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Internal Report: Parameter Identification and Dynamic Model of
MABEL

Hae-Won Park, Koushil Sreenath, Jonathan W. Hurst and J.W. Grizzle

Abstract

This research identifies an eleven degree of freedom dynamicmodel of MABEL, a new robot for the study of bipedal walking
and running. Model parameters are identified on the basis of fourteen angles measured by encoders and the commanded torque
of the robot’s four independent actuators. The identification process is modular and begins with the cable-driven transmission
mechanism of the robot. By blocking an appropriate pulley, the springs that are part of the transmission can be removed from the
initial portion of the identification process. Furthermore, by selectively connecting and disconnecting cables in thetransmission,
experiments are designed for each actuated coordinate in order to determine inertias, friction coefficients, motor constants, and
power amplifier biases of the transmission system. With the identified transmission model and estimates of the inertial parameters
of the torso and legs from a CAD package,a priori estimates of the robot’s overall dynamic model can be constructed. These
a priori estimates are initially validated by comparing predicted response of the combined legs and transmission system to
experimental data excited by common torque commands. At this point, the compliant elements in the transmission are brought
back into the system and are identified with a set of static experiments. Specifically, spring stiffness is estimated fromthe spring
torques and deflections. A second unplanned source of compliance is accounted for next. This compliance arises when the cables
connecting the pulleys in the transmission stretch under heavy loads. The overall model of the robot is validated through a hopping
experiment that excites all of the dynamics of the model.

I. I NTRODUCTION

The primary objective of the research reported in this paperis to identify parameters which appear in a dynamic model
of MABEL, a new robot for the study of bipedal walking and running at the University of Michigan’s EECS Department;
see Fig. 1. MABEL uses a novel assembly of cable differentials, springs, and hard stops to achieve a low-friction, compliant
drivetrain, with the objective of improving the energy efficiency and robustness of bipedal locomotion, both in steady state
operation and in responding to disturbances [14], [9]. The parameters we seek to identify correspond to inertial parameters of
the pulleys comprising the differentials, motor rotor inertias, various friction coefficients, spring constants, andpower amplifier
biases.

A secondary objective of this paper is to present a dynamic model of the robot’s drivetrain. With the drivetrain model in
hand, developing the dynamic model of the overall biped becomes a standard exercise in Lagrangian mechanics [23], [29].To
evaluate the validity of the overall dynamic model of the robot, a dynamic hopping experiment is performed where the robot
repeatedly jumps off the floor with both legs and lands in a stable manner.

The problem of parameter identification for robot models hasbeen well studied in [25], [24], [16], [1], [6], [28]. Most results
are based on the analysis of the input-output behavior of therobot during a planned motion, with the parameter values obtained
by minimizing the difference between a function of the measured robot variables and a mathematical model [16]. A very clear
illustration of this approach is presented in [25] for the identification of parameters in industrial manipulators. Thestandard
rigid-body model is rewritten in a parametric form which is linear in the unknown parameters,τ = φ(q, q̇, q̈)θ, whereq, q̇, q̈
are the position, velocities, and accelerations of the joints, τ is the vector of joint torques,θ is the unknown parameter vector,
andφ is the regressor matrix. Optimization is used to define trajectories that enhance the condition number ofφ, and these
trajectories are then executed on the robot. Weighted least-squares estimation is applied next to extract parameters,and the
parameters are in turn validated by torque prediction. Thisapproach requires acceleration, which typically must be estimated
numerically from measured position. Very careful signal processing is therefore required to obtain accurate parameter estimates.
Research in [26] also exploited a linear-in-parameter formof the model. First, the gravitational parameters were estimated on
the basis of a static experiment, and then inertia and friction parameters are obtained by least square fit to experimental data
from a dynamic experiment. Other researchers have sought toobtain efficient algorithms for parameter estimation of serial
robots by determining a minimum set of inertial parameters in a mathematical model [7], [10].

An alternative approach has been explored in [1], which exploited force and torque sensor measurements to avoid estimating
acceleration. The model was represented in Newton-Euler form, and a six element wrench at the robot’s wrist was expressed
in a form linear in the unknown parameters. Force and torque at the wrist were obtained directly through force and torque
sensors, and parameter estimation was accomplished from this data without the need for acceleration. Another class of methods
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Fig. 1: a: MABEL, a bipedal robot for walking and running. Theshin and thigh are each 50 cm long, making the robot one
meter tall at the hip. The overall mass is 60 Kg, excluding theboom. The robot’s drivetrain incorporates unilateral springs for
shock absorption and energy storage.
b: The robot’s drivetrain uses a set of differentials and a spring to create a virtual pneumatic leg with compliance.

has been presented in [6], which used an energy-based model that requires velocity and position variables, but does not require
acceleration. This method, however, relies on the integration of the input torques and the joint velocities to compute energy,
which is problematic if estimated torque is corrupted by a bias. Reference [28] presented the idea of designing separate
experiments for estimating different types of parameters involving the inertial forces, centrifugal coupling forces, friction
forces, and gravity forces. The estimated parameters from each identification procedure were isolated to one of these four
forces at a time.

In this paper, we identify the parameters in a dynamic model of MABEL. Parameter identification for MABEL is a challenging
task for the following reasons: First, MABEL has a limited number of sensors, including only position encoders at the motors
and joints, and lacks any force or torque sensors. Second, actuator characteristics are poorly known. The motors used inMABEL
are custom made BLDC (brushless direct current) motors which are only manufactured on demand. Hence, important motor
characteristics such as rotor inertia, torque constant, and mechanical time constants are not precisely measured and verified
by the manufacturer. Identification of those parameters must therefore be included in the system identification procedure. In
combination with power amplifiers from a different manufacturer, the motors exhibited some directional bias. Complicating
matters further, this bias varies among individual amplifier-motor pairs. Consequently, the amplifier bias must be considered in
the system identification process. Another issue that affects our approach to parameter identification is that the choice of exciting
trajectory is restricted due to limitations of MABEL’s workspace. For example, a constant velocity experiment for estimating
friction coefficients is not feasible for MABEL because the maximum rotation of any joint is less than180◦. Finally, because
MABEL has many degrees of freedom, actuating all of them at once would lead to a large number of unknown parameters. For
this reason, we take advantage of the modular nature of the robot to design experiments that allow us to sequentially build the
model element by element. We use commanded motor torques as inputs, and motor and joint position encoders as outputs, and
extract model parameters on the basis of those signals. Due to the quantization error of the magnetic encoders, it is difficult
to get accurate acceleration signals by differentiating encoder position signals. Hence, we seek to extract parameters without
calculating acceleration from position data.

The paper is organized as follows: Section II describes the robot being studied. Section III briefly overviews the system
identification process. Section IV, Section V, Section VI, and Section VII cover the identification of the transmission mechanism,
the legs, the torso, and the compliance, respectively. Finally, Section VIII validates the overall dynamic model through a hopping
experiment.

II. M ECHANISM OVERVIEW

MABEL, shown in Fig. 1, is a planar bipedal robot comprised offive links assembled to form a torso and two legs. A novel
feature of the robot is that it is constructed from two monopods joined at the hip. By removing six bolts, half of MABEL’s torso
and one leg can be removed, yielding a monopod. In fact, the monoped hopping robot “Thumper” at Oregon State University
is literally the left half of MABEL [13].

In MABEL, the actuated degrees of freedom of each leg do not correspond to the knee and the hip angles (the hip angle
being the relative angle between the torso and thigh). Instead, for each leg, a collection of differentials is used to connect
two motors to the hip and knee joints in such a way that one motor controls the angle of the virtual leg (denoted hereafter
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by LA, where LA stands for Leg Angle) consisting of the virtual line connecting the hip to the toe, and the second motor is
connected, in series with a spring, to the length of the virtual leg (denoted hereafter byLS, where LS stands for Leg Shape).
The conventional bipedal robot coordinates and MABEL’s unique set of actuated coordinates are depicted in Fig. 2; they are
related by the following equations

qLA =
1

2
(qThigh + qShin)

qLS =
1

2
(qThigh − qShin) .

(1)

Roughly speaking, the rationale for this design is that it makes the robot a hybrid of RABBIT, a robot that walks extremely
well, but never achieved a stable running gait [3], and a Raibert Hopper, a robot that “runs” remarkably well [21]. The springs
in MABEL serve to isolate the reflected rotor inertia of the leg-shape motors1 from the impact forces at leg touchdown and
to store energy in the compression phase of a running gait, when the support leg must decelerate the downward motion of
the robot’s center of mass; the energy stored in the spring can then be used to redirect the center of mass upwards for the
subsequent flight phase, when both legs will be off the ground. Both of these properties (shock isolation and energy storage)
enhance the energy efficiency of running and reduce overall actuator power requirements [15], [9], [14]. This is also true for
walking on flat ground, but to a lesser extent, due to the lowerforces at leg impact and the reduced vertical travel of the
center of mass. The robotics literature strongly suggests that shock isolation and compliance will be very useful for walking
on uneven terrain [4], [5], [12], [11], [19], [22], [27].

qThigh

qShin

qLA

qLS

Fig. 2: Conventional bipedal robot coordinates and MABEL’sunique coordinates. Counter clockwise direction is positive

A. Robot Body

MABEL consists of five links: a torso, two thighs, and two shins. The robot is attached to a boom to constrain the robot’s
path to the surface of a sphere as shown in Figure 3. The robot’s motion is tangential to the sphere centered in the middle of
the laboratory. With a sufficiently long boom, its motion is similar to that of a perfectly planar robot walking in a straight line.

B. Transmission Mechanism

The transmission mechanism for each half of the robot consists of three cable differentials, labeled the spring, thigh,and shin
differentials, respectively, and a spring, as shown in Fig.4. Two differentials at the hip, the thigh and shin differentials, serve
to translate shin angle and thigh angle into leg length and leg angle. Thus, the electric motors control the leg angle and the leg
length. The spring differential serves to apply spring torques in series between the leg length so the resulting system behaves
approximately like a pogo stick.CThigh andCShin in Fig. 4 are attached to the thigh and shin links, respectively. TheBThigh

andBshin pulleys are both connected to the leg-angle motor. TheAThigh andAShin pulleys are connected to theCSpring

1Inertial load of the motor rotor seen from the joint end.
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Fig. 3: Boom constraining MABEL’s motion to the surface of a sphere, which approximates 2D planar motion. The central
tower is supported on a slip ring through which power and digital communication lines (E-stop line and ethernet lines) are
passed.
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Fig. 4: Transmission mechanism in MABEL and the coordinatesfor the transmission mechanism. The mechanism consists of
spring, thigh, and shin differentials. The spring differential realizes a serial connection between the leg-shape motor and the
spring. The thigh differential realizes movement of the thigh link in the leg and the shin differential moves the shin link. More
details on gear ratios are provided in Fig. 6 and Fig. 7.
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pulley, which is the output pulley of the spring differential. The spring on each side of the robot is implemented via two
fiberglass plates connected in parallel to the differentials via cables; see Fig. 1. As explained in more detail in Section VII-A,
the springs are unilateral (can compress in only one direction).

C

A B

D

AB

D

C

Fig. 5: Two versions of a differential mechanism.Left : Gear Differential,Right: Cable Differential. The A, B, C, and D
pulleys of each mechanism operate in the same manner.

Cable differentials are used instead of the more standard gear differentials depicted in Fig. 5. In part, this choice wasmade
in order to achieve low friction and backlash, and low mass inthe legs. Although cable differentials and gear differentials have
different assemblies, they work in the same manner. There isa special connection of three components (labeledA, B, and
C), and an internal, unobserved idler (D). The kinematic equations for a differential are given byA+B

2 = C and A−B
2 = D,

assuming the gear ratios are all equal. TheA andB components are constrained such that the average motion of the two is
equal to the motion of theC component. Consequently,A andB can move in opposite directions ifC is held stationary, and
the motion ofC will be half of A if B is held stationary. In MABEL’s transmission mechanism,A andB are used as inputs
to the differential, andC is used as an output. In the following,AShin, BShin andCShin refer to theA, B andC components
of the shin differential; similar nomenclature is used for the other two differentials.

Fig. 6 and Fig. 7 describe how this transmission works whenqLA or qLS is actuated, while the other link is held fixed. As
part of the description, directions and gear ratios are specified.

As illustrated in Fig. 6, leg-angle actuation is transmitted in the following way. If theqLA motor rotates with angular velocity
ω, the speed is reduced to−ω/11.77 by a step-down pulley and transmitted to theBThigh andBShin pulleys, which are inputs
of the thigh and shin differentials, respectively. Then,CThigh andCShin, which are the outputs of the differentials, rotate with
speed−ω/23.53 because theAThigh andAShin pulleys are stationary. Therefore, the thigh and shin linksboth move in the
same direction, and this movement results in a speed of rotation −ω/23.53 in qLA.

Leg shape is actuated through a different path as shown in Fig. 7. If the leg-shape motor rotates with a speed ofω, it is
then decreased toω/9.647 by a step-down pulley. This rotation goes into theAThigh andAShin pulleys of the thigh and shin
differentials, but in opposite directions. Hence, the thigh and shin links move in opposite directions to one another, and this
movement results in the speed of rotation ofqLS of ω/31.42.

The path from spring torque (displacement) to rotation inqLS is very similar. Because the transmission is linear, the net
motion in qLS from the leg-shape motor and the spring is the sum of the individual motions.

C. Notation for naming the parameters and variables

For later use, we define following index sets.

I = {mLSL, mLAL, mLSR, mLAR}, (2)

where the subscriptsL andR mean left and right,mLS means motor leg shape, andmLA means motor leg angle; see Fig. 4.
For the links, we define the index set

L = {T,Csp,Th, Sh,Csh,Boom}, (3)

where,T, Csp, Th, Sh, Csh, andBoom representTorso, CSpring, Thigh, Shin, CShin, andBoom, respectively, as depicted
in Fig. 8a. For the transmission mechanism, we define the index set

T = {Asp,Bsp,Dsp,Ath,Bth,Dth,Ash,

Bsh,Dsh,mLSsd,mLAsd,mLS,mLA},
(4)

where capital letters A, B, C, and D correspond to the components of the differentials in Fig. 5, and sp, th, sh, and sd stand
for spring, thigh, shin, and step down, respectively, as depicted in Fig. 8b. Throughout this paper, the notation for coordinates
and torques in Table I is used.



DRAFT COPY. LAST EDITED BY HWP MARCH 16, 2010 6

TABLE I: Notation for MABEL’s coordinates and torques. SubscriptsL andR denote left leg and right leg, respectively.

qLSL,R
leg shape rotation angle

qmLSL,R
motor leg shape rotation angle

qLAL,R
leg angle rotation angle

qmLAL,R
motor leg angle rotation angle

qLAL,R
leg angle rotation angle

qmLAL,R
motor leg angle rotation angle

qBspL,R
Bsp rotation angle

τmLSL,R
mLS motor torque

τmLAL,R
mLA motor torque

τBspL,R
Bsp torque
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Fig. 6: (a) Motor actuation is transmitted toqLA through one step-down pulley and two differentials (Thigh and Shin). (b)
Transmission flow ofqLA. Gear ratios are indicated.

III. OVERVIEW OF SYSTEM IDENTIFICATION PROCEDURE

Current CAD packages provide excellent estimates of the total mass of links and pulleys, their lengths and radii, centerof
mass, and moments of inertia. If one also accounts for the location and mass of items not normally represented in a CAD
drawing, such as bearing shape and density, cable length anddensity, electrical wiring, on-board power electronics, actuators
and sensors, then gooda priori estimates of total mass, center of mass and moments of inertia can be obtained for the overall
robot. This was done for MABEL. Consequently, part of our system identification procedure is aimed at validating thesea
priori estimates by comparing predicted responses to experimental data.

In addition, there are important parameters for which reliable estimates are not available from the CAD drawings. These
include motor torque constants, motor rotor inertias, and spring stiffness and pre-load. Even though motor torque constants and
rotor inertias were provided by the manufacturer on the basis of their in-house CAD programs, the motors were custom wound
with very small production numbers, and hence, these valueswere not experimentally verified before shipping. Moreover,
because we have different motors formLA andmLS actuation, and we also have different2 mLS motors for left and right legs,
the characteristics of these motors would be different in each case. The springs are custom built as well, and their stiffness
must be identified. Finally, friction parameters will probably never be reliably estimated by a CAD program and must be
determined experimentally.

2The use of motors of different characteristics for the left and right sides was not planned. It was a matter of necessity when one of the motors failed.
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Fig. 7: (a) Motor actuation is transmitted toqLS through one step-down pulley and three differentials (Spring, Thigh, and Shin).
(b) Transmission flow ofqLS. Gear ratios are indicated.

A. Steps in the Identification Process

The first phase of the experiments focuses on identifying theactuator parameters and the friction parameters in the
transmission, as well as validating the pulley inertia estimates provided by the CAD program. The motor torque constant,
KT , and rotor inertia,Irotor, of each motor are also determined. This is accomplished by analyzing a chain of rotating,
symmetric inertias. Because the pulleys are connected by “rigid” (low stretching) steel cables to form a one-degree-of-freedom
system, various paths in the transmission mechanism can be modeled simply by the lumped moment of inertia of the pulleys,
and friction. This combined moment of inertia of the pulleyscan be calculated by the CAD model and added to the rotor
inertia of the motor. The corresponding lumped moment of inertia can be obtained also from experiments. From these data,
motor torque constants, motor rotor inertias, viscous friction and motor torque biases can be estimated.

Next, the legs are included to validate the actuation-transmission model in conjunction with the center of mass and moments
of inertias of the links constituting the thigh and shin. Each link’s total mass, center of mass, and moment of inertia can
be calculated accurately from the CAD model, so the primary objective of this step is to validate these values. For these
experiments, the compliance is removed from the system by blocking theBSpring pulley; the torso is fixed as well.

Following this experiment, the torso’s inertial parameters are identified. Due to the difficulties in experimental identification
of the torso explained in Section VI, we chose to extract the inertial parameters from the CAD model and verify some of
them with static experiments. The compliance is determinedlast. MABEL has two kinds of compliance. One is the unilateral,
fiberglass spring designed into the transmission. The othersource of compliance is unplanned and arises from stretching of
the cables between the pulleys. The compliance of the unilateral spring will be obtained from static experiments, and the
compliance from cable stretch will be estimated from dynamic experiments.

With the parameters obtained above, we can construct an overall dynamic model of the robot. A dynamic hopping experiment
will be executed and the results will be compared with simulation results of the dynamic model. The parameters to be identified
are shown in Table II.
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TABLE II: Parameters to be identified, wherei ∈ I, ` ∈ L, and t ∈ T . SubscriptsL andR denote left leg and right leg,
respectively.

Differentials and Motors
Ki motor torque constant
Jrotor
i

inertia of the rotor
Jt inertia of the transmission pulleys
µi friction coefficient
bi motor bias

Thigh and Shin (Leg)
m` mass of the link̀
J` inertia of the link`
m`rx,` center of mass in x of the

link ` multiplied by mass of the link̀
m`ry,` center of mass in y of the

link ` multiplied by mass of the link̀
Compliance (Spring)

KBL,R
spring stiffness

KdBL,R
spring damping coefficient

KC,i cable stretch stiffness
KdC,i cable stretch damping coefficient
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B. Experimental Setup for Motor, Differential, and Leg Parameters
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Fig. 9: Experimental setup for system identification. Motorcommands are logged as an input for system identification andthe
encoder signals for motor angles,CThigh, DThigh pulleys, and the knee joint are saved as outputs for system identification.

The first phase of the experiments uses the setup depicted in Fig. 9. The torso is fixed relative to the world frame and
the legs can freely move. The position of theBSpring pulley is fixed as well, removing compliance from the picturefor the
initial identification phase. Desired torque commands are sent to the amplifiers and are recorded by the computer. In turn, the
amplifiers regulate the currents in the motor windings, thereby setting motor torque values. Rotational motions of the motors
are transmitted to the thigh and shin links through the transmission differentials as shown in Fig. 6, 7, and 9.

Encoders are placed on theqLA andqLS motor angles, theCThigh andDThigh pulleys, and the knee joint. The position of
the BSpring pulley is also measured, but is not used here because this pulley is locked in a constant position to remove the
compliance. With this configuration, theqLA andqLS motor angles are rigidly connected to the anglesqLS andqLA which are
related to the motor encoder readings by the following relations:3

qLA =
1

γLA→mLA

qmLA, and (5)

qLS =
1

γLS→mLS

qmLS +
1

γLS→Bsp

qBsp, (6)

whereγLS→mLS = 31.42, γLA→mLA = −23.53, andγLS→Bsp = 5.18 are the gear ratios fromLS to mLS, from LA to mLA and
from LS to Bsp. The calculatedqLS andqLA angles are also logged during the experiments.

It is common for power amplifiers to exhibit a small bias in commanded current, which in turn causes a small bias in motor
torque. Before beginning system identification, these biases were estimated and compensated for each motor following the
procedure described in Appendix A.

IV. T RANSMISSION IDENTIFICATION

Recall that the differentials in the transmission are realized by a series of cables and pulleys; see Figs. 6 and 7. For system
identification, this is an advantage because we can easily select how many pulleys are actuated by disconnecting cables.For
each pulley combination, the lumped moment of inertia can beeasily obtained by standard calculations. It follows that if the
electrical dynamics of the motor and power amplifiers are neglected, the lumped pulley system can be modeled as a first-order
system

Jlumpedω̇ + µlumpedω = u, (7)

whereJlumped is the lumped moment of inertia,µlumped is the lumped friction coefficient,ω is angular velocity of the motor,
andu is commanded motor torque. By identifyingJlumped andµlumped for three different combinations of pulleys plus motor,
it is possible to determineKT and Jrotor, and to validate the lumped pulley inertia predicted by the CAD model. In the
following, for each side of the robot, the three pulley combinations of Fig. 10 will be used for the leg-angle path and the three
pulley combinations of Fig. 11 will be used for the leg-shapepath.

A. Lumping the Pulley Inertias

In the following it is assumed that the position of theBSpring pulley is fixed and the cables do not stretch. The pulleys in the
transmission are then rigidly connected and rotate with a gear ratio determined by the ratio of the radii of consecutive pulleys.
Moreover, if the position of the leg-shape motor is constant, then the pulleys in the leg-angle path form a one-degree-of-freedom
system as depicted in Fig. 12 and can therefore be lumped; a similar analysis holds when the position of the leg-angle motor
is constant.

3These relations hold under the assumption that the cables donot stretch, which is a very good approximation here becauserelatively light loads are
applied to the robot. In most of the robot’s applications, however, such as walking and running, the transmission systemis heavily loaded and significant
cable stretching is observed. Models described in Section VII-B take into account cable stretch.
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B. Motor Torque Constant and Inertia Correction Factor

The qLA-identification experiments are performed successively onthe qLA-motor in combination with 1, 3 and 5 pulleys as
shown in Fig. 10. TheqLS-identification experiments are performed successively onthe qLSmotor in combination with 1, 3,
and 4 pulleys as shown in Fig. 11. The lumped moments of inertia of each combination, including the contributions of the
cables, can be obtained by using (39) and (40) of Appendix B. The lumped inertia is expressed as

Ji = Jrotor + Jpulley
i + Jcable

i , i = 1, 2, 3 (8)

whereJrotor is inertia of the actuator rotor,i denotes experiment number,Jpulley
i is the lumped pulley moment of inertia of

experimenti from the CAD model andJcable
i is the lumped cable moment of inertia. LettingJrotor,man denote the nominal

rotor inertia supplied by the manufacturer, we introduce a scale factorα via

α =
Jrotor

Jrotor,man
, (9)

which we seek to identify; see (11).
Due to the presence of the amplifier, as shown in Fig. 13, the transfer function which can be experimentally estimated from

commanded motor torque to measured motor angular velocity is a scalar multiple of (7). Hence, moment of inertia from the
experiments is related to moment of inertia of (8) by,

Jexp
i = KT (αJ

rotor,man + Jpulley
i + Jcable

i ), i = 1, 2, 3 (10)

whereJexp
i is lumped moment of inertia estimated on the basis of thei-th experiment.

Three different moment of inertia values, denoted byJexp
1 , Jexp

2 , andJexp
3 respectively, are obtained from each of theqmLS

andqmLA experiments. Arranging the equations related with those inertias in matrix form gives

Ψ = Γ

[
KTα
KT

]
(11)

where

Ψ =




Jexp
1

Jexp
2

Jexp
3



, and Γ =




Jrotor,man Jpulley

1 + Jcable
1

Jrotor,man Jpulley
2 + Jcable

2

Jrotor,man Jpulley
3 + Jcable

3



. Jexp
i results from the experiments,Jrotor,man is from the

manufacturer’s data sheet, andJpulley
i andJcable

i are from the CAD model. Estimated values ofKT andα are then obtained
by least squares fit: [

KTα
KT

]
= (Γ

′

Γ)−1Γ
′

Ψ. (12)
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Fig. 10: Three different combinations forqLA transmission identification.
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C. Experimental Results

System inputs were designed as follows. Starting from a lower frequency of 0.5 Hz, the input frequency was increased
in 17 steps to an upper frequency of 50 Hz. Each frequency was held constant for 10 periods until changing to the next
faster frequency so that the system response would reach steady state. At each frequency increment, the magnitude was also
incremented to keep the measured motor angular velocity from becoming too small. Fig. 14 displays examples of the input
signal and corresponding system response. The Matlab System Identification Toolbox was used to identify the transfer function
(7). TABLE III shows the results obtained from the experiments.

TABLE III: Identified experimental moments of inertia and friction coefficients for the transmission mechanism.

i = 1 i = 2 i = 3

mLSL
J
exp
i (kg ·m2) 8.819e-04 1.099e-03 1.112e-04
µ
exp
i (Nm · s) 5.655e-03 6.518e-03 7.142e-03

mLAL
J
exp
i (kg ·m2) 5.514e-4 7.223e-4 7.436e-4
µ
exp
i (Nm · s) 2.332e-03 4.365e-03 3.858e-03

mLSR
J
exp
i (kg ·m2) 1.104e-3 1.360e-3 1.431e-3
µ
exp
i (Nm · s) 6.545e-03 9.811e-03 9.879e-03

mLAR
J
exp
i (kg ·m2) 5.217e-4 6.900e-4 7.328e-4
µexp(Nm · s) 1.718e-03 4.048e-03 4.703e-03

On the basis of the values in Table III,KT andα were calculated by (12). Their estimated values are listed in TABLE IV,
along with the motor bias. Note that the respective rotor inertia scale factorsα for the left and right sides of the robot are
very close in value. Also, the leg-angle motor torque constants KT are nearly identical for the left and right sides. For the
leg-shape motors, the estimated motor torque constantsKT are different; this is because the motor windings are different on
the left and right sides, as noted in Section III. We also notethat motor biases are very small compared with typical torques
that one may see in walking experiments, which can easily exceed 2Nm for mLA and 8Nm for mLS [23].

TABLE IV: Identified α, motor constantKT and motor biasb.

i = mLSL i = mLAL i = mLSR i = mLAR

αi 0.934 0.741 0.930 0.763
KT,i 0.995 1.332 1.287 1.269

bi (Nm) -0.1076 -0.04652 0.02995 -0.001672

V. THIGH AND SHIN IDENTIFICATION

This section focuses on the parameters associated with the legs. Thigh and shin identification are performed in two steps:
SISO and MIMO. In SISO identification, only one degree of freedom is actuated at a time:qmLSL

, qmLAL
, qmLSR

, or qmLAR
,

and the other ones are mechanically locked. Because one degree of freedom is actuated, a reduced number of parameters
appears in the dynamic model, so the system behavior is simple and easy to identify. Once parameters in the SISO dynamic
model are identified, we proceed to MIMO experiments, where both qmLSL

and qmLAL
are actuated simultaneously or both

qmLSR
andqmLAR

are actuated.
The main purpose of the MIMO experiments is tovalidate the parameters obtained in the SISO experiments. However,

friction coefficients may differ from the values from Section IV because more joints are actuated when doing thigh and shin
identification experiments than in the transmission identification experiments. Recall that Fig. 4 and 9 show how the thethigh
and shin links are actuated by the torque transmitted through the transmission.

mLS
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mLS

Step-down

Step-down

ASpring

ASpring DSpring

exp
1

exp
2

exp
3

Fig. 11: Three different combinations forqLS transmission identification.
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Fig. 13: Transfer function from input (amplifier command) tooutput (motor encoder signal). The motor torque constant and
amplifier are lumped as a single parameterKT . The measured transfer function is1/(KT (Jis + µi)). The Matlab system
identification toolbox is used to estimate the first-order transfer function from the experimental measurements.

In this section, the torso continues to be fixed relative to the world frame and the position of theBSpring pulley is fixed as
well, removing compliance from the picture. The motor torque constants and rotor inertias identified in Section IV are used
in the model.

A. Mathematical Model

Because we assume rigid connections betweenqLA andqmLA, and betweenqLS andqmLS in the leg identification, the appro-
priate set of generalized coordinates for the dynamics of the combined leg and transmission systems isqg = [qmLSL

, qmLAL
, qmLSR

, qmLAR
].

In the following, Q ⊂ I in (2) represents coordinates ofI that are actuated in a given experiment and will be called
the actuated index set. Similarly, letP ⊂ I be the complement ofQ; its elements correspond to the mechanically locked
coordinates ofP , referred to as the locked index set. For example, suppose that only themLSL andmLAL motor angles are
actuated and the other coordinates are mechanically locked, thenQ = {mLSL,mLAL} andP = { mLSR, mLAR}. We also
define the set of coordinatesqQ =

[
qq1

, . . . , qqnQ

]
, whereq1, . . . , qnQ ∈ Q, andnQ is the number of elements in the setQ,

andqP =
[
qp1

, . . . , qpnP

]
, wherep1, . . . , pnP ∈ P , andnP is the number of elements in the setP .

The parameters to be validated from the CAD model are groupedin a vectorθ = [m I rx ry], see Fig. 8a, where
m, I, rx and ry are mass, inertia, center of mass position inx, and iny, respectively (the values from the CAD model are
presented in Appendix C), and letα = [αmLSL

, αmLAL
, αmLSR

, αmLAR
] from Table IV. The total kinetic energy for the

actuated index setQ is
KQ (qg, q̇g θ, α) =KThigh (qg, q̇g, θ, α) |qP=q∗

P

+KShin (qg, q̇g, θ, α) |qP=q∗
P

+Ktrans (qg, q̇g, θ, α) |qP =q∗
P

(13)

where,KThigh, KShin, andKtrans are the kinetic energies of the thigh, the shin and the transmission, respectively, andq∗P
are the locked joint position angles forqP . Symbolic expressions for the transmission model are available online at [8]. The
total potential energy for the actuated index setQ is

VQ (qg, q̇g θ, α) =VThigh (qg, q̇g, θ, α) |qP =q∗
P

+VShin (qg, q̇g, θ, α) |qP=q∗
P

+VTrans (qg, q̇g, θ, α) |qP=q∗
P
.

(14)

The Lagrangian is then
LQ = KQ − VQ. (15)

With the total kinetic energy and potential energy obtainedfrom (13) and (14), the dynamics can be determined through
Lagrange’s equations:

d

dt

∂LQ

∂q̇Q
−

∂LQ

∂qQ
= ΓQ, (16)
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Fig. 14: Example of input and output for system identification. The input is a modified chirp signal, that is, a sinusoid with
varying frequency and magnitude.

whereΓQ is the vector of generalized forces acting on the robot, and can be written as:

ΓQ = Inq×nq
KTQ

uQ − Fµq̇Q, (17)

whereInq×nq
is the identity matrix of sizenq, KTQ

= diag[1/KT,q1
· · · 1/KT,qnp

], uQ = [τq1
+ bq1

· · · τqnp
+ bqnp

], and
Fµ = diag[µq1

· · ·µqnp
], and whereKT,q1···np

are from Table IV. Thebq1
, . . . , bqnp

are the motor biases4. The motor biases
can be obtained from Table IV for the SISO experiment; for theMIMO experiment, however, they are obtained as part of the
optimization process explained in Section V-C. The friction coefficients areµq1

, . . . , µqnp
, and the procedure to obtain them

will also be explained in Section V-C.
The dynamic model in (16) also can be written in the form

D(θ, α, q)q̈ + C(θ, α, q, q̇)q̇ +G(θ, α, q) = ΓQ, (18)

whereD(θ, α, q) is the inertia matrix,C(θ, α, q, q̇) is the Coriolis matrix,G(θ, α, q) is the gravity vector.

B. Experiments

Two types of experiment are performed in this section: SISO and MIMO. Each is performed on one leg at a time. In
principle, with the torso position fixed, the legs are decoupled; in practice, there is some coupling of vibration from one side
to the other because the test stand is not perfectly rigid.

In the SISO experiments, one degree of freedom is actuated and logged (eitherqmLS or qmLA), while the other degree of
freedom is mechanically locked. In the MIMO experiment, both qmLS andqmLA are actuated and recorded. The objective of
the SISO experiments is to validate the parameter vectorθ in (18) obtained from the CAD model, and the motor constantKT

and biasb terms identified in Section IV. The objective of the MIMO experiment is to validate the parameters from the SISO
experiment.

The input signal is a modified chirp signal plus a constant offset, similar to the transmission identification experiments.
However, there is an additional complication: the magnitude and offset must be selected to keep the links within the robot’s
work space. Previously, when the transmission was disconnected from the legs, this was not an issue.

C. Simulation and Validation

With all the parameters in the exp (18) known, the response ofthe system excited by the input used in experiments can be
simulated. The parameterθ in (18) can be obtained from the CAD model, andα, b, andKT was obtained in Section IV. The
friction parametersµ are obtained by minimizing the following cost function

J(µQ) =
√∑

(yexp − ysim(µQ)), (19)

whereyexp is the vector of experimentally measured data,ysim is the vector of simulated data, andµQ is the vector of viscous
friction coefficients given the actuated index setQ. TheµQ values obtained in this manner should be larger than the values
from Section IV, but not greatly different from those values, and are shown in Table V.

In the MIMO simulations, we observed that very small variations in assumed actuator bias, which can be ignored in nominal
use of the robot, can cause large deviations in the system response, especially in the leg-shape variablesqmLS. Therefore,

4Because the legs are relatively light, small torque biases lead to significant errors in the modeled effects of gravity. When the robot is in actual operation
and supporting the heavy torso, the effects of these small torque biases will be negligible.
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Fig. 15: Simtulaion and validation procedures of leg identificaion

for the MIMO simulations, in place of the bias values obtained from the transmission identification, we used values which
minimize the cost function,

J(bQ) =
√∑

(yexp − ysim(bQ)), (20)

whereyexp is the vector of experimentally measured data,ysim is the vector of simulated data, andbQ is the bias vector of
the actuated index setQ. The values obtained forbQ are shown in Table V.

TABLE V: Friction coefficientµ and motor biasb obtained by minimizing the costs in (19) and (20), respectively.

i = mLSL i = mLAL i = mLSR i = mLAR

µi (Nm·s) 9.844e-3 4.316e-3 9.027e-3 4.615e-3
bi (Nm) -8.417e-3 2.597e-2 -1.446e-2 -2.461e-3

Simulations are conducted as follows. First, (18) is set up for a given actuated index setQ; the parameters needed in the
equations for each experiment are shown in Table VI. Then, the system response is simulated for the input sequence used
in the experiment. Finally, the results from simulation arecompared with experiments. The overall simulation and validation
procedures are depicted in Fig. 15.

D. Results

The comparisons between simulated and experimental results are presented in Fig. 16 through Fig. 195. All figures show
qLS andqLA computed fromqmLS andqmLA becauseqLS andqLA are physically more meaningful and easier to understand.
It is emphasized that all parameters are either from the transmission identification experiments or the CAD model, with the
following exceptions: friction is estimated in the SISO experiments from (19) and used in the MIMO experiments; in the
MIMO experiments, motor biases are tuned via (20).

The comparison of the MIMO experimental and simulation results is made further in Fig. 18 and Fig. 19, where the phase
portraits ofqLA versusqLS with respect to each frequency component are plotted, for each side of the robot. We can observe
that simulation results closely match the experimental results. The small differences in the plots may arise from several sources:

1) A simple viscous friction model is used in the simulations. This model does not take into account stick-slip behavior in
the slow velocity region.

2) Electrical wiring is not included in calculating inertial parameters.
3) Motor bias changes slightly for each experimental trial.

5MATLAB .fig-files are available online at [8]

TABLE VI: Parameters in the dynamic models.

Parameters obtained from...
Experiment Transmission Identification Optimization CAD models
qmLS SISO b, KT , α µ MSh JBth JDth JBsh JDsh JmLAsd JmLA JCsh

JTh JSh mrx,Sh mry,Sh mrx,Csh mry,Csh mrx,Th mry,Th

qmLA SISO b, KT , α µ MSh JAth JDth JAsh JDsh JAsp JDsp JmLSsd JmLS JCsh JCsp

JTh JSh mrx,Sh mry,Sh mrx,Csh mry,Csh mrx,Th mry,Th mrx,Csp mry,Csp

MIMO KT , α b, µ(from SISO) MSh JCsh JTh JBsh JBth JSh JDth JDsh JAsh JAth JDsp JAsp

JCsp JmLS JmLSsd JSh mrx,Csh mry,Csh mrx,Csp mry,Csp mrx,Th mry,Th
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Fig. 16: SISO simulation (solid red line) and experimental (dotted blue line) data in degrees.

VI. TORSOIDENTIFICATION

Due to the torso being much heavier than the legs, its mass andinertia strongly affect the dynamics of the robot. Accurate
identification of the torso’s inertial parameter is therefore very important. The identification of the torso’s inertial properties
through experimentation is more difficult than those of the transmission and legs for the following reasons. First, the experimental
testbed does not allow6 us to fix the legs and move only the torso. Second, the workspace of the torso is limited7 to +40◦ ∼
−30◦.

Therefore, instead of dynamic identification of the torso, static balancing experiments are executed for validatinga priori
CAD model estimates. First, we set the robot in a posture where the right leg is extended more than the left leg. MABEL
is then balanced by hand8 on the right leg9. Once the robot is in balanced posture, the joint position data is recorded. Many
different postures are balanced and logged. With the loggeddata, we calculate the center of mass position of the overallrobot,
and verify that the calculated center of mass is located overthe supporting toe.

In a second set of experiments, the position of the hip joint is fixed, with the legs hanging below the robot and above the
floor. The torso is balanced in the upright position. We then calculate the center of mass position of the model without the
boom, and check that the center of mass is aligned over the hipjoint.

We tried 10 different postures for the first experiment and 7 different postures for the second experiment. Fig. 20a displays
the horizontal distance between the center of mass and the supporting toe for the first experiment, and Fig. 20b shows the
horizontal distance between the center of mass and the hip for the second experiment. We observe that the maximum error is
6 mm, which is negligible considering that we did the experiments with manual balancing.

6Attempts at doing so resulted in movements of the heavy torso(approximately 40 kg) being translated to the legs.
7The is due to a rotation limiter device installed to prevent the torso from hitting the floor when the robot falls. A relatedvideo is available on YouTube.
8The balance of the robot is maintained with very minimal fingertip pressure.
9The wheel at the toe is removed for better accuracy of the experiment. Due to compliance of the wheel and its rounded shape,the contact point would

vary for each posture.
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Fig. 17: MIMO simulation (solid red line) and experimental (dotted blue line) data in degrees.

VII. C OMPLIANCE

MABEL uses springs connected in series betweenqmLS andqLS to provide energy storage and shock absorption. The stiffness
of these springs is estimated though static experiments using the calculated spring torques and measured spring deflections.
The joint torques used in these experiments are more representative of the torques used in walking [23] and are approximately
8 times higher than in the dynamic experiments of Section V. During the experiments, it is noted that the cables in the
differentials stretch. This compliance is also modeled.

A. Spring Stiffness

The series compliance in the drivetrain is now identified by static, constant torque experiments, performed by balancing the
robot on one leg at a time. The setup is illustrated in Fig. 21.In these experiments, the torso is no longer locked in place
relative to the world frame (it is free). The actuators on oneside of the robot are disabled; the leg on that side is folded and
tied to the torso. On the other side, a PD-controller is used to maintain the leg angle at180◦. A second PD-controller is used
to set the nominal leg shape, which is varied from10◦ to 30◦. An experimenter balances the robot in place with the toe resting
on a scale placed on the floor; the experimenter adjusts the angle of the robot so that it is exactly balanced on the toe, as in
Section VI.

In this position, the scale is measuring the combined weightof the robot and the boom. At steady state, the torque at the
CSpring pulley is exactly balanced by sum of the torques at theASpring andBSpring pulleys, by the design of the differential.
The torque at theCSpring (denoted byτgravity in Fig. 21) is the weight of the robot transmitted through thethigh and shin
differentials, and its magnitude is given by:

|τgravity | =

∣∣∣∣
1

2
Wrobotsin(qLS)

∣∣∣∣ , (21)

whereWrobot is the weight of the robot measured by the scale at the bottom of the foot. The absolute value is used because
spring stiffness is positive. The torque atASpring (denoted byτAsp in Fig. 21) is from theqmLS motor reflected through the
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simulations (solid red line) and experiments (dotted blue line). All data are
measured in radians.
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Fig. 20: Calculated center of mass horizontal distance fromthe supporting toe (a) and the hip (b) from the identified leg inertial
parameters and the torso inertial parameters from the CAD models. All center of mass horizontal distances stay within 6mm.

stepdown pulley, and the torque at theBSpring pulley (denoted byτBsp in Fig. 21) is due to the deflection of the spring and
is given by:

τBsp = KBqBsp, (22)

whereKB is the spring stiffness andqBsp is the spring deflection measured by a magnetic encoder installed in theBsp pulley.
BecauseτGravity andτBsp are related via the differential mechanism, these torques are related by:

|τGravity| = |2.59061τBsp| . (23)

Combining (21), (22), and (23), the spring stiffness is obtained as follows

KB =

∣∣∣∣
1

5.18043

Wrobotsin(qLS)

qBsp

∣∣∣∣ . (24)

We emphasize that the estimate in (24) does not depend on the estimated leg-shape motor torque. The design of the experiment
is completed by varyingqLS over a range of values, here taken to be from10◦ to 30◦.

The above experiment was performed on each leg. Fig. 22 showsthe results of these experiments. It is observed that the
spring behavior is nearly linear, and that the spring constants of the left and right springs are consistent.

B. Cable Stretch

We have observed in walking experiments reported elsewhere[23] that the cables used in the differentials stretch a noticeable
amount under the application of heavy loads10. This compliance breaks the rigid relations in (5) and (6). Consequently,qLA
andqmLA are independent degrees of freedom, as areqLS, qmLS, andqBsp.

We take into account the stretching of the cables with a simple spring model. First, the rigid relations are expressed in the
form of a constraint

λ (q) =

[
qmLA + γLA→mLAqLA

qmLS − γLS→mLSqLS − γLS→BspqBsp

]
, (25)

whereq is the vector of generalized coordinates for the robot dynamics andλ (q) ≡ 0 corresponds to zero cable stretch. Because
the cable stretch torques act on these constraints, the corresponding input matrix for cable stretch forcesBcable follows from
the principle of virtual work:

Bcable =
∂λ

∂q

′

. (26)

We assume here that the cable stretch torques can be modeled as a linear spring with linear damping. Therefore, for each of
the four actuators, the spring force from the cable stretch is modeled as

τcable (q, q̇) = KCλ (q) +KdCλ (q̇) , (27)

10For the experiments reported in Sections V, the amount of cable stretch was negligible.
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Fig. 21: Experimental setup for measuring spring stiffness. CSpring is locked in place by blocking the toe of the robot.
Therefore, leg-shape motor torque is transmitted to the spring, resulting in spring defelction.
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+
5.377)

whereKC is 2× 2 a diagonal matrix spring coefficients, andKdC is 2× 2 diagonal matrix with damping coefficients of the
cable stretch.

The spring and damping coefficients of the cables will be obtained in Section VIII-C.

VIII. O VERALL MODEL EVALUATION VIA TWO-LEGGEDHOPPING

This section describes a hopping experiment used to fine tuneand subsequently validate the overall dynamic model of
MABEL. First, a dynamic model appropriate for two-legged hopping is presented. The model consists of the integration ofthe
models for the transmission, the legs, the torso, and the cable stretch from Section IV, Section V, Section VI and Section
VII-B, respectively, with a model to compute ground reaction forces [18], [2]. Next, a simple controller to induce two-legged
hopping is summarized, with details given in Appendix D. With the simple controller, several hopping steps were realized, but
a stable, steady-state hopping gait was not achieved. This data was used to determine the remaining parameters in the overall
dynamic model, corresponding to the damper which implements the hard stop in the unilateral spring, the coefficients of the
cable stretch model, and the ground contact model. Using this final model, the hopping controller was refined with event-based
correction terms. When applied to the robot, this controller yielded successful hopping, which was terminated after 92hops.
The results of the hopping experiment are used to validate the model through comparison with the simulation model. Excellent
agreement is attained.

A. Dynamic Model

The model for the dynamic hopping is derived with the method of Lagrange. When deriving the equations of motion, it
is more convenient to consider the spring torques, the cablestretch torques, the ground reaction forces and the joint friction
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torques as external inputs to the model. The Lagrangian is computed as summarized in [23], except that, because of the
additional cable stretch dynamics, 4 additional coordinates are needed to parametrize the robot’s linkage and transmission.

The generalized coordinates are taken asqh := (qLLA; q
L
mLA; q

L
LS; q

L
mLS; q

L
Bsp; q

R
LA; q

R
mLA; q

R
LS; q

R
mLS; q

R
Bsp; qTor; p

h
hip; p

v
hip),

where as in Figure 2, and Figure 4,qTor is the torso angle, andqLA, qmLA, qLS, andqmLS are the leg angle, leg-angle motor
position, the leg shape, the leg-shape motor position respectively, andphhip andpvhip are the horizontal and vertical positions
of the hip in the sagittal plane, respectively. The model is then expressed in standard form as

Dh (qh) q̈h + Ch (qh, q̇h) q̇h +Gh (qh) = Γh (28)

where,Γh is the vector of generalized forces and torques acting on therobot, which is given by,

Γh = Bhu+Bfricτfric (qh, q̇h) +BspτBsp (qh, q̇h)+

∂f

∂qh

′

F +Bcableτcable (qh, q̇h) .
(29)

Here,f is the position vector of the leg end,F is the ground reaction force, the matricesBh, Bfric, BBsp, andBcable are
derived from the principle of virtual work and define how the actuator torquesτ , the joint friction forcesτfric, the spring
torquesτBsp, and the cable stretch torquesτcable enter the model, respectively.

The ground reaction forces at the leg ends are based on the compliant ground model in [18], [2], using the modifications
proposed in [20]. The model for the unilateral spring is augmented with terms to represent the hard stop, yielding
τBsp : 





= −KBqBsp −KdB q̇Bsp (qBsp > 0)

= −KBqBsp −Kd1q
3
Bsp −Kvd1q̇Bsp (qBsp ≤ 0, q̇Bsp ≥ 0)

= −KBqBsp −Kd1q
3
Bsp −Kvd1q̇Bsp

−Kvd2

√
|q̇Bsp|sign(q̇Bsp) (qBsp ≤ 0, q̇Bsp < 0)

(30)

whereKB corresponds to the experimental values in Fig. 22, and wherethe remaining parametersKdB,Kd1,Kvd1, andKvd2

will be identified from hopping data in Section VIII-C. When the spring is deflected,qBsp > 0, this model is a linear spring
damper. WhenqBsp ≤ 0, the pulley is against the hard stop, a very stiff damper. This model captures the unilateral nature of
MABEL’s built-in compliance.

B. Hopping Controller

A simple, heuristic controller is outlined for hopping. It is emphasized that we are not interested in hopping per se. A
hopping gait is being used as a means of exciting all the dynamic modes that will be present when running on flat ground or
walking on uneven ground. The details of the controller are provided in Appendix D.

The controller consists of 5 different phases as depicted inFig. 23:

1) Phase I (Flight Phase): MABEL is in the air, and no ground contact occurs. The variablesqLAL
, qmLSL

, qLAR
, andqmLSR

are commanded to constant values via a PD controller.
2) Phase II (Touchdown Phase): MABEL lands on the ground11. The leg-angle motors are used to regulate the torso angle

and the angle between left and right legs to constant valueshd
Tor and δLA, respectively. The leg-shape motor positions

qmLSL
andqmLSR

are commanded to be constant so that the springs absorb the impact energy.
3) Phase III (Kickoff Phase): When the horizontal componentof the center of mass velocity approaches zero, the legs are

extend byδ−LSL
for the left andδ−LSR

for the right in order to propel the robot off the ground. FromPhase III, three
possible transitions can occur because which leg comes off the ground first cannot be predicted. According to which leg
comes off the ground first, controller chooses PhaseIVa, IVb or ,V as the next phase.

4) PhaseIVa (Left-liftoff Phase): Only the left leg has lifted off the ground, and the right leg is still in contact with the
ground. The left leg starts to retract byδ+LSL

to provide clearance.
5) PhaseIVb (Right-liftoff Phase): Only the right leg has lifted off theground, and the left leg is still in contact with the

ground. The right leg starts to retract byδ+LSR
to provide clearance.

6) Phase V (Retract Phase): Both legs have lifted off the ground, and are retracted for 50 msec to provide clearance. After
50 msec, the controller passes to the flight phase.

C. Identification of Parameters for Cable Stretch, Hard Stop(Damper), and the Ground Model

The controller outlined in Section VIII-B was tuned on an approximate simulation model that assumed the cables are rigid.
The controller was coded in C++ and implemented with a 1 ms sample time. When applied on MABEL, steady-state (stable)
hopping was not achieved, with five hops being typical beforethe robot fell. This experimental result was used to tune the

11Landing is declared when both legs touch the ground.
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SI→II

SII→III
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SIII→VSIVa→V

SIVb→V

SV→I

Fig. 23: The controller phases and the transitions. From Phase III, three possible transitions can occur because which leg comes
off ground first cannot be predicted. According to which leg comes off the ground, controller selects PhaseIVa,IVb or; V as
the next phase

TABLE VII: Parameters obtained from dynamic hopping experiment.

Spring Model

KdB 1.5 Kvd1 1000
Kd1 100 Kvd2 50

Cable Stretch Model

i = mLSL i = mLAL i = mLSR i = mLAR

KC,i 2.9565 3.5000 2.9565 3.8094
KdC,i 0.0402 0.0889 0.0804 0.3556

Ground Model

λa
v 3.0e6 σh0 260.0

λb
v 4.5e6 σh1 2.25

n 1.5 αh0 1.71
k 4.38e7 αh2 0.54

αh3 0.9

parameters in the hard stop model, the cable stretch model, and the compliant ground contact model, using a combination of
hand adjustment and nonlinear least squares fitting. The resulting parameters are given in TABLE VII. Figures 24, 25, and
26 compare the result of the experiment (dotted blue line) and the simulation model (solid red line) using the parametersin
the TABLE VII. Excellent agreement was obtained.

D. Hopping Experiments for Validation

Using the parameters of TABLE VII, the stability of the nominal hopping controller was evaluated on the simulation model
using a Poincaré map, and was found to be unstable. Event-based updates to the torso angle were added to achieve stability [29,
Ch. 04]; see Appendix D. The controller was then applied to MABEL, resulting in 92 hops before the test was deliberately
terminated. Figure 27, 28, and 29 compare typical experimental results against the simulation results for the 31st and 32nd of
the 92 hops. Figure 27 depicts joint position angle. The experimental and simulation data match well; it can be observed that
the period of the experimental data is longer than that of thesimulation results by approximately 30 ms. Figure 27 depicts
joint torques. The simulation accurately predicts joint torques observed in the experiment. Figure 27 depicts cable stretch in
the motor coordinates. A significant amount of cable stretchis observed, with the model capturing it quite well.

IX. CONCLUSIONS

System identification of a 5-link bipedal robot with a compliant transmission has been investigated. For each side of the
robot, the transmission is composed of three cable differentials that connect two motors to the hip and knee joints in such a
way that one motor controls the angle of the virtual leg consisting of the line connecting the hip to the toe, and the second
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Fig. 24: Identification data from the intimal hopping experiment. Joint position (in degrees) and hip position (in m): simulation
(solid red line) and experiment (dotted blue line).
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Fig. 25: Identification data from the intimal hopping experiment. Joint torque (in Nm): simulation (solid red line) and experiment
(dotted blue line).
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Fig. 26: Identification data from the intimal hopping experiment. Cable stretch (in degrees): simulation (solid red line) and
experiment (dotted blue line).



DRAFT COPY. LAST EDITED BY HWP MARCH 16, 2010 25

21 21.2 21.4 21.6 21.8 22 22.2
140

145

150

155

160

21 21.2 21.4 21.6 21.8 22 22.2
180

185

190

195

21 21.2 21.4 21.6 21.8 22 22.2
0

10

20

30

q L
A

L
q L

A
R

q L
S
L

21 21.2 21.4 21.6 21.8 22 22.2
0

10

20

30

40

21 21.2 21.4 21.6 21.8 22 22.2
−10

0

10

20

30

21 21.2 21.4 21.6 21.8 22 22.2
−20

0

20

40

60

q L
S
R

q B
sp

L
q B

sp
R

21 21.2 21.4 21.6 21.8 22 22.2
−5

0

5

10

15

21 21.2 21.4 21.6 21.8 22 22.2
−5.2

−5

−4.8

−4.6

21 21.2 21.4 21.6 21.8 22 22.2
0.8

0.9

1

1.1

q T
o
r

p
h h
ip

p
v h
ip

time (Sec)

Fig. 27: Validation data from the second hopping experiment. Joint position (in degrees) and hip position (in m): simulation
(solid red line) and experiment (dotted blue line).
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Fig. 28: Validation data from the second hopping experiment. Joint Torque (in Nm): simulation (solid red line) and experiment
(dotted blue line).
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DRAFT COPY. LAST EDITED BY HWP MARCH 16, 2010 27

motor is connected - in series with a spring - in order to control the length of the virtual leg. The springs serve both to isolate
the reflected rotor inertia of the leg-shape motors from the impact forces at leg touchdown and to subsequently store energy
when the support leg must decelerate the downward motion of the robot’s center of mass.

The robot is equipped with fourteen encoders to measure motor, pulley and joint angles, as well as contact switches at
the ends of the legs. Neither force sensors, torque sensors,nor accelerometers are available. To get around these limitations,
the identification procedure took full advantage of the modular nature of the robot. By selectively disconnecting cables in the
transmission, various elements could be isolated for study. The process began by identifying the actuator parameters (rotor
inertia and torque constants) and the viscous friction in the transmission, as well as validating the pulley inertia estimates
provided by the CAD model, all with the cables removed that connect the legs of the robot to the transmission. Next, the legs
were included to validate the actuation-transmission model in conjunction with the center of mass and moments of inertias of
the links comprising the thigh and shin. Each link’s total mass, center of mass, and moment of inertia was estimated from the
CAD model, so the primary objective of this step was to validate these values along with the identified actuator parameters.
For these experiments, the compliance was removed from the system by blocking the appropriate pulley; the torso was rigidly
fixed in an upright position as well. Following this, the mechanical parameters of the robot’s torso were partially validated
through static balancing experiments.

The compliance was identified last. MABEL has two kinds of compliance. One is the unilateral, fiberglass spring designed
into the transmission. The other source of compliance is unplanned and arises from stretching of the cables between the pulleys.
The compliance of the unilateral spring was obtained through static loading experiments. The compliance from cable stretch
was estimated from a set of hopping experiments. From the same data set, the parameters for a compliant ground model were
roughly estimated.

A complete dynamic model of the robot was constructed using the parameters identified in the above process. Using this
model, a hopping controller was designed and simulated. When implemented on the robot, the controller yielded stable, steady
hopping. After 92 hops, the experiment was terminated. A comparison of the experimental data and the model showed very
good agreement. We are confident that this dynamic model willallow us to design and successfully implement controllers for
running on a smooth floor and robust walking on an uneven floor.
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APPENDIX A
MOTOR BIAS

The motor amplifier bias is estimated by the following procedure. First, the motor pulley is isolated from all other pulleys by
simply disconnecting the cable between the motor and the rest of the transmission, in order to minimize the effect of friction
from the rest of the pulleys. The motor is actuated with an unbiased sinusoidal torque command. An unknown amplifier bias
will causes the motor position to drift slowly as shown in Fig. 30. Differentiating the response of the motor shown in Fig.30
gives the angular velocity, which is shown in Fig. 31. A first order ARX (Autoregressive model with exogenous inputs [17])
model is used to identify the system, because the transfer function between the input and the angular velocity can be modeled
as a simple first order system (as explained in Section II). Toidentify the bias, a constant sequence of1’s is augmented to the
original input signal as shown in Fig. 32. Thus, the input sequence used in estimating the bias is defined by,

u =

[
u1,1, . . . , u1,k

u2,1, . . . , u2,k

]
=

[
τ

1, . . . , 1

]
, (31)

where,τ is the original input sequence.
The first order ARX model with two inputs is given by,

yk = a1yk−1 + b1u1,k−1 + b2u2,k−1. (32)

Arranging (32) gives,

yk = a1yk−1 + b1(u1,k−1 + b2/b1), (33)

where,b2/b1 is the actuator bias.
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APPENDIX B
INERTIA LUMPING

Consider thekth pulley in a serial connection of the pulleys shown in Fig. 33.The input and output radius of thekth pulley
are denoted byrk,i and rk,o, respectively, as shown in Fig. 33. While the input and output radius of a standard pulley are
identical, the input and output radius of a step-down pulleyare different.

The moment of inertia of thekth pulley seen from thek − 1th pulley is obtained by

Jk−1
k =

r2k−1,o

r2k,i
Jk, (34)

whereJk is thekth pulley’s moment of inertia. Thekth cable inertia seen from thek − 1th cable can also be derived:

Jk−1
cable,k =

r2k−1,o

r2k,i
Jcable,k (35)

Jcable,k = r2k,iρklk, (36)

whereρk is the density of thekth cable, andlk is the length of thekth cable. By applying (34) and (35) consecutively from
kth to 0th, thekth pulley and cable inertia as seen from the0th pulley (the motor pulley) can be obtained as follows:

J0
k =

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
k , (37)

J0
cable,k =

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
cable,k. (38)

The lumped moment of inertia of the pulley combination is obtained by summing up all of the pulley and cable moments
of inertia as viewed from the0th pulley:

Jpulley =

N∑

k=1

J0
k =

N∑

k=1

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
k (39)

Jcable =

N−1∑

k=1

J0
cable,k =

N−1∑

k=1

r20,o
r21,i

. . .
r2k−2,o

r2k−1,i

r2k−1,o

r2k,i
Jk
cable,k, (40)

whereN is the total number of the pulleys. This lumped moment of inertia of the pulley combination is substituted into (7),
which gives the transfer function from the motor torque to the motor angle.

APPENDIX C
ROBOT MODEL DATA

Tables VIII and IX summarize the robot parameter identified in Section IV, V and VI. The data for the compliance is given
in Table VII of Section VII-B.

TABLE VIII: Mass, Center of Mass, and Moment of inertia of thelinks from the CAD models

Link Mass Center of Mass Moment of inertia
(kg) [rx, ry] (m) (kg ·m2)

Spring (Csp) 1.8987 [0.0009406, 0.1181] 0.04377
Torso (T) 40.8953 [0.01229, 0.18337] 2.3727
Cshin (Csh) 1.6987 [0.0004345, 0.08684] 0.03223
Thigh (Th) 3.2818 [0.0003110, 0.1978] 0.1986
Shin (Sh) 1.5007 [0.0009671, 0.1570] 0.08813
Boom 7.2575 [0.0, 1.48494153] 20.4951
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TABLE IX: Moment of inertia of the transmission pulleys

Pulley Moment of inertia
(kg ·m2)

JmLS 9.0144e-004
JmLA 4.4928e-004
JAth 1.6680e-003
JBth 2.2181e-003
JDth 1.0826e-003
JAsh 1.6974e-003
JBsh 2.2181e-003
JDsh 2.0542e-003
JAsp 2.3464e-003
JBsp 1.8686e-003
JDsp 1.9313e-003
JmLSsd 2.7117e-003
JmLAsd 1.0950e-003

APPENDIX D
DETAILS OF THE HOPPINGCONTROLLER

This section provides the details of the hopping controllerused in Section VIII-B. For each phase X of Figure 23, a simple
PD control scheme is used for tracking of the controlled variablesh to a reference trajectoryhref

X :

u = Kp

(
href
X − h

)
+Kd

(
−ḣ

)
, (41)

where the controlled variables are

h :=




qLAL

qmLSL

qLAR

qmLSR


 , (42)

Kp is a4× 4 diagonal matrix of proportional gains,Kd is a4× 4 diagonal matrix of derivative gains, andhref
X is the desired

trajectory calculated from (45)-(50) for phaseX of Figure 23. In the detailed simulation model,h in (41) is quantized to the
same level as the encoders on the robot, andḣ is obtained by numerical differentiation. The control inputs are updated with a
sampling time of 1ms, which is the same as the sampling time used on the robot. Desired trajectories and transition conditions
presented in (45)-(50) are calculated and checked for corresponding phase, and are inserted into (41). The following parameters
are used in the trajectory calculation.

Ud := {δLA, h
d
LSL

, hd
LSR

, δ−LSL
, δ−LSR

, δ+LSL
, δ+LSR

, hd
Tor} (43)

whereδLA, hd
LSL

, hd
LSR

, δ−LSL
, δ−LSR

, δ+LSL
, δ+LSR

, andhd
Tor ∈ R

1, and

xd =




xd
1

xd
2

xd
3

xd
4


 =




π − 0.5δLA − hd
Tor

γLS→mLSh
d
LSL

π + 0.5δLA − hd
Tor

γLS→mLSh
d
LSR


 . (44)

Phase I :






href
I =




xd
1

xd
2

xd
3

xd
4




SI→II : {ptoeL = 0, ptoeR = 0}

(45)

Phase II :






href
II =




qTor + qLAR
− hd

Tor − δLA

xd
2

qTor + qLAR
− hd

Tor

xd
4




SII→III : {|φ̇v| < 0.01}

(46)
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Phase III :






href
III =




qTor + qLAR
− hd

Tor − δLA

xd
2 − γLS→mLSδ

−
LSL

qTor + qLAR
− hd

Tor

xd
4 − γLS→mLSδ

−
LSR




SIII→IVa
: {ptoeL > 0, ptoeR ≤ 0}

SIII→IVb
: {ptoeL ≤ 0, ptoeR > 0}

SIII→V : {ptoeL > 0, ptoeR > 0}

(47)

Phase IVa :





href
IVa =




H1h
ref
III (tIII→IV)

xd
2 + γLS→mLSδ

+
LSL

H3h
ref
III (tIII→IV)

xd
4 − γLS→mLSδ

−
LSR




SIVa→V : {ptoeR > 0}

, (48)

whereH1 = [1 0 0 0], H3 = [0 0 1 0], andtIII→IV is the time when the transition fromIII to IV happens.

Phase IVb :






href
IVb =




H1h
ref
III (tIII→IV)

xd
2 − γLS→mLSδ

−
LSL

H3h
ref
III (tIII→IV)

xd
4 + γLS→mLSδ

+
LSR




SIVb→V : {ptoeL > 0}

(49)

Phase V :





href
V =




H1h
ref
III (tIII→IV)

xd
2 + γLS→mLSδ

+
LSL

H3h
ref
III (tIII→IV)

xd
4 + γLS→mLSδ

+
LSR




SV→I : {t = tIV→V + 0.05}

, (50)

wheretIV→V is the time when the transition fromIV to V happens.
In addition to the control structure explained above, we have the following event based update of the desired torso angle

for better stability:

φ∗
h[k] = φh (tI→II)

δφh[k] = φ∗
h[k]− φ∗

h[k − 1]

δhd
Tor[k] = KTor(δφh[k]− δφd

h)

hd
Tor[k] = hd0

Tor + δhd
Tor[k],

(51)

wherek is the hopping count,tI→II is the time when the transition from I to II occurs, andKTor is the gain. Basically, this
controller updateshd

Tor based on the distance traveled horizontally during one hop.If MABEL travels less thanδφd
h during

the previous hop, the torso is leaned back from the center valuehd0
Tor, and vice versa. Adding new parameters for the update

law to the parameter set, we define a new parameter set:

Ũd := {δLA, h
d
LSL

, hd
LSR

, δ−LSL
, δ−LSR

, δ+LSL
, δ+LSR

, hd0
Tor, δφ

d
h} (52)

With the control structure explained in this section, simulation study shows that the following parameter set yields steady
state dynamic hopping motion:

δLA = 30◦, hd
LSL

= 12◦, hd
LSR

= 12◦,

δ−LSL
= 5◦, δ−LSR

= 13◦, δ+LSL
= 5◦,

δ+LSR
= 5◦, hd0

Tor = 8◦, φd
h = −6.9◦

(53)
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