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Abstract— This paper summarizes recent research of
the author, his colleagues, and graduate student on the
control of a class of underactuated biped robots. Our
goal is to develop a coherent mathematical framework
for the rigorous analysis and synthesis of asymptot-
ically stable walking motions. The presentation at-
tempts to achieve a balance between being precise
enough to be believable, and intuitive enough to be
understood. No attempt is made to review the gen-
eral literature. The reader is referred elsewhere for a
complete bibliography and proofs. Two movies are in-
cluded that illustrate the results of the paper applied
to a five-link, underactuated, planar biped.

I. INTRODUCTION

Control is an integral part of any biped, whether bi-
ological or mechanical. With the exception of certain
passive robots that can walk un-assisted (i.e., with-
out any control) down an inclined plane, bipeds are
dynamically unstable. Said another way, without a
properly functioning control system, a biped stumbles
or falls. A primary goal of locomotion research is the
discovery of the fundamental control principles that
underlie bipedal locomotion. Biologists have made
significant progress in the difficult task of constructing
simplified mathematical models of the human mus-
culoskeletal and neuro systems, and have used them
to explain many features of normal and pathologi-
cal gaits. Engineers have designed and constructed
bipedal machines capable of an amazing array of walk-
ing, running and jumping patterns. With few excep-
tions, the primary methods for determining whether a
control law yields a stable walking or running motion
are either to simulate a detailed mathematical model
or to build the robot and implement the control law.
Until just recently, for the important cases of underac-
tuated biped models with torsos, none of the control
designs proposed in the literature had been analyti-
cally proven to yield asymptotically stable motions.

A central objective of the author’s research on
robotic, bipedal locomotion is the development of a
coherent mathematical framework in which asymptot-
ically stabilizing feedback controllers for biped robots
may be rigorously analyzed and synthesized. More
precisely, for the closed-loop system consisting of a
biped robot, its environment, and a given feedback

controller; the goal is to be able to determine if pe-
riodic orbits exist, and if they exist, whether they
are asymptotically stable. Once asymptotic stabil-
ity is settled, the goal is to achieve some modest
performance objectives, such as minimal peak actu-
ator torques or walking with a given average speed.
This paper will summarize the theoretical progress
achieved to date. Because it was impossible to do jus-
tice to the literature without significantly lengthening
this already-too-long paper, no external references are
included. The reader is referred instead to the well-
known web site [1] for an introduction to the biped
research community and to the bibliographies in the
author’s papers [2], [3], [4] and [5] for many references
on the control of bipedal robots.

Section II describes the class of robots that can
be analyzed. The models are potentially high di-
mensional and hybrid (contain both continuous dy-
namics and a discrete impact map). In addition, it
will be assumed that there is no actuation at the
end of the stance leg. Thus the system is underac-
tuated during walking, as opposed to fully actuated
(a control at each joint and the contact point with
the ground). A steady walking cycle is a non-trivial
periodic motion. This means that standard stability
tools for static equilibria do not apply. Instead, one
must use tools appropriate for the study of periodic
orbits, such as Poincaré return maps. It is of course
well known how to use numerical methods to compute
a Poincaré return map and to find fixed points of it.
The drawback in such a direct approach, which for
bipeds involves the numerical computation of a high-
dimensional, nonlinear map, is that it does not yield
much insight for feedback design and synthesis. In
some sense, the goal of the remainder of the paper is
to structure the feedback design process in such a way
that Poincaré analysis can be incorporated into feed-
back synthesis. Section III opens with a somewhat
philosophical discussion of a few key elements in con-
trol design that may help to improve the analytical
tractability of the resulting closed-loop system. The
section then summarizes a design methodology that
is based upon using feedback to reduce the number of



degrees of freedom of the robot through the approx-
imate realization of holonomic constraints. Section
IV then shows how the stability analysis of the result-
ing closed-loop system can be rigorously completed by
the numerical computation of a one-dimensional map.
Using this result, one is able to check with necessary
and sufficient conditions whether or not the proposed
feedback induces an asymptotically stable, periodic
orbit. The stability analysis is performed, however,
after the feedback is designed. The goal of Section
V is to bring the stability criterion directly into the
feedback synthesis process. It is shown how asymptot-
ically stable walking motions can be designed on the
basis of a one DOF invariant subsystem. Parametric
optimization is used to achieve approximate optimal-
ity with respect to energy consumption, for example,
while guaranteeing stability and meeting natural kine-
matic and dynamic constraints.

II. HyBRID ROBOT MODEL

The robot is assumed to be planar and consist of N-
links connected in such a way that there are at least a
torso and two identical legs, with the legs connected
at a common point called the hips; furthermore, all
links have mass, are rigid, are connected in revolute
joints, and all kinematic chains formed by the connec-
tions of links are assumed to be open. Figure 1 depicts
an example of such a robot. All walking cycles will
be assumed to take place in the sagittal plane and
cousist of successive phases of single support (mean-
ing the stance leg is touching the walking surface and
the swing leg is not) and double support (the swing
leg and the stance leg are both in contact with the
walking surface). During the single support phase, it
is assumed that the stance leg acts as a pivot. It is
further supposed that the walking gaits of interest are
such that, in steady state, successive phases of single
support are symmetric with respect to the two legs,
involve motion from left to right, and the swing leg
is posed in front of the stance leg (these assumptions
rule out certain pathological gaits). Finally, actuation
is applied at each joint, but not between the stance leg
and ground. The robot is thus underactuated during
the single support phase. It is worth noting that even
if there were actuation between the stance leg end and
ground, it would be worthwhile to first design a con-
troller under the assumption of no “ankle” torque and
then add an outer control loop to exploit the torque
available at the ankle.

The two phases of the walking cycle naturally lead
to a mathematical model of the biped consisting of
two parts: the differential equations describing the dy-
namics during the single support phase, and a model
of the contact event. A standard, rigid (inelastic)
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Fig. 1. Schematic illustrating the class of N-link robot models
considered here. No actuation is applied between the stance leg
and the ground, while all other joints are actuated.

contact model is assumed, which collapses the dou-
ble support phase to an instant in time, yielding a
discontinuity in the velocity component of the state,
with the position remaining continuous. The biped
model is thus hybrid in nature, consisting of a con-
tinuous dynamics and a re-initialization rule at the
contact event.

Swing phase model: With N-links, the dynamic
model of the robot during the swing phase has N-
DOF. Let g be the set of coordinates describing the
configuration of the robot with respect to a world ref-
erence frame W, whose origin is centered at the end
of the stance leg. Since only symmetric gaits are of
interest, the same model can be used irrespective of
which leg is the stance leg if the coordinates are rela-
beled after each phase of double support. Using the
method of Lagrange, the model is written in the form

D(q)§+ C(q,4)q + G(q) = Bu. (1)

Torques u;, i = 1 to (N—1), are applied between each
connection of two links, but not between the stance
leg and ground. The model is written in state space
form by
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where = := (¢/,¢')’. The state space of the model is

taken as T'Q, where Q is a connected, open subset of
RN corresponding to physically reasonable configura-
tions of the robot.

Impact model: An impact occurs when the swing
leg touches the walking surface. Let (p%, p3) denote
the horizontal and vertical coordinates of the end of
the stance leg. Define the walking surface as

S :={(q,4) € TQ | p5 =0, ph > 0}, (3)



also called the ground. The impact between the swing
leg and the ground is modeled as an (inelastic) contact
between two rigid bodies. In addition to modeling the
change in state of the robot, the impact model also
accounts for the relabeling of the robot’s coordinates
that occurs after each phase of double support. The
impact model under standard hypotheses results in a
smooth map A : S — TQ,

2t = A@7), (4)

where 27 := (q¢7,¢T) (resp. 27 := (¢7,¢7)) is the
state value just after (resp. just before) impact.
Nonlinear system with impulse effects: The
overall biped robot model is expressed as a nonlinear
system with impulse effects

S = f@rg@u g8
ok { xT = Az7) x~ €S8, (5)
where, 7 (t) := lim, ~ x(7). Solutions are taken to

be right continuous and must have finite left and right
limits at each impact event (see [2] for details).

In simple words, a trajectory of the model is speci-
fied by the swing phase model (2) until its state “im-
pacts” the hypersurface S. At this point, the impulse
model A compresses the impact event into an instan-
taneous moment of time, resulting in a discontinuity
in the state trajectory. The result of the impact model
is a new initial condition from which the swing phase
model evolves until the next impact with S. In or-
der to avoid the state having to take on two values
at the “impact time”, the impact event is, roughly
speaking, described in terms of the values of the state
“just prior to impact” at time “t~7, and “just after
impact” at time “¢T”. These values are represented
by the left and right limits, = and x™, respectively.
A half-step of the robot is defined to be a solution of
(5) that starts with the robot in double support, with
the swing leg behind the stance leg, ends in double
support with the swing leg in front of the stance leg,
and contains no other impact event.

III. CONTROL DESIGN FOR ANALYTICAL
TRACTABILITY

A. Philosophy: If stability analysis is too difficult,
then it will not be incorporated into feedback syn-
thesis.

One can distinguish several control design ap-
proaches in the biped literature. By far, the most
common approach to control is through the tracking
of pre-computed reference trajectories. The trajec-
tories may be determined via analogy, either with
human motion, or with simpler, passive, mechani-
cal biped systems; they may be generated by an ex-
ternal oscillator, such as van der Pol’s oscillator, or

computed through optimization of various cost crite-
ria, such as minimum expended control energy over
a walking cycle. Within the context of tracking,
many different control methods have been explored,
including continuous-time methods based on PID con-
trollers, computed torque (also called inverse dynam-
ics) and sliding mode control, or essentially discrete-
time methods, where control actions are applied at
each contact event.

The are several drawbacks associated with control
based on the tracking of time trajectories. First of all,
the resulting closed-loop system is then time-varying,
in addition to being nonlinear and hybrid, further
complicating its analysis. Secondly, in the case of
an underactuated system, it is not always possible
to track a given periodic solution of the model in an
asymptotically stable manner. Thirdly, if a distur-
bance affects the robot and causes its motion to be
retarded, for example, with respect to a reference tra-
jectory, the feedback system is obliged to play catch
up and regain synchrony with the reference trajectory.
Presumably, what is much more important is the or-
bit of the robot, that is, the path in state space traced
out by its motion, and not the slavish notion of time
imposed by a reference trajectory. A preferable situa-
tion, therefore, would be for the robot in response to
a disturbance to converge back to the periodic orbit,
but not to attempt otherwise resynchronizing itself
with time. One way to achieve this is by parameter-
izing the orbit (i.e., the walking motion) with respect
to a scalar-valued function of the states of the robot.
In this way, for example, when a disturbance retards
the motion of the robot, it may also automatically
“retard” the function that parameterizes the orbit.
Consequently, the feedback controller will not have to
play catch up, and can focus solely on maintaining
posture and relative limb velocities.

A second key ingredient for achieving analytical
tractability is to reduce the dimension of the prob-
lem. This is not a novel idea in control, in general, nor
biped locomotion, in particular. Biped robots tend to
have many degrees of freedom. Several authors have
sought to cast their control problem in terms of de-
signing a controller for a lower dimensional target sys-
tem. These include: regulating angular momentum;
controlling total energy; and approximating the robot
as an inverted pendulum, resulting in the reduced task
of regulating its center of mass. Others have achieved
a reduction in complexity through a proposed set of
walking principles, such as maintaining the torso at
a constant angle and the hips at a constant height
above the ground while moving one foot in front of
the other. Principles of this sort can be viewed as es-
tablishing kinematic constraints on the system, which,



as explained in [4], induce a low order target dynam-
ics, namely, the hybrid zero dynamics of the bipedal
walker.

While dimension reduction for the purpose of con-
troller design has been recognized as being important,
its consequences for analysis have not been fully ex-
plored. One of the principal objectives of the author’s
work is to show that freedom in the control strat-
cgy can be exploited in a way that greatly simpli-
fies the stability analysis of the closed-loop system.
Once stability analysis becomes sufficiently simple, it
can be incorporated into feedback synthesis. Time-
invariance and dimension reduction are two important
aspects of simplification.

B. Locomotion objectives that reduce the nmumber of
degrees of freedom

The control designs studied in [2], [3], [4] and [5]
involve the judicious choice of a set of holonomic con-
straints that are imposed on the robot via feedback
control. This is accomplished by interpreting the con-
straints as output functions depending only on the
configuration variables of the robot, and then combin-
ing ideas from finite-time stabilization and computed
torque. The desired posture of the robot is encoded
into the set of outputs in such a way that the nulling
of the outputs is equivalent to achieving the desired
posture.
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Fig. 2. A specific five link biped. As in the more general robot,
there is no actuation between the stance leg and the ground,
while all other joints are actuated.

In order to be more concrete at this point, consider
the 5-link, 4-actuator, planar bipedal walker shown
in Figure 2. Several different constraint choices have
been explored, with the common element being that
four outputs are controlled since the robot has four
actuators. In [3], a largely “Cartesian” view is taken.
The choice is made to regulate the angle of the torso,
the height of the hips, and the position of the end
of the swing leg (both horizontal and vertical compo-
nents). Over each half-step of a normal walking gait,
the horizontal position of the hips is monotonically

increasing. Hence, along a half-step, the desired torso
angle, hip height and swing leg end position are ex-
pressed as functions of the horizontal position of the
hip. These four functions are chosen so that, as the
hips advance, the torso is erect at a nearly vertical
angle, the height of the hips rises and falls naturally
during the step, the swing leg advances from behind
the stance leg to in front of it, tracing a parabolic
trajectory. In [5], the desired motion of the robot is
described in terms of the evolution of relative joint
angles. The four outputs are selected to be co-located
with the actuators: the (two) relative angles of the
torso with the femurs and the (two) relative angles
of the knees. The angle of the “virtual leg”, that is,
the line connecting the stance leg end to the hips, is
clearly monotonic over a half-step whenever the hor-
izontal component of the hips is monotonic. Conse-
quently, the four relative angles are expressed as de-
sired functions of the angle of the virtual leg.

In the general case of an N-link bipedal walker,
N — 1 outputs of the form

y = h(g)
ho(q) — ha(0(q)) (6)

are constructed. The function hg specifies (N —1) in-
dependent quantities that are to be controlled, while
0(q) is a scalar function® of the configuration vari-
ables that is “independent” of hg and is monotoni-
cally increasing along a (non-pathological) half-step.
The function hq(6(q)) specifies the desired evolution?
of the controlled quantities in the sense that y = 0
would assure the desired posture of the robot during a
half-step. In short, the function hg is taking the place
of a desired time trajectory and the quantity 6(q) is
playing the role of time, so that the evolution of the
robot will be “synchronized” to an internal variable.

Achieving y = 0 would reduce the number of de-
grees of freedom to one. But since the only means
to null y is through feedback control, ¥ = 0 can only
be achieved asymptotically. This raises the question:
Can the asymptotic nulling of y be done in a way that
leads to a reduced dimensional, and hence, simplified,
analysis problem?

C. Achieving dimension reduction through finite-time
feedback control

Since the output y = h(q) in (6) depends only on
the configuration variables, the first derivative of the
output along solutions of (2) does not depend directly

1For example, the horizontal position of the hips or the angle
of the virtual leg.

2For the design of hg, one is free to use essentially any of
the methods known for creating desirable time trajectories for
tracking; see [2].



on the inputs. Hence the relative degree is at least
two. Differentiating the output once again computes
the accelerations, resulting in

d2

—5 = L3h(q.4) + Lo Lsh(q)u. (7)
The matrix LyLyh(q) is called the decoupling matriz
and depends only on the configuration variables. As-
sume its invertibility?:
CH1-a) there exists open set O C Q such that for
each point ¢ € Q, the decoupling matrix L,Lh(q) is
square and invertible (i.e., h has vector relative degree
(2,...,2)); and
CH1-b) there exists at least one point in Q where h
vanishes.
Then designing a feedback controller to asymptoti-
cally drive the output to zero is a standard problem
in control and robotics, - -- or is it? The catch is the
hybrid nature of the biped model. For example, a
common feedback controller may be

u=—(LgLsh) "' (L3h+ KpLsh+ Kph),  (8)

with Kp and Kp positive definite matrices, which
yields
j+ Kpy+ Kpy =0, (9)

during the swing phase. However, at each impact
event of (5), the solution of (9) must be re-initialized
to y™ = hoA(x™) and y* = Lyh o A(z™), respec-
tively. Conceptually, this is equivalent to a persistent,
impulsive disturbance being applied to (9), and hence,
convergence of y(t) to zero is not guaranteed. Con-
tinuing with the disturbance analogy, since achieving
y = 0 is equivalent to achieving the desired robot pos-
ture during a half-step, a natural desire may be to at-
tenuate the effects of the disturbances by increasing
the controller gains, thereby inducing rapid conver-
gence of y(t) toward zero during a single step. Of
course, a drawback of high gain is large torques when
the output is “far” away from zero. In response to
this, other researchers have considered sliding-mode
control, which achieves convergence in finite time.
However, this leads to chattering and poses very real
difficulties for rigorous analysis of solutions of the
closed-loop system. A viable alternative is to include
a “square root-like” action in the feedback so that
modest controls are applied when y and g are large
and finite-time convergence to zero takes place once
y and gy become small. With a little care, such con-
tinuous, though non-Lipschitz continuous, feedbacks
can be used with great advantage. This is developed
next.
The application of the pre-feedback to (2)

3 A method for checking this is given in [3].

u(w) = (LyLeh() ™ (v — L3h(x)  (10)

results in the chain of N — 1 double integrators,

dQ
- = (11)
see (7). Let v(y,y) be any feedback controller on (11)
satisfying conditions CH2 to CH5 of [2], that is,
Controller Hypotheses: for the closed-loop chain
of double integrators, § = v(y,y),

CH2) solutions globally exist on IR*Y =2, and are (for-
ward) unique;

CH3) solutions depend continuously on the initial
conditions;

CH4) the origin is globally asymptotically stable, and
convergence is achieved in finite time;

CH5) the settling time function®, Tye : R*V =2 — IR
by

Tset(yOvQO) = iIlf{t >0 ‘ (?/(T)a?/(f)) = (070)1
(4(0),9(0)) = (yo, %0}

depends continuously on the initial condition, (yo,9o)-
Hypotheses CH2-CH4 correspond to the definition of
finite-time stability; CHS5 is also needed, but is not
implied by CH2-CH4. These requirements rule out
traditional sliding mode control, with its well-known
discontinuous action. A particular choice for the feed-
back function v(y,y) is highlighted in [2].
Consider now the feedback

u(x) == (LgLgh(x)) " (v(h(x), Lyh(z)) — Lfch(’rz) )
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The hybrid model of the biped robot (5) in closed loop
with the above feedback is then

Jala(t))
Al (1))

™
Q.

—
ST
+
—~ =
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=
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where,

Jal@) == f(x) + gla)u(a). (14)

IV. DETERMINING EXISTENCE AND STABILITY OF
PERIODIC ORBITS ON THE BASIS OF A
ONE-DIMENSIONAL MAP

Define the time to impact function, Ty : TQ —
R U {c0}, by

inf{t > 0|pfet(t,79) € S}  if 3 ¢ such
Ty (xg) = that @fet(t, ) € S
00 otherwise

4That is, the time it takes for a solution initialized at (yo, o)
to converge to the origin.



where /et (t,20) is the solution of #(t) = fu(x(t))
initialized at xg. It can be shown that

S = {x0 €S| Teer(20) < Ty(20) < 00,
Leps (o' (Tr(z0),20)) # 0} (15)

is an open subset of S.

Take the Poincaré section as S, the walking surface,
and define the Poincaré return map, as the partial
map P: S — S by, if Ti(A(z)) < oo,

P(2) = P (T (A@), Alw)).  (16)

The return map represents the evolution of the robot
just before an impact with the walking surface, to just
before the next impact, assuming that a next impact
does occur. If it does not, that is, the robot falls due
to the preceeding impact, the point being analyzed
is not in the domain of definition of the return map.
The Poincaré return map is continuous on S.
Hypothesis CH1 ensures that

Z:={xeTQ| h(x)=0,Lsh(zx) =0} (17)

is a smooth two dimensional submanifold of T'Q,
called the zero dynamics manifold. For x € S,
P(x) € SN Z since the settling time is less than the
time for an impact. Define a reduced Poincaré map
by

p:SNZ—8NZbyplx):=Plx). (18)

Thus, for #* € S, P(z*) = z* if, and only if,
* € §NZ and p(z*) = x*. This fact results in
the existence and stability properties of periodic or-
bits being characterized in terms of a one-dimensional
map. An example is given right after the statement
of the theorem.

THEOREM 1: (Method of Poincaré for a Sys-
tem with Impulse Effects under Finite-Time
Control [2]) Consider the biped robot model of Sec-
tion II, written in the form of a system with impulse
effects, (5). Define outputs such that Hypothesis CH1
is met. Suppose that a continuous, finite-time stabi-
lizing feedback is applied, and that Hypotheses CH2-
CH4 are met. Define Z, S and p as in (17), (15) and
(18), respectively. Then,

1. A periodic orbit is transversal to S if, and only if|
it is transversal to SN Z.

2. a* € SN Z gives rise to a periodic orbit of (13) if,
and only if, p(z*) = z*.

3.2veSnz gives rise to a stable (resp., asymptot-
ically stable) periodic orbit of (13) if, and ouly if, z*
is a stable (resp., asymptotically stable) equilibrium
point of p. a

The above results have been used to rigorously
prove the stability of feedback control designs for a

1.05

0.9

p(v,)

0.75

0.6

0.6 0.75 0.9 1.05

Fig. 3. The reduced Poincaré return map, p (bold line), as a
function of the horizontal velocity of the hips just before impact,
vy, (m/s) and, for visualization purposes, the identity function
(thin line). This proves that there exists a periodic orbit and
that it is asymptotically stable.

3-link biped (torso, and two legs without knees) in
[2] and a 5-link biped (torso, two legs with revolute
knees) in [3]. A typical reduced Poincaré map, p,
is shown in Figure 3. The set SN Z was param-
cterized by the horizontal velocity of the hips, and
the Poincaré map generated numerically in a few sec-
onds. The plot shows the existence of a fixed point
(where the Poincaré map intersects the identity func-
tion) and its asymptotic stability (note the slope of the
intersection). An example closed-loop walking mo-
tion® is included as a movie on the CD-ROM with
the paper (Movie_1_grizzle.mpg). The average walk-
ing speed is approximately 0.75 m/s and the peak
torque is around 77 Nm (the robot’s total mass is 40
kg).
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\

Fig. 4. Representation of a typical periodic orbit without ad-
ditional invariance assumptions placed on the output function.
If the condition A(S N Z) C Z held, then the orbit would be
entirely in Z.

5The function ho was selected to control the torso angle, hip
height and swing leg position; 6(g) was taken as the angle of the
virtual leg. The function hy was designed to induce tracking of
an orbit that approximately minimized integral-squared torque
per step length; the orbit was determined through open-loop
trajectory optimization.



Figure 4 shows a projection of the phase portrait of
a typical periodic orbit. The trajectory converges in
finite time to the set Z where the output is identically
zero, evolves along Z until the impact of the swing leg
with the walking surface S occurs, and then is bumped
off of Z by the impact map, A. This raises the ques-
tion, is it possible to shape the output so that the result
of the impact map lands the system back on Z?7 Intu-
itively, this property would seem to reduce transients,
and hence, in many cases, reduce peak torque require-
ments.

In summary, using the results of this section, one
is able to verify with necessary and sufficient condi-
tions whether or not a proposed set of outputs leads to
a feedback controller that induces an asymptotically
stable, periodic orbit. The goal of the next section is
to bring the stability criterion directly into the feed-
back (or output) synthesis problem.

V. DESIGNING ASYMPTOTICALLY STABLE,
APPROXIMATELY OPTIMAL, ORBITS ON THE
Basis oF A ONE-DOF INVARIANT SUBSYSTEM

This section summarizes the main results of [4]
and [5], which lead to a design procedure for creat-
ing asymptotically stable orbits that are approximately
optimal with respect to energy minimization. Due to
space limitations, the development will be brief. Fa-
miliarity with the zero dynamics of non-hybrid models
is assumed and many informative, intermediate steps
are skipped.

The additional required technical assumptions® are
4]:

%I]H&) there exists a smooth real valued function 6(q)
such that ® : @ — RN by ®(q) := (h(q)’,0(q))
is a diffeomorphism onto its image;

HH4) there exists a unique point q5 € Q such that
(h(q),P5(q5 ) = (0,0) and the rank of [r’, p3]’
at g equals N.

For a system modeled by ordinary, non-hybrid, dif-
ferential equations, the maximal internal dynamics of
the system that are compatible with the output being
identically zero is called the zero dynamics. The feed-
back control

u*(x) = —(LgLysh(x)) " L3h(x) (19)

renders the zero dynamics manifold Z in (17) invari-
ant under the swing phase dynamics’ in the sense
that, every z € Z, frero(2) := f(2)+g(2)u*(2) € T, Z.
The autonomous system

z = fzero(z) (20)

6Conditions HH1 and HH2 of [4] are subsumed by previous
hypotheses.

"In plain words, for every initial condition zg € Z, the solu-
tion x(t, xo) of the feedback system f(z) + g(z)u*(z) remains
in Z.

is called the swing phase zero dynamics. In [4], the
notion of the zero dynamics was extended to include
the impact map common in many biped models. This
is necessary because a solution of (20) is in general
not a solution of the hybrid model, (5). Indeed, the
problem is that z~(¢) € S does not necessarily imply
that 2% (t) := A(27(t)) € Z; that is, applying the im-
pact model when the solution of the swing phase zero
dynamics impacts the walking surface does not result,
in general, in a new initial condition on Z, the state
space of the zero dynamics. Consequently, to con-
tinue the solution from the new initial condition, the
full model, (5) is required. This leads to the follow-
ing additional requirement when designing the output
function:

HH5) A(SNZ) C Z.

This condition renders the swing phase dynamics in-
variant under the impact map, which results in the
hybrid zero dynamics,

S ) { 2 = fiero(2) 2= ¢SNZ
zero - +
z

z-eSnNZ. (21)

= A(z7)

The following can be shown:
« along all solutions of (21), the output A is identically
zero, and hence this is a valid zero dynamics for the
hybrid model;
e SN Z is diffeomorphic to IR;
« the function 6 (see, HH3), when evaluated along any
half-step of the zero dynamics, is a strictly monotonic
function of time and thus achieves its maximum and
minimum values at the end points;
o the extrema of 0(q) over a half step are 0 := 0(qy )
and 07 := 0(A(qg ,0)), (see, HH4) and thus, without
loss of generality, it can be assumed that 67 < 67
that is, that along any half-step of the hybrid zero
dynamics, 0 is monotonically increasing.

In appropriate local coordinates®(£1, &), the zero
dynamics have the form

51 = a(§)é
& = Bl&) (22)

where (&) # 0 for all §;. Furthermore, the impact
portions of the model, SN Z and A : (§,&) —

(&7,&5), simplify to
SNz = {(&.6) & =07.& € R} (23)
& o= 0 (24)
E;_ = Ouero- 52_, (25)

where ..., 18 a constant that may be computed di-
rectly from the impact map, A, and the output, h. In

8¢1 = 6(q) and &2 has the interpretation of angular momen-
tum.



these coordinates, the Poincaré map of the hybrid zero
dynamics can be explicitly computed, which leads to
a necessary and sufficient condition for the existence
of an asymptotically stable, periodic orbit.

THEOREM 2: (Poincaré Analysis of the Hy-
brid Zero Dynamics [4]) Assume that a smooth
output function, h, on (5) satisfies CH1, HH3, HH4
and HH5. For 0T < & < 0~ define

o [RBE ,
k(&) = | (y(E) d§ (26)
K = g i #(61). (27)

The hybrid zero dynamics admit an asymptotically
stable, periodic orbit if, and only if, the following two
conditions hold:

a) 62.,, < 1; and
2
b) sk (07) + K > 0.

zero
Moreover, under the feedback

u(w) == (Lo Lgh(x))™* (v(h(2), Lyh(z)) — L2h(z)) |
(28)
where v satisfies CH2-CHS5, an asymptotically stable,
periodic orbit of the hybrid zero dynamics is also an
asymptotically stable, periodic orbit of the full-order
hybrid model, (5). O
This result provides a powerful method for analyz-
ing and designing asymptotically stable walking mo-
tions. In [5], Bézier polynomials are used to parame-
terize the output (6), yielding

y = holq) —ha(0(q),a), (29)

where a is a vector of real coefficients. The Bézier
polynomials make it very ecasy to satisfy the invari-
ance condition, HH5. Along solutions of the zero dy-
namics, the feedback (28) reduces to (19) and thus is
independent of the choice of v. A cost function of the
form

1 T7 * 2 G
J(a) = T ./0 [|u*(t)]|=dt, (30)
is posed, where T~ is the time for a half-step, p§ (T ™)
corresponds to step length, and w*(¢) is the result of
evaluating (19) along a solution of the hybrid zero dy-
namics. A sequential, quadratic programming pack-
age is used to minimize J(a) with respect to a, subject
to a number of constraints:

o periodicity of the orbit;

« the stability conditions (a) and (b) of Theorem 2;
o the desired walking rate;

e minimum normal ground reaction force;

o maximum ratio of tangential to normal ground re-
action forces experienced by the stance leg end (i.e.,
maximum allowed static friction coefficient);

o maximum deflection of stance leg and swing leg
knees; etc.

Whenever the optimization problem has a feasible
solution, the result is an asymptotically stable, closed-
loop system that meets natural kinematic and dy-
namic constraints. Technically, once the optimization
is completed, one must verify that all of the conditions
of Theorem 2 are met. At least on the five-link biped,
this has proven to be straightforward. The most crit-
ical condition, CH1-a, the invertibility of the decou-
pling matrix, is essentially guaranteed whenever J(a)
is finite, since singularities in Ly L ¢h will normally re-
sult in u*(t) taking on unbounded values; however,
a simply connected, open set about the periodic or-
bit where the decoupling matrix is invertible can be
explicitly computed by a method developed in [3].

As a numerical example [5], consider once again the
biped of Figure 2. Table I summarizes the result of
optimizing for a desired rate of 1.05 m/s. The walking
motion is asymptotically stable since 6%,,, < 1 and

1?%/‘?(97) + K ~ 364.4 > 0. The peak torque is

around 48 N'm (recall that the robot’s total mass is
40 kg). A movie of the walking motion is included on
the CD-ROM with the paper (Movie_2_grizzle.mpg).

J(a) | 82, | K(O7) K
W) |- | (kem?/9)? | (hgm?/s)?
[36.79 [ 0.638 [ 3544 | —2604 |
TABLE 1

OPTIMIZATION RESULTS
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