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Shortest Path Stochastic Control for Hybrid Electric Vehicles 

Ed Tate1, J.W. Grizzle2, Huei Peng3 

Abstract: 

When a Hybrid Electric Vehicle (HEV) is certified for emissions and fuel economy, its power management 

system must be charge sustaining over the drive cycle, meaning that the battery state of charge (SOC) must be 

at least as high at the end of the test as it was at the beginning of the test. During the test cycle, the power 

management system is free to vary the battery SOC so as to minimize a weighted combination of fuel 

consumption and exhaust emissions. This paper argues that shortest path stochastic dynamic programming 

(SP-SDP) offers a more natural formulation of the optimal control problem associated with the design of the 

power management system because it allows deviations of battery SOC from a desired setpoint to be 

penalized only at key-off. This method is illustrated on a parallel hybrid electric truck model that had 

previously been analyzed using infinite-horizon stochastic dynamic programming with discounted future cost. 

Both formulations of the optimization problem yield a time-invariant causal state-feedback controller that can 

be directly implemented on the vehicle. The advantages of the shortest path formulation include that a single 

tuning parameter is needed to tradeoff fuel economy and emissions versus battery SOC deviation, as 

compared to two parameters in the discounted, infinite-horizon case, and for the same level of complexity as a 

discounted future-cost controller, the shortest-path controller demonstrates better fuel and emission 

minimization while also achieving better SOC control when the vehicle is turned off.  Linear Programming is 

used to solve both stochastic dynamic programs. 
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 Introduction. 

 To achieve greater fuel efficiency and lower emissions in vehicles using internal combustion 

engines, there have been two basic approaches used in the powertrain. The first approach is to improve the 

thermodynamic cycle used to convert fuel into power. Technologies such as cylinder deactivation [1], 

variable cam phasing  [2] and timing [3] , continuously variable transmissions [4], automated shift  

transmissions [5] and exhaust gas recirculation [6] are all used to improve the instantaneous efficiency and 

decrease emissions from a powertrain. The second approach is to improve on the system performance of the 

powertrain by storing and releasing energy over a drive cycle, allowing the engine to operate in more 

favorable regions, which improves the average thermal efficiency of the engine. One technology for achieving 

this is the Hybrid Electric Vehicle (HEV) which consists of an electric powertrain coupled to a conventional 

powertrain.  

A conventional vehicle powertrain consists of an engine, transmission, differential and controls. The 

controls translate a request for torque from the driver into inputs for the engine and transmission that produce 

that desired torque, while achieving multiple objectives. These objectives include fuel economy, emissions, 

torque deviations, and component protection. An HEV retains all of the control complexity of a conventional 

powertrain and introduces new complexity. This increase in complexity occurs because of the additional 

components and the coupling among those components. These additional components increase the number of 

states to be controlled, the inputs for control, and the outputs available for feedback. Additionally, there are 

new control objectives. Due to federal and state regulations [7],[8],[9],[10], the controls must manage battery 

charge in a manner that satisfies certification requirements. In addition to certification requirements, a 

manufacturer may have other control objectives including battery life management, system thermal 

management to prevent component overheating, and minimization of the customer’s perceptions of ‘odd’ 

behavior. While this design process focuses on fuel economy, these other factors can be incorporated. 
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1.1) Prior Art 

To design control laws for HEV’s, several approaches have been taken. The dominant design 

approach in the literature is some form of rule-based design, relying on engineering intuition and logic. For 

example, the work in [11] determined the optimal control choice by selecting the best action based on the 

instantaneous cost, where this instantaneous cost includes an approximation of the cost in fuel for electrical 

energy from the battery. In [12] a similar scheme is employed. As a means to analyze the properties of an 

optimal control, Dynamic Programming (DP) is used in [13] and [14]. However, these analyses were not used 

to generate a causal control law. Reference [15] uses the solution to a DP to design a rule-based controller. In 

that paper, a DP is solved to find a globally optimal sequence of control inputs for the powertrain. The 

insights gained from this solution were then used to design a realizable control law and implement it. This 

design approach achieved significant improvements in fuel economy and emissions reduction over 

heuristically derived control laws when tested in an Eaton prototype HEV [16]. 

Utilizing assumptions of perfect future knowledge of the vehicle trajectory, Back [17] proposed a 

causal Model Predictive Control (MPC) control law. Unfortunately, perfect future knowledge is rarely 

available. In an engineering problem similar to the HEV energy storage issue, Kummert [18] applied 

Stochastic MPC to a passive solar building. This approach used a prediction (weather forecast) and a 

confidence in the prediction to determine an optimal schedule for heating and cooling a building. This would 

suggest that path prediction with a prediction confidence could be used in a scheme similar to [17], though, no 

work proposing such a technique has been found. 

Recently, Lin at al. [20] proposed Stochastic Dynamic Programming (SDP) as a technique to directly 

design an HEV control law. This design technique yielded better performance than any heuristically derived 

rule-based controller previously employed. The primary advantage of this approach is that the control law is 

designed from an optimization criterion, a model of the plant dynamics and a model of the driving pattern 

statistics. A weakness in this approach is that the optimization criterion discounts future costs and assigns a 

penalty to SOC deviation from a set point at every instant in time. This optimization contains two tuning 

parameters, the discount factor and the SOC deviation penalty.  
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1.2) New Contributions 

When the controls for an HEV are developed based on vehicle certification requirements, there is no 

cumulative cost for deviation from an SOC set point, except when the vehicle is turned off at the end of the 

test. At that point, there is a penalty for the battery charge being too far from a set point. Additionally, the 

total fuel consumed and total emissions generated while driving are measured and penalized. Ideally, the 

optimization problem posed for designing a controller should minimize some combination of the total fuel 

consumption, the total emissions generated and the deviation of the SOC from a set point when the vehicle is 

turned off. Towards this goal, this paper investigates the use of Shortest Path Stochastic Dynamic 

Programming (SP-SDP) to design an optimal control law.  

SP-SDP is a variation of infinite horizon Stochastic Dynamic Programming. In SP-SDP, the state 

space is constructed so there is a set of states that represent a terminal condition. In this terminal condition, no 

costs are incurred and there is zero probability of transitioning out of this set. The terminal set is absorbing. 

Every element of the state space outside of the terminal set is constructed so that, under control, there is a 

positive probability of transitioning into the terminal set within a finite time. The existence of this terminal set 

and the ability to control the system, so that the state transitions into the terminal set, guarantees that the 

expected costs in the system are finite, even in the undiscounted case.  

2) Models 

2.1)  An HEV Dynamic Model. 

This study assumes the HEV model of [15] and [20]. A detailed description of the model is available 

at  [21]. The vehicle is a parallel hybrid electric truck, with an automatic transmission and diesel engine. The 

electric machine is coupled to the output shaft of the transmission. Figure 1 provides a schematic of the HEV 

powertrain and controls. For control design, the HEV powertrain is simplified. The vehicle is reduced to a 

quasi-steady, discrete time, state model with two state variables and two inputs. There is a state associated 

with the charge in the battery ( q ) and a state associated with the vehicle speed ( v ). The charge is normalized 

to a value between 0 and 1. The vehicle speed is limited to a range of 0 to 100 miles per hour. The state 

variables are assumed to be perfectly observed. The battery is modeled using ohmic resistance and charge 

efficiency with an open-circuit voltage curve that is a function of the state of charge. The transmission gear 
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control is simplified to a function of engine speed, engine torque and vehicle speed. The transmission gear is 

selected apriori to minimize the instantaneous linear combination of fuel consumption and emissions 

generation that matches the weighting in the control objectives. Gear shifts are assumed to occur in negligible 

time and their control is provided by an autonomous low-level controller. The vehicle command from the 

driver, cmdV , is either a wheel power demand, a command to turn the vehicle off or an indication that the 

vehicle is off  where  

 [ ]{ }min max, , ' turn off ', 'off 'cmdV P P∈ . (1) 

Power demands are limited by minP  and maxP  to a range of -100kW to 150kW as measured at the wheels. 

When the vehicle command is ‘turn off’, at the next time step, the vehicle command transitions to ‘off’. Once 

the vehicle command transitions to ‘off’, the vehicle command stays at ‘off’. The deterministic dynamics 

associated with the HEV are time invariant and summarized as  

 [ ] [ ] [ ]( )1
,T T T

HEV cmdk k k
q v f q v PSR V

+
= . (2) 

The deterministic HEV model also generates outputs associated with instantaneous fuel consumption and 

emissions. When the vehicle command, cmdV , is ‘turn off’ or ‘off’, these outputs are 0. These relationships 

are time invariant and summarized as 

 [ ] [ ]( ),
T T T

f PM NOX HEV demk kk
m m m h q v PSR T⎡ ⎤ =⎣ ⎦� � � , (3) 

where fm�  is engine fueling rate, and NOxm�  and PMm�  are respectively NOx and particulate matter emission 

from the engine. The inputs to the HEV are the vehicle command from the driver, cmdV  and the power split 

ratio from the supervisory controller, PSR , which is defined as  

 
Engine Power Measured at the Wheels

Power Measured at the Wheels
PSR = . (4) 

There exists a low-level controller that interprets a Power Split Ratio (PSR) command and where feasible, 

delivers engine power, measured at the wheels, that is equal to the product of PSR and the power demand in 

the vehicle command. Inertial effects are ignored in calculating this ratio. Gearing and losses are considered 
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in this equation. Any power excess or deficit is balanced by the electric machine. Figure 2 illustrates the 

signal flow for this system.   

2.2) Forming a Controlled Markov Process from a Conditional Probability Drive Cycle Model. 

 One way to model a vehicle drive cycle is as a white noise process that is transformed into power 

demands by the environment and driver. This transformation can be visualized as shown in Figure 2. A white 

noise describes the unique changes in the environment as the vehicle moves through it. The environment 

correlates these changes and in turn, provides cues to the driver to adjust his internal state. Based on the 

immediate environmental cues, feedback on vehicle position and velocity and the driver’s internal state, the 

desired wheel torque is determined.  This is a complex process and multiple approaches have been used in 

modeling. 

A stationary Markov model based on ‘microtrips’ is proposed in [19]. The ‘micro trips’ describe 

maneuvers over a few seconds: accelerations, quasi-cruising, cruising and decelerations. A collection of 

‘micro trips’ is created using statistical analysis of representative driving data. A probability transition matrix 

describes the conditional probability of transitioning from one ‘micro trip’ to another.  

Another way to characterize a drive cycle is using conditional probabilities coupled with 

deterministic models, as described in [20]. This results in a compact description of a stationary controlled 

Markov process [22]. Because the concept of ‘turning the vehicle off’ is included in this model, the vehicle 

command can either be a power level, a command to turn the vehicle off, or a command to keep the vehicle 

off. A conditional probability model is created that defines the probability of the next vehicle command given 

the current vehicle speed and the current vehicle command. The values of the transition probabilities are 

calculated from representative data that includes speed and power demands. This conditional probability, for 

the drive cycle, combined with the HEV dynamic model, forms a controlled Markov process. The state space 

is the 3-tuple (vehicle command, velocity, battery charge). The controllable input is the power split ratio.  

The resulting conditional probability of the next vehicle command is  

 ( ), ,~ Pr ,cmd next cmd next cmdV V W V v= . (5) 

Once the current vehicle command is ‘off’, all subsequent vehicle commands are ‘off’. 
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 Wheel power is used to represent the driver’s demand because the range of driver requests is 

primarily limited by engine and machine power. When using a rectangular grid of fixed resolution for 

approximating (5), the use of power rather then torque results in more points with non-zero probabilities. This 

is advantageous because it increases the amount of information available versus torque when using simple 

sampling schemes. One issue with using power rather than torque is how to handle a velocity of zero. 

Considering only positive speeds, at approximately zero velocity, the power is found by assuming that vehicle 

speed is a small positive number. To implement this, the driver’s request in terms of torque is converted to 

power using   

 

 
,
,otherwise

whl
whl

whl

T v v
P

T
ε

ε
⎧ ⋅ >

= ⎨
⋅⎩

, (6) 

where ε  is 1 mile per hour. 

3) Control Law Formulations 

3.1) Optimal Cycle-Specific Formulation Using Deterministic Dynamic Programming. 

 For reference, the optimal cycle-specific controller is illustrated. This is introduced to highlight the 

differences between the deterministic programming approach and the stochastic dynamic programming 

approach. The goal of the deterministic controller is to minimize weighted fuel and emissions over a finite 

horizon for a specific cycle, while returning the battery to a know state of charge when the vehicle is turned 

off. The optimization problem is formulated as 

 
( )

( )
1

,
1

min ,
k k

K
T
inst HEV k k kPSR q k

J c h q PSR
−

∈
=

⎧ ⎫= ⋅⎨ ⎬
⎩ ⎭
∑

kU
, (7) 

subject to the system dynamics, 
 ( )1 , ,k HEV k k kq f q PSR+ = , (8) 

and a requirement to balance the charge in the battery at the end of the cycle, 
 1Kq q= . (9) 

In this problem, ,HEV kf , is the time-varying dynamics formed by a single trajectory or sample path 

of ,cmd kV  and eliminating that term from equation (2).   The time-varying fuel and emissions of the system, 
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,HEV kh ,  are formed from (3) in a similar manner. The product of T
instc  and ,HEV kh  determines the 

instantaneous cost of operation of the HEV. This weighting allows the fuel economy to be traded off relative 

to the emissions.  The set kU  contains all of the feasible choices for the power split ratio at time step k . 

Under the assumption of perfect knowledge of the trajectory of the system, an optimal open-loop 

control law can be found.  However, this formulation of the optimal control problem is problematic because 

there are states at specific time steps that cannot satisfy (9). For example, if the battery is fully charged at K-1 

and 1q  is 50% charge, there may be no action that can satisfy (9).  Because of these infeasible states, either 

the constraint formulation must be changed or auxiliary control objectives must be defined to handle 

infeasible regions. By revising the objective in (7) to include a quadratic cost when turning the vehicle off, the 

equality constraint in (9) can be approximated. This revised objective is 

 
( )

( ) ( )
1 2

, target
1

min ,
k k

K
T
inst HEV k k k term KPSR q k

J c h q PSR c q q
−

∈
=

⎧ ⎫⎛ ⎞= ⋅ + ⋅ ⋅ −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
∑

kU
. (10) 

In this form, a time-varying feedback control law can be constructed that is valid for any initial condition. In 

(10), the constant termc  is used to scale a quadratic penalty for deviation from a battery state of charge 

setpoint at termination of the drive cycle.  

A time varying feedback controller for (10) can be found by forming a DP and solving for the value 

function [23], [24], [25] 

 ( )
( )

( ) ( )( )( ) { }

( )
( )( )

*
, 1 .

*
2

target

min , , , if 1,..., 1

min ,if 

T
inst HEV k k HEV kPSR q

k

term KPSR q

c h q PSR V f q PSR k K
V q

c q q k K

+∈

∈

⎧ ⋅ + ∈ −
⎪= ⎨

⋅ − =⎪
⎩

k

k

U

U

.(11) 

Once the value functions has been computed, the optional control law for the power split ratio is determined 

by solving   

 ( ) ( ) ( )( )( ) { }* *
, 1 .arg min , , , 1,..., 1T

k inst HEV k k HEV k
PSR

PSR q c h q PSR V f q PSR k K+∈ ⋅ + ∀ ∈ − . (12) 
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 Similar formulations have been presented in [13], [14] and [15]. The use finite horizon dynamic 

programming to design a time varying feedback control law has three distinct drawbacks. First, the optimality 

of the control does not apply if the drive cycle is different than the one used in  (11). Second, the optimal 

action is not defined after time step K . Third, for implementation in a vehicle, this control law can be 

considered a ‘cycle beater’: a strategy that is specifically tuned to perform well on a testing regime while 

behaving significantly differently in other circumstances. ‘Cycle beater’ strategies are not permitted by the 

regulatory agencies that certify vehicles. For this reason, among others, the work in [15] and [20] focused on 

stationary (i.e. time-invariant) control laws and assumed that perfect state information was available. The 

restriction to stationary control laws is a tradeoff. It allows the control law to avoid the ‘cycle beating’ 

designation. However, in general, it reduces the optimality of the resulting control laws.  

3.2) The Ideal SP-SDP Problem Formulation for a Stationary Markov process. 

 The focus of this paper is on the formulation of the HEV control problem as a Shortest Path 

Stochastic Dynamic Program (SP-SDP). This formulation offers two advantages over existing formulations. It 

allows undiscounted future costs and assignment of a cost that is incurred only when the system enters a 

‘terminal’ state. To guarantee that a solution to the SP-SDP exists, the ‘terminal’ state must be absorbing and 

all other states transient. Absorbing mean that, once the system enters the terminal state, it stays there, and 

transient means that every state has a non-zero probability of entering and the absorbing state in finite time. 

While in the terminal state, no costs are incurred. The SP-SDP formulation is advantageous because it does 

not require a discount factor and it allows costs to be described based on the fuel, emissions and SOC 

objectives specific to vehicle certification. Additionally, this formulation reduces the number of tuning 

parameters used in previous work. The SP-SDP formulation works well with vehicle control problems since 

there is a guaranteed termination of the drive cycle when the key is turned off. This controller minimizes 

 
( )

( ) { }
( ) { }

{ }

2

target
1

, , , , 'off','turning off'

min , 'turning off'

0 , 'off'
k k

T
inst hev cmd cmd

W k
term K cmdPSR x k

cmd

c h q v V PSR V

J E c q q V

V

γ
∞

∈
=

⎧ ⎫⎛ ⎞⎧ ⎫⋅ ∉
⎪ ⎪⎜ ⎟⎪ ⎪⎪ ⎪ ⎪ ⎪⎜ ⎟= ⋅ ⋅ − =⎨ ⎨ ⎬ ⎬

⎜ ⎟⎪ ⎪ ⎪ ⎪=⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭⎝ ⎠⎩ ⎭

∑
U

 (13) 

subject to 
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  ( )1 ,k HEV k kq f q PSR+ = , (14) 

and (5). The constant γ  is introduced as a discount factor to keep the form of the equations similar to the 

infinite horizon controller. In the design of the SP-SDP controller, the discount factor is 1.  

By manipulation of this formulation, a SP-SDP is created. The stochastic model in (5) is augmented 

with the dynamics in (14) to form a controlled Markov decision process. The stochastic disturbance to the 

system is  

 ,cmd nextw V⎡ ⎤= ⎣ ⎦ . (15) 

The subscript ‘next’ is used to indicate that this is the next vehicle command to be selected by the driver. The 

controllable input is the power split ratio  

 [ ]u PSR= . (16) 

The power split ratio is restricted to the set, ( )xU , of power splits that are capable of meeting the driver’s 

vehicle command:  

 ( ) { }set of all power split ratios that can meet  for state cmdx V x=U . (17) 

Because of the sizing of the engine and motor, for this class of problems, this set is always non-empty. The 

system’s state is augmented to include the current vehicle command and defined as  

 [ ]Tcmdx q v V= . (18) 

The state propagation equation from (2) is augmented to include memory of the next vehicle command 

resulting in a new state propagation equation 

 ( )
[ ] [ ]( )

1 ,

, ,

,
, ,

T
HEV cmdk k

k HEV aug k k k

cmd next k

f q v PSR V
x f x u w

V
+

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

. (19) 

 As in (10), the instantaneous cost of operation is a weighted sum of fuel consumption and emissions. If the 

vehicle is ‘off’, then no additional costs are accrued. For best fuel economy, instc  is equal to [ ]1 0 0 T
.  

Following the convention in [15], to balance fuel economy and emissions optimization, instc  is equal to 
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[ ]1 Tμ υ , where μ  is the weight associated with NOx emissions and υ  is the weight associated with 

particulate matter emissions.  The constant termc  is nominally large and its value is selected by trial and error 

to obtain a battery state of charge at the end of the cycle that is acceptable. In this paper, termc  = 1,000,000 is 

used. The resulting cost function is    

 ( )

[ ] [ ]( ) { }

( ) { }
{ }

2

target

, , if 'off','turning off'  

, , ,if 'turning off'  

0 , if 'off'

TT
inst HEV cmd cmd

term cmd

cmd

c h q v PSR V V

c x u w c q q V

V

⎧ ⋅ ∉
⎪
⎪

= ⋅ − =⎨
⎪ =⎪
⎩

. (20) 

The system model and cost functions are combined to solve for the value function 

 ( )
( )

( ) ( )( )( )( )* *
,min , , , ,W HEV augu x

V x E c x u w V f x u wγ
∈

= + ⋅
U

. (21) 

 In this equation, the discount factor γ  is introduced for eas of comparison with discounted-cost control laws, 

and is set to one for the SP-SDP formulation. This value function is used to find the set of optimal torque split 

values via 

 ( )*PSR x ∈arg
( )

( ) ( )( )( )( )*
,min , , , ,W HEV augu x

E c x u w V f x u wγ
∈

+ ⋅
U

. (22) 

Since there is no requirement for continuity in sequences of power splits, the choice from this set is arbitrary. 

In the case of multiple elements, the first element is selected. Note, when realized for vehicle control, the 

vehicle command in the state variable, x , is based on the driver’s vehicle command at the instant of 

evaluation. 

 It would be desirable to solve this problem for the continuous state and action spaces in which it was 

posed. However, computing a solution is difficult since it involves finding elements in infinite dimensional 

spaces. These are not easily found. The generation of a continuous state Markov process is also difficult. 

Because of this, the problem is solved approximately. The SP-SDP is formulated over a discrete state, action 

and noise space. The approximate value function, for this discrete problem, is found numerically. The 

approximate value function is then used to determine the control law for a continuous range of states by 

interpolation.  
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3.3) The Approximate SP-SDP Problem Formulation. 

 To approximate the ideal SP-SDP in a form that is numerically tractable, the state space, action space 

and noise space are quantized as finite sets. The conditional probability model in Section 2.2 is combined with 

the deterministic dynamics in section 2.1 to form a controlled Markov process. The cost functions for the SP-

SDP are defined as in (20).  

3.3.1) Finding the Conditional Probability Model of Driving 

To generate a conditional probability model of the vehicle commands, (5), the wheel power and 

vehicle speed are quantitized over a family of drive cycles. To distinguish quantitized forms of otherwise 

continuous variables, the crescent ( )�i  will be placed over those variables. The power demand is quantitized 

into PN  discrete levels. The discrete power demand, demP
�

 takes values in the set of power demand P
�

, 

where    

 { }1 2, , , PN
dem dem dem demP P P P∈ =P
� �

… . (23) 

The vehicle command, cmdV
�

, is selected from the set of vehicle commands, C , which is the union of the 

power demands with the ‘turn off’ and ‘off’ states, 

 { }'off ', ' turn off 'cmdV ∈ =C P
� � �

∪ . (24) 

The vehicle velocity is quantized into vN  discrete levels. The velocity of the vehicle is assigned to an 

element in the set of possible velocity values V
�

,    

 { }1 2, , , vN
wh wh whv v v v∈ =V

�� … . (25) 

To determine the values of { }, 1 ,Pr ,dem k dem k kV V v+

� � �
, a maximum likelihood method similar to [15] is 

used. The conditional probability is calculated by first selecting a set of drive cycles and using the vehicle 

model to obtain wheel power requests needed to follow the drive cycle. The vehicle speed versus time is part 

of the drive cycle specification. Next, this data is sampled at a 0.05 second interval, and formed into a list of 

3-tuples of data: ( ) ( ) ( )( )1 , ,dem k dem k kP t P t V t+  where { }0,0.05,0.10,...kt ∈ . These 3-tuples of data 
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are quantized using a nearest neighbor method and assigned to elements in  (23) and (25). The resulting 

conditional probability model is formed as 

 { }
,

,

Total number of samples matching  and  and 
and vehicle is not 'off' in next sample  

Pr ,
Total number of samples matching   and  

cmd next cmd

cmd next cmd
cmd

V V v

V V v
V v

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

� � �

� � � �� � .(26) 

 ,, ,cmd cmd nextV V∀ ∈ ∈P P
� �� �

 (27) 

 
 
 This conditional probability model has the property that for some speeds and power demands, the 

sum of probabilities for the next power demand is less than 1. This difference is the probability that at the next 

time step, the vehicle command will be ‘turn off’ where 

 { } { }
,

,Pr ' turn off ' , 1 Pr , ,
dem next

cmd dem next cmd k cmd
P

V v P V v V
∈

− ∀ ∈∑
P

P
� �

� � � � �� �� . (28) 

Further, the probability of the vehicle being ‘off’ is given by 

 { } ( ) ( )1 ,if ='turn off'  or ='off'  
Pr 'off ' ,

0 ,otherwise
cmd cmd

cmd

V V
V v

⎧⎪
⎨
⎪⎩

� �
� � � . (29) 

Depending on the data set used to calculate the conditional probability, there may not be sufficient 

data available to guarantee that the denominator in (26) is nonzero. The following rules were used to 

guarantee that the probability distribution is defined for all points. For each triple of next power demand, 

current power demand and velocity tuple where the denominator in (26) is zero, if the current power demand 

is greater than 0, the next power demand is set to the next lowest power demand in the set P
�

. If the current 

power demand is less than 0 and the velocity is greater than 0, the next power demand is set to the minimum 

of the next greater power demand and the greatest negative element in P
�

. If the current power demand is less 

than 0 and the vehicle speed is 0, the next power demand is set to 0. If the current power demand is 0 and the 

velocity is greater than 0, the next power demand will be the negative element in P
�

 closest to 0. If the 

current power demand is 0 and the velocity is 0, the next power demand is set to 0.  
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3.3.2) Interpolation for Solution of the SP-SDP 

In the continuous formulation of the DP problem, the state propagates from one distinct state to 

another. When the state is quantized, a different approach is required. The propagation is modeled via partial 

membership in multiple discrete states. This is equivalent to modeling the propagation stochastically, where 

the partial membership in the multiple states is equal to the probability of transition into any single discrete 

state.  

     For this quantization, a membership function is used that maps every value in the continuous state 

space to membership in discrete state space per  

 [ ], : 0,1M → X

X X
X

�
� . (30) 

This function maps a continuous space X  to a vector of values between 0 and 1 with one element for each 

element in the discrete set X
�

.   In performing this quantization, there are several choices in how the 

quantization is performed and how the membership function is implemented. The quantization can be 

performed on a regular or irregular grid. For this work, an irregularly spaced rectangular grid was used. The 

set of points for this grid are denoted as X
�

. The membership function can be implemented using several 

different types of interpolation schemes. Different schemes have different tradeoffs to consider in terms of 

accuracy and complexity [26],[27],[28],[29],[30],[31]. Two methods were investigated: bilinear [26] and 

barycentric interpolation [30]. Barycentric interpolation was found to provide a better trade off between 

accuracy and complexity than bilinear interpolation. 

3.3.3) The Discrete SP-SDP Equations. 

 Using the definitions and functions developed in Sections 3.3.1 and 3.3.2, the SP-SDP is formulated. 

The state space is quantized into the discrete set of points in the set X
�

. The power split ratios are quantized 

into a discrete set U
�

. This discrete set is restricted to ensure that the choices can best meet the vehicle 

command at the current state. This restricted set is represented as ( )xU . The next vehicle commands are 

quantized as in (23). The continuous state SP-SDP equations (21) are adapted to obtain the discrete state SP-

SDP equations 



 15 of 28  

 ( )
( )

( ) ( ) ( ) ( )( )( )* *
,,min Pr , , , , ,

T

HEV augu U x w

V x w x c x u w V M f x u w xγ
∈

∈

⎛ ⎞
= + ⋅ ⋅ ∀ ∈⎜ ⎟

⎝ ⎠
∑ X X
C

X��� ��

�� � � � � � � � � �
.(31) 

Since the state is quantized, the value function is a vector, with a single value that corresponds to each 

discrete state. The optimal control law for the power split ratio is then found using the value function from 

(31) in  

( )
( )

( ) ( ) ( ) ( )( )( )* *
,,arg min Pr , , , , ,

T

HEV aug
u x w

PSR x w x c x u w V M f x u w xγ
∈ ∈

⎛ ⎞
∈ + ⋅ ⋅ ∀ ∈⎜ ⎟

⎝ ⎠
∑ X X

U C

X�
� ��

�� � � � � � � � � � .(32) 

In the case where more than one power split satisfies (32), the lowest value element is chosen. 

3.3.4) Interpretation of the Value Function 

 The value function, ( )*V x , that results from solving the SP-SDP is the expected cost of operation 

of the HEV from the state x . Since the HEV will always start a drive cycle from the 0-speed, 0-torque 

request point, the value function at this point provides a measure of the expected costs that will be incurred 

over the family of drive cycles described by the conditional probability model in (26) through (29). 

3.4) Numerical Solution. 

To solve for the value function, a Linear Program (LP) was formulated as discussed in [23].  This 

was done, rather than using Value Iteration (VI) or Policy Iteration (PI), for two reasons. First, by creating an 

LP, there was no need to generate codes for VI or PI. This was a significant savings in engineering effort. 

Secondly, LPs can be solved very efficiently due to their convexity and the existence of efficient commercial 

codes. 

The LP can be formed because of the discrete state and action spaces used in the approximate 

problem formulation. The general idea in forming a linear program is that a single scalar value represents the 

value function for each discrete state. This single value must be equal to the minimum obtained when all 

actions are considered. By generating an inequality for each discrete action at any discrete state, the 

constraints on the value function can be formed. Consider the discrete dynamic programming equations where 

the action u is restricted to a discrete action space, the state space is discrete and the evolution of the system 

is restricted to those discrete states. The minimization statement, 



 16 of 28  

 ( ) ( ) ( )( )( )min , ,
u

V x c x u V f x uγ
∈

= + ⋅
U
� , (33) 

implies that, when U  is a finite and countable set,  ( )V x  satisfies a finite system of equations 

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

1 1

2 2

, ,

, ,

, ,N N

V x c x u V f x u

V x c x u V f x u

V x c x u V f x u

γ

γ

γ

⎧ ⎫≤ + ⋅
⎪ ⎪
⎪ ⎪≤ + ⋅⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪

≤ + ⋅⎪ ⎪⎩ ⎭

#
, (34) 

and will satisfy at least one of those equations as an equality.  

 Furthermore, the set of inequalities in (33) is extended to apply to each discrete state in the DP 

equations. For each of these sets of inequalities, there is a single scalar value that represents the value function 

at that discrete state. By maximizing the sum of the value function at each discrete state, an optimization 

problem is formed. Since the cost at each combination of state and actions is known, these become constants 

in the problem statement. Moreover, the value function is represented as a real vector. If the value function on 

the right hand side of (33) is moved to the left hand side, the inequality can be restated as a linear combination 

of value functions at specific discrete states being less than a constant as  

 

( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 1

2 2

, ,

, ,
,

, ,N N

A V bV x V f x u c x u

VV x V f x u c x u
x

A

V x V f x u c x u b

γ

γ

γ

⋅ ×

⋅

⋅ ≤⎧ ⎫⎧ ⎫− ⋅ ≤
⎪ ⎪⎪ ⎪

∈⎪ ⎪− ⋅ ≤⎪ ⎪
∀ ∈ ⇒⎨ ⎬ ⎨ ⎬

∈⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− ⋅ ≤ ∈⎩ ⎭ ⎩ ⎭

X

X U X

X U

X

�

� � �

� �

\�

# \

\

. (35) 

This set of inequalities forms linear constraints on the value function. By constructing an optimization 

problem to maximize the sum of the elements of V  subject to the inequalities in (35), a linear program is 

formed that solves the dynamic programming equations.  

 A similar procedure was used to convert the SP-SDP equations in (31) into a matrix and vector  

defining the constraints in a linear program.  
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4) Control Design Results. 

The controller obtained using stochastic dynamic programming is a function that maps vehicle 

speed, battery SOC and the vehicle command to a power split ratio. For evaluation, the SP-SDP controller and  

an infinite-horizon, discounted-cost controller designed via SDP are compared. The infinite-horizon, 

discounted-cost controller is referred to as the SDP controller; it is based on the controllers presented in [20] 

and [32]. The SDP controller minimizes   

 
( )

( ) ( )( )2

target
1

min , , ,
k k

W k T
inst hev cmd q KPSR x k

J E c h q v V PSR K q qγ
∞

∈
=

⎧ ⎫⎛ ⎞
= ⋅ ⋅ + ⋅ −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑

U
, (36) 

subject to (14) and (5). A discount factor of 0.95 is used to match the work in [32]. The probability model, (5) 

is modified so that the probability of ‘turning off’ is 0. For the SDP controller qK  is set to 60,000.  

Both the SDP and the SP-SDP controllers use the same value for instc . The weighting is one times 

the fuel rate in grams per second plus forty times the NOx emissions rate in grams per second plus eight 

hundred time the particulate matter emission rate in grams per second. In both cases, targetq  is 0.5.  

For both the SDP and SP-SDP cases, four different controllers were designed. These controllers were 

designed using the UDDS Heavy Duty Cycle, the FET Highway Cycle, the WVU Suburban Cycle and the 

WVU City Cycle as the basis for determining the conditional probability model of the driving pattern. Once 

the value function was found using (31) and linear programming, a higher resolution grid was applied to the 

problem and the power split ratio was found using (32). Both controllers were designed using identical 

quantization and interpolation. The codes to design the controllers were identical except for the equations 

used to calculate the instantaneous costs, the discount factor and the conditional probability models used to 

describe the driving pattern. 

The resulting control laws were then simulated over the sample path corresponding to the 

deterministic drive cycles listed above. To best visualize the behavior of the control laws, the engine power as 

a function of vehicle command and vehicle speed is plotted for the SP-SDP controller in Figure 3 and the SDP 

controller in Figure 4. These maps are from the controller designed for operation with driving patterns similar 

to the FET Highway cycle. There are two notable differences to observe in these maps. First the SDP 
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controller is more aggressive in disabling the engine to improve performance than the SP-SDP controller. 

Consider the behavior at 10 mile per hour. At this point, the SDP controller disables the engine for battery 

SOC’s greater than about 55% and wheel powers below about 25 kW. Conversely, the SP-SDP controller 

only disables the engine above 65% battery SOC and below about 25 kW wheel power. Additionally, the SDP 

controller demonstrates significantly more use of engine power to control battery SOC at all speeds than the 

SP-SDP controller does. Consider the behavior at 10 miles per hour. At this speed, the SDP controller has the 

engine running to the charging limit of the battery for SOC values below about 40%. Conversely, for the same 

operating point, the SP-SDP controller uses less engine power for the same operating points. 

5) Comparison and Simulation Results. 

Comparison to previously published results is difficult since the SOC values for equilibrium 

operation are not available. However, this work showed the improvement resulting from SDP versus Heuristic 

methods for improvement in fuel economy and emissions. It follows that the relative performance obtained 

there holds for these results.  

 All of these controllers were evaluated by simulation. The only difference in the simulations is the 

selection of the drive cycle and the selection of the control law, based on power split ratios, used. The 

performance of each controller is found by executing the model such that the starting battery SOC is equal to 

the final battery SOC within a tolerance of 0.0001. Under these conditions, the performance is measured as 

the sum of the total fuel consumed plus forty times the total Nitrous Oxides emitted plus eight hundred times 

the total particulate matter emitted divided by the total distance in miles. For the performance measure, 

smaller numbers are better. An example of the SOC under the SP-SDP controller for the HWFET drive cycle 

is shown in Figure 5. It should be noted that the changes in SOC only require a small fraction of the energy 

capacity of the battery. For this vehicle, the battery is sized for durability which results in a battery with 

significantly more energy capacity than that needed for energy swings alone. The performance results of the 

SP-SDP controller are summarized in Table 1. This table shows the performance of the SP-SDP controller 

trained against a single cycle controlling the vehicle over a suite of drive cycles.  
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Table 1 - SP-SDP Controller Performance 
 Test Cycle         

Training 
Cycle 

UDDS 
HDV 

WVU 
Interstate 

WVU 
Suburban 

WVU 
City 

Highway 
FET SC03 NYC 

Composite 
NYC 
Truck Manhattan 

UDDS 
HDV 833.58 1031.80 756.99 576.91 914.22 1265.90 400.81 708.73 1170.70 

WVU 
Suburban 849.37 908.07 627.05 474.20 985.62 1222.30 366.65 678.09 1298.46 

WVU City 889.35 939.72 731.71 509.46 898.44 1163.20 408.18 852.72 1437.18 
FET 

Highway 938.53 1045.80 561.58 705.48 944.14 1200.50 394.765 821.59 1125.71 

 

 For each of the tests, the equilibrium SOC at key off is also summarized in Table 2. The equilibrium 

SOC is the SOC obtained when the vehicle is driven on a particular cycle repeatedly until the starting and 

ending SOC are effectively the same value. In this case the cycles are repeated until the difference between 

the starting and ending SOC is less than 0.0001. 

Table 2 - SP-SDP Equilibrium SOC when Vehicle is Turned Off 
 Test Cycle         

Training 
Cycle 

UDDS 
HDV 

WVU 
Interstate 

WVU 
Suburban 

WVU 
City 

Highway 
FET SC03 NYC 

Composite 
NYC 
Truck Manhattan 

UDDS 
HDV 0.4982 0.4626 0.4722 0.5007 0.4774 0.4674 0.5027 0.4995 0.4937 

WVU 
Suburban 0.4634 0.5038 0.5058 0.5044 0.4604 0.4677 0.5024 0.4982 0.4895 

WVU City 0.4939 0.4974 0.4759 0.4997 0.4615 0.4843 0.4854 0.4932 0.4895 
FET 

Highway 0.4923 0.4831 0.5308 0.5248 0.5004 0.5038 0.5441 0.5198 0.5065 

 

 The performance for the SDP controller is summarized in Table 3.  

Table 3 - SDP Controller Performance 
 Test Cycle         

Training 
Cycle 

UDDS 
HDV 

WVU 
Interstate 

WVU 
Suburban 

WVU 
City 

Highway 
FET SC03 NYC 

Composite 
NYC 
Truck Manhattan 

UDDS 
HDV 850.46 1033.50 747.93 617.49 921.96 1298.00 459.28 820.97 1059.10 

WVU 
Suburban 861.74 923.85 654.44 513.82 983.64 1172.70 448.59 814.05 1040.80 

WVU City 844.74 943.79 699.00 536.82 983.64 1172.70 448.59 814.05 1040.85 
FET 

Highway 943.03 1091.10 574.41 690.14 972.93 1234.40 406.07 826.66 1013.71 

 

 The equilibrium SOC for the SDP control law is summarized in Table 4.  
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Table 4 - SDP Equilibrium SOC when Vehicle is Turned Off 
 Test Cycle         

Training 
Cycle 

UDDS 
HDV 

WVU 
Interstate 

WVU 
Suburban 

WVU 
City 

Highway 
FET SC03 NYC 

Composite 
NYC 
Truck Manhattan 

UDDS 
HDV 0.5128 0.5027 0.5022 0.5057 0.5107 0.5034 0.5131 0.5136 0.5031 

WVU 
Suburban 0.5027 0.5072 0.5103 0.5074 0.5029 0.5030 0.5100 0.5128 0.5080 

WVU City 0.5083 0.5090 0.5065 0.5095 0.5034 0.5131 0.5067 0.5128 0.5075 
FET 

Highway 0.5022 0.5026 0.5090 0.5026 0.5214 0.5025 0.5078 0.5136 0.5081 

 

 One interesting aspect of these results is that the best performance for both the SP-SDP and the SDP 

controller does not necessarily occur when the controllers are trained and evaluated using the same drive 

cycle. For example, see Table 1 for the WVU city evaluation using a SP-SDP. The best performance occurs 

when the controller is trained using the WVU suburban drive cycle not the WVU city cycle. A similar result 

occurs when the SDP controller is evaluated on the Highway FET drive cycle. The best performance is 

measured when the SDP controller is trained using the UDDS Heavy Duty Cycle. This is due to evaluating  

the performance of the controller on a single realization of the driving cycle and not on the Markov model of 

the drive cycle. The controller is designed to minimize the expected cost of operation which implies that on 

any single realization of the drive cycle, there may exist a better controller.  

 To compare the performance of the SP-SDP controller and the SDP controller, the performance and 

equilibrium SOC on training drive cycle is considered. The relative performance improvement is measured as 

the difference between the two controllers divided by the best performance. The reduction in final SOC error 

is measured as one minus the minimum SOC error divided by the maximum SOC error. These results are 

summarized in Table 5. In all cases considered, the SP-SDP controller improved performance and improved 

equilibrium SOC error.  
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Table 5 - Comparison of Performance in Control Laws 

 SP-SDP SP-SDP SDP SDP SP-SDP 
Improvement 

SP-SDP 
Improvement 

Cycle Performance Final SOC Performance Final SOC Performance Reduction in 
Final SOC 

Error 
UDDS HDV 833.58 0.4982 850.46 0.5128 2.03% 85.94% 

WVU Suburban 627.05 0.5058 654.44 0.5103 4.37% 43.7% 
WVU City 509.46 0.4997 536.82 0.5095 5.37% 96.84% 

FET Highway 944.14 0.5004 972.93 0.5214 3.05% 98.13% 
 

5) Conclusion 

By using Shortest Path Stochastic Dynamic Programming to design HEV controllers, it is possible to 

realize the advantages of Stochastic Dynamic Programming  based controller design with better State of 

Charge control and fewer parameters to tune. Additionally, the optimization criteria for the controller better 

resembles the engineering goals by solving the control problem without a discount factor and instantaneous 

cost associated with State of Charge deviation. 

While a specific model has been used in this study, Shortest Path Stochastic Dynamic Programming 

based control design can be applied to any Hybrid Electric Vehicle where the optimal control objective meets 

two criteria. First there is a cost associated with the state deviating from a specific value when ‘turned off’. 

Second, the control objective is to minimize the total cost that is a function of the current state and actions 

plus a cost associated with the state of the system when turned off. Any number of additional states beyond 

those described here can be part of the model. Hence, this solution technique can be applied to a broad range 

of HEV powertrains.  
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Appendix A – Symbols, Abbreviations and Notation 

 
Notation 

�i    The crescent is used to indicate that the variable is a discrete variable (set) formed by 
quantizing a continuous variable (set) that takes on a finite number of values. 

A    Set. 

A
�

   Countable set. 

{ }# A
�

   The ordinality of a set. This is the number of elements in a set.  

# x    The ordinality of the element x  in its respective ordered set. This is a nonempty set that 
describes the order of an element in an ordered set. For example if 

{ }, , , , ,x a b c d e d∈ =X , then if x c= , # 3x = . Where is x d= , we get 

{ }# 4,6x = . 

[ ],a b    The closed interval along the real line from a  to b . 

{ }1 2, ,...a a
  

 An infinite and countable set. 

{ }1 2, ,..., na a a    A finite and countable set. 

{ }Pr E F
  

 Conditional Probability: The probability of event E  given that event F  has occurred. 

{ }Pr E    Probability: The probability of event E . 

~    Used to indicate that the variable on the left hand side is a random variable with a 
probability distribution described by the right hand side. For example, ( )~ 0,1X η  

would be read as “the random variable X  has a normal distribution with a mean of 0 
and a variance of 1.” 

 

List of Abbreviations 

A/C   Air Conditioning 
DP   Dynamic Program 
HEV    Hybrid Electric Vehicle 
LP   Linear Program 
MPC   Model Predictive Control 
PHEV    Parallel Hybrid Electric Vehicle 
PSR   Power Split Ratio 
SDP    Stochastic Dynamic Programming 
SOC    State of Charge 
SP- SDP  Shortest Path Stochastic Dynamic Programming 
TSR   Torque Split Ratio 
VCT   Variable Cam Timing 
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List of Symbols 

( )c ⋅   Instantaneous cost. Maps a state and a control action to a real number. 

( )f ⋅   Generally used to indicate the dynamics of the system. 

( )g ⋅    Generally used to indicate a feedback control law or policy. 

( )h ⋅   Generally used to indicate the output of the system. 

( ),M x
X X
�   Membership function that maps an element in the space X  to its membership in each 

element in X
�

. 

qK  Instantaneous SOC quadratic cost gain 

q    State of charge of the battery. 
u    Action or input to the system. 
U    The action space. 

U
�

   The discrete action space, a finite, countable set. 
v    Vehicle speed. 

( )V x    Value or ‘Cost to go’ function. Maps the state space to a real number. 

x   The state of the system.  
X    The space of possible states of the system. 

X
�

   The discrete state space, a finite, countable set. 

[ ]0,1γ ∈   Discount factor for future costs  
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Figure 1 - The Environment, Driver and HEV as a System 
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Figure 2 - A Signal Flow Diagram of the Environment, Driver and HEV as a System 
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Figure 3 - SP-SDP Controller: Engine Power Map 
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Figure 4 - SDP Controller: Engine Power Map 
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Figure 5 - SOC on the HWFET using the SP-SDP controller 

 
 
 


