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Abstract—Control strategies have been developed for Hybrid 

Electric Vehicles (HEV) that minimize fuel consumption while 
satisfying a charge sustaining constraint. Since one of the 
components of an HEV is typically the ubiquitous internal 
combustion engine, tailpipe emissions must also be considered. 
This paper uses Shortest-Path Stochastic Dynamic Programming 
(SP-SDP) to address the minimization of a weighted sum of fuel 
consumption and tailpipe emissions for an HEV equipped with a 
dual mode Electrically Variable Transmission (EVT) and a 
catalytic converter. The shortest path formulation of SDP is 
chosen to directly address the charge sustaining requirement. 
Using simple methods, an SP-SDP solution required more than 
eight thousand hours. Using linear programming and duality, an 
SP-SDP problem is solved in about three hours on a desktop PC. 
The resulting time-invariant feedback controller reduces tailpipe 
emissions by more than 50% when compared to a popular 
baseline controller. 

 
Index Terms—Hybrid electric vehicle, dynamic 

programming, fuel economy, powertrain control 

I. INTRODUCTION 

The problem of maximizing fuel economy for charge 
sustaining hybrid electric vehicles (HEVs) has been 
extensively studied. Many early control policies were based 
on heuristics [1-5]. In some systems, the heuristics were 
formalized using fuzzy logic [6]. More recent control laws 
have used some form of optimization to determine the power 
split between the engine and the electric motors. These 
optimization techniques explicitly minimize the fuel 
consumption subject to a charge sustaining constraint. 
Deterministic dynamic programming is one optimization 
technique. It has been used to develop optimal trajectories [7-
10] . These trajectories have been used to gain insight and 
develop heuristic control laws [8].  Recently, the concept of 
directly designing an HEV control law through infinite 
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horizon, discounted cost, stochastic dynamic programming 
(SDP) was developed [11, 12]. As noted in [13], the 
discounted cost criteria is chosen for expediency and is 
difficult to justify on engineering grounds. Therefore, in this 
work, a variation on infinite horizon SDP, known as Shortest 
Path SDP [14] is used to create a charge sustaining HEV 
energy management policy. 

In addition to fuel economy, HEVs must also be certified to 
some tailpipe emissions level by the EPA or CARB [15-18]. 
There are multiple categories of emissions. A manufacturer 
chooses the certification level of a vehicle model to achieve 
specific goals for their production fleet. This choice usually 
involves a tradeoff among fleet objectives, vehicle cost 
objectives, technical feasibility, and fuel economy objectives. 
During development, the initial goal of a particular 
certification level may change as tradeoffs become more 
apparent.  

Prior work has focused on minimization of fuel 
consumption and engine out emissions. If catalysts or other 
after treatments are used, minimization of engine out 
emissions does not guarantee minimization of tailpipe 
emissions. Therefore, there is a need for techniques to design 
controllers that minimize both fuel economy and tailpipe 
emissions. 

This paper shows how shortest path stochastic dynamic 
programming (SP-SDP) is used to design controllers that 
minimize fuel consumption and tailpipe emissions. This 
application of SP-SDP is illustrated on a dual mode EVT HEV 
[19] with a thermally transient catalyst. A collection of 
controllers is created and evaluated. Each controller 
minimizes a unique weighted combination of fuel 
consumption and emissions. Together, these controllers are 
used to estimate the Pareto set [20] . From the Pareto set, the 
tradeoffs between fuel consumption and tailpipe emissions are 
determined.  

To generate the control laws, an objective to minimize a 
weighted combination of fuel consumption and tailpipe 
emissions, a vehicle model, a powertrain model, and a 
stochastic driver model are combined to form a SP-SDP. This 
SP-SDP is solved using a collection of techniques which 
include Linear Programming [21-29], barycentric 
interpolation [30], and constraint generation [26]. A novel 
interpretation of LP duality [31] is used to solve the Linear 
Program (LP). The technique of state censoring is introduced. 
This technique ignores areas in the state space which are 
known to be rarely, if ever visited. Finally, the calls to the 
model during construction of the SP-SDP are reduced by 
taking advantage of linearity in the model. Combined, these 
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techniques allow solution of the SP-SDP in less than three 
hours on a 3.0 GHz, single core Pentium CPU.  

II. PLANT MODEL 
The controller development uses a plant model that includes 

the powertrain, the vehicle, and the driver. Figure 1 illustrates 
the major components in the model and their interactions. 
These components include the engine, the Dual-Mode 
Electrically Variable Transmission (DM-EVT), two electric 
machines, the final drive ratio, the battery pack, the chassis, 
the body, the tires, and the chassis brakes. The powertrain and 
the vehicle models are deterministic. The driver model is 
stochastic. 

The transmission is based on the design in [19] and 
illustrated in Figure 2. It has four shafts which are coupled to 
the engine, the wheels through the final drive ratio, and the 
two electric machines. The electric machines are identified as 
‘A’ and ‘B’. Unlike a fixed-gear transmission, the engine 
speed is independent of the vehicle speed. However, the 
electric machines speeds are determined by the transmission 
mode, the speed of the engine, and the speed of the vehicle. 
The engine and vehicle speeds are independent because the 
engine acceleration and vehicle acceleration can be separately 
controlled using the torques from the engine and electric 
machines. The range of acceleration is limited by the engine 
and motor torque limits which vary depending on individual 
component speeds. Proper selection of the modes in the 
transmission avoids these acceleration limits by changing the 
ratio of motor speeds to engine and vehicle speeds. This 
allows the motors to operate in regions with less torque 
restriction.  

In the DM-EVT transmission, two no-slip or dog clutches 
are used. To change modes, the clutches are released allowing 
motor speeds to be controlled independently of the engine and 
vehicle speeds. The engine torque and machine torques are 
used to accelerate the electric machines to a speed where one 
of the clutches can close without slipping. For modeling, this 
event is assumed to occur instantaneously with negligible fuel 
and battery energy usage. The kinematics of the transmission 
and the vehicle are illustrated in Figure 3. 

The driver is modeled as a stochastic process that generates 
the input nowa , which represents the driver’s acceleration 
request, in Figure 1. The driver model specifies the 
distribution of the next acceleration commands, the dynamics 
for updating nowa , and the probability that the vehicle will 
continue to operate with the key on. When the controller is 
evaluated, the state nowa  is replaced by the acceleration 
command from the vehicle’s driver. 

Although the plant is naturally described in continuous 
time, to facilitate the application of SP-SDP, a discrete time 
model with a one second time step is used. This is the same 
rate used for similar work in [11, 12].  

A. The Plant Model Summary 
The plant model has states associated with the engine 

speed, eω , the vehicle speed, vehv , the battery state of charge, 

battq , the catalyst temperature, catT , and the driver acceleration 

command, nowa .  The model states are combined to form the 
state vector: 
 [ ] 5T

veh batt e cat nowx v q T aω ∈ ⊂X� \ . (1) 
The transmission mode is allowed to change at any time 

and the changes are assumed to occur instantaneously, 
therefore, there is no state associated with transmission clutch 
configuration. The transmission mode input is  
 { }trn 'mode 1','mode 2'trnM ∈ =M . (2) 
When trnM  is equal to ‘mode 1’ it means that clutch 1 in 
Figure 2 is closed with clutch 2 open. Likewise, if trnM  is 
equal to ‘mode 2’, then clutch 2 is closed with clutch 1 open.  

When the engine changes mode between ‘on’ and ‘off’, the 
transition from a running speed to motionless and from 
motionless to an idle speed occurs instantaneously in the 
model. The input to change the engine mode is  
 { }e 'eng on','eng off'eM ∈ =M . (3) 
When eM  is equal to ‘eng off’, the engine is motionless with 
its brake torque equal to zero. Otherwise, the engine is 
restricted to operate between a minimum idle speed and a 
maximum redline speed, with the torque limited by the 
engine’s capabilities.  

The engine torque, eT , electric machine A torque, AT , 
electric machine B torque, BT , and chassis brake torque, kT , 
are all independently controlled. These torque inputs are 
combined with the transmission mode command, trnM , and 
the engine mode command, eM , to form the input vector for 
the plant:  

[ ] 2 4
plantplant trn e e A B ku M M T T T T ∈ ⊂ ×U� ] \ . (4) 

The discrete-time dynamics of the model are  
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In these equations,   
 ,k next kw a=  (6) 
where ,next ka is the output of the driver model. The variable 

nexta  represents the vehicle acceleration command in the next 
time step, which is different than nowa  which represents the 
current vehicle acceleration command.  

The outputs of the plant model are fW , the fuel consumed 
per time step, eW , the normalized tailpipe emissions per time 
step, and battP , the battery power. The output functions are 

( )
( )
( )
( )

,
,

, , ,

,
,

, ,

, , , ,

, ,

f

e

batt

W k plant k k
f k

e k plant k plant k k W k plant k k

batt k
P k plant k k

h x u wW
W h x u w h x u w
P h x u w

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (7) 



 3

In (7), the variable w  represents the stochastic input to the 
system and is used for the sake of generality. These functions 
do not use w  in determining the output values. However, 
while the models used in this work assume the engine behaves 
deterministically, unmodeled dynamics in the engine can 
cause the fuel consumption and engine-out emissions to 
appear to have a stochastic component. For example, manifold 
dynamics, exhaust gas recirculation (EGR) valve position, 
EGR valve control, and engine temperatures are not modeled. 
These dynamic behaviors will cause fuel consumption and 
engine out emissions to have a distribution of values. 
Therefore, this notation is maintained because of generality 
and applicability.  

The constraints on operation of the individual components 
are grouped into a vector function such that feasibility is 
equivalent to all elements in the vector being less than or 
equal to zero. This constraint vector is  
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These constraints ensure that components operate within 
their limits and the system does not leave a safe operating 
envelope in the state space. For example, an action choice is 
not feasible if it results in the engine operating beyond the 
maximum engine speed. Equation (8) is used to define the set 
of feasible actions    
 ( ) ( ){ }plant plant , 0,plant plant plantx u g x u x= ∈ ≤ ∈U U X . (9) 

The model and constraint equations are constructed so that 
a feasible action always exists by insuring that  ( )plant xU  is 
non-empty for all x ∈X . 

The detailed model parameters and equations are in [32].  

B. Driver Behavior Model 
The driver model is part of the plant model. The driver 

model predicts the distribution of future accelerations and the 
probability the vehicle will be turned off at the next time step. 
In [12], torque is used in the stochastic driver model. The use 
of torque or power tightly couples the driver model to the 
characteristics of a vehicle. In other words, if the driver 
follows a velocity trace in a small economy vehicle and 
follows the same trace in a large truck, then different torque 
based driving models result. The torque and power required at 
the wheels varies with vehicle, while the acceleration is 
identical for the same driving cycle. Therefore, using 
acceleration, the driver model is constructed and maintained 
independent of vehicle characteristics.  

The driver model consists of two conditional probabilities. 
One conditional probability is   
 ( )~ Pr ,next next veh nowa a v a , (10) 

where nexta is the vehicle acceleration at the next time step, 

vehv  is the velocity at the current time step, and nowa  is the 

acceleration at the current time step. This conditional 
probability specifies the distribution of acceleration 
commands at the next time step. The other conditional 
probability defines the probability that the vehicle will 
continue to operate at the next time step. This model is 

 
( )

( )
Pr ,

Pr next time step vehicle is ' ' ,
on veh now

veh now

v a

on v a

=
. (11) 

Both conditional probability models are constructed using 
discrete values of vehv  and nowa  selected to match the sample 
points used in the SP-SDP. The values of  nexta  are limited to 
a finite set of discrete values, 
 { }1 2, , ,next na w a a a= ∈W = " . (12) 

For generality, the variable w  represents the stochastic 
variable in the model.  The values in (12) correspond to the 
discrete values of nowa  used to construct the SP-SDP.  

III. PROBLEM DEFINITION 
Consider the problem of determining the optimal tradeoffs 

between expected fuel consumption and expected tailpipe 
emissions. One way to do this is to find a collection of 
controllers, where each controller minimizes a specific 
combination of fuel consumption and emissions, while 
satisfying plant and system constraints.  

A. Control Constraints 
In addition to the plant constraints in (8), the system 

imposes constraints on the action choices. The system 
constraints include the charge sustaining constraint previously 
discussed. In addition, the controller must choose actions that 
minimize the error in matching the driver’s acceleration 
command and minimize chassis (friction) brake torque. The 
chassis brake torque is constrained to minimize energy loss 
and to minimize brake wear. These three constraints are the 
system constraints and further restrict the set of feasible 
actions. 

Since a charge sustaining constraint is difficult to directly 
address, it is reformulated as an objective to minimize the 
deviation from an SOC set point at each time step. The 
relationship between this objective, fuel economy optimality, 
and satisfaction of the charge sustaining constraint is 
discussed in Appendix A. This objective cost is defined as  

 ( ) ( )( )2

0, , , ,
battq plant q q plantc x u w K f x u w q= ⋅ − . (13) 

The values of qK  and 0q  are selected by experimentation 
to achieve charge sustaining operation over a range of driving 
conditions.  

The remaining constraints on acceleration and chassis 
braking are satisfied by restricting the set of feasible actions. 
Let ( ),sys plantg x u  be defined so that the constraints on 

acceleration and braking are satisfied with no acceleration 
error and no chassis braking torque if  
 ( ), 0sys plantg x u ≤ . (14) 
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Since the set of action choices in (9) that satisfy (14) may 
be empty, a relaxation is introduced using the vector sysε . The 
relaxed form of (14) becomes 
 ( ), 0sys plant sysg x u ε− ≤ . (15) 

If the acceleration error is zero and no brake torque is used 
then equation (15) is satisfied with all elements in sysε  equal 
to zero.  The relaxed system constraints, (15), and the plant 
constraints, (8), define the set of feasible actions at each state. 
Let  

( ) ( ) ( ) ( ){ }*, 0sys plant plant plant sys plant sysx u x g x u xε+ = ∈ − ≤U U (16) 

be the set of feasible control choices available for control. At 
many values of x , this set will be non-empty with every 
element in ( )*

sys xε  equal to zero. Otherwise, ( )*
sys xε  is a 

vector with one or more elements containing the smallest non-
zero value that ensures ( )sys plant x+U  is non-empty. There are 

many ways the value of ( )*
sys xε  can be found. For this work, 

the element in ( )*
sys xε  that relaxes the chassis braking torque 

constraint is increased until a feasible action is available or the 
constraint is no longer active. If relaxing the chassis braking 
torque constraint does not yield a feasible action, then the 
element in ( )*

sys xε  corresponding to the acceleration error is 
increased until a feasible action is found. By construction of 
the model, relaxation of acceleration error is guaranteed to 
find at least one feasible action.  

B. Control Objectives 
The objective for the controller is to minimize a weighted 

combination of total expected fuel consumption and total 
expected tailpipe emissions subject to the system and plant 
constraints. The set in (16) defines the actions available to the 
controller for use in minimizing the objective.  

The total expected fuel consumption while operating under 
the feedback law ( )xπ  is  

 ( ) ( )0 ,
0

, ,W
f f k plant k k

k
J x E c x u wπ

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ . (17) 

The total expected tailpipe emissions under the same control 
law is  

 ( ) ( )0 ,
0

, ,W
e e k plant k k

k
J x E c x u wπ

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ . (18) 

In these equations, ( )fc ⋅  is the fuel consumption per time 

step and ( )ec ⋅  is the normalized tailpipe emissions per time 
step. In calculating these total costs, the evolution of the state 
is 
 ( ),, ,k plant k plant k kx f x u w= . (19) 

The stochastic input, kw  , is generated by the probability 
distribution in (6) and  
 ( ),plant k ku xπ= , (20) 

 where ( )π ⋅  is a static, time-invariant, state feedback 
controller.  To satisfy the charge sustaining constraint, a cost 
for SOC variation,   

 ( ) ( )0 ,
0

, ,W
q q k plant k k

k
J x E c x u wπ

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ , (21) 

is introduced as a minimization objective. This objective uses 
( )qc ⋅  in (13). 

The optimization problem is to find a controller, *π , that 
satisfies 0x∀ ∈X  

( ) ( ) ( ) ( ) ( ){ }*
0 0 0 0arg inf 1f e qx J x J x J xπ π π

π
π α α

∞∈∏
∈ ⋅ + − ⋅ + , (22) 

where ∞Π  is the set of all possible time-invariant state 
feedback controllers with ( ),plant k sys plant ku U x+∈  for all k  and 

[ ]0,1α ∈ . Without special structure, the optimization problem 
in (22) is intractable. Fortunately, this optimization problem 
can be significantly simplified. Under the assumption that 
perfect, or noise free, state information is available, a 
controller that minimizes (22) is found using dynamic 
programming. A controller that minimizes (22) satisfies the 
dynamic programming equations [33-35],   
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and uses the value function defined as 
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. (24) 

In these equations, ( )plantc ⋅  is the cost for operation at each 
time step, defined here as 
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+
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and formed from the cost functions in (17), (18), and (21). 
The parameter α  is used to select the relative weighting of 
emissions versus fuel consumption.  

IV. CONTROLLER SYNTHESIS VIA APPROXIMATE SP-SDP 
While an SP-SDP controller could be designed that worked 

on the full state and action space defined in (1) and (9), the 
SP-SDP controller design problem is greatly simplified by 
first creating a low-level controller. In this case, the low-level 
controller is a static mapping from a set of synthetic high-level 
inputs, U  to the plant inputs, plantU .  

A. Simplified Action Set via a Low-Level Controller 
To generate the high-level controller, the state and action 

spaces are spatially discretized; this is referred to as sampling. 
The sample points are used to generate the value function in 
(24).  It is desirable to have a minimal number of samples 
since this minimizes the time required to generate the 
controller. If the constraints on the actions reduce the 
dimension of the action space, it is best to work in the reduced 
dimensional action set.  

The low-level controller reduces the dimension of the high-
level controller’s action space by using the constraints in (14).  
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This dramatically reduces the complexity of the high-level 
controller and the time required to design it. This method was 
used rather than two other alternatives considered. The first 
alternative considered was to sample the action set and 
remove all points that fail to satisfy (14). This approach does 
not work well because some of the constraints in (14) are 
equality constraints. If the sampling is performed without 
consideration of these equality constraints, the probability of 
sampling feasible points is very small. The second alternative 
considered was to construct the sampling so that the 
constraints in (14) were satisfied by each sample. This 
approach increased the complexity of the algorithms used to 
create and solve the stochastic dynamic program because of 
the complex sampling needed for the action set. The 
introduction of a low-level control eliminated the problem 
with infeasible samples and increased complexity in the 
stochastic dynamic programs.  

When the engine is commanded on and the transmission 
mode is fixed, the system constraints limit the choices in  eT , 

AT , BT , and kT  to satisfy the acceleration command and brake 
torque restrictions. The system constraints in (15) are always 
active, therefore they act as equality conditions that the action 
choices must satisfy. Since there are four variables and two 
equality conditions, this results in two independent decisions 
available to the high-level controller. While these independent 
decisions can be represented in many ways, in this work, the 
next engine speed and battery power were selected to 
represent the choices available to the high-level controller 
when the engine is on and the transmission mode has been 
selected.  

When the engine is commanded off, the engine speed and 
torque are constrained to equal zero. These two additional 
constraints limit the high-level control choice to the 
transmission mode command.  

The high-level controller action set U  is  
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U ,(26) 

where ,trn cmdM  commands a transmission mode, ,e cmdM  
commands the engine on or off, ,e cmdω  is the engine speed 
command, and ,batt cmdP  is the battery power command. 

The low-level controller is a static mapping from U  and X  
to plantU : 
 :ll plantP × →U X U . (27) 
The mapping llP  is composed of six scalar functions which 
map the high-level actions to the plant actions. This mapping, 

( ),llP x u , is defined as  
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For many high-level actions, u , the low-level controller may 
not be able to find a feasible plant action for the desired 
engine speed and battery power. For example, if the driver 
commands an acceleration of five meters per second squared 
which requires two hundred kilowatts at the wheels and the 
high-level controller commands the battery to charge at fifty 
kilowatts, a two hundred kilowatt engine can not generate 
sufficient power to satisfy both the driver and the high-level 
controller commands. Furthermore, some acceleration 
commands from the driver may require the engine to operate, 
while the high-level action specifies that the engine is off. 
This can occur is the acceleration commanded by the driver 
exceeds the electrical capability of the powertrain. These 
conflicts are resolved by introducing a set of constraints which 
are satisfied if a feasible plant action exists that matches the 
commanded modes, engine speed and battery power. 
Otherwise, these constraints are relaxed until a feasible plant 
action is found.  Let  
 ( ), , 0ll plantg x u u ≤  (29) 
be the inequality that is satisfied when a high-level command 
u ∈U  is satisfied by an action plant plantu ∈U  for a state x ∈X . 
More precisely, Let 

 

( )
( )

( )
( ) ( )
( ) ( )

,

,

, ,

, ,

, ,

 

, 'eng on '

, 'eng on '

e

batt

ll plant

false trn cmd trn

false e cmd e

e cmd plant true e cmd

batt cmd P plant true e cmd

g x u u

I M M

I M M

f x u I M

P h x u I M

ωω

=

⎡ ⎤=
⎢ ⎥

=⎢ ⎥
⎢ ⎥

− ⋅ =⎢ ⎥
⎢ ⎥
⎢ ⎥− ⋅ =⎣ ⎦

, (30) 

where ( )falseI ⋅  returns a 1 if the argument is false and a zero if 

it is true and conversely, ( )trueI ⋅  returns 1 is the argument is 
true and zero if it is false. Similar to the problem encountered 
with the system constraints in (15), the low-level controller 
needs to ensure that for all x ∈X  and u ∈U , the set defined 
by the intersection of (30) and (16) is non-empty. To resolve 
this problem, a vector of slack variables similar to (15) is 
introduced. This vector, llε , is used to define the set of 
feasible control actions available to the low-level controller. 
The resulting set is 
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( ) ( ) ( ){ }*

,

, , , 0

ll sys plant

sys plant ll plant ll

U x u

u U x g x u u x uε

+ +

+

=

∈ + ≤
, (31) 

where the vector ( )* ,ll x uε  is selected to minimize the 
deviation from the commanded values in u , while insuring 
that for all x ∈X , the set ( ),ll sys plantU x u+ +  is non-empty. 
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Many different schemes can be used to define ( )* ,ll x uε . In this 

work, the elements in ( )* ,ll x uε  are selected by sequentially 
relaxing individual constraints until a non-empty set results. 
The order of relaxation is: transmission mode, ,trn cmdM ; the 
engine mode command, ,e cmdM ; the battery power command, 

,batt cmdP ;  and finally, the engine speed command, ,e cmdω . By 
allowing these relaxations, for every possible command in U , 
a feasible plant action in plantU  is found. 

Using the set ( ),ll sys plantU x u+ + , the low-level controller 
selects the feasible plant action that minimizes the same 
instantaneous cost function used in the high-level controller: 
 ( )

( )
( ){ }

,
, min , ,

plant ll sys plant

W
ll plant plantu U x u

P x u E c x u w
+ +∈

= . (32) 

Figure 4 illustrates the relations between the driver, the 
high-level controller, the low-level controller, and the plant. 

B. The SP-SDP based Controller’s View of the System 
With the addition of the low-level controller, the entire 

model is simplified for design using SP-SDP. In summary, the 
state of the model is defined in (1). The inputs to the low-level 
controller are defined in (26). The propagation function for 
the combined plant and low-level controller is  
 ( ) ( )( ), , , , ,plant llf x u w f x P x u w= . (33) 
The value of w , the stochastic input from the driver, is 
defined in  (10).  The high-level objective function, 

( ), ,c x u w , is obtained by substituting (32) into (25) , resulting 
in  
 ( ) ( )( ), , , , ,plant llc x u w c x P x u w= . (34) 
The value function used to design the controller is 
 ( ) ( ) ( )( )( ){ }min , , , ,W

u
V x E c x u w V f x u w

∈
= +

U
, (35) 

with the optimal control law found using 
 ( ) ( ) ( )( )( ){ }* arg min , , , ,W

u
x E c x u w V f x u wπ

∈
= +

U

. (36) 

C. SDP Formulation and Solution 
To synthesize the high-level controller, a SP-SDP problem 

is posed and solved. An approximate solution to the SP-SDP 
equation in (35) is found using linear programming. Briefly, 
the method followed is to 
1) select a linear basis for the value function, in this case 

barycentric interpolation;   
2) create a set for sampling the state, action, and noise 

spaces; 
3) censor the sampling set to exclude those points known 

beforehand to not be visited; 
4) sample the model to generate the information for 

construction of the full, primal linear program; 
5) solve the linear program; and  
6) create the feedback controller from the approximate value 

function. 
These six steps are described in detail in the following. 

1) Linear Basis Selection: Barycentric Interpolation 
The difficulty of using discretization to solve a continuous 

state and action space SDP problem has been extensively 
studied [36, 37]. The approach taken in this work is to use 
linear programming [25, 38]. The value function is 
approximated using a linear basis:   
 ( ) ( )V x x r≈ Φ ⋅ . (37) 

The basis function, ( )xΦ , maps every point in X  to a row 
vector which in general has a higher dimension than X . The 
elements in the column vector r  scale each basis function in 

( )xΦ  to approximate ( )V x .  
There are many possible linear bases. A few bases studied 

for approximate linear programming include multi-linear 
interpolation [12], barycentric interpolation [30], splines [39-
41] , radial bases [42-45], polynomials [46], wavelets [47, 48],  
and coarse coding [37, 49, 50]. Experiments were performed 
using each of these bases. A barycentric basis is used in this 
work because it was found to provide the best tradeoff 
between implementation complexity and performance.  

A barycentric basis is formed by selecting a set 
{ }1 2, , , Mt t tT = "  of M points in X . The notation, it , is used 

because of similarities between the behavior of the points used 
to form the simplices and knots in a spline. The points it  
should not be confused with time. The M points are used to 
partition a convex region into simplices which have mutually 
exclusive interiors. For each point in T , a basis function is 
created from the product of an indicator function and a 
function which resolves the barycentric coordinates. The basis 
is  

 ( )

( ) ( )
( ) ( )

( ) ( )

1 1

2 2

M M

I x f x
I x f x

x

I x f x

⎡ ⋅ ⎤
⎢ ⎥⋅⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥

⋅⎢ ⎥⎣ ⎦

#
. (38) 

The function iI is an indicator function that is equal to one 
if x  is on the interior or boundary of any simplex that has the 
i th point in T  at one of its vertices. Otherwise, ( )iI x  is equal 
to zero. The function if  returns p , the barycentric coordinate 
of x , with respect to the i th point in T .  For a space with N  
dimensions, the barycentric coordinates will be a vector with 

1N +  dimensions. If a point 0x  is in the interior or on the 
boundary of a simplex with vertices at the points 

1i
t  through 

1Ni
t

+
, then the barycentric coordinates are found by solving  

 [ ]
1 2 10

1 1 11

Ni i i
pt t tx

+

⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

"
" . (39) 

To formally define the functions, if , let 

( ) 1 ,if  is a corner in the simplex containing 
,

0 ,otherwise
t x

T x t ⎧
= ⎨
⎩

, (40) 

be an indicator function. Let iI  be defined as   
 ( ) ( ),i iI x T x t= . (41) 
Let   
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 ( ) ( ){ }, 1x t T x t= ∈ =S T  (42) 

be the set of vertices for the simplex containing x . The 
function if , is defined as  

 ( )
( ) { }

1
1

2

1

11

1 1 1 1

, , 1,2, ,

,

 

i N

Ni

j j i

j k

p
p

t s s x
pf x p

s x s t j N

s s j k

−

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ = ⋅⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎢ ⎥⎪ ⎪= ⎣ ⎦⎨ ⎬
⎪ ⎪∈ ≠ ∀ ∈⎪ ⎪
⎪ ⎪≠ ∀ ≠
⎪ ⎪
⎪ ⎪⎩ ⎭

S

"
"#

"
. (43) 

Substituting (41) and (43) into (38) creates the barycentric 
basis. 

While MATLAB provides routines for barycentric 
interpolation, in practice those routines were unacceptably 
slow. For this work, custom codes were generated that 
executed approximately ten times faster. These codes 
achieved this speed improvement by precomputing a lookup 
table, or hash table,  to identify small sets of potentially active 
simplices. 

2) State, Action, and Noise Sample Selection 
 To reduce this problem to an approximate linear program, 

the state space, X , is sampled. Let the set,  
 { }, 1 2, , ,samples full Mx x x= ⊂X X" , (44) 
be the set of all sample points to be considered. These points 

are chosen on a regular grid such that the state constraints 

implied by (8) are satisfied. These state constraints include 

battery charge, engines speed, and vehicle speed limits. 

The action sample set is more complex than the state space 
sample set because the dimension of the actions changes. In 
the high-level action set U , defined in (26), there are four 
discrete choices in actions formed from the combination of 
engine mode and transmission mode commands. In the cases 
where the engine is commanded on, the battery power and 
engine speeds are sampled on a regular grid.  

Finally, the sampling for the noise space, samples =W W , is 
identical to the sampling used to generate the driver model.   

3) State Censoring 
When building the driver model, there are typically 

combinations of vehicle speed and acceleration that are never 
encountered. Figure 5 illustrates the velocity and acceleration 
pairs that are visited for the UDDS and HWFET cycles. In this 
figure, the grey region shows where velocity and acceleration 
pairs occur. The white space is the region where no 
combination of velocity and acceleration is observed. Since 
some combinations are never seen, there is no need to design 
the controller to optimize in these regions. State censoring 
uses this concept to reduce the number of states used when 
constructing the controller. Let  
 ( ){ }  with Pr , 0next next veh nowx a a v a= ∈ ∃ >R X  (45) 

be the set of all points in the state space where the 
combination of  velocity and acceleration have a nonzero 
probability of occurring. 

Typically, the intersection of the convex hull of R  with 

,samples fullX  will be a strict subset of ,samples fullX . In other words, 
the hypercube bounded by possible vehicle speeds and 
possible accelerations will contain combinations which the 
driver will never request or the vehicle is not capable of 
realizing. If this is the case, then the size of the sample set can 
be reduced by selectively removing the sample points with 
zero probability of occurring. This act of going through the 
list of samples and removing those with zero probability of 
occurring is termed censoring. More formally, let 
 ( ), cosamples samples full=X X R∩ . (46) 

In practice, the number of samples in samplesX  is up to 40% 
smaller than the number of samples in ,samples fullX . For these 
numerical examples, censoring reduced the time to construct 
and solve the SP-SDP equations by more than 50%.  

4) Model Call Reduction 
The model is sampled based on the points identified in the 

sets samplesX , samplesU , and samplesW . A simple sampling scheme 
would use each element in the set formed from the Cartesian 
product of   
 samples samples samples samples× ×G X U W� . (47) 

Another significant improvement in execution time was 
achieved by taking advantage of linearity in the propagation 
function, (5), with respect to battery charge and the drivers 
stochastic input, w .  This can be seen be creating a linearized 
form of this equations as 

( )

( )
( )

( )
( )

( )
, , 0

, ,
, ,, , 0

0, ,

0

veh

batt

e

cat

v k k k

q k k kbatt k

k k kplant k k k

T k k k

k

f x u w
x u wq x

f x u wf x u w

f x u w
w

ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

. (48) 

In this case, the value of nowa  at the next time step is 
independent of the all states and actions. Its value is wholly 
determined by the stochastic input, w . Therefore, instead of 
calling the full model to evaluate the next value of nowa , a 
simple linear model is used in its place. The battery state of 
charge in this model has a similar property. The change in 
battery charge, ( ), ,

battq k k kx u wΔ ,  is independent of the battery 
charge. This allows the model to be called once for any 
samples in (47) that differ only in the value of battq .   

Therefore, for each collection of elements in samplesG  where 
all values are identical except battq  and w ,  the propagation 
function, (33), is only called for a single point and linearity is 
used to determine the next state at all other points. 

Recall that in (7), the variable w  is retained for generality 
but is not used here for the calculation of the outputs. Because 
of this, the cost function in (25) can be sampled in an 
economical manner by only sampling elements in (47) that are 
unique in all terms except w . Similarly, the transition 
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probabilities, (10) and (11), are only sampled once for each 
unique combination of nexta , nowa , and vehv  in (47). 

This selective sampling and reconstruction of model 
functions using linearity increased the speed between ten and 
one hundred times. 

5) Primal LP Construction 
The first step in solving an approximate SP-SDP problem is 

to formulate the value function using a linear basis. 
Substituting (37) into (35) results in a value function in terms 
of the linear basis:  
 ( ) ( ) ( )( )( ){ }min , , , ,W

u
x r E c x u w f x u w r

∈
Φ ⋅ = + Φ ⋅

U
. (49) 

The next step is to expand the expectation in (49) with respect 
to the sampling of w . Recall from (1) and (12) the definitions 
of x  and w  respectively, let 
 ( ) ( ) ( )0Pr , Pr , Pr ,next veh now on veh nowx w a v a v a= ⋅  (50) 

be the probability that the driver transitions to nexta  and 
continues to drive given the current speed, vehv ,  and 
acceleration, nowa . For notational convenience, let  

 ( ) ( ) ( )( )0 , , , , , , ,c x u w r c x u w f x u w r= + Φ ⋅ . (51) 
Substituting (51) into the approximate value function in (49) 
and expanding the expectation into a sum over the samples in 

samplesW gives  

 ( ) ( ) ( )0 0min Pr , , , ,
samples

u w

x r x w c x u w r
∈ ∈

⎧ ⎫⎪ ⎪Φ ⋅ = ⋅⎨ ⎬
⎪ ⎪⎩ ⎭
∑

U
W

. (52) 

In (52), the optimization is over the entire set defined by 
U . To convert (52) into a form that can be solved using linear 
programming, u  and x  are restricted to a finite set of values. 
Only considering u  at the points in samplesU  and x  at the 
points defined in samplesX , allows (52) to be replaced by a set 
of inequalities, 
 ( ) ( ) ( )0 0Pr , , , ,

samplesw

x r x w c x u w r
∈

Φ ⋅ ≤ ⋅∑
W

, (53) 

with one equation for each unique pair of x  and u . The 
equation in (53) is algebraically manipulated to collect the 
term, r , resulting in the inequality  

 
( ) ( ) ( )( )

( ) ( )

0

0

Pr , , ,

Pr , , ,
samples

w

w

x x w f x u w r

x w c x u w
∈

∈

⎛ ⎞⎛ ⎞Φ − ⋅Φ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

≤ ⋅

∑

∑
W

W

. (54) 

To create the linear program (LP), let 
 ( ) ( ) ( ) ( )( )0, Pr , , ,

samplesw

A x u x x w f x u w
∈

= Φ − ⋅Φ∑
W

, (55) 

and let 
 ( ) ( ) ( )( )0, Pr , , ,

samplesw

b x u x w c x u w
∈

= ⋅∑
W

. (56) 

Equations (55) and (56) define a row of linear constraints in 
the LP that correspond to a single state and action. Let iu  be 
the thi  element of samplesU  and define  

 ( ) ( ), i
iA x A x u=  (57) 

and let  

 ( ) ( ), i
ib x b x u= . (58) 

Equations (57) and (58) define a row of linear constraints in 
the LP that correspond to i

samplesu ∈U  and an arbitrary state, 

x .  Let  jx  be the thj  element of samplesX  and define 

 ( )j
ij iA A x=  (59) 

and   
 ( )j

ij ib b x= . (60) 
Equations (59) and (60) define a row of linear constraints in 
the LP that correspond to the ith element of the uM elements in 

samplesU  and the jth element of the xM  elements in samplesX . 
Using this notation, the primal LP is  

 

* arg max
. .

r r
s t
A r b

⎧ ⎫∈
⎪ ⎪
⎨ ⎬
⎪ ⎪⋅ ≤⎩ ⎭

∑
, (61) 

where  
 11 1 12 2u u u x

TT T T T T
M M M MA A A A A A⎡ ⎤= ⎣ ⎦" " …  (62) 

and 
 11 1 12 2u u u x

TT T T T T
M M M Mb b b b b b⎡ ⎤= ⎣ ⎦" " … . (63) 

This above procedure used to develop the LP is similar to 
the methods discussed in [25, 34, 35, 38]. For a discussion of 
the meaning of the objective function in (61) with respect to 
the optimality properties of the approximate value function, 
see [25, 38]. 

6) Solution of the Primal LP 
As formed, the primal LP has thousands of variables and 

hundreds of thousands of constraints, requiring a significant 
amount of time and memory to solve. While this problem is 
numerically tractable, an interior point algorithm repeatedly 
stalled or required significant tuning in our numerical 
experiments to find a solution. To decrease the amount of time 
and memory needed to solve the LP, two approaches are used: 
the  constraint generation algorithm from [26]  and the 
solution of the resulting primal LP using a dual from [31, 51]. 
Furthermore, the dual solution approach from [31] is refined 
by using knowledge of the actions and states along with the 
Lagrangian from the solution of the dual LP to select the best 
action for each state. 

Constraint generation relies on the insight that the vast 
majority of constraints in an LP are not active. Furthermore, in 
general, solution time for an LP scales super linearly with 
problem size. Doubling the number of constraints in an LP 
more than doubles the solution time. Therefore, if the problem 
size can be reduced by omitting inactive constraints, a solution 
can be found faster. Constraint generation involves iteratively 
solving a sequence of LP’s. The first LP is constructed with 
enough constraints to ensure the problem is bounded.  On 
each iteration, the previous solution is used to identify the 
most violated constraint associated with the actions for each 
state. These constraints are added to the existing LP to form a 
new LP. This process is repeated until a solution is found 
without any constraint violations. This algorithm is guaranteed 
to converge. At worst case, the algorithm iterates until all 
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constraints in the original LP are used. Experimentally, this 
algorithm can be several times faster than solution of the 
original LP [27]. 

To solve the LP at each iteration in the constraint 
generation algorithm, the dual of the LP is solved and the 
primal solution constructed from that solution. Recall that the 
primal problem being solved is  

 
max
. .

T r
s t
A r b

κ⎧ ⎫⋅
⎪ ⎪
⎨ ⎬
⎪ ⎪⋅ ≤⎩ ⎭

, (64) 

where 1κ = . The symbol κ  is used rather than the 
conventional notation of c  to avoid confusion with (34). The 
dual of this LP is 

 

min
. .

0

T

T

b
s t
A

λ

λ κ
λ

⎧ ⎫⋅
⎪ ⎪
⎪ ⎪
⎨ ⎬

⋅ =⎪ ⎪
⎪ ⎪≥⎩ ⎭

. (65) 

In conventional linear programming, where Mr ∈\ , the 
M  largest values of λ  are used to identify the rows of A  
and b  that are active constraints. These rows are collected 
into a simpler matrix and vector forming Aλ  and bλ  
respectively. The value of  r  is found by solving 
 A r bλ λ⋅ = . (66) 

However, because of the structure in this problem, an 
alternative approach is used. The values of λ  associated with 
each state in samplesX  are considered. For each state, a single 
action is selected as the active action. This active action is the 
largest value of λ . The rows in the LP associated with the 
active actions are used to form a system of linear equations. 
These equations are used to find r . This approach resolved 
problems that occurred where the M  largest values of λ  
resulted in polices with no actions in some states and multiple 
action in other states. 

The vector *r  is an argument that satisfies (64) and is 
obtained on the last iteration of the constraint generation 
algorithm. The algorithm terminates with the selection of *r . 

D. The SP-SDP feedback controller 
The high-level feedback controller uses the approximate 

value function found by solving (61). The resulting controller, 
valid for all x ∈X , is  

 ( ) ( ) ( )( )( )* *min , , , ,W

u
x E c x u w f x u w rπ

∈
= + Φ ⋅

U
. (67) 

As opposed to using the discrete set, samplesU , as is the case 
where solving for the approximate value function, the optimal 
action choice is found by searching the entire action space. In 
(67), neither monotonicity [20, 52] nor convexity properties 
[51] can be guaranteed, therefore a global optimization 
method is used to find u . The direct algorithm [53] was found 
to provide a robust solution. 

V. VALUE FUNCTION SOLUTION DISCUSSION 
To formulate a specific SP-SDP based controller, the 

function c  in (67) must be defined. This function is formed 
by applying the low-level controller to the cost function for 
the plant as shown in (34). The plant cost function is formed 
from the linear combination of the fuel consumption, the 
tailpipe emissions, and the cost function for SOC deviations as 
shown in (25). The SOC cost function has two tuning 
variables, qK  and 0q . For this work, the value of qK  was set 
to 25 and 0q  was set to 0.55. These values were selected by 
experimentation on a fuel minimizing controller to provide 
charge sustaining operation while keeping the SOC less than 

0q . By keeping the SOC less than 0q  during a drive cycle, the 
cost of battery energy is always penalized to reflect the 
equivalent cost of future energy replacement. Furthermore, 
problem solution requires definition of the samples in (47). 
For this work, the set of samples, prior to the use of state 
censoring, is obtained by using a regular grid. The vehicle 
speed is sampled at   
 { }0,5.7,11.4.17.1, 22.9,28.6,34.3,40vehv ∈  (68) 
in units of meters per second. The battery SOC is sampled at  
 { }0.4,0.433,0.467,0.5,0.533,0.567,0.6battq ∈ . (69) 
The driver’s acceleration command is sampled at 
 { }5, 3.75, 2.5, 1.25,0,1.25, 2.5,3.75,5nowa ∈ − − − −  (70) 
in units of meters per second squared. The engine speed is 
sampled at  
 { }0,100,200,300,400,500,600eω ∈  (71) 
in units of radians per second. Finally, the catalyst brick 
temperature is sampled at  
 { }38,132,221,315,410, 499,593catT ∈  (72) 
in units of degrees Celsius.  

The stochastic input w  is sampled identically to nowa . The 
action space for the high-level controller is sampled with 
battery power commands of 
 { }, 40000, 24375, 8750,0,6875,22500batt cmdP ∈ − − −  (73) 
in units of watts. The engine speed command is sampled with 
values of  
 { }, 100, 200, ,600e cmdω ∈ "  (74) 
in units of radians per second.  To form the high-level actions, 

the samples in (73) and (74) are used to select discrete 

elements in (26). This results in a total of 62 actions per state 

sample. Using the procedure outlined in section 3.4.3, the 

approximate value function was found. 

Inspection of the value function showed there was no 
appreciable change with respect to the engine speed. This 
insensitivity stems from the fact that in the model, the engine 
speed can be rapidly changed with minimal energy. Based on 
this observation, the engine speed was omitted from the 
feedback to the high-level controller, thus reducing the 
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dimension of the SP-SDP and decreasing solution time. Note 
that, while engine speed has been removed from the feedback 
for the high-level controller, it is still used by the low-level 
controller in (32).  

After removal of the engine speed from the value function, 
the initial state sampling included 3528 state values. After 
state censoring, this sample set was reduced to 1568 state 
values, a 55% reduction. Without state censoring and using a 
barycentric basis with a node at each state sample, this 
problem generates an LP with approximately 220,000 
constraints and 3528 variables. An LP this size was not 
directly solvable using a desktop machine. By a combination 
of state censoring and constraint generation, the largest LP 
solved had 3396 constraints and 1569 variables. The 
constraint generation algorithm converged to a solution in 5 
iterations.  

The initial combination of state samples, action samples, 
and noise samples required a total of approximately 1.97 
million model calls. After state censoring, this was reduced to 
874,944 model calls. This was further reduced to less than 
20,000 model calls through the use of model linearity. 

To solve the SP-SDP, a total execution time of just over 3 
hours was required on a single CPU 3.0 GHz Pentium using 
MATLAB. Initialization of the hash table for barycentric 
interpolation required 40 minutes. The time to sample the 
model was 65 minutes. The construction of the rows in the LP 
from the model samples took a total of 40 minutes. The 
solution of the LP using constraint generation and solution via 
duality required less than 35 minutes. The peak memory 
utilization by the MATLABimage on a Windows PC was 174 
Mb.  

These techniques decreased the time to find a solution to 
the SP-SDP from an initial estimate of greater than eight 
thousand hours to less than three hours. 

VI. THE BASELINE CONTROLLER 
To understand the value of the SP-SDP approach to 

optimizing emissions and fuel consumption, a baseline 
controller is constructed from (24) where the instantaneous 
cost, ( )c ⋅ , is (25). The value of alpha in (25) is evaluated at 
various values to determine the tradeoffs between fuel 
consumption and emissions provided by this controller. The 
value of qK  is 50,000 and 0q  is set to 0.60. Both values were 
selected through experimentation to achieve charge sustaining 
operation over a range of driving conditions. The value 
function is replaced by zero. This controller is referred to as 
the ‘baseline’ controller: 
 ( )

( )
( )( ){ }arg min , ,

plant sys plant

W
baseline plant

u x
x E c x u wπ

+∈
=

U

. (75) 

VII. FUEL AND EMISSIONS RESULTS 
Since the control goals are minimization of fuel and 

emissions in a certification testing scenario, the controllers are 
evaluated against a fixed drive cycle: the UDDS cycle. The 
Pareto set for the SP-SDP problem is generated by sweeping 
α  in equation (25) and generating a unique controller for 

each point in the sweep. Similarly, the baseline controller is 
evaluated by sweeping alpha. 

One of the objectives for this work was to understand the 
impact of catalyst heat loss, so Pareto sets were generated for 
several catalyst designs. The first catalyst design included no 
heat transfer directly from the catalyst to the environment. 
This catalyst is referred to as the ‘isolated catalyst.’ All heat 
generated in the catalyst is rejected into the exhaust gases. The 
evaluation started with the catalyst at 93 C. To equalize the 
impact of changes in battery charge on fuel consumption and 
emissions, the SOC was searched to find an initial value that 
resulted in charge sustaining operation. Figure 6 shows the 
fuel consumption and tailpipe emissions for the baseline 
controller and the SP-SDP controller. The utopia point [54] is 
plotted to highlight the best single objective optimization 
results obtained.  

The best baseline controller for both emissions and fuel 
economy occurs when tuned for fuel economy operation. 
Tuning this baseline controller for any emissions minimization 
degraded both fuel economy and emissions performance. This 
happens because the control law is greedy [37]: it optimizes 
instantaneous decisions without consideration of future costs. 
Specifically, as tailpipe emissions were considered, the 
instantaneous cost prevented the engine from being used, this 
discharged the battery. Eventually, to achieve charge 
sustaining operation, the battery forces the engine on in a 
manner that increases fuel use and emissions. 

The SP-SDP controller reduced the normalized tailpipe 
emissions from a peak of 44.5 grams to a minimum of 26.1 
grams, more than a 41% reduction. The tradeoff between fuel 
economy and emissions is clearly visible. For example, these 
plots illustrate that for the ‘isolated catalyst,’ the tailpipe 
emissions can be reduced more than 20% for about a 3% 
increase in fuel consumption. 

To assess the impact of heat loss on the tailpipe emissions, 
a catalyst with a thermal time constant of 1725 seconds for 
heat transfer to the ambient was evaluated. The initial 
conditions used were the same as those for the ‘isolated 
catalyst’. The results for the controllers designed for this 
catalyst are shown in Figure 7.  

For the SP-SDP controller, the heat loss from the catalyst to 
the ambient does not affect the minimal emissions achieved by 
this system, however almost 20% more fuel is required to 
achieve the minimum emissions level than with the ‘isolated 
catalyst’.  

Because of the heat loss, the baseline controller is not able 
to match the emissions level for the isolated catalyst. For both 
controllers, the minimal fuel consumption is the same as for 
the isolated catalyst, as would be expected. 

Finally, a catalyst with a 400 second time constant for heat 
transfer to the ambient was evaluated. This evaluated the 
impact of a heat transfer much higher then discussed in the 
literature [55, 56] and is used to establish bounds on the 
performance of the controllers. Figure 8 illustrates this Pareto 
set.  

The SP-SDP controller is able to beat the minimum 
emissions from the baseline controller more than 60%. 
Interestingly, in this case, the baseline controller demonstrates 
ability to tradeoff emissions and fuel economy. Across the 
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Pareto set, the SP-SDP controller shows significant 
performance advantages. As expected, for the case where only 
fuel economy is considered, both controllers have equivalent 
performance. 

One effect that occurred in all three studies was a slight 
increase in emissions from the minimum as the controllers 
were increasingly weighted for emissions. This was 
investigated by examining higher resolution sampling of the 
state space. As also shown in Figure 8, increased resolution in 
sampling the catalyst temperature and battery charge 
decreased this effect. The root cause of this problem appears 
to be related to the controller attempting to drive the catalyst 
to the edge of the state space and encountering numerical 
issues.  

VIII. CONCLUSIONS 
Because automobiles are always operated for a finite period 

of time, SP-SDP is a natural formulation for developing 
controllers that minimize total undiscounted costs. This 
formulation is important when considering control objectives 
like fuel consumption and emissions. The SP-SDP 
formulation is able to minimize the expected costs over an 
infinite horizon because the cost is kept finite by the fact that 
the vehicle will be turned off in finite time. 

Compared to a baseline controller, a SP-SDP controller was 
able to provide significantly better performance and tradeoffs 
between emissions and fuel consumption. The improved 
performance is obtained through better control of the catalyst 
as it warms up and transitions from a low conversion 
efficiency operating point to a high efficiency operating point. 
Since the heat transfer between the catalyst and the 
environment is not well documented, the ability to improve 
performance for a range of catalysts was explored. For each 
case, a unique collection of SP-SDP controllers were 
developed. The SP-SDP based controller was able to decrease 
tailpipe emissions and provide better tradeoffs with fuel 
consumption than a baseline controller. This capability was 
demonstrated over a broad range of thermal characteristics in 
catalysts.  

SP-SDP methods were successfully used to find a controller 
that uses four of five states in feedback, with the other state 
managed by a low level controller. A low level controller was 
synthesized that reduced the complexity in designing the high 
level controller using SP-SDP. The SP-SDP design technique 
synthesized a controller in three hours on a desktop PC. The 
combination of dynamic programming, approximate linear 
programming, constraint generation, solution of the LP via its 
dual, reduced sampling, state censoring, and barycentric 
interpolation reduced the amount of time required to find the 
value function for the SP-SDP by orders of magnitude from 
initial efforts. This short design time enabled the generation of 
large sets of controllers for generating Pareto sets against a 
range of component characteristics.  

APPENDIX A 
OPTIMALITY OF A QUADRATIC SOC PENALTY 

As implied by [57, 58], if a hard charge sustaining 
constraint is replaced by a linear cost that is applied when the 
vehicle is turned off, 
 ( ) ( )( )term term batt off batt startc K q T q T= ⋅ − , (76) 

then the terminal cost (76) can be replaced by a summed 
instantaneous cost, per  

 
( ) ( )( )

( ) ( )
off

start

term batt off batt start

T t

term batt batt
t T

K q T q T

K q t t q t
−Δ

=

⋅ − =

⎛ ⎞
⋅ + Δ −⎜ ⎟⎜ ⎟
⎝ ⎠
∑

. (77) 

This substitution changes the terminal constraint into an 
instantaneous cost, 
 ( ) ( ) ( )( ),0 ,, , , ,q term batt next battc x u w K q x u w q x= ⋅ − , (78) 

where ( ),batt nextq ⋅  is the battery charge at the next time step 
and termK  is a gain selected to achieve the termination 
objective.  A drawback of this approach is that the value of 

termK  required in (76) to achieve charge sustaining operation 
is cycle dependent. The approach of using a linear cost to 
solve the charge sustaining constraint has been termed an 
Energy  Consumption Minimization Strategy (ECMS) [9, 59].  
An alternative criterion that approaches ECMS optimality is to 
use a quadratic cost function and use changes in battery SOC 
to find a local slope approximately equal to a cycle specific 

termK . Consider the instantaneous cost function 

 ( ) ( )( )2
0, , , ,q q nextc x u w K q x u w q= ⋅ − , (79) 

where 0q  is a target battery charge where no penalty is 
applied. Let  
 ( ) ( ) ( ),, , , ,batt batt next battq x u w q x u w q xΔ = −  (80) 
be a function that returns the change in battery charge at a 
given state, x , when the action u  is applied and the 
disturbance w  occurs. By substitution of (80) into (78), the 
cost function becomes, 
 ( ) ( ) ( )( )2

0, , , ,q q batt battc x u w K q x u w q x q= ⋅ Δ + − . (81) 
Through expansion of the quadratic term, (81) becomes 

( ) ( ) ( )( )
( ) ( ) ( )( )( )

2 2
0 0

2
0

, , 2

, , 2 , , .

q batt batt

batt batt batt

c x u w K q x q x q q

K q x u w q x u w q x q

= ⋅ − ⋅ ⋅ +

+ ⋅ Δ − ⋅ Δ ⋅ −
 (82) 

In operation, the change in battery charge between any two 
instants, ( ), ,battq x u wΔ , is much smaller than ( )battq x  or 0q . 

This allows the term ( )2, ,q x u wΔ  to be dropped from (82), 
resulting in 

 

( ) ( )
( ) ( )( )

( ) ( )( )( )

2 2
0 0

0

, , , ,

2

2 , , .

q q

batt batt

batt batt

c x u w c x u w

K q x q x q q

K q x u w q x q

≈ =

⋅ − ⋅ ⋅ +

− ⋅ ⋅ Δ ⋅ −

�

 (83) 
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Without loss of generality assume u  is scalar. Consider the 
partial derivative of qc �  in (83) with respect to u  after 
expanding battqΔ : 

 ( )( ) ( ),
0

, ,
2q batt next

batt

c q x u w
K q x q

u u
∂ ∂

= − ⋅ ⋅ − ⋅
∂ ∂
� . (84) 

Consider the partial derivative ,0qc  in (78)  with respect to 
u : 

 
( ),0 , , ,q batt next

term

c q x u w
K

u u
∂ ∂

= ⋅
∂ ∂

. (85) 

 
If ( )( )( )02 battK q x q− ⋅ ⋅ −  is equal to termK , then 

 ( ) ( ),arg min , , arg min , ,q o q
u u

c x u w c x u w= � . (86) 

In other words, if ( )( )( )02 battK q x q− ⋅ ⋅ −  equals termK , 

then a value of u  that minimizes (78) also minimizes (83) 
If the peak to peak change in ( )battq x  during operation is 

small and  ( )( )( )02 battK q x q− ⋅ ⋅ −  is approximately equal to 

termK , then  (83)  can be used in an optimization to select u  
and get results that are close to the results from using (78). 
Furthermore, the average value of ( )battq x  acts as an 

adaptation. For 0q  greater than ( )battq x , decreases in ( )battq x  
increase the penalty for battery usage. Conversely, increases  
in ( )battq x  decrease the penalty for battery usage. This change 
in penalty provides ensures charge sustaining operation over 
different drive cycles.  
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Figure 1 - Illustration of Major Components in Dual-Mode EVT HEV 
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Figure 2 - Stick Diagram of gearing, clutches, and electric machines in DM-EVT 
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Figure 3 - Lever Diagram of Kinematics in the DM-EVT HEV Model 
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Figure 4 - Signal Flow Diagram for Control and Feedback Signals 
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Figure 5 - Distribution of Visited Speed, Acceleration Pairs 
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Figure 6 – Isolated Catalyst Pareto Set for Fuel and Emissions 
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Figure 7  - Low Heat Loss Catalyst Pareto Set for Fuel and Emissions 
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Figure 8 - High Heat Loss Catalyst Pareto Set for Fuel and Emissions 
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