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RANK INVARIANTS OF NONLINEAR SYSTEMS*

M. D. DI BENEDETTOf, J. W. GRIZZLE%, aAND C. H. MOOG$§

Abstract. A linear algebraic framework for the analysis of rank properties of nonlinear systems is
introduced. This framework gives a high-level interpretation of several existing algorithms built around the
recursive computation of certain algebraic ranks associated with right-invertibility, left-invertibility, and
dynamic decoupling. Furthermore, it can be used to establish links between these algorithms and the
differential algebraic approach, as well as to solve some static and dynamic noninteracting control problems.
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L. Introduction. Consider a nonlinear control system of the following form:
(1.1a) X=f(x)+g(x)u,
(1.1b) 2'y=h(x)

where, for simplicity, x(¢) e R", u(t) eR™, y(t)eR”, and f(-), the columns of g(+) and
the rows of h(-) are meromorphic functions of x (on all of R"); that is, they are
elements of the fraction field %(x) of the ring of analytic functions of x. Our goal is
to associate to such a system a chain of (nondifferential) vector spaces and show that
it contains a rich amount of structural information about the system. More precisely,
the subspaces will recover in a unified way, the inversion algorithm of Singh [1], the
generic ranks of Nijmeijer [2], the dynamic decoupling algorithms of Descusse and
Moog [3] and Nijmeijer and Respondek [4], and the differential output rank of Fliess
[5], [6]. The approach adopted in the paper has been largely inspired by the differential
vector spaces considered in [7] by Fliess.

To proceed, suppose that the input function u(r) to the system (1.1) is N times
continuously differentiable. Then by Taylor’s Theorem,
N _ k
wn=3 w0 g (i),
k=0 k'
where 1, is some initial point in time, u’:=u(1o), u"*":=d/dru'"(1)|,_, , and Ry is
aremainder term. View x, u, - - -, u'" " as variables and let % denote the field consisting
of the set of rational functions of (u, - - -, u'"~") with coefficients that are meromorphic
in x. Recall that given such a field, say in the variables v=(v,* -, ), we define
d/dv; acting on a meromorphic function n(v) =7 (v)/6(v), where () and 6(-) are
analytic, by the usual quotient rule of calculus,

d d
N m(v) (0(1/)8—1/77(1/)—77(1/)8—1}'_0(1/))

i

(1.2) ov; 6(v) . 0%(v)
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Then we define the differential of % by

(1.3) dn(v)= 3 22

i=1 aV,-

dv;

i

Returning to the system (1.1), we define in a natural way,

h
(1.4a) ¥ =y(x u) =j—x[f<x>+g(x)u],

PEED = D k)
(1.4b) (k)

(k)

k—1
[f(x)+g(x)u]l+ ;0 Z};—m— ulin

0x

Note that y, - - -, " so defined have components in the field .

Let & denote the vector space (over %) spanned by {dx, du, - - -, du"""}. It is
essential to remark that this is an ordinary, nondifferential vector space as opposed to
the setting proposed in [7]. Now we introduce the chain of subspaces &,c:--< &,
of & by

(1.5) & =span{dx, dy, - - -, dy'®}
and define the associated list of dimensions p,=- - -=p, by
(1.6) Pr = dim gk-

It is important to note that in (1.5) and (1.6) the span and dimension are both taken
with respect to the field %, and not the real numbers. Hence p, is a well-defined integer
and is not a function of x, u, -, u'""". Note also that we abuse notation slightly
because &,:=span {dx, dy}, which is easily seen to be equal to span {dx} since the
output y only depends on x. Finally, in the above, as well as in all that follows, “d”
of a vector or vector valued function means “d” of each of its components; that is,
&y=span {dx,, - - -, dx,}, etc.

In the sequel we argue that the chain of subspaces &,c---c &, gives a linear
algebraic framework that clarifies many structural properties of nonlinear systems and
leads to a synthesis of many previous works on rank invariants of nonlinear systems

(1]-[9].

2. Four concepts becomes one. For a linear system, there are many equivalent
approaches to defining (or characterizing) its rank. More or less, all possible approaches
have been extended to nonlinear systems in an effort to understand such properties
as right-invertibility, left-invertibility, dynamic decoupling, etc. In general, these
extensions lead to distinct notions when broadened to the class of nonlinear systems
[1], [10]. However, we will show that the linear algebraic framework of § 1 can be
used to establish the equivalence of four of them. A first attempt at this, using cruder
tools, was made in [11].

2.1. Jacobian matrices. In [2], Nijmeijer considers systems of the form (1.1) where
f(-), the columns of g(-) and the rows of h(-) are analytic functions of x. He defines
¥, -,y as before, and introduces

. 3y, - -, y™)
2.1 Je(x,uy - v -, ey —2 27 L
(2.1) (X, u u ) a(u,-'-,u“‘v”)

Ji is an analytic function of its arguments; hence, we can define

(2.2) R, = generic rank (over the real numbers) of J,(x, u, - - -, u’* "),
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Nijmeijer shows that R,., — R, is a nondecreasing sequence of integers and says that
(1.1) is right-invertible if R, — R,_, = p, the number of scalar output components. He
goes on to relate the integers Ry, for a restricted class of systems, to a set of integer
invariants coming from the A*-algorithm; that set, in analogy with results from linear
system theory, was termed the ‘“‘structure at infinity.”

We now relate the list of generic ranks {R,} to the list of integers {p.} defined in
(1.6). The first step is to observe that R, is equal to the dimension of the row span of
Ji, where the field is taken as . That is, if we define

. ay k! ay(k) (i
(2.3) ¥, =span {a_u du, - - -, EO PO du'” ¢,

then R, =dim 7. It follows immediately that for k=1
(2.4) & =span {dx}® V;

hence, we have the following theorem.

THEOREM 2.1. py=n+R, 1=k=n.

This yields the following corollary.

CoOROLLARY 2.2. System (1.1) is right invertible in the sense of Nijmeijer if and only
if dim &, —dim &,_, = p, the number of scalar output components.

In closing this subsection, we note that the subspaces ¥} give a linear algebraic
interpretation of the Jacobian matrices J,. In the case considered in this section where
/. g and h are analytic, both &, and ¥, can be viewed as analytic codistributions on
the manifold M x T~V U, where T""""U is the (n—1)th order tangent bundle [12,
Chap. 1] of the input manifold U =R"™. However, it is easy to see that &, is always
involutive, whereas ¥, the projection of &, along span {dx}, does not in general enjoy
this property. This gives us some reason to believe that the &,’s are more intrinsic,
and certainly indicates that they are more amenable to analysis.

2.2. The inversion algorithm. In [1], Singh introduces an algorithm for calculating
the left-inverse of a nonlinear system; his algorithm is in fact a generalization of
previous algorithms, due to Silverman [13] and Hirschorn [ 14], that are only applicable
under some restrictive conditions. This algorithm has since been taken up by different
authors and has been used to define a finite zero structure for nonlinear systems [15]
(important for certain stabilization problems), and a structure at infinity [9] (important
for noninteracting control problems and model matching).

In the following, it will be shown that the inversion algorithm actually constructs,
step by step, a basis for the chain of subspaces &,c < &,. This shows that the
chain é,<- - -< &, contains all of the above-cited structural information yielded by
the inversion algorithm, and also confirms the earlier claim that the chain ,< - - - < &,
embodies important structural information on a high level, independently of any
particular algorithmic considerations.

The inversion algorithm as detailed in [15] is now given, with the exception that,
instead of allowing a large class of analytic transformations, we will use a particular
meromorphic transformation. This idea was first sketched in [9].

Step 1. Calculate

h
2.5) =2 ) +g(x)u]

and write it as

(2.6) y=a,(x)+b,(x)u.
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Define

(2.7) s, '=rank b,(x),

where the rank is taken over the field of meromorphic functions of x. Permute, if

necessary, the components of the output so that the first s, rows of b\(x) are linearly

independent. Decompose y as

(28) y= (y)
] N

where y, consists of the first s, rows of y. Since the last rows of b,(x) are linearly

dependent upon the first s, rows, we can write

(2.9a) Vi=a(x)+by(x)u,
(2.9b) Fi=nx, ;1),
where the last equation is affine in ,. Finally, set B,(x):= I;,(x).

S(k)  a(k)

Step k+1. Suppose that in Steps 1 through k, }7, »" 5 Yk » Vi have been defined
so that

~

;1 = al(x)+51(x)lh

210 FE=a(x P 1=isk-1,isj=k))

2.10 . .
+h(x, (J[1=sisk-1,isj=sk-1})u,

FEO=5x P 1=siskisjsk))

and so that they are rational functions of !’ with coefficients in the field of meromorphic

functions of x. Suppose also that the matrix B, :=[b], - - - ,b{1" has full rank equal

to sx. Then calculate

k 4pk)
Yk S(j+1)

k
(2.11) y“k“”=‘;ix,\?‘k"’[f(x)+g(x)u]+gI Ei Zﬂn Vi
and write it as
(212) PV =@ (6 PP 1sisk i=jsk+1}) + by (x, PV 1=siskisj=k)u
Define By.,==[BY, bl,,]", and
(2.13) Sk+1 -=rank By, ,,

where the rank is taken with respect to the field of rational functions of {§V’|1=i=k -
1,i=j=k} with coefficients in the field of meromorphic functions of x. Permute, if

necessary, the components of 7" so that the first 5., rows of B,,, are linearly
independent. Decompose 7¢*" as
~(k+1)
Ak Yik+1
(2.14) i “’=(a(k+n),
Yk+1

where {51! consists of the first (5., — ;) rows. Since the last rows of By (x, {y 1=
i=k, i=j=k}) are linearly dependent on the first s, rows, we can write

.;:l = 5,(x)+5|(x)u,

2.15) T =den (o PP 1siskisjsk+1})
’ +hen(x (7 1siskisj=khu,
FE =28 GV 1= isk+1,isj=k+1)),
where once again everything is rational in §{”’. Finally, set B, ,:= B}, b,,]".
End of Step k+1.
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It is now possible to state and prove the main result of this subsection.

THEOREM 2.3. For each 1=k=n:

(a) {dx,{dy\’|1=i=k i=j=k}} is a basis for &,

(b) dim &, =n+s,+: - +s5,.

Proof. Part (b) is an immediate consequence of (a), which will be proved by
induction. For k =1, the statement is obvious. Suppose that (a) holds at Step k; it will
now be shown that it also holds at Step k+1. By construction, l§k+, is a rational
function of {y\/’|1=i=k, i =j = k} with coefficients in the field of meromorphic func-
tions of x. As 7\ is a rational function of (u, - - -, u"" ") with coefficients in the field
of meromorphic functions of x, it therefore follows that I§k+, is also. Since from Step
k, {dx,{dy\’|1=i=k,i=j=k}} is a linearly independent set over %, it follows easily
that B,.,, when viewed as a rational function of (u, - -+, u""™"), has rank s,., over
the field . Using (2.15), we show readily that

dim span {dx, {dy\’|1=i=k,i=j=k}}

(2.16) .
=dim span {dx, {B,du*"'"?|1=¢=k+1}}.

The dimension on the right-hand side of (2.16) is easily seen to be n+s,+ - -+ 5.,
showing that, indeed, the vectors on the left-hand side of (2.16) are linearly independent
since there are precisely n+s,+- - - + 5.4, elements; it only remains to show that they
span &,.,. By its definition,

(2.17) &sr = & +span {dy V).
Using (2.15) once again, we can write this as follows:
(2.18) &= & +span {dp V| 1=i=sk+1),

which, coupled with the induction hypothesis, completes the proof. 0
COROLLARY 2.4. System (1.1) is left-invertible in the sense of Singh if and only if
dim €, —dim &,_, = m, the number of scalar input components.

2.3. The dynamic extension algorithm. The relationship between dynamic input-
output decoupling and right invertibility has been clarified recently by Fliess [5], whose
work has inspired several authors to develop concrete algorithms for the explicit
construction of a dynamic compensator yielding a noninteractive system [3], [4]. Here
we will give a simplified version of these algorithms, separating clearly their basic
operations of differentiating the outputs, performing static-state feedback, and adding
integrators on selected components of the input. This simplified version will still yield
a decoupling compensator whenever one exists, but does introduce more integrators
than the algorithms previously cited. We will show that it explicitly produces a basis
for the chain of subspaces &,<---< &,. This shows yet another way in which the
chain &, - - - = &, incorporates important structural information on a high level—in
this case, that information pertraining to dynamic decoupling.

The dynamic extension algorithm is now presented.

Step 1. Let X, denote the system (1.1). Calculate

oh(x)
ax

(2.19) y= [f(x)+g(x)u]

and write it as

(2.20) ' y=a,(x)+b,(x)u
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Define
(2.21) o,=rank b,(x),

where the rank is taken over the field of meromorphic functions of x. Permute, if
necessary, the components of the output so that the first o, rows of b,(x) are linearly
independent. Decompose y as

. W _ dl(x)+l;l(x)u
(222) = (y) - (al(x)+5.<x)u)'
Let
(2.23) u=a;(x)+pB(x)y,

be any static state feedback such that
(i) Bi(x) is invertible over the field of meromorphic functions in x;
(i) y1=10,.

Such a feedback always exists.
For the resulting closed-loop system, we can write

(2.24) }"11:)&1(3% 0,),

since otherwise the rank of 9y/9v, would exceed o,. Moreover, jz"l is affine in #,. Now
introduce a dynamic extension by

(2.25a) 0, =14,
and rename the remaining components of v,
(2.25b) b, =4,.

Finally, let X, denote the system consisting of 3, the static-state feedback (2.23), and
the dynamic extension (2.25). Its state is given by x, = (ZI), its input is u, = (;:), and
the output remains y = h(x). We will denote it as

‘xl =f1(x|)+g1(x1)u1 s
'

y=nh(x).

2, is a dynamic extension of 3, and has the property that y = y(x,) is affine in 7,.
Step k+1. Suppose that in Step k the system X, has been constructed such that

(2.26) p3

X = fi(x) + g (xi )y,
(227) Ek:
y=h(x)
and i = yi*'(x,) is a rational function of Oy, * -+, D, with coefficients in the field of

meromorphic functions of x. Then, calculate

ay(k)

(2.28) y“‘+”=—[fk(xk)+gk(xk)uk]
90X

and rewrite (2.28) as

(2.29) y‘k“): ak+1(xk)+bk+l(xk)uk-

Define
(2.30) O+ =rank by, (x,),
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where the rank is over the field of rational functions of ,, -+ +, x with coefficients in
the field of meromorphic functions of x. Permute, if necessary, the last.p —oy, com-

ponents of the output so that the first oy, rows of by, (xx) are linearly independent.
(k+1)

Decompose y as

(2.31) y(k+l) _ <)2:A:+Ell))) _ (‘zk+l(xk) + §k+l(xk)uk>.
Yi+1 Qg (X)) F bicy (i) Ui

Let

(2.32) U= et (X)) + Brw (X)) Vi

be any static-state feedback such that

(i) Bisi(xi) is invertible over the field of rational functions of ,, - - -, D, with
coefficients in the field of meromorphic functions of x.

(ii) )7(1\‘(:1” = Ups -
Such a feedback always exists.

For the resulting closed-loop system, we can always write

A(k+1) _ A(k+1) =
(2.33) YVi+1 = Vk+1 (ks Dk+1)s
. . (k+1) (k+1) ¢
since otherwise the rank of dy /3, would exceed oy.,. Moreover, y is a

rational function of ,, - - -, Dxs:.- Now introduce a dynamic extension by
(2.34a) Op1 = Upe
and rename the remaining components of vy :
(2-34b) ﬁk+| = ﬁk+1 .

Finally, let ., denote the system consisting of X, the static state feedback (2.32)

and the dynamic extension (2.34). Its state is given by xk+,=(ﬁﬁl), its input is

Ui = (';i:‘l), and the output remains y = h(x). Zy4 is then a dynamic extension of 2,

has the property that y*™" =y**"(x,,,), and is a rational function of Dy, * *, Dk+1-
End of Step k+1.

We now have the following theorem.

THEOREM 2.5. For each 1=k=n:

(a) {dx, dy,, -, dy\¥} is a basis for &,.

(b) dim &, =n+o,+ - +op

Proof. Part (b) is an immediate consequence of (a). From (2.33), one has that

(2.35) & =span {dx, d, - - -, A7},
which by definition of ; gives
(2.36) gk =span {dx, dﬁ] N dl_jz, ttty, dﬁk}.

Hence, it suffices to show that {dx, do,," - -, di,} is a linearly independent set for each
1= k = n. This follows immediately from Lemma 2.6.

LEMMA 2.6. Foreach 1=sk=n-1,
span {dx, du, - - -, du""""}
(2.37) . .
= Span {dx’ dﬁl’ Y dﬁk’ duk, Y du(knAlﬁ ), dﬁg(n_k)’ T, dv(l"—l)},

where all spans are with respect to the field X.
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Proof. Equations (2.23) and (2.25) yield
span {dx, du, - - -, du'" ™"}
=span {dx, do,, {db,, db,}, - - -, {db}"™> ,do\" VY, doyr Y
=span {dx, d&,, du,, - -, du{"">, """},

which establishes (2.37) for k=1.

Now suppose that (2.37) holds at k. Then, in particular, {dx, dﬁl, -, dbg} is a
linearly independent set. After we note that each component of x; = (x" o0, -, 00)"
is a rational function of (u, - -+, u'"""), this gives us that b, has full rank over ¥.

Hence, using (2.32) and (2.34), we have
span {d%,, duy, - - -, du{’ "'}
=span {dX,, A+, {dDx+1, Abyir}, * - AdBRD gy dpln i)
=span {d%,, diy,, dur,,, -, dul K72, a0,
which establishes (2.37) at k+1. 0

2.4. Convergence of the chain &,=---<&,. In a completely analogous fashion
to the way the chain &,c - - - &, is defined in (1.5), we could define an extended
chain yc -+ - &, - - < &,., for any finite integer kK = 1. The underlying field %,
would then consist of the set of rational functions of (u, - - -, u"**~") with coefficients
that are meromorphic in x. We will show, however, that no new structural information
is obtained by extending the original chain; hence, we are justified in terminating the
chain at n, the dimension of the state space of (1.1).

THEOREM 2.7. For all finite integers k=1:

(a) {dx,dp,, -, dp\, dy\"th, - - dy" ) is a basis for €., 1= (= k.

(b) dim &,,,=dim &,+¢- p*, 1= /E k, where p*=dim &, —dim &, _,.

The proof will be broken down into two lemmas. The functions (3;, /) =y"
continue to denote the blocks of the output constructed in the ith step of the dynamic
extension algorithm; 7\, ¢/’ denote their jth-order derivatives along the dynamics of
the system.

LEMMA 2.8. There exists an integer 1= N = n such that

(2.38) dp\N e spany, {dp,, -+, dp\N ", dpy, -, AP )

Proof. From the dynamic extension algorithm, we have that P =
FEx, P, e, %), Hence, (2.38) holds if

A(N) A A(N=1)
Y, Yn
dx e spany {al dx, -+, —— Vu dx}
x

(2.39) P

ax

Since the right-hand side of (2.39) can be at most n-dimensional, there must exist
1= N = n such that (2.39) holds. Hence, the result is proved. O

For each integer j, N=j=n+k, define the field J; to be the set of rational
functions of (u, - - -, u"’~"") with coefficients that are meromorphic in x.

LEMMA 2.9. With N as in Lemma 2.8 and for all integers j, N=j=n+k,

(2.40) dp\) e span,, {df,, -, APV dpy e diY,

where, for jZ n, y;, = y,.
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Proof. Since all the functions appearing in (2.38) are rational functions of
(u, -+, u'™N™Y),(2.38) also holds with % replaced by ¥x. Hence there exist coefficients
a;, Bi € #n such that

-1 ) N i
(2.41) dJ?(nN): Z aidA(n')+ Y Bi d)75")~
i=0 i=1
Hence,
(2.42) dp, V=% (& df + o dPT)+ Y (Bidpl+ B dpitY).
i=0 i=1

Combining (2.41) with the fact that &;, B; are in Hn.,, we easily see that (2.42)
establishes (2.40) for j= N +1. In a similar manner we complete the proof of Lemma
2.9. a

To complete the proof of Theorem 2.7, note that Lemma 2.9 establishes that &, ,,
1=¢=k is indeed spanned by the vectors given in (a). We prove that they are
independent using the same reasoning employed in the proof of Theorem 2.3. Part (b)
follows from (a) by counting the number of basis elements.

Remark 2.10. If we introduce the finite chain of subspaces F,< - - - < %, of € by
. =span{dy,dy, - -,dy'""’}, then we can show that p*=dim %, —dim &, ,.
However, the inversion algorithm and the dynamic extension algorithm do not calculate
bases for this chain.

2.5. Differential output rank. In 1985, Fliess introduced a new approach, centered
around differential algebra, to the analysis of nonlinear systems, [5], [16], the proper
formalism being perhaps field theoretic [17]. He was the first to define clearly and
precisely the fundamental notion of the rank of a nonlinear system; he accomplished
this by considering the output components to be dependent if they satisfied a nontrivial
(nonlinear) differential equation. Fliess’ notion of rank generalized to nonlinear systems
the usual notion of the rank of a transfer matrix of a linear system, and played the
same important role in leading to basic definitions of right invertibility and left
invertibility, and important new results on dynamic feedback [5], [16]. All previous
attempts in this regard lacked the power and elegance of the differential algebraic
approach, being mainly based on algorithmic considerations.

Additional insights on the role of differential algebra in system theory have been
contributed by Pommaret [18].

In this section, we will show that the integer p* =dim &, —dim &,_, of Theorem
2.7 is actually the differential output rank for those systems that meet the requirements
both of § 1 and of the differential algebraic approach. More precisely, we suppose that
the system (1.1) satisfies the following assumptions:

(A1) f, g and h are meromorphic;

(A2) /. g and h are differentially algebraic (i.e., elementary transcendental)
functions of their arguments [5], [19], [20];

(A3) The set R(y) of all rational functions of y!”, 1=i=p, ¢=0, with
coefficients in the field R is a differential field.

Here, the yE” are defined as in (1.4). (It is apparently unknown whether (A1) implies

(A3).)
To aid the reader, a few notions from differential algebra are briefly recalled. A
finite set of elements {,, - - -, £ of R(y) is differentially algebraically dependent if there

exists a nonzero differential polynomial P, with coefficients in R, such that
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P(¢,, -, &) =0, that is, a nonzero polynomial in {,, - - -, {; and a finite number of
their time derivatives. The differential output rank, denoted d°(X), is the maximum
number of differentially algebraically independent elements of R(y). This number is
well defined [21].

Our main result relating the d°(2) to the chain €,<---< &, will be an easy
consequence of the following properties of the differential rank.

LeEMMA 2.11 [5]-[7], [16]. (a) d°(Z)=min {m, p}.

(b) If ' is obtained from I by applying an invertible static state feedback, whose
components are differentially algebraic functions, then d°(2') = d°(2).

(c) If X, is obtained by adding a finite number k; of integrators on each input channel
i of 3, then d°(2,)=d°(2).

(d) If for some 1=i=m, ay®/oul"=0 for all k=0, ¢=0, then d°(2)=
min{m—1, p}.

(e) Iffor some finite integerk, y'*’ = y*'(x, u), and rank 9y'*/du = r, thend°(2) = r.

Proof. All of these points are essentially contained in [S]-[7], [16]. Part (a) follows
from the definition of the differential output rank. Part (b) is true because d°(2') = d°(2)
for any static-state feedback. Thus invertibility gives equality, since the inverse, being
a well-defined (differentially algebraic) static-state feedback, yields d°(2) = d°(2’). To
prove (c), first note that

R R
(2.43) m=dift. tr. S i o a0 BB g g g0 B2
R R{y)

which yields

R
(2.44) d°(S) = m — diff. tr. d° 282

R(y)
Similarly,

R(v, y)
2.45 d’°2,) = m—diff. tr. d° ———=
(2:45) ( R(y)

This establishes the result because the right-hand sides of (2.44) and (2.45) are equal,
since v constitutes a differential transcendence basis for R(u)/R. Statement (d) follows
from (a) because y is differentially algebraic over R(uy, -, ti_y, Uisy, " " *, Up).
Finally, (e) implies that

(2.46) dimy {dy, - - -, dy“} =1,

which yields

(2.47) dim, {dy,- - -, dy*}=r,

where L is the field of rational functions in the indeterminates {y, y, - - -, ¥’} with

coefficients in R; note that L = %. Hence, by the results in [22], d°(2)=r. 0
THEOREM 2.12. Suppose that system (1.1) satisfies Assumptions (A1)-(A3). Then

(2.48) d’(2)=dim €,—dim &,_,.

Proof. Consider the extended system X, constructed at the nth step of the dynamic
extension algorithm. From (2.33), £, has the property that rank ay"/av, = o,. Hence,
by (e) of Lemma 2.11, 4°Z,)=o,. By Theorem 2.7, o, .= o, for all £=0; therefore,
y satisfies ay""/a‘("’—o for all k=0, ¢=0. Thus, by (d) of Lemma 2.11, d°(%,) = o,
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Hence, d°(2,)=0o,. However, (b) and (c) of Lemma 2.11 then yield that d°(2)=
d°(2,) = o,, because X, is constructed from X by successively applying invertible static
feedbacks and finite strings of integrators. Finally, Theorem 2.5 yields o,=
dim &, —dim &,_,. 0

3. Structure at infinity and block decoupling. In this section, the framework of
§8 1 and 2 will be used to give an intrinsic ‘“‘algebraic’ definition of some important
integer invariants associated with a nonlinear system, namely the so-called structure
at infinity. An alternate approach to defining a structure at infinity has already been
carried out in [8], using differential geometric techniques. When specialized to the
class of linear systems, the geometric definition and the algebraic approach below both
agree with the usual linear notion of the structure at infinity [23]. For general nonlinear
systems, both are invariant under regular static state feedbacks. However, in contrast
to the geometric approach, the algebraically based definition enjoys some additional
properties that make it seem closer to the linear situation.

DEeFINITION 3.1 [9]. The number o of zeros at infinity of order less than or equal
to k, k=1, is o, =dim &, —dim &,_,. The structure at infinity is given by the list
{0'1, e ,Un}'

Note that the total number of zeros at infinity o, corresponds precisely to the
rank p* of the system (1.1).

The notion of a regular dynamic feedback is introduced next. Note that when ¢ =0
in the following definition, we recover the usual definition of a regular static feedback.

DEFINITION 3.2 [24]. The compensator

(3.1) z=F(x,z)+ G(x, z)v, u=a(x, z)+B(x, z)v,

where F, G, a, and B are meromorphic, veR"™, and zeR? for a given integer g, is
said to be regular if the composite system (1.1a) and (3.1), with v as the input and u
as the output, has rank equal to m.

The structure at infinity of Definition 3.1 enjoys the following properties.

LeEMMA 3.3. (a) The rank p* of the system (1.1) is equal to o, the total number
of zeros at infinity.

(b) o, =min{m, p}, the number of input and output components, respectively.

(c) The total number of zeros at infinity is invariant under regular dynamic feedback.

Proof. Properties (a) and (b) are immediate from the results of § 2. To prove (c),
first introduce the field %, consisting of the set of rational functions of (v, - - -, v"*97")
with coefficients which are meromorphic in x and z. Assume that for a given I,
0=I=n+gq-1, there exists i, 1 =i=m, such that

du!" e spany, {dx, du,---,du''"", dul", j=i}.
Then, following the calculations involved in the proof of Lemma 2.9, we see that
dul™ e spany {dx,du, -, du'*"", dul® j=i} Vkz=I,

which contradicts the regularity assumption of the dynamic compensator. Hence, for
every I, {dx, du, - - -, du'"} is a linearly independent set. Let y, = h(x) denote the output
of the composite system 2, consisting of (1.1) and (3.1), and define

%, =spany, {dx, dy,, - - -, dy}.
By the chain rule,

X, Yoo, ¥¢) a6y, ¥ ek u -, u*TY)
a(xa 2,0, ", v(kil)) a(x, [Z u(k_”) 8(x’ Z, 0,0, v(k—l))'

(3.2)
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Since {dx, du, - - -, du'* "} are independent, (3.2) yields that

a(x, y, -, y™)
a(x’ u, -, u(kil)),

dim %, =rank

so that
(3.3) dim ¢, =dim &,.

Finally, let p¥ denote the rank X,. Then, following the reasoning employed in Lemma
2.8, we show that p¥=dim %,,,—dim %,,,_,, which yields the result in view of
(3.3). a

Now consider a system whose outputs have been grouped into blocks:

(1.1a) x=f(x)+g(x)u,
(3.4) yi=hi(x), 1=si=uy,

where y; € R” and h; is a meromorphic function of x. The system is said to be decoupled
with respect to a given partition u=(u{,---,u,.)" of the input if u; affects only y,,
1=isupu; that is,

(3.5) dy\*® e span {dx, du;, - - -, du{"""}

for 0=k=n. The decoupling problem is to find, if possible, a regular dynamic
compensator and a partition of the new reference input such that the resulting closed-
loop system is decoupled. If the compensator has dimension zero, the solution is said
to be static; otherwise it is dynamic.

Using (3.5), we immediately obtain the following necessary condition for regular
static block decoupling.

PROPOSITION 3.4 (see also [8]). If the system (1.1a), (3.4) with block-partitioned
outputs can be decoupled with a regular static state variable feedback, then

meoo
(3.6) Ok= L Oy
i=1

where {0}, -+, oh} is the structure at infinity of the ith subsystem consisting of the
dynamics (1.1a) and the output y;.

When the outputs y; are scalar-valued, it is known that (3.6) is also sufficient (see,
for example, [9], [25]). This condition is also known to be sufficient for general
vector-valued outputs if we restrict our attention to the class of linear systems [26].
Indeed, (3.6) implies that we can perform the inversion algorithm for the overall system
(1.1a), (3.4) by applying it to each of the individual subsystems y;, for 1 =i= . Then,
specializing equation (2.10) to the nth step of the algorithm and invoking linearity,
we see that the l;i’s are constants, and the d;’s are linear functions of x and various
derivatives of y;. Decoupling is accomplished by cancelling the dependence on x, and
diagonalizing the matrix multiplying the inputs, via a static feedback.

The fact that condition (3.6) is not sufficient for general nonlinear systems is
illustrated by the following example.

Example 3.5. Consider the system

. T
X=(uy, XgF XsUy, Us, X3Uy, Us) ',

Y1:(XI,X2)T, V2= X3.
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We easily calculate that {0, 0,} ={2, 3}, and for the two subsystems {o}, o3} ={1, 2}
and {oi}={1}. Thus, (3.6) is fulfilled. Nevertheless, a straightforward application of
the results of Nijmeijer and Schumacher [8] shows that the system cannot be decoupled
by any regular static-state feedback.

This example underlines the importance of the differential geometric approach in
general, and the “geometric” structure at infinity in particular, for the study of static
state feedback control problems, since the equivalent of (3.6) for the geometric structure
at infinity constitutes a local necessary and sufficient condition (at regular points)
[8]. On the other hand, algebraic methods seem to be better when we are studying
dynamic feedback problems [3], [4], [27]. In this spirit, we have the following result
that does not hold with the geometric version of the structure at infinity because it
fails [10] the properties of Lemma 3.3.

THEOREM 3.6. The system (1.1a), (3.4) can be decoupled with regular dynamic state
feedback if and only if

(3.7) p= gl Pis

where p; denotes the rank of the subsystem (1.1a) with output y,.

Proof. Because the necessity is clear, only the sufficiency will be shown. For each
block of outputs y;, permute if necessary the components in such a way that yi=
(77,97, dim y, = p;, and on defining

&, =span{dx, dy,, - - -, dy\"},
we have
& =span{dx, dy,, - - -, dj\*’}

for all k, 1=k=n. This can always be accomplished with the help of the inversion
algorithm of § 2.2. Then,

dj" e span {dx, dy,, - - -, dp\¥'}

and the rank of the subsystem (1.1a) with output j, is equal to p,. Let £ denote the
subsystem whose output is given by (y,, - - - , ¥.). We conclude that the rank of < is
p and the original system (1.1a), (3.4) can be decoupled if and only if £ can be. It
follows from (3.7) that the rank of £ equals the number of its scalar output components;
thus, £ can be row-wise decoupled [25].

4. Conclusions. In the recent literature, there have been many attempts to extend
concepts and tools from the linear setting to the class of nonlinear systems. For example,
Nijmeijer extends a definition of right invertibility based on the consideration of the
sequence of Toeplitz matrices associated to a linear system. Singh extends the notion
of left invertibility based on the input elimination idea of Silverman’s algorithm.
Descusse and Moog and Nijmeijer and Respondek use the idea of delaying the inputs
via the addition of integrators, as does Wang [28], to achieve dynamic decoupling of
nonlinear systems. Fliess uses differential algebra to extend the notion of the rank of
a transfer matrix, so as to synthesize left invertibility, right invertibility, and dynamic
decoupling. ‘

In this paper, we have shown that all of the above extensions can be unified by
the study of a particular chain of subspaces naturally associated to the output of a
system. As simple corollaries of our analysis, we obtain that right invertibility in the
sense of Nijmeijer is the same as in that of Fliess, which in turn is the same as p*=p,
the number of scalar output components. Left invertibility in the sense of Singh is the
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same as in that of Fliess, which is the same as p*=m, the number of scalar input
components. Moreover, the inversion algorithm has a natural interpretation as a
procedure for constructing a basis adapted to the chain of subspaces gy é,.
In a similar vein, the dynamic extension algorithm, which lies at the heart of dynamic
decoupling, also constructs a basis adapted to the chain &,<---< €,. The main
difficulty in comparing the various algorithms was that each was working over its own
unique field. This was overcome by relating each of the fields to a common larger field.
In this way, the equivalence of four topics, that previously had only been studied
separately, was established.

The search for a nonlinear version of the structure at infinity of a linear system
has incited much effort on the part of many researchers [2], [7]-[9], [29], with the
goal of finding an appropriate tool for solving such classical synthesis problems as
noninteracting control and model matching. One of the first efforts in this regard was
perceived to possess certain deficiencies [10], because a system could have more zeros
at infinity than input or output components, and also because the number of zeros at
infinity could be altered by the addition of integrators on the input channels.

Section 3 takes an algebraic approach to defining a nonlinear structure at infinity
[9]. Its number of zeros at infinity is always less than or equal to the number of inputs
or outputs, and is invariant under the action of regular dynamic feedback. However,
the deficiency of this generalization of the structure at infinity is that it cannot properly
address the static block noninteracting control problem. Hence the “right’”” approach,
if it exists [30], is yet to be discovered.
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