

k
B = (1+|Po]| \Dh|*)a* [T{1 + || DA|f?
I=1

(AP N Poll + INIPAAIPCD + AP 4 -+ 1))}

Theorem 5.2 Consider the system (3.1) and its associated EKF (3.3)
and (3.4). Suppose that the system (3.1) satisfies the observability rank
condition on a conver compact set O, and that [gﬁ(:r:)]‘1 ezists at each
z € O. Let 6, > 0 be a constant which satisfies the inequality (4.6) for
some 0 <y < 72. Let p= (y2 + 1/a2), ¢ = a%*(a1+1/m1)+||N|?. Let
62 > 0 be such that p((pq)!/26s, [I|D*f{ll, IID?A||) < — for some 7 > 0,
where ¢ is defined in Section 3, and let M be the smallest integer which
satisfies

(1 + (gll Al + INI)IDAIP)IL AN + qll DAII?)
x(1= 1M (pg)t/? < 1.

Suppose further that z € O,, k > 0, for some € > 0, and that |eo] <
with § = min(e/2, 61,62). Then we have the following results:

Bn4m-1

1. |Zg —zx| <6 and |2 —zk| <6 VE> 0.
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Recall that R = I is used as a design variable. Also,

ensst — Tnsm] < (1+ [ Kngnell | DRI lensn]
< [+ (g4I + INIP)IDRIPIAI + ¢l DAI2)
x(1 - %)M”(pq)‘”len-ll <.

In addition, we have
ZogMm €02 and Zuym € O2.

Thus the conditions (5.1) and (5.2) are also met for k = n + M. Hence
|Pasnll € @1+ 1/71 and ||P |l < p. Therefore by induction it holds
that for k > n+ M,

1|z —zk| <6< €/2, |Zr—zi| <6<L¢€/2.
2 1Pl < g IIPTMIS P
1/2(1 _ 1\(k=-n+1)/2
3. leal < 8(pa)2(1 — HE-m+12. O
Remark 5.3

(a) In order to satisfy the observability condition, it is necessary to keep
the estimates Z; and Z; near z; for 0 < k < n+ M -1, thus requiring
a good initial guess.

(b) We also need to have a converging period (n—1 <k < n+M —1) for
the EKF in order to build up the observability condition; after this,
the recursions proceed automatically.

Remark 5.4 The above results hold wherever the initial guess is close
enough to the true state. In other words, we have convergence of the
observation error on an open neighborhood of the diagonal of the product
space of the true state and the estimate, which includes the origin. This
kind of observer is termed guasi-local [11]. Note that most results on local
observers are only valid on an open neighborhood of the origin [8, 16, 17].

6 Conclusions

Motivated by the fact that the EKF can be used as a parameter estima-
tor, we have analyzed in detail how the EKF works when it is used as
an observer for general discrete-time nonlinear systems. First, we gave a
new proof of the fact that the Kalman filter is a global observer for linear
(discrete-time) time-varying systems. Based on this proof, we were able to
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