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Preface

This collection of course notes is dedicated to the group of students who were brave enough to take the pilot offering of ROB 101,
Computational Linear Algebra in Fall 2020.

ROB 101 was conceived by Prof. Chad Jenkins as one part of a complete undergraduate curriculum in Robotics. Chad and I both
thank Associate Dean for Undergraduate Education, Prof. Joanna Mirecki Millunchick, for her support in the offering of this course
as ROB 101.

The following remarks are adapted from an Education Proposal led by Prof. Jenkins, Dr. Mark Guzdial, Ella Atkins, and myself.

A challenge for the current undergraduate curricular structure at the University of Michigan (and elsewhere) is that the best Robotics
major is a quadruple major in ME, EE, CS, and Math with a minor in Psychology. The Robotics Institute at Michigan is poised to
address this challenge in revolutionary ways as it evolves toward a department. The Robotics faculty are using the opportunity of a
clean slate in the area of undergraduate robotics education-—and the absolute necessity to integrate learning across a wide range of
traditional disciplines—to design a new curricular system where computation, hardware, and mathematics are on an equal footing in
preparing a future innovation workforce.

By integrating linear algebra, optimization, and computation in the first semester, students will experience mathematics as a means
of making predictions and reasoning about experimental outcomes and robot designs. They will be prepared to encounter physics as
a means to build mathematical models that describe the movement of objects, those with a palpable mass as well as electrons and
waves, while grounding all of this in design. And computation? They will find it is the engine that drives discovery and the means of
extracting information from data, allowing their machines to make decisions in real-time.

In addition to ROB 101 (Computational Linear Algebra) in the first year, we are planning ROB 102 (Graph Search for Robotics
and AI), which will show how computers can reason autonomously through graph search algorithms. The objective of the course is
for students to implement a path planner for autonomous navigation with a given mobile robot at a known location in a known en-
vironment. The course will build towards providing a broader conceptual foundation for modeling problems as graphs and inferring
solutions through search.

In ROB 103 (Robotic Mechanisms), students will experience hands-on robotic systems design, build, and operation. The objective
of the course is for students, in teams, to build an omni-drive mobile robot that can be teleoperated, as a step towards the gateway
course: ROB 204. Students will learn to safely and efficiently operate modern shop tools such as 3D printers and laser cutters as well
as traditional machining tools such as lathes, mills, and drill presses. Students will learn basic electronic and power systems principles
including safe battery management, wiring harness design and assembly, and signal measurement for test and debugging. Students
will design and build their real-world mobile robot based on application requirements from conception with CAD software through
manufacturing, assembly, and test. Each student team will be given a “kit” of servos, sensors, and low-cost embedded processing
components to use in their design.

The new first-year curriculum allows for major innovation in the second and third year curriculum, and the advancing of many grad-
uate topics to much earlier places in Robotics education. We hope that you will follow our efforts in bringing this curriculum to the
University of Michigan.

Jessy Grizzle
Fall Term, 2020
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Philosophy of the Course

The Robotics faculty want out of the Sputnik era of educating engineers, where we are forced to pound our students with four
semesters of Calculus before we are able to engage them in any interesting engineering. We seek to prepare students for the era
of Information, AI, Data, and of course, Robotics. While we believe our ideas for this Linear Algebra course will work for most
engineering departments, we understand that the College of Engineering needs a skunkworks to test some of our more revolutionary
suggestions before turning them loose on everyone. We are proud to serve that role.

ROB 101 assumes a High School course in Algebra and no background in programming. With these entry requirements, we seek
to open up mathematics and programming to everyone with the drive and skills to arrive at the University of Michigan’s College of
Engineering. From its inception in December 2019, the plan has always been to teach the course in a hybrid mode. We are being very
intentional to design the course for inclusivity with a focus on making sure that one’s zip code is not the best predictor of success. To
do that, we are re-imagining the way mathematics is introduced to first-semester Y1 undergrads. We want to break the Sputnik era
4-semester calculus chain where AP credits are a huge predictor of success.

We will begin mathematics with Linear Algebra, the workhorse of modern autonomous systems, machine learning, and computer
vision. We are integrating it with computation, and to make sure that students without access to high-end tools can be successful, all
the programming will be run in a web browser through cloud services that are hidden from the student. If you can google at home
or the library, then you can complete our programming assignments. Setting this up is a challenge, but we feel it is very important
to have a platform that has equity in mind. Our plans for a hybrid mode of teaching are motivated by a desire to have students from
Minority Serving Institutions join the course this fall.

The material in the course leaves out many traditional Linear Algebra topics, such as eigenvalues, eigenvectors, or how to compute
determinants for matrices larger than 2 × 2. Sounds crazy! Good. The course focuses on solving systems of linear equations at
scale, meaning hundreds or thousands of variables, and all the mathematics in the book should be implementable in HW sets in Julia.
With that as a premise, we chose to focus on a few things in Linear Algebra that work well at scale, such as triangular systems of
equations. This led to the conviction that LU Factorization should be introduced early and in an understandable manner, which was
made possible by a magical video by Prof. Gilbert Strang (MIT). Once you understand that matrix multiplication C = A ·B can be
done by multiplying the columns ofA by the rows ofB and summing them up, the LU Factorization becomes completely transparent,
allowing triangular matrices to rule the day. And once you focus on triangular structures, even linear independence and linear combi-
nations become much more approachable. Of course, some basic geometry is good, and thus Gram-Schmidt is featured along with the
QR Factorization. In between, least squared error solutions to linear equations and regression are treated along with other useful tools.

The book wraps up with a treatment of root finding for both scalar and vector nonlinear equations, and a users’ view of optimization
that highlights the role that the abstract function “argmin” is playing in modern engineering.

Readers of the book will not find many applications of the juicy computational tools as they are treated in the HW sets, via jupyter
notebooks, and in three amazing Projects. The first project leads students through the process of building a map for robot navigation
from LiDAR data collected on the UofM North Campus Grove. The main Linear Algebra concept being explored is the transforma-
tion of points and collections of points in R3 under rigid body transformations. The second project is built around regression and
will give students insight into the power of Machine Learning. The third project will focus on the control of a planar Segway using
a simplified version of Model Predictive Control. Students will experience the excitement of balancing a challenging ubiquitous
mobile platform, and while doing so, will learn about ODEs and their relation to iterative discrete-time models.

Finally, we thank Prof. Steven Boyd for making his Y1 Applied Linear Algebra course material open source (http://vmls-book.
stanford.edu/). We have done the same (https://tinyurl.com/sxk8n4u9).

Jessy Grizzle and Maani Ghaffari Ann Arbor, Michigan USA
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List of Algorithms and Methods or Things You
Need Code to Do Well

The book covers the following algorithms. In HW, you will subsequently code most of them in the Julia Programming Language and
apply them “at the scale of life”! The class projects will bring Linear Algebra to life.

• Forward substitution; see Chap. 3.5

• Back substitution; see Chap. 3.6

• Standard matrix multiplication; see Chap. 4.4

• A second way to do matrix multiplication; see Chap. 4.5

• LU Factorization without row permutations; see Chap. 5.5

• Using LU to solve Ax = b; see Chap. 5.6 and Chap. 5.9

• (Optional Read): LU Factorization with row permutations; see Chap. 5.7

• Using LU to compute det(A); see Chap. 6.1

• Building a row permutation matrix; see Chap. 6.5

• Checking linear independence; see Chap. 7.5.4

• (Optional Read): LDLT Factorization (aka Cholesky Factorization); see Chap. 7.6

• Counting number of linearly independent columns of a matrix; see Chap. 7.6

• Checking linear combinations; see Chap. 7.7

• Linear regression for overdetermined equations; see Chap. 8.2

• Gram-Schmidt; see Chap. 9.7.2 and (Optional Read): Modified Gram-Schmidt; see Chap. 9.12

• QR Factorization; see Chap. 9.8

• Linear regression for underdetermined equations; see Chap. 9.9

• Null space of a matrix; see Chap. 10.4

• Bisection Algorithm; see Chap. 11.2

• Numerical derivatives; see Chap. 11.3 and Chap. 11.5

• Newton’s Method; see Chap. 11.4 and Newton-Raphson Algorithm; see Chap. 11.6

• Gradient Descent; see Chap. 12.3

• Second-order optimization using the Hessian; see Chap. 12.5.3

• (Optional Read): Quadratic Program (QP) and max-margin classifier; see Chap. 12.8 and Chapter 13.3

• (Optional Read): Solving simple ODEs; see Appendix B
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Chapter 1

Introduction to Systems of Linear Equations

Learning Objectives
• Get you going on Algebra, just in case Calculus has erased it from your mind

• Review on your own the quadratic equation.

• Set the stage for cool things to come.

Outcomes
• Refresher on the quadratic equation.

• Examples of systems of linear equations with two unknowns. Show that three things are possible when seeking a solution:

– there is one and only one solution (one says there is a unique solution, which is shorthand for “there is a solution and it is
unique”);

– there is no solution (at all); and

– there are an infinite number of solutions

• Notation that will allow us to have as many unknowns as we’ll need.

• Remarks that you can mostly ignore on why some numbers are called counting numbers, rational numbers, irrational numbers,
or complex numbers

• Remarks on your first project.

• There is a programming manual associated with this book. Please see https://www.dropbox.com/s/ev6v8veutdjhkuk/
ROB_101_Julia_Programming_Guide.pdf?dl=0.
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1.1 For Review on Your Own: You Have Done Algebra Before

Quadratic Equation

ax2 + bx+ c = 0, where x is an unknown variable and typically a, b, and c are fixed real numbers, called constants.
If a ̸= 0, the solutions to this nonlinear algebraic equation are

x =
−b±

√
b2 − 4ac

2a
,

where the symbol ± (read, plus minus) indicates that there is one solution x corresponding to the plus sign and a second
solution x corresponding to the minus sign.

The discriminant of a quadratic equation is ∆ := b2− 4ac. If ∆ ≥ 0, the two solutions are real numbers, while if ∆ < 0, the
two solutions are complex numbers.

Complex Numbers

If you have not learned complex numbers (also known as (aka) imaginary numbers) or are fuzzy on the details, let your
GSI know. We may not use complex numbers at all in the graded portion of the course. We’re not sure yet! We will need
complex numbers when we study eigenvalues of matrices, which could happen at the end of the term, or it could be that we
do not get that far. Piloting a Linear Algebra course during a pandemic has never been done before!

Example 1.1 (two distinct real solutions) Find the roots of 2x2 + 8x− 10 = 0.

Solution:

a = 2, b = 8, c = −10
b2 − 4ac = 144 > 0

x =
−8±

√
144

4

=
−8± 12

4
= −2± 3

The two solutions are x = 1 and x = −5. ■

Figure 1.1: The two roots are at the intersection of the quadratic with the line y = 0. Why? Because, by definition, the roots are
values of x where ax2 + bx+ c equals zero!
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Example 1.2 (two repeated real solutions) Find the roots of 2x2 + 8x+ 8 = 0.

Solution:

a = 2, b = 8, c = 8

b2 − 4ac = 0

x =
−8±

√
0

4

=
−8± 0

4
= −2± 0

The two solutions are x = −2 and x = −2. ■

Figure 1.2: Note that there is now only a single intersection with y = 0 at x = −2. Because quadratic equations have two solutions,
we say the root at x = −2 is repeated.

Example 1.3 (two distinct complex solutions) Find the roots of 2x2 + 8x+ 10 = 0.

Solution:

a = 2, b = 8, c = 10

b2 − 4ac = −16

x =
−8±

√
−16

4

=
−8±

√
16
√
−1

4

=
−8± 4

√
−1

4

= −2±
√
−1

= −2± i

The two solutions are x = −2 + i and x = −2 − i, where i :=
√
−1 is an imaginary number. If you have not already learned

complex numbers, do not sweat it. If we need them at all in ROB 101, it will be at the end of the term and we will teach complex
numbers before we use them! ■
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Figure 1.3: Note that there are no intersections with y = 0 and hence there are not any real solutions.

Remark: As in many subjects, the vocabulary in mathematics reflects the many twists and turns of history. If you are expecting
mathematics to be a pure science in the sense that it is 100% logical, then you will often be disappointed! The Greeks and Egyptians
called 1, 2, 3, . . . natural numbers or counting numbers because they arose “naturally” in “counting objects”: one cow, two sheep,
three coins, four sacks of flour, etc. They were also comfortable with fractions, m

n , where both m and n were counting numbers,
and hence, n could never be zero. Fractions were called rational numbers based on the word ratio. The square root of two,

√
2, was

known to the Babylonians, Indians and Greeks. Our notion of
√
2 is probably thanks to Pythagoras, the Ionian Greek philosopher

known to you for developing the Pythagorean Theorem relating the sides of right triangles, yes, the famous formula a2 + b2 = c2,
which gives 12 + 12 = (

√
2)2, where the symbol

√
2 stands for the “quantity that when squared gives the counting number 2”. It

took a long time for the Greeks to accept that
√
2 could not be written as a ratio of two counting numbers. Eventually, it was proved

to be irrational, that is, not rational, which means precisely that it cannot be expressed as the ratio of two counting numbers. In case
you are interested, while Euclid was not the first to prove

√
2 was irrational, the beautiful reasoning he invented for the proof of

√
2

not being a rational number is still taught today. It is called proof by contradiction1.

So far, so good with regards to vocabulary. But why call things involving
√
−1 complex numbers? Initially, mathematicians could

not justify the existence of quantities involving square roots of negative numbers. Using them in calculations was a sign of “careless”
mathematics and such numbers were treated as being figments of one’s imagination, literally, imaginary numbers. Nevertheless, some
(brave) mathematicians found them convenient for solving equations and others even for describing physical phenomena. Eventually,
formal algebra caught up with the notion of imaginary numbers and their rules of use were rigorously justified. The name imaginary
numbers stuck, however! Here is a link to a slightly simplified explanation of how mathematicians “codify” the existence of complex
numbers: http://www.math.toronto.edu/mathnet/answers/imagexist.html Your instructors are unsure if they
could have followed the reasoning in this document when they were at your stage of college, so do not sweat it.

Just for fun, you might want to learn more about numbers on Wikipedia https://en.wikipedia.org/wiki/Number. Were
negative numbers always accepted? What about the notion of zero? None of these remarks on numbers are required reading.
You will not be tested on the history of numbers!

To Know

• What are the counting numbers (also known as the natural numbers)?

• What are rational numbers?

• Be able to give an example of an irrational number, but of course, you are not expected to prove it is irrational.

• Later in the course (though it is not sure): what are imaginary numbers?

1It may seem remarkable to you that the two words “proof” and “contradiction” can coexist in logical statements. As you advance in your mathematical training,
you may come across the term again. “Proof by contradcition” is not for amateurs...think about it as semi-professional-grade logic and math.
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In ROB 101, the first ten Chapters focus on linear equations, hence, equations that do not have quadratic terms x2, cubic terms x3,
nor terms with higher powers; they also do not have sin(x), cos(x),

√
x, or ex or anything like that. It is perhaps hard to believe that

equations with only order-one terms and constants could be interesting or important, but they are both interesting and important!

1.2 Linear Systems of Equations: What can happen?
We begin with several examples to illustrate what can happen.

Same number of equations as unknowns, and there is a unique solution:

x+ y = 4

2x− y = −1
(1.1)

One way to compute a solution is to solve for x in terms of y in the first equation and then substitute that into the second equation,

x+ y = 4 =⇒ x = 4− y
2x− y = −1 =⇒ 2(4− y)− y = −1

=⇒ −3y = −9
=⇒ y = 3

going back to the top
x = 4− y =⇒ x = 1

You can try on your own solving for y in terms of x and repeating the above steps. You will obtain the same answer, namely
x = 1, y = 3.
Another “trick” you can try, just to see if we can generate a different answer, is to add the first equation to the second, which will
eliminate y,

x+ y = 4

+ 2x− y = −1

3x+ 0y = 3

=⇒ x = 1

Going back to the top and using either of the two equations

x+ y = 4 =⇒ y = 4− x
=⇒ y = 3

or
2x− y = −1 =⇒ −y = −2x− 1

=⇒ −y = −3
=⇒ y = 3

gives the same answer as before, namely, x = 1, y = 3.

In fact, the set of equations (1.1) has one, and only one, solution. In math-speak, one says the set of equations (1.1) has a unique
solution. Often, we will stack x and y together and write the solution as[

x
y

]
=

[
1
3

]
.

Same number of equations as unknowns, and there is no solution:

x− y = 1

2x− 2y = −1
(1.2)
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Because there are only two equations with a very nice set of numbers you might notice almost immediately that the left-hand side of
the second equation is twice the left-hand side of the first equation, namely, 2x− 2y = 2(x− y), but when we look to the right-hand
sides, −1 ̸= 2 · 1, and hence the equations (1.2) are inconsistent.

While the above is one way to analyze the problem, let’s try to find a solution just as we did for the first set of equations,

x− y = 1 =⇒ x = y + 1

2x− 2y = −1 =⇒ 2(y + 1)− 2y = −1
=⇒ 2 + 2y − 2y = −1
=⇒ 2 = −1.

Hence, trying to solve the equations has led us to a contradiction, namely 2 = −1. Perhaps if we had solved for y in terms of x, we
could have found a solution? Let’s try

x− y = 1 =⇒ −y = −x+ 1

=⇒ y = x− 1

2x− 2y = −1 =⇒ 2x− 2(x− 1) = −1
=⇒ 2x− 2x+ 2 = −1
=⇒ 2 = −1

again! No matter how you manipulate the equations (1.2), while obeying “the rules of algebra” (which we have not yet learned for
systems of linear equations), you cannot extract a sensible answer from these equations. They really are inconsistent.

Same number of equations as unknowns, and there are an infinite number of solutions:

x− y = 1

2x− 2y = 2
(1.3)

Because there are only two equations with a very nice set of numbers, you might notice that the left-hand side of the second equation
is twice the left-hand side of the first equation, namely, 2x − 2y = 2(x − y), and this time, when we look to the right-hand sides,
2 = 2 · 1, and hence the two equations are actually the “same” in the sense that one equation can be obtained from the other equation
by multiplying both sides of it by a non-zero constant. We could elaborate a bit, but it’s not worth it at this point. Instead, let’s
approach the solution just as we did in the first case.

We solve for x in terms of y in the first equation and then substitute that into the second equation,

x− y = 1 =⇒ x = y + 1

2x− 2y = 2 =⇒ 2(y + 1)− 2y = 2

=⇒ 2y + 2− 2y = 2

=⇒ 2 = 2.

The conclusion 2 = 2, is perfectly correct, but tells us nothing about y. In fact, we can view the value of y as an arbitrary free
parameter and hence the solution to (1.3) is

x = y + 1, −∞ < y <∞.
The solution can also be expressed as

y = x− 1, −∞ < x <∞,
which perhaps inspires you to plot the solution as a line in R2, with slope m = 1 and y-intercept b = −1.

Summary So Far

Consider a set of two equations with two unknowns x and y

a11x+ a12y = b1

a21x+ a22y = b2,
(1.4)

constants a11, a12, a21, a22 and b1, b2. Depending on the values of the constants, the linear equations (1.4) can have a unique
solution, no solution, or an infinity of solutions. The equations cannot have two and only two distinct solutions.
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More equations than unknowns typically means that there are no solutions: The system of equations

x = 1

y = 2

x+ y = a

(1.5)

will only have a solution when a = 3. For all other values of a, it will not have a solution. We will learn to recognize later when the
set of equations are consistent. At this point in the course, we do not have adequate mathematical tools to address the issue.

Limit of Hand Solutions
When there are only two equations and two unknowns, determining by hand if the equations have one solution, no solution, or
an infinity of solutions is quite do-able. With sufficient motivation and “nice numbers”, three equations and three unknowns
is also not too bad. At four, it becomes super tedious and errors begin to sprout like weeds. Hence, what about 100 equations
and 100 unknowns? Our four-week goal is for you to handle systems of linear equations with hundreds of variables
with confidence and ease As you can imagine, this is where the “computational” part of ROB 101’s name comes into play!

1.3 Naming Variables
If we have two variables (also called unknowns), it is natural to call them x and y. If we have three variables, naming them x, y, and
z works fine. If we have 26 variables, would we start with a and go all the way to z? What if we have more variables? Well, there
are 24 Greek letters, do we add them to the list? Throw in Mandarin Characters to get us to several thousand variables? Clearly, this
is not a practical way to go. The only real possibility is to add counting numbers, because there are as many of them as we need, and
computers understand numbers!

Welcome to x1, x2, x3, . . . , xn, or y1, y2, . . . , ym etc.

1.4 A 3 x 3 Example
Here is a system of linear equations with variables x1, x2, x3.

x1 + x2 + 2x3 = 7

2x1 − x2 + x3 = 0.5

x1 + 4x3 = 7

(1.6)

The strategy for seeking a solution is the same as with two equations and two unknowns: solve for one of the variables in terms of
the other variables, substitute into the remaining equations, simplify them, and repeat. We can start anywhere, so let’s solve for x1 in
the bottom equation and plug that back into the two equations above it. Doing so gives us,

x1 = 7− 4x3 (1.7)

and then

(7− 4x3)︸ ︷︷ ︸
x1

+x2 + 2x3 = 7 =⇒ x2 − 2x3 = 0

2(7− 4x3)︸ ︷︷ ︸
2x1

−x2 + x3 = 0.5 =⇒ −x2 − 7x3 = −13.5

x2 − 2x3 = 0 =⇒ x2 = 2x3 (1.8)
−x2 − 7x3 = −13.5 =⇒ −(2x3)︸ ︷︷ ︸

−x2

−7x3 = −13.5

=⇒ −9x3 = −13.5
=⇒ x3 = 1.5
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Plugging “x3 = 1.5” into (1.7) gives
x1 = 7− 4 · (1.5) = 7− 6 = 1.

And then from (1.7), we have that
x2 = 2x3 = 2 · (1.5) = 3.

Hence, the solution is x1x2
x3

 =

 1.0
3.0
1.5

 . (1.9)

Tedium and Pain =⇒ Motivation!
The hope is that you found the 3 × 3 example super tedious and something you’d prefer to avoid! The more tedious and
painful you found it, the more motivation you will have to learn some new math that will make solving systems of linear
equations a snap.

1.5 Greek Alphabet
It’s hard to believe that the 26 Latin letters we know and love, a, b, c, . . . , x, y, z, especially after being augmented with numerical
subscripts, do not provide enough symbols! You might as well get used to it, engineers and mathematicians often use the 24
Greek letters as well: α, β, γ, . . . , χ, ψ, ω. Here is a link to the Greek alphabet with names of the letters and their pronunciations:
https://web.mit.edu/jmorzins/www/greek-alphabet.html. 99.9% of all engineers, including your author, mis-
pronounce them, so do not feel intimidated by that. Just gleefully join the club!

There are several accepted modern pronunciations of the Greek alphabet, it seems, giving you even less worry about your own
pronunciation. The links below give a few of them:

1. Greek Alphabet - Pronunciation of each letter: https://www.youtube.com/watch?v=1FyEWbwBarQ

2. Greek Alphabet Rap Song: https://www.youtube.com/watch?v=w3D5ERMOpMk

3. Greek Alphabet Song (Nursery-rhyme Style): https://www.youtube.com/watch?v=3gaeIUsPJ-Y

4. Learn the Greek Alphabet in Less Than 10 Minutes: https://www.youtube.com/watch?v=BQVoz-HX2cA

If you lookup the origin of the word “AlphaBet”, you will learn that it comes from Alpha Beta, the first two letters of the Greek
Alphabet.

1.6 (Optional Read) Where is Computational Linear Algebra Used?
Figure 1.5 shows numerous areas where Computational Linear Algebra is used. In ROB 101, we have built projects around three
different themes to give you a chance to really dive into a subject and feel that you learned something beyond the math itself:

• For Project 1: Map Building from LiDAR Data you will be given data collected on the Cassie Blue bipedal robot during
an experiment on the North Campus Grove and are asked to transform the data for building a map and visualizing it using
Julia. The underlying work you will do is very similar to what is done in real-time2 on Cassie in order to build a map for
autonomous navigation. You may wish to view the videos https://www.youtube.com/watch?v=pNyXsZ5zVZk
and https://youtu.be/gE3Y-2Q3gco to see mapping and navigation done in real-time. Yes, this is very similar to
what is done by AVs (Autonomous Vehicles). One difference is that an AV has 200 Kg of electronics in its trunk to process all
the data, while Cassie’s entire autonomy package weighs in at 9 Kg and runs off a hobbyist LiPo battery.

2Real-time means the computations are done quickly enough on the robot that they can be used almost immediately. This is opposed to “off-line” where you collect
data on the robot and then do the processing on a desktop in the lab. You are clearly doing offline data processing, which is easier, because there are no computation
time requirements.
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• For Project 2: Precipitation Data in Alaska (A True Story), you will use linear regression methods taught in Chap. 8 and
apply them to a much larger dataset from the U.S. National Oceanic and Atmospheric Administration (NOAA). The project
will give you insight into Machine Learning, one facet of the burgeoning area of Artificial Intelligence or AI for short. You
will learn an important new function called the radial basis function and apply it towards building a mathematical model of a
surface.

• For Project 3: Feedback Control of a Segway, you will learn how to balance and “drive” an inherently unstable mobile
robot! If you have not seen a Segway, here is a video of the bideal robot Cassie Blue riding a Segway https://youtu.
be/0gauVSUJzd0. Your project will not be this awesome, but the project will put you on the road to awesome things!

Now, in case just reading about these projects intimidates you, we want to assure you that their difficulty has been thoughtfully scaled
to a first-semester Y1 experience, while also giving you insight into how the real things are done. This is possible because we will
teach you math and programming in an integrated manner. The math reinforces the programming and the programming reinforces
the math. At each step of the way, you will increase your confidence in Engineering, Mathematics, or the Sciences as a career
choice. In High School, you were mostly taught math as being disconnected from real applications. There was a huge emphasis on
memorizing formulas or theorems, without ever really using the concepts to do something fun. In ROB 101, we hope to show you
how empowering it is to do mathematics at the scale of life.

1.7 Looking Ahead
We need a straightforward way to check whether a set of equations falls into the nice case of having a unique solution or is it one of
the “problematic cases” where there may be no solution at all or an infinity of solutions. To get there, we need to learn:

• what are matrices and vectors;

• how to express a system of linear equations in terms of matrices and vectors;

• what it means for a set of linear equations to be triangular or square; and

• what is the determinant of a matrix.

Figure 1.4: Cassie Blue with her perception package: a 32-Beam Velodyne LiDAR and an Intel RealSense Camera. In your first
project, you will learn what is a LiDAR sensor and how to process the LiDAR data to build a “map” that a robot can use for
navigation. Each colored dot in Fig. 1.5a is a LiDAR measurement. How many are there? Ten thousand, maybe? The image is the
result of combining multiple LiDAR scans into a single image. You will learn that this involves applying matrices to vectors. You
will learn about coordinate frames. Right now, this seems like magic. In a few weeks, you will be comfortable enough with the
Julia programming language to manipulate a dataset with 10,000 points or more. Remember, one of our goals is mathematics and
programming at the scale of life!
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Just a few of the almost infinitely many application areas of linear algebra and programming.(a) Cassie Blue building
a map on the UofM North Campus Grove. You will study this in Project 1. (b) Fitting a function to data allows one to model new
situations that no one has seen before; image courtesy of Wikimedia Commons. You will study this in Project 2. (c) A Segway-like
structure that requires a feedback loop to balance it; image courtesy of www.soarboards.com. You will study this in Project 3.
(d) Gradient descent is used to find minima of functions, image courtesy of https://www.analyticsvidhya.com. You will
study this in Chap. 12. (e) Checkerboard or other regular patterns are used to calibrate cameras so that they can measure the position
of objects in a scene; image courtesy of https://www.imatest.com/ (f) An electric circuit with a non-inverting amplifier
that converts a voltage signal to a desired current, such as one might use to drive a motor or an electromagnet; image courtesy
of https://wiki.analog.com/university/courses/electronics/text/chapter-4. Circuits are studied in
EECS 215.
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Chapter 2

Vectors, Matrices, and Determinants

Learning Objectives
• Begin to understand the vocabulary of mathematics and programming

• Answer the question: why make a distinction between integers and decimal numbers.

• An introduction to the most important tools of linear algebra: vectors and matrices.

• Find out an easy way to determine when a set of linear equations has a unique answer.

Outcomes
• Scalars vs Array

• Row vectors and column vectors

• Rectangular matrices and square matrices

• Learn new mathematical notation x := y, which means that x is by definition equal to y. You may be more used to x ≜ y.

• Using matrices and vectors to express systems of linear equations

• Determinant of a square matrix and its relation to uniqueness of solutions of systems of linear equations
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2.1 Scalars and Arrays
Scalars are simply numbers such as the ones you have been using for a long time: 25.77763,

√
17, 10,−4, π. In the Julia program-

ming language, you will soon learn that for computational and storage efficiency, Julia differentiates between scalars that require
decimal points and those that do not. Get ready for that! In ROB 101, when we do math, scalars are just numbers. When we do
programming, scalars that do not require decimal points are called INTEGERS and those that do require decimal points are called
FLOATING POINT NUMBERS because, with the same number of zeros and ones1, Julia has to represent very large numbers such
as 5.972 × 1024, the mass of the earth in kilograms, and very small numbers, such as the mass of one atom of lead in kilograms
3.4406366 × 10−22. To do that, where the decimal point appears in a list of zeros and ones has to “float”, that is, it varies from
number to number.

In ROB 101, we will not need to learn how computers represent numbers in binary. We will simply accept that computers use a
different representation for numbers than we humans use. The more zeros and ones we allow in the representation of number, the
more space it takes and the longer it takes to add them or multiply them, etc. The computer that provided navigational assistance
for the moon landing on 20 July 1969 had a 16 bit word length, meaning its computations were based on groups of 16 binary digits
(zeros and ones), called bits. In Julia, we’ll typically use 64 zeros and ones to represent numbers:

• Int64

• Float64

Remark (can skip): In case you are wondering, ∞ (infinity) is a concept: it is NOT a number. Because it is not a number, ∞
is neither an integer nor a decimal number. The symbol ∞ is used to indicate that there is no positive upper bound for how big
something can grow (i.e., it can get bigger and bigger and bigger . . .), while −∞ is similar to indicate that something can get more
and more negative without end. In ROB 101, you will only encounter∞ when you try to divide something by zero. Julia has been
programmed to rock your world when you do that! (Just kidding).

Figure 2.1: Here is an array of numbers from a spreadsheet. The rows are numbered while the columns are labeled with letters.

1Zeros and ones are sometimes called the binary language of computers. If you are interested in binary numbers and binary arithmetic, you can find many sources
on the web.
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Arrays are scalars that have been organized somehow into lists. The lists could be rectangular or not, they could be made of columns
of numbers, or rows of numbers. If you’ve ever used a spreadsheet, then you have seen an array of numbers. In Fig. 2.1, columns
A, D, E, F, and G have only integer numbers in the them, while columns B and C use decimal numbers. Each row has both integer
numbers and decimal numbers.

2.2 Row Vectors and Column Vectors
For us, a vector is a finite ordered list of numbers or of unknowns. In Julia, a vector is a special case of an array. For example

v =

 1.1
−3
44.7

 (2.1)

is a vector of length three; sometimes we may call it a 3-vector. By ordered we mean the list has a first element v1 = 1.1, a second
element v2 = −3, and a third element v3 = 44.7, and we also mean that if we change the order in which we list the elements, we
(usually) obtain a different vector. For example, the vector

w =

 1.1
44.7
−3

 (2.2)

is not equal to the vector v, even though they are made of the same set of three numbers.

Vectors written from “top” to “bottom” as in (2.1) and (2.2) are called column vectors. It is also useful to write vectors from “left” to
“right” as in

vrow =
[
1.1 −3 44.7

]
(2.3)

and we call them row vectors. What we said about the word “ordered” applies equally well to row vectors in that the row vector v
has a first element vrow1 = 1.1, a second element vrow2 = −3.0, and a third element vrow3 = 44.7. Moreover, if we change the order in
which we list the elements, we (usually) obtain a different row vector. Here, we were super careful and added the superscript row to
vrow to clearly distinguish the symbol v being used for the column vector (2.1) from the row vector (2.3). Normally, we will not be
that fussy with the notation, BUT, you must be aware that column vectors and row vectors are different “animals” except in the case
that they have length one, as in v = [v1] is both a row vector and a column vector.

A general length n column vector is written like this,

v =

 v1
...
vn

 , (2.4)

while a general length n row vector is written like this

v =
[
v1 · · · vn

]
. (2.5)

This general notation allows for the case that n = 1, yielding

v = [v1],

which as we noted above, is both a row vector and a column vector.

Here are some examples in Julia, thanks to Prof. Maani Ghaffari:

1 # we define an array of numbers.
2 # a is a 1x5 array
3 a = [1 -2 4 8.1 2^0.5]

Output

1×5 Matrix{Float64}:
1.0 -2.0 4.0 8.1 1.41421
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1 # b is a 5x1 array
2 b = [1, -2, 4, 8.1, 2^0.5]

Output

5-element Vector{Float64}:
1.0

-2.0
4.0
8.1
1.4142135623730951

1 # b is a 5x1 array
2 b = [1, -2, 4, 8.1, 2^0.5]

Output

5-element Vector{Float64}:
1.0

-2.0
4.0
8.1
1.4142135623730951

1 # or
2 c = [1; -2; 4; 8.1; 2^0.5]

Output

5-element Vector{Float64}:
1.0

-2.0
4.0
8.1
1.4142135623730951

2.3 Remark on Brackets

Usually, in this course and in most books, square brackets [ ] are used to enclose vectors, but that is mainly a matter of taste as you
can also use parentheses ( ) as in

v =

 v1
...
vn

 (2.6)

and

v =
(
v1 · · · vn

)
. (2.7)

In most programming languages, and Julia is no exception, you can only use square brackets! The choice of symbols, words,
and their allowed arrangements in a language is called syntax. In a programming language, syntax is typically much more restrictive
than in a written version of a spoken language. At some point, you may appreciate that throwing errors for bad syntax helps us to
reduce ambiguity and bugs when we program. You have likely experienced that ambiguities in spoken language can sometimes lead
to bad outcomes.
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2.4 Matrices, Rectangular and Square, and the Matrix Diagonal
Matrices are generalizations of vectors that allow multiple columns and rows, where each row must have the same number of
elements2. Here is a 3× 2 matrix,

A =

 1 2
3 4
5 6

 , (2.8)

meaning it has three rows and two columns, while here is a 2× 3 matrix,

A =

[
1.2 −2.6 11.7
3.1 11

7 0.0

]
, (2.9)

meaning it has two rows and three columns. It is customary to call a 1× n matrix a row vector and an n× 1 matrix a column vector,
but it is perfectly fine to call them matrices too!

A general n×m matrix

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 , (2.10)

is said to be rectangular of size n×m (one reads this as “n by m”), and when n = m, we naturally say that the n× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (2.11)

is square. We note that aij , the ij-element of A, lies on the intersection of the i-th row and the j-th column.

Definition: The diagonal of the square matrix A in (2.11) is

diag(A) =
[
a11 a22 . . . ann

]
(2.12)

What we are calling the diagonal is sometimes called the main diagonal of a matrix. We now highlight the diagonal in red to
help those with a “visual memory”

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 ⇐⇒ diag(A) =
[
a11 a22 . . . ann

]
.

While it is possible to define the diagonal of general rectangular matrices, we will not do so at this time. Here are some examples in
Julia, once again thanks to Prof. Maani Ghaffari

1 # Let’s define a 3x2 matrix
2 A = [1 2; 3 4; 5 6]

Output

3×2 Array{Int64,2}:
1 2
3 4
5 6

2Equivalently, each column has the same number of elements.
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1 # Let’s define a 2x3 matrix
2 A = [1.2 -2.6 11.7; 3.1 11/7 0]

Output

2×3 Array{Float64,2}:
1.2 -2.6 11.7
3.1 1.57143 0.0

1 # Here is a big matrix
2 using Random
3 A = randn(6,6)

Output

6×6 Matrix{Float64}:
-0.518479 0.693952 -0.137698 0.200556 2.03276 -1.09174
0.575811 0.999473 -0.0427593 -0.903915 2.14338 0.240728
0.570255 0.477523 -0.503201 -0.864054 -0.661544 0.0821051

-0.681514 -1.02591 -0.418878 0.248959 -0.776872 0.466698
0.395184 1.72782 0.976437 1.10196 0.892258 -1.48822
1.15146 -0.161273 -0.691775 -1.07168 0.909486 -1.02277

1 # compute its diagonal
2 using LinearAlgebra
3 diagA=diag(A)

Output

6-element Vector{Float64}:
-0.5184785168661076
0.9994728076152639

-0.5032006177084569
0.24895902626040853
0.8922580664116776

-1.022769405730864

2.5 Expressing a System of Linear Equations in terms of Vectors and Matrices

Before we even talk about “matrix-vector multiplication”, we can address the task of writing a system of linear equations in “matrix-
vector form”. In the beginning, we will diligently follow the notation Ax = b, so let’s see how we can identify a matrix A, a column
vector x, and a column vector b. We’ll do a few examples before giving a “general method”.

Example 2.1 Express the System of Linear Equations in Matrix Form:

x1 + x2 = 4

2x1 − x2 = −1.
(2.13)

Solution: When your instructors look at this equation, they see two unknowns x1 and x2 and coefficients3 associated with them on
the left-hand and right-hand sides of the two equations.

3Coefficients in this case are the numbers multiplying x1 and x2. An equations typically has variables (unknowns) and coefficients (numbers) that multiply the
unknowns or that determine what the equation is supposed to equal, as in 3x1 + 4x2 = 7.
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We can use the unknowns to define a column vector of length two, the four coefficients multiplying the unknowns to build a 2 × 2
matrix A, and the two coefficients on the right-hand side to define another column vector of length two,

x1 + x2 = 4

2x1 − x2 = −1
⇐⇒

[
1 1
2 −1

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
4
−1

]
︸ ︷︷ ︸

b

. (2.14)

■

Example 2.2 Express the System of Linear Equations in Matrix Form:

x1 − x2 = 1

2x1 − 2x2 = −1.
(2.15)

Solution: We now jump straight into it. We form the 2 × 1 vector x of unknowns as before and place the coefficients by rows into
the 2× 2 matrix A,

x1 − x2 = 1

2x1 − 2x2 = −1
⇐⇒

[
1 −1
2 −2

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
1
−1

]
︸ ︷︷ ︸

b

. (2.16)

■

Example 2.3 Express the System of Linear Equations in Matrix Form:

3x1 + x2 + 2x3 = 7

2x1 − x2 + 4x3 = 4
(2.17)

Solution: We can have the number of equations different from the number of unknown variables. In this case, we have more
unknowns than equations.

3x1 + x2 + 2x3 = 7

2x1 − x2 + 4x3 = 4
⇐⇒

[
3 1 2
2 −1 4

]
︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

[
7
4

]
︸ ︷︷ ︸

b

(2.18)

■
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From Multiple Linear Equations to Matrices and Vectors
We will work an example with three equations and four variables. The same method works for n equations in m variables.
Goal: Transform a system of linear equations into matrix form Ax = b

a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3.

(2.19)

Two parts are really easy. We define two column vectors

x :=


x1
x2
x3
x4

 and b :=

b1b2
b3

 . (2.20)

The vector x has four rows because there are m = 4 unknowns, x1, x2, x3 and x4. The vector b has three rows because there
are n = 3 equations.

Now, what about the matrix A? First of all, it’s size is 3 × 4 because it has one row for each equation and one column for
each unknown. You can think about it as follows. We place each term aijxj in the entry corresponding to the i-th row and
j-th column. For example a23x3 goes in the second row and third column; we highlight it below

row1

row2

row3

 a11x1 a12x2 a13x3 a14x4
a21x1 a22x2 a23x3 a24x4
a31x1 a32x2 a33x3 a34x4


︸ ︷︷ ︸
col1 col2 col3 col4

=

b1b2
b3

 . (2.21)

We note that row1 of the matrix has the terms for the first equation, row2 has the terms for the second equation, etc, while
col1 is for the x1 terms of each of the equations, col2 is for the x2 terms, etc. If we add up all of the entries in a given row,
we obtain the corresponding equation.

Next, we move the xi’s out of the matrix to the right-hand side while leaving the coefficients where they are, like so

row1

row2

row3

 a11x1 a12x2 a13x3 a14x4
a21x1 a22x2 a23x3 a24x4
a31x1 a32x2 a33x3 a34x4


︸ ︷︷ ︸
col1 col2 col3 col4

=

b1b2
b3

 ⇐⇒ Eq1
Eq2
Eq3

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


︸ ︷︷ ︸
var1 var2 var3 var4


x1
x2
x3
x4

 =

b1b2
b3


(2.22)

to obtain
a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3.

⇐⇒

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


︸ ︷︷ ︸

A


x1
x2
x3
x4


︸ ︷︷ ︸

x

=

b1b2
b3


︸ ︷︷ ︸

b

(2.23)

Remark: After a bit of practice, you will go straight from (2.19) to (2.22) (in other words, from the left-hand side of (2.23)
to the right-hand side of (2.23)), without passing through the intermediate step given in (2.21).

Example 2.4 Express the System of Linear Equations in Matrix Form:

x1 + x2 + 2x3 = 7

2x1 − x2 + x3 = 0.5

x1 + 4x3 = 7

(2.24)

Solution: Note that we treat “any missing coefficients” (as in the “missing x2” in the third equation) as being zeros! This is super
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important to remember.
x1 + x2 + 2x3 = 7

2x1 − x2 + x3 = 0.5

x1 + 4x3 = 7

⇐⇒

 1 1 2
2 −1 1

1 0 4


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 7
0.5
7


︸ ︷︷ ︸

b

(2.25)

■

Example 2.5 We redo Example 2.4 with the equations in a different order

x1 + 4x3 = 7

x1 + x2 + 2x3 = 7

2x1 − x2 + x3 = 0.5

(2.26)

Solution: Once again, we treat “any missing coefficients” (as in the “missing x2” in the first equation) as being zeros! This is super
important to remember.

x1 + 0x2 + 4x3 = 7

x1 + x2 + 2x3 = 7

2x1 − x2 + x3 = 0.5

⇐⇒

 1 0 4
1 1 2
2 −1 1


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 7
7
0.5


︸ ︷︷ ︸

b

(2.27)

■

Example 2.6 (Optional Read) We redo Example 2.4 with the equations and variables in a different order

x1 + x2 + 2x3 = 7

x1 + 4x3 = 7

2x1 − x2 + x3 = 0.5

(2.28)

Solution: This time, just to drive home the point that you can place the variables in any order that you wish, we will define x by

xodd =

 x2
x3
x1

 .
With the variables x1, x2, and x3 arranged in this deliberately strange order, the matrices become

x1 + x2 + 2x3 = 7

x1 + 0x2 + 4x3 = 7

2x1 − x2 + x3 = 0.5

⇐⇒

 1 2 1

0 4 1
−1 1 2


︸ ︷︷ ︸

Aodd

 x2
x3
x1


︸ ︷︷ ︸

xodd

=

 7
7
0.5


︸ ︷︷ ︸

b

(2.29)

Re-ordering the components of x re-orders the columns of A. ■

How to Handle “Missing” Variables or Coefficients

A zero in row i and column j of a matrix corresponds to the variable xj being absent from the i-th equation 0 0 2
2 0 0
0 −1 4


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 7
0.5
7


︸ ︷︷ ︸

b

⇐⇒
2x3 = 7

2x1 = 0.5

−x2 + 4x3 = 7

⇐⇒
0x1 + 0x2 + 2x3 = 7

2x1 + 0x2 + 0x3 = 0.5

0x1 − x2 + 4x3 = 7︸ ︷︷ ︸
we’d never write it like this

(2.30)

2.6 The Matrix Determinant
One of the more difficult topics in Linear Algebra is the notion of the determinant of a matrix. Most people who claim to understand
it are wrong. Instead of teaching you right away a bunch of details of the matrix determinant that are rather useless in the actual
practice of Linear Algebra, we are going to cut directly to the “good stuff”. Moreover, we’ll only give you part of the good stuff here,
and save some “really excellent stuff” for Chapter 6.
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2.6.1 First Contact with the Matrix Determinant
What you want and need to know about the determinant function: the first five points are extra important.

Enough Facts about the Determinant to Get Us Going

Fact 1 The determinant of a square matrix A is a real number, denoted det(A).

Fact 2 A square system of linear equations (i.e., n equations and n unknowns), Ax = b, has a unique solution x for any n× 1
vector b if, and only if, det(A) ̸= 0.

Fact 3 When det(A) = 0, the set of linear equations Ax = b may have either no solution or an infinite number of solutions.
To determine which case applies (and to be clear, only one case can apply), depends on how “b is related to A”, which
is another way of saying that we will have to address this later in the course.

Fact 4 The determinant of the 1× 1 matrix A = [a] is det(A) := a.

Fact 5 The determinant of the 2× 2 square matrix A =

[
a b
c d

]
is det(A) := ad− bc.

Fact 6 The determinant is only defined for square matrices; see Fact 1.

Fact 7 We will learn later how to compute by hand the determinant of n × n matrices with special structure, but for general
matrices, you only need to know how to compute by hand the determinant of a 2× 2 matrix.

Remark: In case you are “sad” that you can only compute determinants for 2 × 2 matrices, do not worry. Very soon, you will
also be able to do it for a 100 × 100 matrix and understand what you are doing. In this book, we take a “structural approach” to
Computational Linear Algebra in general, and to the matrix determinant in particular. In Chap. 3, we will first focus on matrices
with a special “triangular” structure and then we’ll see how to “factor” or “decompose” a non-triangular matrix into (the product of)
two triangular matrices. This structural approach has many advantages when it comes to scaling up computations to problems with
hundreds or even thousands of variables. In particular, it will provide a practical way of understanding and computing the matrix
determinant for really big matrices.

Remark: A “clear but advanced” derivation of the classical formula for the determinant of an n × n matrix can be found in a blog
post by Akihiro Matsukawa: https://mtskw.com/posts/determinant/. In case the blog post gets taken down, here is a
link to a PDF https://tinyurl.com/5n7pm4x of it.

2.6.2 Examples of Using the Determinant
We reuse some previous examples and add in a few more to illustrate Fact 2 of Sec. 2.6.1

Example 2.7 Check for existence and uniqueness of solutions:

x1 + x2 = 4

2x1 − x2 = −1
⇐⇒

[
1 1
2 −1

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
4
−1

]
︸ ︷︷ ︸

b

. (2.31)

Solution: We compute det(A) = (1) · (−1)− (1) · (2) = −3 ̸= 0 and conclude that (2.31) has a unique solution. ■

Example 2.8 Check for existence and uniqueness of solutions:

x1 − x2 = 1

2x1 − 2x2 = −1
⇐⇒

[
1 −1
2 −2

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
1
−1

]
︸ ︷︷ ︸

b

(2.32)

Solution: We compute det(A) = (1) · (−2)− (−1) · (2) = 0. We therefore conclude that (2.32) does not have a unique solution. In
fact, it may have either no solution at all or it may have an infinite number of solutions. At this point in the course, we do not have
the tools to determine which case applies here without grinding through the equations. Referring back to (1.2), where we did grind
through the equations, we know that this system of linear equations has no solution. ■
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Example 2.9 Check for existence and uniqueness of solutions:

x1 − x2 = 1

2x1 − 2x2 = 2
⇐⇒

[
1 −1
2 −2

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
1
2

]
︸ ︷︷ ︸

b

(2.33)

Solution: We compute det(A) = (1) · (−2) − (1) · (2) = 0. We therefore conclude that (2.33) does not have a unique solution. In
fact, it may have either no solution at all or it may have an infinite number of solutions. At this point in the course, we do not have the
tools to determine which case applies here without grinding through the equations. Referring back to (1.3), we know that this system
of linear equations has an infinite number of solutions. ■

Example 2.10 Check for existence and uniqueness of solutions:

x1 + x2 + 2x3 = 7

2x1 − x2 + x3 = 0.5

x1 + 4x3 = 7

⇐⇒

 1 1 2
2 −1 1
1 0 4


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 7
0.5
7


︸ ︷︷ ︸

b

(2.34)

Solution: Using Julia, we compute det(A) = −9 ̸= 0. We therefore conclude that (2.34) has a unique solution for x.

1 # using LinearAlgebra
2 A=[1 1 2; 2 -1 1; 1 0 4]
3 det(A)

Output

-9.0

■

Example 2.11 Check for existence and uniqueness of solutions in an example where the unknowns are not in the “correct” order
and we have a bunch of “missing coefficients”:

x1 + x2 + 2x3 = 7

−x2 + x3 + 2x1 = 0.5

x1 + 4x3 = 7

x4 + 2x3 − 5x5 − 11 = 0

−4x2 + 12x4 = 0

⇐⇒


1 1 2 0 0
2 −1 1 0 0
1 0 4 0 0
0 0 2 1 −5
0 −4 0 12 0


︸ ︷︷ ︸

A


x1
x2
x3
x4
x5


︸ ︷︷ ︸

x

=


7
0.5
7
11
0


︸ ︷︷ ︸

b

(2.35)

Solution: Using Julia, one computes det(A) = −540 ̸= 0. We therefore conclude that (2.35) has a unique solution. Grinding
through the equations would have been no fun at all!

1 A=[1 1 2 0 0; 2 -1 1 0 0; 1 0 4 0 0; 0 0 2 1 -5; 0 -4 0 12 0]
2 det(A)

Output

-540.0

■

2.7 (Optional Read): Other Facts on the Matrix Determinant Covered in “Standard”
Courses

Here are some other facts that are sometimes useful but are not required in ROB 101.
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(a) (b)

Figure 2.2: (a) Image borrowed from the Khan Academy. A simple electric circuit as you would learn to analyze in the first month of
EECS 215 using Kirchhoff’s Current and Voltage Laws, which can be thought of as the electrical versions of Newton’s equations for
balancing forces. (b) A quadratic function that you need to find based upon someone having measured for you the three values given
in red! Can you do it? Does it matter that the data were selected from only one side of the parabola?

• In written mathematics, but not in programming, you will also encounter the notation det(A) = |A| , so that∣∣∣∣ a b
c d

∣∣∣∣ := ad− bc.

• In Julia, once you state that you are using the linear algebra package, that is using LinearAlgebra, the command is
det(A) , if A is already defined, or, for example, det([1 2 3; 4 5 6; 7 8 9])

• The determinant of a 3× 3 matrix is

det

 a b c
d e f
g h i

 := a · det
([

e f
h i

])
− b · det

([
d f
g i

])
+ c · det

([
d e
g h

])
. (2.36)

In ROB 101, you do not need to use, much less memorize, the formula (2.36).

Optional, and for sure, skip on your first read: Khan Academy

Here are the (Tiny URLs) of two videos by the Khan Academy that provide a “clasical” introduction to the matrix determinant.

• https://tinyurl.com/gqt93l3 works a 3× 3 example based on (2.36).

• https://tinyurl.com/zhlwb5v shows an alternative way to compute the determinant of a 3× 3 matrix.

• In ROB 101, you do not need to use either of these methods.

2.8 (Optional Read): A Few “Practical” Examples Using Linear Algebra
You are not responsible for any of these examples. They are given here to provide a sense of how vectors and matrices are used in
engineering. Because we are so early in the course, the examples we can work are rather boring and are not on par with what you
will do in the projects.

Example 2.12 [Circuit Equations] Write the equations satisfied by the currents I1, I2, and I3 in Fig. 2.2a and then solve them.

Solution: Once you have taken EECS 215, you would quickly write down the following equations which are based on three facts
called Kirchhoff’s Current and Voltage Laws:

36

https://tinyurl.com/gqt93l3
https://tinyurl.com/zhlwb5v


• the sum of the voltages around any loop in the circuit is zero;

• current I flowing through resistor R creates a voltage V = IR; and

• when two loops touch, as for the 25 Ω resistor, the currents add with their sign determined by their directions.

At the 25 Ω resistor, for example, the current is I1− I2 because they flow in opposite directions. In short, after taking EECS 215 and
applying Kirchhoff’s Current and Voltage Laws, you would obtain

−10 + I1 + 25(I1 − I2) + 50(I1 − I3) = 0

25(I2 − I1) + 30I2 + (I2 − I3) = 0

55I3 + 50(I3 − I1) + (I3 − I2) = 0

⇐⇒

 76 −25 −50
−25 56 −1
−50 −1 106


︸ ︷︷ ︸

A

 I1
I2
I3


︸ ︷︷ ︸

x

=

 10
0
0


︸ ︷︷ ︸

b

(2.37)

While it is not important to you, the first equation is obtained by adding up the voltages in the loop with I1, proceeding in the direction
of I1, the second equation is obtained by adding up the voltages in the loop with I2, proceeding in the direction of I2, and similarly
for the last equation. In Julia, we compute that det(A) = 242, 310, kind of a wild number, but it’s non-zero. Solving the equation
results in  I1

I2
I3

 =

 0.2449
0.1114
0.1166

 ,
in units of Amperes in case you are curious! ■

Example 2.13 [Fitting a Function to Data] Figure 2.2b shows a quadratic function of the form

y = a2x
2 + a1x+ a0. (2.38)

You are given the data in Table 2.1 and need to find the coefficients a2, a1, and a0 that define the quadratic.

Table 2.1: Data for a Quadratic Function.

x y
1 6
2 11
3 18

Solution: Our unknowns are the coefficients a2, a1, and a0. Hence, we rewrite the quadratic as

y = a2x
2 + a1x+ a0 = x2a2 + xa1 + a0,

and note that this equation is linear in the unknowns. From Table 2.1, we have the following equations

6 = a2 + a1 + a0

11 = 4a2 + 2a1 + a0

18 = 9a2 + 3a1 + a0

⇐⇒

 1 1 1
4 2 1
9 3 1


︸ ︷︷ ︸

A

 a2
a1
a0


︸ ︷︷ ︸

x

=

 6
11
18


︸ ︷︷ ︸

b

(2.39)

Using Julia, we compute det(A) = −2 ̸= 0 and hence a solution to (2.39) exists and is unique. Using our current methods, we
compute that the answer is  a2

a1
a0

 =

 1.0
2.0
3.0

 .
In other words, the data are compatible with the function y = x2 + 2x+ 3. ■

Example 2.14 [Fitting a Function to Data: Take 2] We re-visit the quadratic function in Fig. 2.2b with unknown coefficients a2, a1,
and a0, namely y = a2x

2 + a1x+ a0. This time, however, we use the data in Table 2.2
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Table 2.2: Data for a Quadratic Function.

x y
-3 6
1 6
2 11
3 18

Solution: Our unknowns are once again the coefficients a2, a1, and a0. We rewrite the quadratic as

y = a2x
2 + a1x+ a0 = x2a2 + xa1 + a0,

and note again that this equation is linear in the unknowns. From Table 2.2, we have the following equations

6 = 9a2 − 3a1 + a0

6 = a2 + a1 + a0

11 = 4a2 + 2a1 + a0

18 = 9a2 + 3a1 + a0

⇐⇒


9 −3 1
1 1 1
4 2 1
9 3 1


︸ ︷︷ ︸

A

 a2
a1
a0


︸ ︷︷ ︸

x

=


6
6
11
18


︸ ︷︷ ︸

b

(2.40)

In this case, we have more equations than unknowns, which translates into A being non-square. Because A is non-square, we cannot
compute its determinant and then use the answer to determine whether solutions exist or are unique, which is kind of a bummer,
because it kind of says that more data is not necessarily better! Later in the course, we will be able to confront this issue head on and
learn that, yes, in most cases, more data is better. For now, we punt! ■

2.9 (Optional Read) Yet Another Determinant Example
In the following examples, the determinant is computed using the method of (2.36). You are not required to know this method
because you would never want to use it on a 10 × 10 matrix, for example, whereas we will learn a method that scales easily to
matrices that are 100× 100. The method in (2.36) is only illustrated here to prove a point: it’s painful.

Example 2.15 Compute the determinant of the matrix below using the method that is normally taught in Linear Algebra, namely,
(2.36).

A =

 4 −1 1
4 5 3
−2 0 0


Solution:

det(A) =

∣∣∣∣∣∣
4 −1 1
4 5 3
−2 0 0

∣∣∣∣∣∣
= 4 ·

∣∣∣∣ 5 3
0 0

∣∣∣∣− (−1) ·
∣∣∣∣ 4 3
−2 0

∣∣∣∣+ 1 ·
∣∣∣∣ 4 5
−2 0

∣∣∣∣
(after applying our determinant formula to each of the 2 x 2 matrices above)
= 4 · (0) + 1 · (6) + 1 · 10
= 16.

■
For 3× 3 it’s not so bad, but already at 4× 4, it becomes tedious.

38



Example 2.16 Compute the determinant of the matrix below using the method that is normally taught in Linear Algebra.

A =


4 −1 1 2
4 5 3 7
−2 0 0 4
−2 8 1 4


Solution:

det(A) =

∣∣∣∣∣∣∣∣
4 −1 1 2
4 5 3 7
−2 0 0 4
−2 8 1 4

∣∣∣∣∣∣∣∣
= 4 ·

∣∣∣∣∣∣
5 3 7
0 0 4
8 1 4

∣∣∣∣∣∣− (−1)

∣∣∣∣∣∣
4 3 7
−2 0 4
−2 1 4

∣∣∣∣∣∣+ (1)

∣∣∣∣∣∣
4 5 7
−2 0 4
−2 8 4

∣∣∣∣∣∣− (2)

∣∣∣∣∣∣
4 5 3
−2 0 0
−2 8 1

∣∣∣∣∣∣
= (after applying our determinant formula to each of the 3 x 3 matrices above)
= 4(76) + 1(−30) + 1(−240)− 2(−38)
= 110.

■
Once again, the point is not to be understand why this method works or how to do it. The point is how unwieldy it is. Since you
have read this far, we’ll let you in on a secret. In Chapter 5, we’ll learn how to “factor” or “decompose” the matrix A above into two
matrices called

L =


1.0000 0.0000 0.0000 0.0000
−0.5000 1.0000 0.0000 0.0000
1.0000 0.8000 1.0000 0.0000
−0.5000 −0.0667 0.7500 1.0000

 and U =


4.0 −1.0 1.0 2.0
0.0 7.5 1.5 5.0
0.0 0.0 0.8 1.0
0.0 0.0 0.0 55/12

 .
In Chapter 6, we’ll learn that all of the information concerning the determinant is contained in U and that det(A) = det(U) =
4× 7.5× 0.8× 55/12 = 110.0, the product of the terms on the diagonal of U . How mind blowing is that?

2.10 Looking Ahead
We want to solve very large sets of linear equations, say more than 100 variables. We could teach you the matrix inverse command in
Julia, but then you’d understand nothing. In the next chapter, we will begin exploring how to solve problems with special structure.
Soon after that, we’ll show how to transform all linear systems of n-equations in n-variables to a form where they are solvable with
“special strucutre”. To get there we need to understand:

• what are square and triangular matrices;

• what is forward and back substitution;

• what does it mean to multiply two matrices; and

• how to factor a square matrix as the product of two triangular matrices.

Help! Help! How am I supposed to remember all of this?

You probably can’t. In any case, we don’t want you to memorize the ROB 101 material. Instead, open up a google
doc or google sheet and make notes! You need an organized method for keeping track of stuff. In High School, you
may have been able to remember all the new notation without any special effort. In College, it’s a bit different.
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Chapter 3

Triangular Systems of Equations: Forward and
Back Substitution

Learning Objectives
• Equations that have special structure are often much easier to solve

• Some examples to show this.

Outcomes
• Recognize triangular systems of linear equations and distinguish those with a unique answer.

• Learn that the determinant of a square triangular matrix is the product of the terms on its diagonal.

• How to use forward and back substitution.

• Swapping rows of equations and permutation matrices.

41



3.1 Background
• A system of linear equations is square if it has the same number of equations as unknowns.

• If the system of linear equations is expressed in the form Ax = b, then it is square if, and only if, A has the same number of
rows as it has columns; that is, A is n× n.

• A square system of linear equations Ax = b, has a unique solution x for any n × 1 vector b if, and only if, the n × n matrix
A satisfies det(A) ̸= 0.

• Computing the determinant of a general square matrix is tedious.

• The diagonal of the square matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


is

diag(A) =
[
a11 a22 . . . ann

]
.

The diagonal consists of all elements aij of A such that j = i.

• The elements of A that are not on the diagonal are called the off-diagonal elements.

3.2 A Warm-up with Diagonal Systems of Linear Equations
As a warm-up to the main topic, we want to illustrate that some systems of linear equations are easy to solve, independently of the
number of unknowns. We’ll start small, and then go big!

This is an example of a square system of linear equations that is Diagonal,

4x1 = 6

−x2 = 7

3x3 = 2.

(3.1)

Computing the solution of the set of diagonal equations is trivial because we just have to divide each row of the equation by the
element multiplying the unknown, namely

4x1 = 6

−x2 = 7

3x3 = 2.

⇐⇒

x1 =
6

4
=

3

2

x2 =
7

−1
= −7

x3 =
2

3
.

(3.2)

In this example, all of the constants multiplying the unknowns were non-zero. If one of them had been zero, for example, if the
second row were 0x2 = 7, then the equations would not have a solution; if the second row were 0x2 = 0, then the equations would
have an infinite number of solutions because x2 could take on any value.

When we write the system as Ax = b, we have

4x1 = 6

−x2 = 7

3x3 = 2.

⇐⇒

 4 0 0
0 −1 0
0 0 3


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
7
2


︸ ︷︷ ︸

b

. (3.3)

where we note that all of the off-diagonal terms of the matrix A are zero. More precisely, the condition is aij = 0 for all i ̸= j. Such
matrices are called Diagonal Matrices.
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The corresponding system of linear equations is easy to solve because each of the coefficients a11 = 4, a22 = −1, and a33 = 3
multiplying the unknowns x1, x2, and x3 is non-zero. For later use, we note that n real numbers a11, a22, ..., ann are all non-zero if,
and only if, their product is non-zero, that is,

a11 ̸= 0, a22 ̸= 0, . . . , ann ̸= 0 ⇐⇒ a11a22 · · · ann ̸= 0.

This result is true because the product of any two real numbers is zero if, and only if, at least one of the numbers is zero.

More generally, a square n× n matrix A where all of the off-diagonal elements are zero is said to be a diagonal matrix,

A =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 ;

in other words, if aij = 0 for all i ̸= j, then A is diagonal. Computing the determinant of a diagonal matrix is very easy,

det(A) =

∣∣∣∣∣∣∣∣∣
a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣ = a11a22 · · · ann,

the product of the terms on its diagonal.

A diagonal system of n linear equations

a11x1 = b1

a22x2 = b2

... =
...

annxn = bn

⇐⇒


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann


︸ ︷︷ ︸

A


x1
x2
...
xn


︸ ︷︷ ︸

x

=


b1
b2
...

bn


︸ ︷︷ ︸

b

(3.4)

is straightforward to solve, no matter its size, because, whenever aii ̸= 0, we have

xi =
bi
aii
. (3.5)

If one of the coefficients aii on the diagonal is zero, then, if the corresponding element bi is non-zero, we deduce that the equations
do not have a solution, and if the corresponding element bi is zero, we deduce that the equations can have an infinite number of
solutions. This is identical to the discussion below (3.2).

For diagonal matrices, it follows that if det(A) ̸= 0, then Ax = b has a unique solution; moreover the solution is very easy to
compute via (3.5). In the next Section, we explore other types of matrices that make computing a solution very fast and easy.

3.3 Lower Triangular Systems of Linear Equations
This is an example of a square system of linear equations that is Lower Triangular

3x1 = 6

2x1 − x2 = −2
x1 − 2x2 + 3x3 = 2.

(3.6)

When we write the system as Ax = b, in the lower triangular case we have

3x1 = 6

2x1 − x2 = −2
x1 − 2x2 + 3x3 = 2

⇐⇒

 3 0 0
2 −1 0
1 −2 3


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
−2
2


︸ ︷︷ ︸

b

. (3.7)
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where we note that all terms “above” the diagonal of the matrix A are zero. More precisely, the condition is aij = 0 for all j > i.
Such matrices are called lower-triangular.

Here are two more examples of square lower triangular systems

3x1 = 6

2x1 − x2 = 0
⇐⇒

[
3 0
2 −1

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
6
0

]
︸ ︷︷ ︸

b

(3.8)

3x1 = 6

2x2 = −2
x1 − 2x2 = 2

x1 − x3 + 2x4 = 10

⇐⇒


3 0 0 0
0 2 0 0
1 −2 0 0
1 0 −1 2


︸ ︷︷ ︸

A


x1
x2
x3
x4


︸ ︷︷ ︸

x

=


6
−2
2

10


︸ ︷︷ ︸

b

(3.9)

The following systems of linear equations are square, but they are not lower triangular. The “offending term” is boxed,

3x1 = 6

2x1 − x2 − x3 = −2
x1 − 2x2 + 3x3 = 2

⇐⇒

 3 0 0

2 −1 −1
1 −2 3


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
−2
2


︸ ︷︷ ︸

b

(3.10)

and
3x1 + 3x2 = 6

2x1 − 2x2 = 0
⇐⇒

[
3 3
2 −1

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
6
0

]
︸ ︷︷ ︸

b

(3.11)

Triangular Matrices

The key ingredients of a square lower triangular system are

• The unknowns are ordered, as in
(
x1 x2 . . . xn

)
or
(
u v w x y z

)
• The first equation only involves the first unknown.

• The second equation involves only the first two unknowns

• More generally, the i-th equation involves only the first i unknowns.

• The coefficients aij on or below the diagonal can be zero or non-zero.

From a matrix point of view, the condition is, all terms above the diagonal are zero. What does this mean? It means that A looks like
this,

A =



a11 0 0 0 · · · 0 0

a21 a22 0 0 · · · 0 0

a31 a32 a33 0 · · · 0 0

...
...

...
. . .

. . . 0 0

...
...

...
...

. . . 0 0

a(n−1)1 a(n−1)2 a(n−1)3 a(n−1)4 · · · a(n−1)(n−1) 0

an1 an2 an3 an4 · · · an(n−1) ann



, (3.12)

namely, aij = 0 for j > i. Note that the diagonal is in bold and the terms above the diagonal are in red. The matrices in (3.7) through
(3.9) are lower triangular, while the matrices in (3.10) and (3.11) are not lower triangular.
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3.4 Determinant of a Lower Triangular Matrix

Highly Useful Fact: The matrix determinant of a square lower triangular matrix is equal to the product of the elements on
the diagonal. For the matrix A in (3.12), its determinant is

det(A) = a11 · a22 · . . . · ann. (3.13)

Hence, for lower triangular matrices of size 10× 10 or so, the determinant can be computed by inspection! Let’s do a few:

det

 3 0 0
2 −1 0
1 −2 3

 = 3 · (−1)3 = −9 ̸= 0.

Hence, the system of equations (3.7) has a unique solution.

Let’s now use the alternative notation for the determinant of a matrix,∣∣∣∣∣∣∣∣
3 0 0 0
0 2 0 0
1 −2 0 0
1 0 −1 2

∣∣∣∣∣∣∣∣ = 3 · 2 · 0 · 2 = 0.

Hence, the system of equations (3.9) is one of the problem cases: it may have no solution or it may have an infinite number of
solutions.

Remark: For a square lower triangular matrix, the matrix determinant is nonzero if, and only if, all of the elements on the
diagonal of the matrix are non-zero. Equivalently, for a square lower triangular matrix, the matrix determinant is zero if, and
only if, at least one of the elements on the diagonal of the matrix is zero. In other words, we do not really need to multiply
them out to check for det(A) ̸= 0, the condition for uniqueness of solutions of square systems of linear equations.

3.5 Lower Triangular Systems and Forward Substitution
We develop a solution to a lower triangular system by starting at the top and working our way to the bottom via a method called
forward substitution. As an example, we use (3.7), which for convenience, we repeat here:

3x1 = 6

2x1 − x2 = −2
x1 − 2x2 + 3x3 = 2

⇐⇒

 3 0 0
2 −1 0
1 −2 3


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
−2
2


︸ ︷︷ ︸

b

. (3.14)

Because we have ordered the variables as
(
x1 x2 x3

)
, we isolate x1 in the first equation, x2 in the second equation, and x3 in the

third equation by moving the other variables to the right-hand side,

3x1 = 6

−x2 = −2− 2x1

3x3 = 2− x1 + 2x2.

(3.15)

You can see how the first equation is trivial, and so is the second one, once the first is solved, etc. Next, we can make the coefficients
of the leading variables all equal to one by dividing through by the coefficients that multiply them, yielding

x1 =
1

3
6 = 2

x2 = − [−2− 2x1] = 2 + 2x1

x3 =
1

3
[2− x1 + 2x2] .

(3.16)
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Next, we substitute in, working from top to bottom:

x1 =
1

3
6 = 2

x2 = 2 + 2x1 = 6

x3 =
1

3
[2− x1 + 2x2] =

1

3
[12] = 4,

(3.17)

Forward Substitution
The method is called forward substitution because once we have solved x1, we take its value forward to the next equation
where we solve for x2, and once we have solved for x1 and x2, we take their values forward to the next equation where we
solve for x3. I am guessing that you see the pattern.

When can forward substitution go wrong? Well first of all, we only use it for lower triangular systems of linear equations.
If the diagonal of the matrix corresponding to the system of linear equations has a zero on it, then the matrix determinant is
zero ( =⇒ no solution or an infinite number of solutions) and forward substitution would lead us to divide by zero, which
we know is a major error in mathematics.

As an example, we take (3.9), which we repeat here

3x1 = 6

2x2 = −2
x1 − 2x2 = 2

x1 − x3 + 2x4 = 10.

⇐⇒


3 0 0 0
0 2 0 0

1 −2 0 0
1 0 −1 2


︸ ︷︷ ︸

A


x1
x2
x3
x4


︸ ︷︷ ︸

x

=


6
−2
2

10


︸ ︷︷ ︸

b

(3.18)

When we try to isolate x3 in the third equation, we have a problem. To make it more obvious, we make x3 explicit with its
corresponding coefficient of zero

3x1 = 6

2x2 = −2
x1 − 2x2 + 0x3 = 2

x1 − x3 + 2x4 = 10

 =⇒

3x1 = 6

2x2 = −2
0x3 = 2− (x1 − 2x2)

2x4 = 10− (x1 − x3)


???
=⇒

x1 = 2

x2 = −1

x3 =
1

0
· (−2) ?!? Divide by zero: not allowed!

x4 =
1

4
(10− 2 +

−2
0

) ?!?!? Wrong!

(3.19)

3.6 Upper Triangular Systems, Upper Triangular Matrices, Determinants, and Back
Substitution

This is an example of a square upper triangular system of equations and its corresponding upper triangular matrix

x1 + 3x2 + 2x3 = 6

2x2 + x3 = −2
3x3 = 4,

⇐⇒

 1 3 2
0 2 1
0 0 3


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
−2
4


︸ ︷︷ ︸

b

. (3.20)

We note that all of the coefficients of A below the diagonal are zero; that is aij = 0 for i > j.

Highly Useful Fact: The matrix determinant of a square upper triangular matrix is equal to the product of the elements on
the diagonal. For the matrix A in (3.20), its determinant is

det(A) = 1 · 2 · 3 = 6. (3.21)

Hence, we know the system of equations has a unique solution.
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Back Substitution
We develop a solution to an upper triangular system of linear equations by starting at the bottom and work our way to the
top via back substitution. We first solve for the leading variables, which here we do in one step,

x1 = 6− (3x2 + 2x3)

x2 =
1

2
(−2− x3)

x3 =
4

3
,

(3.22)

but of course, you can do it in two steps as we did for lower triangular systems. Next, we do back substitution, from bottom
to top, sequentially plugging in numbers from the previous equations

x1 = 6− (3x2 + 2x3) = 6− (3 · (− 5
3 ) + 2 · 43 ) = 18

3 + 7
3 = 25

3 = 8 1
3

x2 = 1
2 · (−2− x3) = 1

2 ·
(
−2− 4

3

)
= 1

2 ·
(
− 10

3

)
= − 5

3 = −1 2
3

x3 = 4
3 .

(3.23)

3.7 General Cases

The general form of a lower triangular system with a non-zero determinant is

a11x1 = b1 (a11 ̸= 0)

a21x1 + a22x2 = b2 (a22 ̸= 0)

... =
...

an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn (ann ̸= 0)

(3.24)

and the solution proceeds from top to bottom, like this

x1 =
b1
a11

(a11 ̸= 0)

x2 =
b2 − a21x1

a22
(a22 ̸= 0)

... =
...

xn =
bn − an1x1 − an2x2 − · · · − an,n−1xn−1

ann
(ann ̸= 0).

(3.25)

The general form of an upper triangular system with a non-zero determinant is

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1 (a11 ̸= 0)

a22x2 + a23x3 + · · ·+ a2nxn = b2 (a22 ̸= 0)

a33x3 + · · ·+ a3nxn = b3 (a33 ̸= 0)

... =
...

annxn = bn (ann ̸= 0),

(3.26)
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and the solution proceeds from the bottom of (3.26) to its top, like this,

xn =
bn
ann

(ann ̸= 0)

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
(an−1,n−1 ̸= 0)

... =
...

...

x2 =
b2 − a23x3 − · · · − a2nxn

a22
(a22 ̸= 0)

x1 =
b1 − a12x2 − · · · − a1nxn

a11
(a11 ̸= 0)

(3.27)

Remark: For 1 ≤ i < n, we need to form the product

ai,i+1xi+1 + ai,i+2xi+2 + · · ·+ ai,nxn.

In Julia, there are two ways to do it

1 method1 = A[i,i+1:n]’*x[i+1:n]
2 method2 = (A[i:i,i+1:n]*x[i+1:n])[1]

In method one, A[i, i + 1 : n] is a column vector while A[i, i + 1 : n]′ is a row vector. When it is multiplied by the column vector,
x[i + 1 : n], it produces a scalar. In method two, A[i : i, i + 1 : n] is a 1 × (n − i) matrix, which in Julia, is different than a row
vector. When it is multiplied by the column x[i+ 1 : n], it produces a 1× 1 matrix. You then have to extract its value, which is done
via (A[i : i, i+ 1 : n] ∗ x[i+ 1 : n])[1]. See the “tinyMatrix” example in Lab #1.

For those of you with a “visual memory”, here is a graphical representation for upper and lower triangular matrices

(lower triangular)


×
× × 0× × ×
× × × ×
× × × × ×



× × × × ×
× × × ×
× × ×

0 × ×
×

 (upper triangular). (3.28)

Lower: everything above the diagonal is zero. Upper: everything below the diagonal is zero. For us to be able to solve the equations
for arbitrary values b on the right-hand side of Ax = b, we need the elements on the diagonal to be non-zero.

Example 3.1 Use back substitution to solve the upper triangular system of linear equations Ux = b, where

U =


0.9555 −0.8218 −1.2433 −0.5536 0.9102 1.2047
0.0000 −0.2728 0.3770 2.0805 −1.1050 1.0576
0.0000 0.0000 0.2126 1.0730 −1.3323 2.3487
0.0000 0.0000 0.0000 −0.2295 0.9807 0.3360
0.0000 0.0000 0.0000 0.0000 −1.2425 −1.5521
0.0000 0.0000 0.0000 0.0000 0.0000 −0.7935

 and b =


0.8399
−0.8898
0.0069
−1.1286
−0.0115
−1.1136

 .

The diagonal of U is in bold font. We note that U is indeed upper triangular because all of its elements below the diagonal are zero.
Moreover, det(U) ̸= 0 because all of the elements on the diagonal are non-zero.

Solution: We first program a function in Julia that implements back substitution. In HW you will develop Julia code to solve trian-
gular systems of equations. Your data will be given to you sometimes as systems of equations written out as formulas and sometimes
directly as matrices. The function below checks that there are no “tiny” entries on the diagonal of U , but it does not check that U is
really upper triangular. In HW, we’ll have you do that check.

1 function backwardsub(U, b)
2 # U a square upper triangular matrix
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3 # b has same number of rows as U
4 #
5 # Assert no entries on the diagonal of U
6 # are 0 (or very close to 0)
7 if minimum(abs.(diag(U))) < 1e-6
8 return false
9 end

10 n = length(b)
11 x = Vector{Float64}(undef, n)
12 # Start from the bottom and work our way to the top
13 x[n] = b[n] / U[n,n]
14 for i = n-1:-1:1
15 #x[i]=(b[i] - U[i,(i+1):n]’ * x[(i+1):n]) / U[i,i]
16 x[i]=( b[i] - (U[i:i,(i+1):n] * x[(i+1):n])[1] ) / U[i,i]
17 end
18 # The for loop works with either line 15 or line 16. They differ in how
19 # a row is extracted from a matrix in Julia
20 return x
21 end
22

23 U=[ 0.955467 -0.821842 -1.24331 -0.553594 0.910181 1.20471
24 0.0 -0.272776 0.376981 2.08047 -1.10505 1.05765
25 0.0 0.0 0.212559 1.07301 -1.33234 2.3487
26 -0.0 0.0 0.0 -0.229487 0.980719 0.336002
27 -0.0 0.0 -0.0 0.0 -1.24249 -1.55205
28 -0.0 0.0 0.0 0.0 -0.0 -0.793501]
29

30 b=[0.8398952455773964
31 -0.8897505302659705
32 0.006884706336738545
33 -1.1285718398040936
34 -0.011546427596053652
35 -1.1135689635657877]
36

37 x=backwardsub(U, b)

6-element Vector{Float64}:
-48.810775767214956
-21.035398066599555
-23.98466204387721
-0.47925601967730014
-1.7437077113383561
1.40336197583662

1 U*x-b

6-element Vector{Float64}:
-7.771561172376096e-16
-8.881784197001252e-16
2.211772431870429e-16
0.0
3.122502256758253e-17
0.0
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It looks like the computed x is a pretty good solution of Ux = b! ■

3.8 A Simple Trick with Systems of Equations: Re-arranging their Order
This system of equations is neither upper triangular nor lower triangular

3x1 = 6

x1 − 2x2 + 3x3 = 2

2x1 − x2 = −2.
(3.29)

We can simply re-arrange the order of the equations to arrive at

3x1 = 6

2x1 − x2 = −2
x1 − 2x2 + 3x3 = 2,

(3.30)

which happens to be lower triangular. We still have the same equations and hence their solution has not changed. The equations have
just been re-arranged to make the process of computing their solution fall into a nice pattern that we already know how to handle.

This is a really useful trick in mathematics: re-arranging a set of equations without changing the answer. Right here,
it may seem kind of trivial, but when we look at this in terms of matrices in the next Chapter, we get a cool piece of insight.

3.9 Looking Ahead
Once again, our goal is to solve very large sets of linear equations, say more than 100 variables. In this chapter, we saw how to solve
problems with triangular structure. Our next major way point is to reduce all linear systems of n-equations in n-variables to being
solvable with forward substitution and back substitution. To get there we need to understand:

• the standard way to multiply two matrices

• a little known way to multiply two matrices

• how to factor a square matrix as the product of two triangular matrices

Help! Help! How am I supposed to remember all of this?

You probably can’t. In any case, we don’t want you to memorize the ROB 101 material. Instead, open up a google
doc or google sheet and make notes! You need an organized method for keeping track of stuff. In High School, you
may have been able to remember all the new notation without any special effort. In College, it’s a bit different.
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Chapter 4

Matrix Multiplication

Learning Objectives
• How to partition matrices into rows and columns

• How to multiply two matrices

• How to swap rows of a matrix

Outcomes
• Multiplying a row vector by a column vector.

• Recognizing the rows and columns of a matrix

• Standard definition of matrix multiplication A ·B using the rows of A and the columns of B

• Size restrictions when multiplying matrices

• Examples that work and those that don’t because the sizes are wrong

• Introduce a second way of computing the product of two matrices using the columns of A and the rows of B. This will later
be used to compute the LU decomposition in a very simple way.

• Permutation matrices
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4.1 Multiplying a Row Vector by a Column Vector

The summation symbol

If you have not used it before, then the best way to learn it is via examples.

• 1+2 =
∑2

k=1 k. Here, k is called an index and
∑

is the symbol for sum or summation.
∑

k=1 gives the initial value
of the index in the sum, which in this case is 1, and

∑2 gives the final value of the index in the sum, which in this case,
is 2.

• 1 + 2 + 3 =
∑3

k=1 k

• 1+2+ · · ·+n =
∑n

k=1 k. We note that
∑

k=1 defines the initial value of the index in the sum to be 1, and
∑n defines

the final value of the index in the sum to be n.

• Changing the name of the index from k to i, for example, does not change anything

n∑
i=1

i = 1 + 2 + · · ·+ n =

n∑
k=1

k

• a1 + a2 + a3 =
∑3

i=1 ai

• a7 + a8 + a9 =
∑9

i=7 ai. We note that the index is i, the initial value of the index is 7, and final value of the index is 9.

• a1 + a2 + · · ·+ an =
∑n

i=1 ai

Let arow =
[
a1 a2 · · · ak

]
be a row vector with k elements and let bcol =


b1
b2
...
bk

 be a column vector with the same number of

elements as arow. The product of arow and bcol is defined1 as

arow · bcol :=
k∑

i=1

aibi := a1b1 + a2b2 + · · ·+ akbk. (4.1)

For many, the following visual representation is more understandable,

[
a1 a2 · · · ak

]
·


b1
b2
...
bk

 := a1b1 + a2b2 + · · ·+ akbk. (4.2)

Remarks on Multiplying a Row Vector Times a Column Vector

• It is very important to observe that the two vectors MUST have the same number of elements for their product to be
defined.

• While (4.1) and (4.2) are equivalent (meaning they represent the same mathematical information), the formula in
(4.1) is more convenient when writing a program and the visual representation in (4.2) is more convenient for hand
computations.

• At this point, a column vector “times” a row vector is not defined. When we do make sense of it, it will not be equal to∑k
i=1 aibi.

1If you have not seen the “summation” symbol before, here are some examples:
∑3

i=1 i := 1 + 2 + 3,
∑8

i=5 i := 5 + 6 + 7 + 8, and
∑n

k=1 k
2 :=

1 + (2)2 + (3)2 + · · ·+ (n)2.
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Example 4.1 Let arow =
[
1 2 3

]
be a row vector with k = 3 elements and let bcol =

45
6

 be a column vector with k = 3

elements. Perform their multiplication if it makes sense.

Solution: Because they have the same number of elements, we can form their product and we compute

arow · bcol :=
3∑

i=1

aibi = (1)(4) + (2)(5) + (3)(6) = 32,

or we can look at it in the form [
1 2 3

]
·

45
6

 = (1)(4) + (2)(5) + (3)(6) = 32.

■

Example 4.2 Let arow =
[
1 2 3

]
be a row vector with k = 3 elements and let bcol =

[
4
5

]
be a column vector with k = 2

elements. Perform their multiplication if it makes sense.

Solution: Because they do NOT have the same number of elements, we cannot form their product.

arow · bcol := undefined,

or [
1 2 3

]
·
[
4
5

]
= error!

■

Example 4.3 Let arow =
[
2 −3 −1 11

]
be a row vector with k = 4 elements and let bcol =


3
5
−1
−2

 be a column vector with

k = 4 elements. Perform their multiplication if it makes sense.

Solution: Because they have the same number of elements, we can form their product and we compute

arow · bcol :=
4∑

i=1

aibi = (2)(3) + (−3)(5) + (−1)(−1) + (11)(−2) = −30,

or, equivalently, we write it like this

[
2 −3 −1 11

]
·


3
5
−1
−2

 = (2)(3) + (−3)(5) + (−1)(−1) + (11)(−2) = −30.

■

4.2 Examples of Row and Column Partitions

Let A =

[
1 2 3
4 5 6

]
be a 2× 3 matrix. Then a partition of A into rows is

[
arow1

arow2

]
=

[
1 2 3

4 5 6

]
, that is,

arow1 =[1 2 3]

arow2 =[4 5 6].

We note that arow1 and arow2 are row vectors of size 1× 3; they have the same number of entries as A has columns.
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A partition of A =

[
1 2 3
4 5 6

]
into columns is

[
acol1 acol2 acol3

]
=

[
1
4

2
5

3
6

]
, that is, acol1 =

[
1
4

]
, acol2 =

[
2
5

]
, acol3 =

[
3
6

]
We note that acol1 , acol2 , and acol3 are column vectors of size 2× 1; they have the same number of entries as A has rows.

4.3 General Case of Partitions
Let A be an n×m matrix. We recall that n is the number of rows in A, m is the number of columns, and aij is the notation for the
ij element of A, that is, its value on the i-th row and j-th column. A partition of A into rows is

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 =


arow1

arow2
...

arown

 =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

an1 an2 · · · anm

 .
That is, the i-th row is the 1×m row vector

arowi = [ai1 ai2 · · · aim],

where i varies from 1 to n.

A partition of A into columns is
a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 =
[
acol1 acol2 · · · acolm

]
=


a11
a21
...
an1

a12
a22
...
an2

· · ·

a1m
a2m
...

anm

 .
That is, the j-th column is the n× 1 column vector

acolj =


a1j
a2j
...
anj

 ,
where j varies from 1 to m.

4.4 Standard Matrix Multiplication: It’s All About Rows and Columns
Let A be an n× k matrix, meaning it has n rows and k columns, and let B be a k ×m matrix, so that it has k rows and m columns.
When the number of columns of the first matrix A equals the number of rows of the second matrix B, the matrix product of A and
B is defined and results in an n×m matrix:

[n× k matrix] · [k ×m matrix] = [n×m matrix].

The values of n,m, and k can be any integers greater than or equal to one. In particular, they can all be different numbers.

• [4× 2 matrix] · [2× 5 matrix] = [4× 5 matrix].

• [1× 11 matrix] · [11× 1 matrix] = [1× 1 matrix], which in Julia is different than a scalar.

• [4× 4 matrix] · [4× 4 matrix] = [4× 4 matrix].

• [4× 3 matrix] · [4× 4 matrix] = undefined.

54



Matrix multiplication using rows of A and columns of B

The standard way of doing matrix multiplication A · B involves multiplying the rows of A with the columns of B. We
do some small examples before giving the general formula. We will observe that the order in which we multiply two
matrices is very important: in general, A ·B ̸= B ·A even when A and B are square matrices of the same size.

Source of the Definition of Matrix Multiplication
Here is an optional video by Michael Penn explaining WHY matrix multiplication needs to work this way: https://
youtu.be/cc1ivDlZ71U.

4.4.1 Examples
Example 4.4 We consider a 2 × 2 matrix A and a 2 × 1 matrix B, where we partition A by rows and B by columns. We note that
the number of columns of A matches the number of rows of B so their product A ·B is supposed to be defined. Let’s do it!

Solution:

A =

[
1 2
3 4

]
=

[
arow1

arow2

]
=

[
1 2

3 4

]
and B =

[
5
6

]
=
[
bcol1

]
=

[
5
6

]
. (4.3)

The matrix product of A and B is

A ·B =

[
arow1

arow2

]
·
[
bcol1

]
:=

[
arow1 · bcol1

arow2 · bcol1

]
=

[
17
39

]
(4.4)

because

arow1 · bcol1 =
[
1 2

]
·
[

5
6

]
= 5 + 12 = 17

arow2 · bcol1 =
[
3 4

]
·
[

5
6

]
= 15 + 24 = 39.

A more visual way to do the multiplication is like this,

A ·B =

[
1 2

3 4

]
·

[
5
6

]
=

[
(1)(5) + (2)(6)
(3)(5) + (4)(6)

]
=

[
17
39

]
(4.5)

■

Remarks

• A 2× 2 matrix times a 2× 1 matrix yields a 2× 1 matrix.

• Let’s observe that the operations for computing the matrix product boil down to performing the products of row vectors
and column vectors of equal lengths! This is a general fact, as we will see.

• Let’s also recall that we do not know how to form the product of a row vector with a column vector when their lengths
are not equal.

• The number elements in arow• is equal to the number of columns of A, while the number of elements in bcol• is equal
to the number of rows of B. This is why the number of columns of A must equal the number of rows of B for their
matrix product A ·B to be defined.

Example 4.5 We reuse A and B above and ask if we can form the matrix product in the order B ·A.

Solution: We have that the first matrix B is 2× 1 and the second matrix A is 2× 2. The number of columns of the first matrix does
not match the number of rows of the second matrix, and hence the product cannot be defined in this direction. ■
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Example 4.6 We consider a 2 × 2 matrix A and a 2 × 2 matrix B. We note that the number of columns of A matches the number
of rows of B so their product A · B is defined. We also note that the number columns of B matches the number of rows of A, so the
product B · A is also defined. This is a general property of square matrices A and B of the same size: their matrix product can be
performed in either order. We will note, however, that A ·B ̸= B ·A. Hence, when multiplying matrices, the order matters!

Solution:

A =

[
1 2
3 4

]
=

[
arow1

arow2

]
=

[
1 2

3 4

]
and B =

[
5 −2
6 1

]
=
[
bcol1 bcol2

]
=

[
5
6

−2
1

]
. (4.6)

The matrix product of A and B is

A ·B =

[
1 2

3 4

]
·

[
5
6

−2
1

]
=

[
(1)(5) + (2)(6) (1)(−2) + (2)(1)

(3)(5) + (4)(6) (3)(−2) + (4)(1)

]
=

[
17 0
39 −2

]
. (4.7)

The matrix product of B and A is

B ·A =

 5 − 2

6 1

 · [ 1
3

2
4

]
=

[
(5)(1) + (−2)(3) (5)(2) + (−2)(4)

(6)(1) + (1)(3) (6)(2) + (1)(4)

]
=

[
−1 2
9 16

]
. (4.8)

■

Order Matters When Multiplying Matrices

• We note that
[

17 0
39 −2

]
= A ·B ̸= B ·A =

[
−1 2
9 16

]
. The order in which matrices are multiplied matters. This

is very different from the order of two real numbers, such as π and
√
2, which you can multiply in either order and you

always get the same answer!

• A ·B :=

[
arow1 · bcol1 arow1 · bcol2

arow2 · bcol1 arow2 · bcol2

]
, where you can find arowi and bcolj highlighted in (4.6).

• B ·A :=

[
brow1 · acol1 brow1 · acol2

brow2 · acol1 brow2 · acol2

]
, where you can find browi and acolj highlighted in (4.8).

Example 4.7 For the given 3× 2 matrix A and 2× 2 matrix B, compute A ·B and B ·A if the given multiplications make sense.

A =

 1 2
3 4
5 6

 and B =

[
3 4
2 1

]
.

Solution: We note that the number of columns of A equals the number of rows of B so their product A · B is defined. We also note
that the number columns of B does not equal the number of rows of A, so the product B ·A is not defined.

A =

 1 2
3 4
5 6

 =


arow1

arow2

arow3

 =


1 2

3 4

5 6

 and B =

[
3 4
2 1

]
=
[
bcol1 bcol2

]
=

[
3
2

4
1

]

By now, you may have a favorite method, and using it, you should compute that

A ·B =

 7 6
17 16
27 26


■

Remark: When doing calculations by hand, 3 × 3 matrices are about as big as you ever really want to do. In Julia, “the sky is the
limit”. The following section is to help us understand what Julia is doing when it multiplies two matrices with the command A * B.
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4.4.2 Optional Read: General case: what is happening inside Julia
We partition the n× k matrix A into rows and the k ×m matrix B into columns, as in

A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
an1 an2 · · · ank

 =


arow1

arow2
...

arown

 =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

an1 an2 · · · ank

 (4.9)

and

B =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

...
. . .

...
bk1 bk2 · · · bkm

 =
[
bcol1 bcol2 · · · bcolm

]
=


b11
b21
...
bk1

b12
b22
...
bk2

· · ·

b1m
b2m
...

bkm

 , (4.10)

then

A ·B :=


arow1 · bcol1 arow1 · bcol2 · · · arow1 · bcolm

arow2 · bcol1 arow2 · bcol2 · · · arow2 · bcolm
...

...
. . .

...
arown · bcol1 arown · bcol2 · · · arown · bcolm

 . (4.11)

Another way to see the pattern is like this

A ·B :=


a11 a12 · · · a1k

a21 a22 · · · a2k
...

an1 an2 · · · ank

 ·


b11
b21
...
bk1

b12
b22
...
bk2

· · ·

b1m
b2m
...

bkm

 =



k∑
i=1

a1ibi1
k∑

i=1

a1ibi2 · · ·
k∑

i=1

a1ibim

k∑
i=1

a2ibi1
k∑

i=1

a2ibi2 · · ·
k∑

i=1

a2ibim

...
...

. . .
...

k∑
i=1

anibi1
k∑

i=1

anibi2 · · ·
k∑

i=1

anibim


. (4.12)

Bottom Line on Standard Multiplication

In the standard way of defining matrix multiplication, the ij-entry ofA ·B is obtained by multiplying the i-th row ofA by the
j-th column of B (whenever the multiplication makes sense, meaning that the number of columns of A equals the number of
rows of B). We will not use the following notation on a regular basis, but some of you may like it; if we let [A · B]ij denote
the ij-element of the matrix, A ·B, then

[A ·B]ij := arowi · bcolj .

4.5 Multiplication by Summing over Columns and Rows

Rock your World: an Alternative Formula for Matrix Multiplication

• We now introduce an alternative way to compute the product of two matrices. It gives the same answer as the “standard
method”. Very few people use or even know this definition because, for hand calculations, it takes more time to
write out the individual steps. ROB 101, however, is about computational linear algebra, and hence we ignore such
trivial concerns as what is best for doing hand calculations!

• We will see shortly that understanding this alternative way of matrix multiplication will allow us to solve almost any
system of linear equations via a combination of forward and back substitution.

• Instead of solving one hard system of linear equations, we will find the solution by solving two triangular systems of
linear equations, one upper triangular and one lower triangular!
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We reconsider two matrices A and B from Example 4.7, but this time we partition A into columns and B into rows

A =

 1 2
3 4
5 6

 =
[
acol1 acol2

]
=

 1
3
5

2
4
6

 and B =

[
3 4
2 1

]
=

[
brow1

brow2

]
=

[
3 4

2 1

]
.

What happens when we form the sum of the columns of A times the rows of B,

acol1 brow1 + acol2 brow2 = ?

We first observe that the columns of A are 3 × 1 while the rows of B are 1 × 2. Hence, their product with the usual rules of matrix
multiplication will be 3× 2, the same size as A ·B. That seems interesting. We do the two multiplications and obtain

acol1 · brow1 =

 1
3
5

 · [ 3 4
]
=


(1) · (3) (1) · (4)

(3) · (3) (3) · (4)

(5) · (3) (5) · (4)

 =

 3 4
9 12
15 20



acol2 · brow2 =

 2
4
6

 · [ 2 1
]
=


(2) · (2) (2) · (1)

(4) · (2) (4) · (1)

(6) · (2) (6) · (1)

 =

 4 2
8 4
12 6


and hence their sum is

acol1 brow1 + acol2 brow2 =

 3 4
9 12
15 20

+

 4 2
8 4
12 6

 =

 7 6
17 16
27 26

 = A ·B

So while the bookkeeping is a bit different, the individual computations are easier than in the standard way of performing matrix
multiplication, and perhaps they are also easier to get right. You’re free to do your matrix multiplications as you wish. This particular
method has a theoretical benefit that we will uncover shortly. Keep in mind that not so many people think of matrix multiplication
as “sums of columns times rows” and you might confuse friends and other instructors when you talk about it in this manner. In fact,
you may be told that you are wrong and that no one ever does it that way, even if it is correct.

General Case of Matrix Multiplication using Columns of A and Rows of B

Suppose that A is n× k and B is k ×m so that the two matrices are compatible for matrix multiplication. Then

A ·B =

k∑
i=1

acoli · browi ,

the “sum of the columns of A multiplied by the rows of B”. A more precise way to say it would be “the sum over i of the
i-th column of A times the i-th row of B.” In HW, we’ll play with this idea enough that it will become ingrained into your
subconscious!

Alpha Go Takes on Matrix Multiplication

Who would have guessed that there is still much innovation to be done in this space! You may enjoy these videos:

• https://youtu.be/8ILk4Wjo5rc AlphaTensor by DEEPMIND finds new Algorithms for Matrix Multiplica-
tion

• https://youtu.be/CoFvu-n-fFs AI Just Solved a 53-Year-Old Problem! | AlphaTensor, Explained
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4.6 (Optional Read:) Why the Second Method of Matrix Multiplication Works
ROB 101 does not focus on proofs. Yet, sometimes it is genuinely fun to understand how or why things are as they are! We consider
two 2× 2 matrices A and B, where

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

Then, using the standard rows of A times the columns of B formulation of matrix multiplication yields

A ·B :=

[
arow1 · bcol1 arow1 · bcol2

arow2 · bcol1 arow2 · bcol2

]

=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
(we take the sum outside the matrix)

=

[
a11b11 a11b12
a21b11 a21b12

]
+

[
a12b21 a12b22
a22b21 a22b22

]
(we recognize each term)

=

[
a11
a21

]
·
[
b11 b12

]
+

[
a12
a22

]
·
[
b21 b22

]
=acol1 · brow1 + acol2 · brow2

In a similar manner, we can treat the general case. For those who wish to brave a blaze of indices, from (4.12), we have

A ·B :=


a11 a12 · · · a1k

a21 a22 · · · a2k
...

an1 an2 · · · ank

 ·


b11
b21
...
bk1

b12
b22
...
bk2

· · ·

b1m
b2m
...

bkm



=



k∑
i=1

a1ibi1
k∑

i=1

a1ibi2 · · ·
k∑

i=1

a1ibim

k∑
i=1

a2ibi1
k∑

i=1

a2ibi2 · · ·
k∑

i=1

a2ibim

...
...

. . .
...

k∑
i=1

anibi1
k∑

i=1

anibi2 · · ·
k∑

i=1

anibim


(we pull the sum outside the matrix)

=

k∑
i=1


a1ibi1 a1ibi2 · · · a1ibim

a2ibi1 a2ibi2 · · · a2ibim
...

...
. . .

...
anibi1 anibi2 · · · anibim

 (we recognize what this is)

=

k∑
i=1

acoli · browi

=


a11
a21
...
an1

a12
a22
...
an2

· · ·

a1k
a2k
...
ank

 ·


b11 b12 · · · b1m

b21 b22 · · · b2m
...

bk1 bk2 · · · bkm

 .

(4.13)

4.7 Permutation Matrices: The Matrix View of Swapping the Order of Equations
Back in Sec. 3.8, we made a brief remark on swapping rows of equations to put them into a nicer form. For simplicity, we recall the
equations again here.
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This system of equations is neither upper triangular nor lower triangular

3x1 = 6

x1 − 2x2 + 3x3 = 2

2x1 − x2 = −2,
(4.14)

but if we simply re-arrange the order of the equations, we arrive at the lower triangular equations

3x1 = 6

2x1 − x2 = −2
x1 − 2x2 + 3x3 = 2.

(4.15)

As we noted before, we still have the same equations and hence their solution has not changed. The equations have just been re-
arranged to make the process of computing their solution fall into a nice pattern that we already know how to handle.

We now write out the matrix equations for the “unfortunately ordered” equations (4.14) and then the “nicely” re-arranged system of
equations (4.15)  3 0 0

1 −2 3
2 −1 0


︸ ︷︷ ︸

AO

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
2
−2


︸ ︷︷ ︸

bO

 3 0 0
2 −1 0
1 −2 3


︸ ︷︷ ︸

AL

 x1
x2
x3


︸ ︷︷ ︸

x

=

 6
−2
2


︸ ︷︷ ︸

bL

.

We see the second and third rows are swapped when we compareAO toAL and bO to bL. The swapping of rows can be accomplished
by multiplying AO and bO on the left by

P =

 1 0 0
0 0 1
0 1 0

.
Indeed, we check that

P ·AO =

 1 0 0
0 0 1
0 1 0

 3 0 0
1 −2 3
2 −1 0

 =

 3 0 0
2 −1 0
1 −2 3

 = AL

and

P · bO =

 1 0 0
0 0 1
0 1 0

 6
2
−2

 =

 6
−2
2

 = bL.

P is called a permutation matrix.

Key Insight on Swapping Rows

We note that the permutation matrix P is constructed from the 3× 3 identity matrix I by swapping its second and third rows,
exactly the rows we wanted to swap in AO and bO. This observation works in general.

For example, suppose we want to do the following rearrangement
1
2
3
4
5

↔


4
2
5
1
3

 , (4.16)

where rows one and four are swapped and three and five are swapped. We have shown the arrow as going back and forth (↔) because
applying the swap twice results in the original arrangement. To see the resulting structure at a matrix level, we put the 5× 5 identity
matrix on the left and the permutation matrix P on the right

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

↔ P =


0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0


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so that it is apparent that P is just a re-ordering of the rows of I . Moreover, if we want to go from
4
2
5
1
3

↔


1
2
3
4
5

 ,
we can apply the matrix, P , once again. Indeed, you are invited to check in Julia that P · P = I .

The kind of permutation matrix we have introduced here, where permuting the rows twice results in the original ordering of the rows,
is a special case of a more general kind of permutation. While we do not need the more general matrices in ROB 101, we feel you
need to know that they exist.

Heads Up! The above is only half the story on permutation matrices.

(Optional Read): A more general rearrangement of rows would be something like this
1
2
3
4
5

→


4
2
1
5
3

 , (4.17)

where applying the rearrangement twice does not result in the original order.

To see how this looks at the matrix level, we put the 5× 5 identity matrix on the left and the permutation matrix P on the right

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

↔ P =


0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

 .
P is still just a re-ordering of the rows of I , but it is no longer true that P · P = I .

Permutation Matrices, the Full Story

In general, matrices that consist of all ones and zeros, with each row and column having a single one, are called permutation
matrices.

In Chapter 6.4, we’ll cover the matrix transpose, P⊤. Indeed, you are invited to look ahead and see what that is about. If
you do so, you can check in Julia that P ̸= P⊤ (we’ll say that the matrix is not symmetric) and P ·P ̸= I , but that P⊤ ·P = I .

In Chapter 6.2, we introduce the matrix inverse, denoted P−1. In general, inverses of matrices do not exist and they are hard
to compute. For permutation matrices, P−1 = P⊤. They automatically satisfy P⊤ · P = P · P⊤ = I .

4.8 (Optional Read): Useful Fact on Matrix Multiplication
This fact is used in Project 1 to speed up the calculations. Consider an n× k matrix A and a k ×m matrix B. Then

A ·B = A ·
[
bcol1 · · · bcolj · · · bcolm

]︸ ︷︷ ︸
B

=
[
Abcol1 · · · Abcolj · · · Abcolm

]
;

that is, the j-th column of A ·B is A times the j-th column of B. To see why this is true, we know that the ij-element of C := A ·B
is given by

cij := arowi · bcolj ,
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and hence

ccolj =


c1j
c2j
...
cnj

 =


arow1 · bcolj

arow2 · bcolj
...

arown · bcolj

 =


arow1

arow2
...

arown


︸ ︷︷ ︸

A

·bcolj = A · bcolj .

(a) (b)

Figure 4.1: Sixty LiDAR images (scans) are combined in this image of the Ford Motor Company Robotics Building. Image courtesy
of Bruce Huang. (a) Wide view. (b) Zoom on Cassie’s position so you can see the road and the sidewalk. In Project 1, the images are
collected while Cassie is walking. You will use matrix-vector multiplication to compensate for Cassie’s motion so that the images all
appear to be taken from the same position and direction in 3D space. This is called “image registration”.

4.9 (Optional Read): Some Geometric Aspects of Matrix-Vector Multiplication
Our initial efforts in Computational Linear Algebra focus on the “algebraic” part of Linear Algebra, in other words, on equation
solving. There are also deep connections with geometry that are used in Robotics. Your Project 1 on Robot Map Building focuses on
geometry. We live in a three-dimensional (3D) world and we also find it useful to navigate with two-dimensional (2D) representations
of the world, such as Google Maps.

How do vectors, matrices, and geometry all come together? Figure 4.1 shows a LiDAR image of the Ford Motor Company Robotics
Building. The image consists of sixty individual LiDAR images (scans) that have been combined into one single image. The 3D
geometry of the building, trees, and even the road passing in front of the building can be clearly seen. That doesn’t seem so special,
right? We’re used to camera images that show even more detail than that! Yes, but while an image today contains millions of pixels,
data from a LiDAR are “sparse”, in the sense that each scan may have only 10,000 points in it, or less than 0.1% of the number of
pixels in today’s camera images. Each return from one of its lasers gives a 3D point in space, the (x, y, z) coordinates of the point
in space off which the laser beam reflected! In addition, the intensity of each laser’s return is measured, so we really have a 4-vector
(x, y, z, I). While we use the intensity to color the image, we’ll ignore it in what follows.
The final image has roughly 60× 10, 000 laser returns, that is, points of light, in it, and each point of light in the image is a 3-vector.
So, we have roughly 600, 000 3-vectors in the image. For each of the scans, Cassie’s “head” was pointing in a different direction. In
addition, the body sways a bit. Hence, each of the 10, 000 vectors in an individual scan is being collected from a different position
in 3D space, and looking toward a different direction or angle in 3D space, with respect to the other 59 scans. If you were to overlay
the 60 images without adjusting for the offsets in position and direction, you would obtain a blurry mess. To see what we mean, just
point your cell phone at the night sky sometime with the camera at a long exposure interval; the jittering of your hand will cause a
blurry night sky.

How to remove the blur? Well, you can declare the position and angle of Cassie in the first scan as a reference and then compensate
the vectors in each of the other scans to remove variations in its relative position and angle with respect to the first scan. This com-
pensation process is called “image registration” and it can be accomplished by multiplying the (x, y, z) coordinates, which form a
3-vector2, by an appropriate matrix. Bottom line, building a map involves multiplying vectors by matrices, where the matrices

2In Project 1, you’ll learn that it is better to work with 4-vectors, but the details would be confusing here, so we omit them.
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somehow encode the relative changes in position and direction of a scan!

Who knew that Cassie had to be a Linear Algebra whiz to build a map! We’ll now simplify the problem of imagining how matrices

transform 3-vectors by reducing the dimension by one. Moreover, instead of 10,000 2-vectors, we take a single 2-vector v =

[
2.0
0.5

]
shown in blue in Fig. 4.2 and multiply it by four matrices,

(a) A1 :=

[
cos(π/10) − sin(π/10)
sin(π/10) cos(π/10)

]
=⇒ A1v =

[
1.7476
1.0936

]

(b) A2 :=

[
cos(3π/4) − sin(3π/4)
sin(3π/4) cos(3π/4)

]
=⇒ A2v =

[
−1.7678
1.0607

]

(c) A3 :=

[
0.5 0.0
0.0 0.5

]
=⇒ A3v =

[
1.0000
0.2500

]

(d) A4 :=

[
−0.6000 0.6000
−0.3360 −0.0840

]
=⇒ A4v =

[
−0.9000
−0.7140

]
The results are given by the red vectors in Fig. 4.2. In the context of Cassie and the LiDAR data, Fig. 4.2-(a) and -(b) are the most
relevant as they show a vector being rotated by a fixed angle. Fig. 4.2-(c) shows a vector being scaled, while Fig. 4.2-(d) shows a
vector that appears to be rotated and scaled.

(a) (b)

(c) (d)

Figure 4.2: The vector v is in blue while the transformed vector, Av, is shown in red. (a) The matrix rotates the blue vector clockwise
by an angle of π/10 or 18o. (b) The matrix rotates the blue vector clockwise by an angle of 3π/4 or 135o. (c) The matrix scales the
blue vector by 0.5. And (d), the matrix acts on the blue vector in a general fashion that we will be able to “decode” when we study
eigenvalues and eigenvectors in Chapter 10.
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4.10 Looking Ahead
Once again, our first major goal in the course is to solve very large sets of linear equations, say more than 100 variables. In the
previous chapter, we saw how to solve problems with triangular structure. In this Chapter, we learned how to multiply two matrices.

Let’s use our knowledge and see what happens when we multiply a lower triangular matrix times an upper triangular matrix. We
define two matrices by L and U for lower and upper triangular, respectively,

L =

 1 0 0
−2 1 0
3 −2 1

 and U =

 3 3 2
0 6 1
0 0 −3

 =⇒ L · U =

 3 3 2
−6 0 −3
9 −3 1

 =: A.

Hence the product of a lower triangular matrix and an upper triangular matrix seems to be a “general matrix” A, meaning it has no
particular structure.

Question: Is it possible to go backwards? That is, starting with a general matrix A, is it possible to write it as the product of a lower
triangular matrix and an upper triangular matrix? And if it is possible, is it useful? What’s the trick?

Answers: Yes. Very! Our alternative way of doing matrix multiplication.
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Chapter 5

LU (Lower-Upper) Factorization

Learning Objectives
• How to reduce a hard problem to two much easier problems

• The concept of “factoring” a matrix into a product of two simpler matrices that are in turn useful for solving systems of linear
equations.

Outcomes
• Our first encounter in lecture with an explicit algorithm

• Learn how to do a special case of the LU factorization, where L is a lower triangular matrix and U is an upper triangular
matrix.

• Use the LU factorization to solve linear equations

• More advanced: what we missed in our first pass at LU factorization: a (row) permutation matrix.
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5.1 Recalling Forward and Back Substitution
For a lower triangular system of equations with non-zero leading coefficients, such as

3x1 = 6

2x1 − x2 = −2
x1 − 2x2 + 3x3 = 2,

⇐⇒

 3 0 0
2 −1 0
1 −2 3

x1x2
x3

 =

 6
−2
2

 (5.1)

we can find a solution via forward substitution,

x1 =
1

3
6 = 2

x2 = − [−2− 2x1]

x3 =
1

3
[2− x1 + 2x2] ,

=⇒


x1 =

1

3
6 = 2

x2 = 2 + 2x1 = 2 + 2(2) = 6

x3 =
1

3
[2− x1 + 2x2] =

1

3
[2− (2) + 2(6)] =

12

3
= 4.

(5.2)

On the other hand, for an upper triangular system of equations with non-zero leading coefficients, such as

x1 + 3x2 + 2x3 = 6

2x2 + x3 = −2
3x3 = 4,

⇐⇒

 1 3 2
0 2 1
0 0 3

x1x2
x3

 =

 6
−2
4

 (5.3)

we can find a solution by back substitution,

x1 = 6− (3x2 + 2x3)

x2 =
1

2
(−2− x3)

x3 =
4

3
,

=⇒



x1 = 6− (3x2 + 2x3) = 6− (
3

3
+

8

3
) =

18

3
− 11

3
= 2

1

3

x2 =
1

2
(−2− x3) =

1

2

(
−2− 4

3

)
=

1

2

(
2

3

)
=

1

3

x3 =
4

3
.

(5.4)

5.2 Recalling Matrix Multiplication in the Form of Columns Times Rows
Suppose that A is n× k and B is k ×m so that the two matrices are compatible for matrix multiplication. Then

A ·B =

k∑
i=1

acoli · browi ,

the “sum of the columns of A multiplied by the rows of B”.

Example 5.1 Form the matrix product of A =

[
1 0
3 4

]
and B =

[
5 2
0 −1

]
.

Solution

A =

[
1 0
3 4

]
=
[
acol1 acol2

]
=

[
1
3

0
4

]
and B =

[
5 2
0 −1

]
=

[
brow1

brow2

]
=

 5 2

0 −1


acol1 brow1 =

[
1
3

]
·
[
5 2

]
=

[
5 2

15 6

]
acol2 brow2 =

[
0
4

]
·
[
0 −1

]
=

[
0 0
0 −4

]
and the matrix product is

A ·B = acol1 brow1 + acol2 brow2 =

[
5 2

15 6

]
+

[
0 0
0 −4

]
=

[
5 2
15 2

]
■
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5.3 The Secret Sauce of LU (Lower-Upper) Factorization: Peeling the Onion
As a lead in to our main topic, note that in Example 5.1, A is a lower triangular matrix, B is an upper triangular matrix, while their
product A · B is neither. Can this process be reversed? That is, given a generic square matrix, can we factor it as the product of a
lower-triangular matrix and an upper-triangular matrix? And even if we can do such a factorization, would it be helpful?

We’ll delay an explicit answer to the question of utility because you have a sense already that triangular matrices make your life easier.
Our goal here is to show you the secret sauce the underlies a very nice method for constructing the required triangular matrices. We
call it peeling the onion: working from the top left corner and working down the diagonal, it successively eliminates columns
and rows from a matrix! Watch, it’s cool, it’s kind of fun, and it relies heavily on the column times row form of matrix multiplication.

Peeling the Onion: Consider the square matrix

M =

 1 4 5
2 9 17
3 18 58

 .
Our goal is to find a column vector C1 and a row vector R1 such that

M − C1 ·R1 =

 0 0 0
0 ∗ ∗
0 ∗ ∗

 ,
where ∗ denotes “don’t care” in the sense that we do not care about their particular values. We want to zero out the first column and
the first row of M . That means, C1 and R1 are chosen so that the first column and first row of their matrix product C1 ·R1 match the
first column and first row of M . How can you do that?

Here’s a special case of the method that works when the top left entry equals 1.0. We define C1 and R1 to be the first column of
M and the first row of M , respectively, that is

C1 =

 1
2
3

 and R1 =
[
1 4 5

]
.

Then

C1 ·R1 =

 1
2
3

 · [ 1 4 5
]
=

 1 4 5
2 8 10
3 12 15

 ,
and voilà,

M =

 1 4 5
2 9 17
3 18 58

 and C1 ·R1 =

 1 4 5
2 8 10
3 12 15

 .
Consequently,

M − C1 ·R1 =

 1 4 5
2 9 17
3 18 58

−
 1

2
3

 · [ 1 4 5
]

=

 1 4 5
2 9 17
3 18 58

−
 1 4 5

2 8 10
3 12 15


=

 0 0 0
0 1 7
0 6 43

 .
Oh! We have taken a 3 × 3 matrix and essentially made it into a 2 × 2 matrix!! Can we do this again? Let’s try. We define C2 and
R2 to be the second column and second row of M − C1 ·R1, that is

C2 =

 0
1
6

 and R2 =
[
0 1 7

]
.
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Then we compute that  0
1
6

 · [ 0 1 7
]
=

 0 0 0
0 1 7
0 6 42

 ,
and we obtain

(M − C1 ·R1) =

 0 0 0
0 1 7
0 6 43

 and C2 ·R2 =

 0 0 0
0 1 7
0 6 42

 .
Consequently,

(M − C1 ·R1)− C2 ·R2 =

 0 0 0
0 1 7
0 6 43

−
 0

1
6

 · [ 0 1 7
]

=

 0 0 0
0 1 7
0 6 43

−
 0 0 0

0 1 7
0 6 42


=

 0 0 0
0 0 0
0 0 1


Oh! Now we are essentially down to a 1× 1 matrix!! You might be seeing the pattern! We very quickly note that if we define C3 and
R3 to be the third column and third row of M − C1 ·R1 − C2 ·R2,

C3 =

 0
0
1

 and R3 =
[
0 0 1

]
,

then

C3 ·R3 =

 0 0 0
0 0 0
0 0 1

 ,
and hence, M − C1 ·R1 − C2 ·R2 − C3 ·R3 = 03×3. We prefer to write this as

M = C1 ·R1 + C2 ·R2 + C3 ·R3 =
[
C1 C2 C3

]︸ ︷︷ ︸
L

·

 R1

R2

R3


︸ ︷︷ ︸

U

.

Moreover,

• L :=
[
C1 C2 C3

]
=

 1 0 0
2 1 0
3 6 1

 is lower triangular,

• U :=

 R1

R2

R3

 =

 1 4 5
0 1 7
0 0 1

 is upper triangular, and

• M = L · U , the product of a lower triangular matrix and an upper triangular matrix! We did it!
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The Need for Pivots

Is that all there is to LU Factorization? No, there’s a bit more to it. The real algorithm has a “normalization step”. To motivate
it we take a matrix M that has something other than a one in its a11-entry and naively form “C1” as the first column of the
matrix and “R1” as the first row of the matrix. Then[

2 3
4 5

]
︸ ︷︷ ︸

M

−
[

2
4

]
︸ ︷︷ ︸

“C1”

·
[
2 3

]︸ ︷︷ ︸
“R1”

=

[
2 3
4 5

]
︸ ︷︷ ︸

M

−
[

4 6
8 12

]
︸ ︷︷ ︸

“C1 · R1 ”

=

[
−2 −3
−4 −7

]
,

which does NOT result in a matrix with zeros in its leading column and row! However, if we keep R1 as the first row of M
but this time, we form C1 from the first column of M normalized by its first entry, then we can make it work. Watch![

2 3
4 5

]
︸ ︷︷ ︸

M

−

[
2/2

4/2

]
︸ ︷︷ ︸

C1

·
[
2 3

]︸ ︷︷ ︸
R1

=

[
2 3
4 5

]
︸ ︷︷ ︸

M

−

[
1

2

]
︸ ︷︷ ︸

C1

·
[
2 3

]︸ ︷︷ ︸
R1

=

[
2 3
4 5

]
︸ ︷︷ ︸

M

−
[

2 3
4 6

]
︸ ︷︷ ︸

C1·R1

=

[
0 0
0 −1

]
.

The a11 entry of M is called a pivot.

Warning: When we do the normalization and divide by the pivot, we could get into trouble with a divide by zero! We will
worry about this later. First things first!

We’ll illustrate a more general case of peeling the onion and then do it in Julia code. More generally, if we assume a11 ̸= 0 and
use it as the pivot

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

−


a11/a11

a21/a11

...
an1/a11

 · [ a11 a12 · · · a1n
]
=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

−


a11 a12 · · · a1n

a21 ∗ · · · ∗
...

...
. . .

...
an1 ∗ · · · ∗



=


0 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


1 # Run me don’t change me
2 using Random
3 using LinearAlgebra
4 Random.seed!(09182021)
5 A=randn(3,3)
6 Temp=copy(A)

Output because Temp is the last thing in the cell, only it is printed

3×3 Matrix{Float64}:
2.85947 0.0572321 -1.12303
0.139854 -0.904663 1.57054

-0.59195 0.43911 0.108526

1 # Run me don’t change me
2 # Note that we have defined pivot as the one-one-entry of Temp
3 pivot = Temp[1,1]
4 C1=Temp[:,1]/pivot
5 R1=Temp[1:1,:]
6 @show C1*R1
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7 Temp=Temp-C1*R1

Output You can compare the first row and first column of Temp with C1 ∗R1. The last thing printed is the new version of Temp.

C1 * R1 = [2.8594704859391835 0.05723214703413922 -1.1230256584654308;
0.13985399718460348 0.0027991701853682135 -0.054926122878193;
-0.591949779941339 -0.011847842811814082 0.23248178103812325]

3×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 -0.907462 1.62546
0.0 0.450958 -0.123956

We now look at the second row and column of Temp and call Temp[2,2] the pivot (we note it is non-zero).

1 pivot = Temp[2,2]
2 C2 = Temp[:,2]/pivot
3 R2 = Temp[2:2,:]
4 @show (C2*R2)
5 Temp = Temp - (C2*R2)

Output

C2 * R2 = [0.0 0.0 0.0; 0.0 -0.9074620727541318 1.6254630955038092;
0.0 0.45095794284898383 -0.8077643305803952]

3×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.683809

We next look at the third row and column of Temp and call Temp[3,3] the pivot (we note it is non-zero).

1 pivot = Temp[3,3]
2 C3 = Temp[:,3]/pivot
3 R3 = Temp[3:3,:]
4 Temp = Temp - (C3*R3)

Output

C3 * R3 = [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.6838085188740579]

3×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

We now put all of this in a for loop to show how we can successively zero the columns and rows of a matrix.

1 Temp=copy(A)
2 nRows, nCols = size(Temp)
3 for k = 1:nRows
4 @show Temp
5 pivot=Temp[k,k]
6 # boldly assume we never divide by zero
7 C=Temp[:,k]/pivot
8 R=Temp[k:k,:]
9 Temp=Temp-C*R

10 end
11 @show Temp
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Output

Temp = [2.8594704859391835 0.05723214703413922 -1.1230256584654308;
0.13985399718460348 -0.9046629025687636 1.5705369726256162;
-0.591949779941339 0.43911010003716977 0.108525969331786]

Temp = [0.0 0.0 0.0;
0.0 -0.9074620727541318 1.6254630955038092;
0.0 0.45095794284898383 -0.12395581170633725]

Temp = [0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.6838085188740579]

Temp = [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0]

5.4 (Optional Read:) Peeling the Onion in Pictures
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5.5 LU (Lower-Upper) Factorization (without row permutations)
We state our first algorithm
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LU Factorization (without permutations)

Algorithm 1: LU-Factorization (without permutations)
Result: For M an n× n matrix, with n ≥ 2, find L and U such that M = LU

# initialization:
Temp=copy(M);
L = Array{Float64,2}(undef, n, 0) # L=[] Empty matrix
U = Array{Float64,2}(undef, 0, n) # U=[] Empty matrix
# end initialization:

for k=1:n
pivot = Temp[k,k]
if ! isapprox(pivot, 0, atol = 1E-8) # check for zero

C=Temp[:,k] ./ pivot # normalize so that k-th entry is equal to 1.0
R=Temp[k:k,:]
# Alternative also works in Julia for k-th row
# R=Temp[k,:]’ k-th row, which in Julia, requires a transpose
Temp=Temp-C*R;
L=[L C] # Build the lower-triangular matrix by columns
U=[U;R] # Build the upper-triangular matrix by rows

else
# pivot equals zero and we do not want to divide by zero
println(“Matrix requires row permutations to aovid divide by zero”)
println(“Step where algorithm failed is k= $k”)
break # Jump out of the for loop and terminate the algorithm

end

return L, U

The algorithm is easy to do by hand for very small matrices. In Julia, you can write code that will do the LU factorization of a
1000 × 1000 matrix in a few seconds. The lu function in the LinearAlgebra package of Julia can do it in a few milliseconds! The
exact command is

1 using LinearAlgebra
2 L, U = lu(M, Val(false))

to return L and U without permutations. If you leave off “ Val(false)”, then the algorithm uses row permutations and you
should call it as

1 using LinearAlgebra
2 F = lu(M)
3 L=F.L
4 U=F.U
5 P=F.P

Example 5.2 (2× 2 Matrix) Perform the LU Factorization of M =

[
5 2

15 2

]
, a 2× 2 square matrix.

Solution: We’ll do every step, just as you would program it up.

We initialize our algorithm by

Temp :=M =

[
5 2
15 2

]
, L := [empty matrix], and U := [empty matrix]
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k=1: We start with the pivot is equal to Temp[1, 1] and C as the first column of Temp scaled by the pivot, and thus1

pivot = Temp[1, 1] = 5

C = Temp[:, 1]/pivot

=

[
5
15

]
· 1
5

=

[
1
3

]
,

while R is the first row of Temp

R = Temp[1 : 1, :] =
[
5 2

]
.

We finish up the first step by defining

Temp :=Temp− C ·R

=

[
5 2
15 2

]
−
[

1
3

]
·
[
5 2

]
=

[
5 2
15 2

]
−
[

5 2
15 6

]
=

[
0 0
0 −4

]

L =[L,C] =

[
1
3

]
U =[U ;R] =

[
5 2

]
Why LU Factorization Works: Peeling the Onion

We observe that L and U were defined so that their product exactly matched the first column and row of M . Hence, when we
subtract them from M , we are left with a problem that is effectively one dimension lower, meaning, in this case, the non-zero
part is 1× 1.

While you may be able to finish the factorization by “inspection”, we will do the complete algorithm just like you would do in a
program.

k=2: The pivot is the second entry on the diagonal of Temp while C is the second column of Temp scaled by the pivot

pivot = Temp[2, 2] = −4
C = Temp[:, 2]/pivot

=

[
0
−4

]
· −1

4

=

[
0
1

]
,

while R is the second row of Temp,

R = Temp[2 : 2, :] =
[
0 −4

]
.

1In HW solutions or exams, it is fine to skip a step and write down L directly, however, it is then more difficult to give you a lot of partial credit.
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Temp :=Temp− C ·R

=

[
0 0
0 −4

]
−
[

0
1

]
·
[
0 −4

]
=

[
0 0
0 −4

]
−
[

0 0
0 −4

]
=

[
0 0
0 0

]

L =[L,C] =

[
1 0
3 1

]
= lower triangular matrix

U =[U ;R] =

[
5 2
0 −4

]
= upper triangular matrix

Peeling the Onion:

The matrix product L ·U is equal to the sum of the columns of L times the rows of U . The columns and rows were iteratively
designed to remove columns and rows from M . Indeed,

Temp :=M − L · U

=

[
5 2
15 2

]
−
[

1 0
3 1

]
·
[

5 2
0 −4

]
=

[
5 2
15 2

]
−
([

1
3

]
·
[
5 2

]
+

[
0
1

]
·
[
0 −4

])
=

[
5 2
15 2

]
−
([

5 2
15 6

]
+

[
0 0
0 −4

])
=

[
5 2
15 2

]
−
[

5 2
15 6

]
−
[

0 0
0 −4

]
=

([
5 2
15 2

]
−
[

5 2
15 6

])
−
[

0 0
0 −4

]
=

([
0 0
0 −4

])
−
[

0 0
0 −4

]
=

[
0 0
0 0

]

Hence, [
5 2

15 2

]
︸ ︷︷ ︸

M

=

[
1 0
3 1

]
︸ ︷︷ ︸

L

·
[

5 2
0 −4

]
︸ ︷︷ ︸

U

■

Example 5.3 (3× 3 Matrix) Perform the LU Factorization of M =

 −2 −4 −6
−2 1 −4
−2 11 −4

, a 3× 3 square matrix.

Solution: We initialize our algorithm by

Temp :=M =

 −2 −4 −6
−2 1 −4
−2 11 −4

 , L := [empty matrix], and U := [empty matrix]

75



k=1: We start with pivot = T[1, 1] and C as first column of Temp normalized by the pivot so that its first entry is one

pivot = Temp[1, 1] = −2
C = Temp[:, 1]/pivot

=

 1
1
1

 ,
while R is the first row of Temp

R = Temp[1 : 1, :] =
[
−2 −4 −6

]
.

We finish up the first step by defining

Temp :=Temp− C ·R

=

 −2 −4 −6
−2 1 −4
−2 11 −4

−
 1

1
1

 · [ −2 −4 −6
]

=

 −2 −4 −6
−2 1 −4
−2 11 −4

−
 −2 −4 −6
−2 −4 −6
−2 −4 −6


=

 0 0 0
0 5 2
0 15 2



L =[L,C] =

 1
1
1


U =[U ;R] =

[
−2 −4 −6

]
Reminder of Why LU Factorization Works: Peeling the Onion

We observe that L and U have been constructed so that their product exactly matches the first column and first row of M .
Hence, when we subtract L · U from M , we are left with a problem that is effectively one dimension lower, meaning, in this
case, the non-zero part is 2× 2.

Your wily instructor has arranged for the 2× 2 matrix that remains to be an example that we have already worked! Nevertheless, we
will complete the algorithmic steps just like you would do in Julia.

k=2: C is the second column of Temp scaled by its k = 2 entry,

pivot = Temp[2, 2] = 5

C =

 0
5

15

 /pivot

=

 0
5

15

 · 1
5

=

 0
1
3

 ,
while R is the second row of Temp,

R = Temp[2 : 2, 2] =
[
0 5 2

]
.
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Temp :=Temp− C ·R

=

 0 0 0
0 5 2
0 15 2

−
 0

1
3

 · [ 0 5 2
]

=

 0 0 0
0 5 2
0 15 2

−
 0 0 0

0 5 2
0 15 6


=

 0 0 0
0 0 0
0 0 −4



L =[L,C] =

 1 0
1 1
1 3


U =[U ;R] =

[
−2 −4 −6
0 5 2

]

As before, we do the complete algorithm just like you would do in Julia.

k=3: C is the third column of Temp scaled by the (3,3) entry,

pivot = Temp[3, 3] = −4

C =

 0
0
−4

 /pivot

=

 0
0
−4

 · 1

−4

=

 0
0
1

 ,

while R is the third row of Temp,

R =
[
0 0 −4

]
.
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Temp :=Temp− C ·R

=

 0 0 0
0 0 0
0 0 −4

−
 0

0
1

 · [ 0 0 −4
]

=

 0 0 0
0 0 0
0 0 −4

−
 0 0 0

0 0 0
0 0 −4


=

 0 0 0
0 0 0
0 0 0



L =[L,C] =

 1 0 0
1 1 0
1 3 1

 = lower triangular matrix

U =[U ;R] =

 −2 −4 −6
0 5 2
0 0 −4

 = upper triangular matrix

Hence,  −2 −4 −6
−2 1 −4
−2 11 −4


︸ ︷︷ ︸

M

=

 1 0 0
1 1 0
1 3 1


︸ ︷︷ ︸

L

·

 −2 −4 −6
0 5 2
0 0 −4


︸ ︷︷ ︸

U

■

5.6 LU Factorization for Solving Linear Equations

Solving Ax = b via LU without Row Permutations
We seek to solve the system of linear equations Ax = b. Suppose that we can factor A = L · U , where U is upper triangular
and L is lower triangular. Hence, we are solving the equation

L · Ux = b. (5.5)

If we define Ux = y, then (5.5) becomes two equations

Ly = b (5.6)
Ux = y. (5.7)

Our solution strategy is to solve (5.6) by forward substitution, and then, once we have y in hand, we solve (5.7) by back
substitution to find x, the solution to (5.5).

Major Important Fact

This process may seem a bit long and tedious when doing it by hand. On a computer, it is a snap. Once you have your Julia
functions created, you’ll see that this scales to big problems in a very nice way.
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Example 5.4 Use LU Factorization to solve the system of linear equations −2 −4 −6
−2 1 −4
−2 11 −4


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 2
3
−7


︸ ︷︷ ︸

b

. (5.8)

Solution: From our hard work above, we know that

A =

 1 0 0
1 1 0
1 3 1


︸ ︷︷ ︸

L

·

 −2 −4 −6
0 5 2
0 0 −4


︸ ︷︷ ︸

U

(5.9)

We first solve, using forward substitution, 1 0 0
1 1 0
1 3 1


︸ ︷︷ ︸

L

y1y2
y3


︸ ︷︷ ︸

y

=

 2
3
−7


︸ ︷︷ ︸

b

=⇒

y1y2
y3

 =

 2
1

−12

 .

And then we use this result to solve, using back substitution, −2 −4 −6
0 5 2
0 0 −4


︸ ︷︷ ︸

U

x1x2
x3


︸ ︷︷ ︸

x

=

 2
1

−12


︸ ︷︷ ︸

y

=⇒

x1x2
x3

 =

 −8−1
3

 .

■

Do we need row permutations at all? The next section develops the LU Factorization with row Permutations. Why is that needed?
Some matrices do not have an LU Factorization without row permutations. Suppose we wanted to compute an LU Factorization
for

A =

[
0 1
2 3

]
with our current algorithm. We’d define

C =

[
0
2

]
· 1
0
= undefined , R =

[
0 1

]
,

so we are stuck. If we permute rows one and two however, we’d have

P =

[
0 1
1 0

]
P ·A =

[
2 3
0 1

]
which is already factored because we can define

L =

[
1 0
0 1

]
U =

[
2 3
0 1

]
,
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giving us P ·A = L · U.

Solving Ax = b via LU with Row Permutations

We once again seek to solve the system of linear equationsAx = b. Suppose this time we can factor P ·A = L ·U , where P is
a permutation matrix, U is upper triangular and L is lower triangular. Would that even be helpful for solving linear equations?

A beautiful property of permutation matrices is that det(P ) = ±1, which means they are always invertible. This property
leads to

Ax = b ⇐⇒ P ·Ax = P · b ⇐⇒ L · Ux = P · b.

Hence, you can think of our previous result as the special case of P being the identity matrix, In. When row permutations
are involved in the LU Factorization, we solve the slightly modified equation

L · Ux = P · b. (5.10)

If we define Ux = y, then (5.10) again becomes two equations

Ly = P · b (5.11)
Ux = y. (5.12)

Our solution strategy is to solve (5.11) by forward substitution, and then, once we have y in hand, we solve (5.12) by back
substitution to find x, the solution to (5.10).

Example 5.5 Use LU Factorization with permutations to solve the system of linear equations −2 −4 −6
−2 1 −4
−2 11 −4


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=

 2
3
−7


︸ ︷︷ ︸

b

. (5.13)

Solution: This time we use the native LU function in Julia to compute P ·A = L · U , with

P =

 1.0 0.0 0.0
0.0 0.0 1.0
0.0 1.0 0.0


L =

 1.000 0.000 0.000
1.000 1.000 0.000
1.000 0.333 1.000


U =

 −2.000 −4.000 −6.000
0.000 15.000 2.000
0.000 0.000 1.333

 .
(5.14)

Even though A admits an LU Factorization without row permutations, Julia inserts a permutation matrix. This is to improve the
numerical accuracy on large problems. On our small problem, it’s not really needed. Nevertheless, we’ll use it to show that we obtain
the same answer with essentially the same amount of work.

We first compute

Pb =

 1.0 0.0 0.0
0.0 0.0 1.0
0.0 1.0 0.0

 2.0
3.0
−7.0

 =

 2.0
−7.0
3.0

 .
We then solve Ly = Pb for the intermediate variable y, using forward substitution, 1.000 0.000 0.000

1.000 1.000 0.000
1.000 0.333 1.000


︸ ︷︷ ︸

L

y1y2
y3


︸ ︷︷ ︸

y

=

 2.0
−7.0
3.0


︸ ︷︷ ︸

Pb

=⇒

y1y2
y3

 =

 2.0
−9.0
4.0

 .
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And finally, we use this result to solve Ux = y for x, using back substitution, −2.000 −4.000 −6.000
0.000 15.000 2.000
0.000 0.000 1.333


︸ ︷︷ ︸

U

x1x2
x3


︸ ︷︷ ︸

x

=

 2.0
−9.0
4.0


︸ ︷︷ ︸

y

=⇒

x1x2
x3

 =

 −8.0−1.0
3.0

 .
■

5.7 (Optional Read): Toward LU Factorization with Row Permutations

Are there Cases where our Simplified LU Factorization Process Fails?

Yes. They are not that hard to handle, but as your first introduction to LU factorization, you do not have to learn all of the
nitty-gritty details. You’ve done well to get this far. You may wish to use the following in a project, in some other course, or
just to understand what the Julia lu function is doing.

Case 1 (easiest): C becomes an entire column of zeros Suppose we haveM =

 2 −1 2
6 −3 9
2 −1 6

 . To start off the process, we define

C =

 2
6
2

 · 1
2
=

 1
3
1

 , R =
[
2 −1 2

]
,

and arrive at

Temp =M − C ·R =

 2 −1 2
6 −3 9
2 −1 6

−
 2 −1 2

6 −3 6
2 −1 2


=

 0 0 0
0 0 3
0 0 4


The next step would be

C =

 0
0
0

 · 1
0
=

 undefined
undefined
undefined

 , R =
[
0 0 3

]
,

leading us to attempt a divide by zero. The solution is to define

C =

 0
1
0

 , while maintaining R =
[
0 0 3

]
.

With this definition,

Temp−R · C =

 0 0 0
0 0 3
0 0 4

−
 0

1
0

 · [ 0 0 3
]

=

 0 0 0
0 0 3
0 0 4

−
 0 0 0

0 0 3
0 0 0


=

 0 0 0
0 0 0
0 0 4

 .
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We’ve seen this last step before and note that we have

C =

 0
0
4

 · 1
4
=

 0
0
1

 , R =
[
0 0 4

]
.

Assembling all the pieces, we have  2 −1 2
6 −3 9
2 −1 6


︸ ︷︷ ︸

M

=

 1 0 0
3 1 0
1 0 1


︸ ︷︷ ︸

L

·

 2 1 −2
0 0 3
0 0 4


︸ ︷︷ ︸

U

,

and we note that U has a zero on its diagonal2.

In general, at the k-th step, if C becomes a column of all zeros, set its k-th entry to one and define R as usual.

Case 2 (requires row permutation): C is not all zeros, but the pivot value is zero. In this case, we need to swap rows in the matrix
Temp so that the new C has a non-zero pivot value. This introduces a permutation matrix, which you can review in Chapter 4.7.
Keeping track of the row permutations can be a bit tricky, which is why we left this to the end.

Suppose we have M =

 2 −1 2
6 −3 9
2 −3 6

 . We initialize the process by L = [ ], U = [ ], and Temp =M .

Step k = 1 We have

C =

 2
6
2

 · 1
2
=

 1
3
1

 , R =
[
2 −1 2

]
,

and

Temp = Temp− CR

=

 2 −1 2
6 −3 9
2 −3 6

−
 2 −1 2

6 −3 6
2 −1 2


=

 0 0 0
0 0 3
0 −2 4

 .
We then update L and U by

L = [L,C] =

 1
3
1


U = [U ;R] =

[
2 −1 2

]

Step k = 2 The problem appears when we attempt to define pivot = Temp[2,2] = 0

C =

 0
0
−2

 · 1

pivot
=

 0
0
−2

 · 1
0
,

2Hence, det(U) = 0, and if we are trying to solve Ux = y, we are then in the problematic case of having either no solution or an infinite number of solutions.
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which sets off the divide by zero warning because we have pivot = 0. The solution is to permute the second and third rows of M so
that at step k = 2, Temp will become

Tempnew :=

 0 0 0
0 −2 4
0 0 3

 .
We could do this by going all the way back to the very beginning and starting the factorization over after doing the row permutation
on M , but that is not very efficient. It turns out that all we really have to do is permute the two rows in the current value of
Temp AND the corresponding rows in L. Nothing has to be done to U .

We’ll first refresh our memory on permutation matrices. Then we’ll write down the full LU factorization algorithm with row permu-
tations and do an example that has both of these new steps in them.

Row Permutation Matrices Consider

Ma =

 2 −1 2
6 −3 9
2 −3 6

 .
And suppose we want to swap rows one and three to obtain

Mb =

 2 −3 6
6 −3 9
2 −1 2


Then this is the result of pre-multiplying Ma by the permutation matrix

I :=

 1 0 0
0 1 0
0 0 1

→ swap first and third rows→ Pa :=

 0 0 1
0 1 0
1 0 0

 ,
which we can verify by

Pa ·Ma =

 0 0 1
0 1 0
1 0 0

 ·
 2 −1 2

6 −3 9
2 −3 6

 =

 2 −3 6
6 −3 9
2 −1 2

 =Mb

In fact, with our “second way” of doing matrix multiplication as the sum over columns times rows, the above product can be written
out as

Pa ·Ma =

 0 0 1
0 1 0
1 0 0

 ·
 2 −1 2

6 −3 9
2 −3 6


=

 0
0
1

 · [ 2 −1 2
]
+

 0
1
0

 · [ 6 −3 9
]
+

 1
0
0

 · [ 2 −3 6
]

=

 0 0 0
0 0 0
2 −1 2

+

 0 0 0
6 −3 9
0 0 0

+

 2 −3 6
0 0 0
0 0 0


=

 2 −3 6
6 −3 9
2 −1 2


=Mb

It is fine to stop here, but if you want more practice with permutation matrices, then continue reading.

Example 5.6 Let’s now swap rows one and two of Mb to obtain

Mc =

 6 −3 9
2 −3 6
2 −1 2

 .
Find the permutation matrix Pb such that Mc = Pb · Mb and the permutation matrix Pc such that Mc = Pc · Ma. Verify that
Pc = Pb · Pa. This will help you to understand matrix multiplication.
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Solution: To find the permutation matrix Pb

I :=

 1 0 0
0 1 0
0 0 1

→ swap first and second rows→ Pb =

 0 1 0
1 0 0
0 0 1

 ,
which we can verify by

Pb ·Mb =

 0 1 0
1 0 0
0 0 1

 ·
 2 −3 6

6 −3 9
2 −1 2

 =

 6 −3 9
2 −3 6
2 −1 2

 =Mc

To find the permutation matrix Pc It is observed that Mc can be obtained by swapping the first with the last two rows of Ma.

I :=

 1 0 0
0 1 0
0 0 1

→ swap first and last two rows→ Pc =

 0 1 0
0 0 1
1 0 0

 ,
which we can verify by

Pc ·Ma =

 0 1 0
0 0 1
1 0 0

 ·
 2 −1 2

6 −3 9
2 −3 6

 =

 6 −3 9
2 −3 6
2 −1 2

 =Mc

We verify Pc = Pb · Pa by

Pb · Pa =

 0 1 0
1 0 0
0 0 1

 ·
 0 0 1

0 1 0
1 0 0

 =

 0 1 0
0 0 1
1 0 0

 = Pc

■

How General Can LU Go?
All of our examples have been done for M a square matrix. LU even works for M rectangular; see Chapter 5.12.
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5.8 (Optional Read): An Algorithm for LU Factorization with Row Permutations

LU Factorization of Square Matrices

Algorithm 2: LU-Factorization (square matrix with permutations)
Result: For M an n× n square matrix, with n ≥ 2, find L, U , and P such that PM = LU

# initialization:
Temp=copy(M);
L = Array{Float64,2}(undef, n, 0) # L=[] Empty matrix
U = Array{Float64,2}(undef, 0, n) # U=[] Empty matrix
n,m = size(M)
P= zeros(n,n)+I #In n× n identity matrix
eps= 1e-16 # estimate of machine epsilon
Kappa = 10 #How small is too small for you?
# end initialization:

for k=1:n
C=Temp[:,k]; # k-th column
if max(abs(C)) <= Kappa*eps # (check for C all zeros)

C=0*C # Set tiny values to zero
C[k]=1.0
R=Temp[k:k,:] # k-th row
Temp=Temp-C*R
L=[L,C] # Build the lower-triangular matrix by columns
U=[U;R] # Build the upper-triangular matrix by rows

else
# We know C has at least one non-zero quantity
# We’ll bring its largest entry to the top;
# while this is overkill, it helps with numerical aspects of the algorithm
# Bringing biggest to top will always avoid divide by zero
# It’s enough to bring ANY non-zero value to the top
#
nrow=argmax(abs(C)) # find the index where C is “biggest”
P[[k,nrow],:]=P[[nrow,k],:] # permute (i.e., swap) rows of P
Temp[[k,nrow],:]=Temp[[nrow,k],:] # do same for Temp
# if L is non-empty, also swap its rows
if k > 1 L[[k,nrow],:]=L[[nrow,k],:] end
C=Temp[:,k]; # k-th column
pivot = C[k]
C=C/pivot #divide all elements of C by the pivot
R=Temp[k:k,:] # k-th row
Temp=Temp-C*R
L=[L C] # Build the lower-triangular matrix by columns
U=[U;R] # Build the upper-triangular matrix by rows

end
end
return L, U, P
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Example 5.7 We do it by hand so that you can see all the steps. M =


6 −2 4 4
3 −1 8 10
3 −1 2 8
3 −1 −1 20

, a 4× 4 square matrix.

Solution: We initialize our algorithm by

Temp :=M =


6 −2 4 4
3 −1 8 10
3 −1 2 8
3 −1 −1 20

 , P := I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , L := [empty matrix], and U := [empty matrix]

k=1: We start with C as first column of Temp normalized by C[1] so that its first entry is one

C =


6
3
3
3


nrow = argmax (abs (C)) = 1

P = P

Temp = Temp
C = Temp [:, 1] = C

pivot = C[1] = 6

C = C./pivot

=


1

0.5
0.5
0.5

 ,
while R is the first row of Temp

R =
[
6 −2 4 4

]
.

We finish up the first step by defining

Temp :=Temp− C ·R

=


6 −2 4 4
3 −1 8 10
3 −1 2 8
3 −1 −1 20

−


1
0.5
0.5
0.5

 · [ 6 −2 4 4
]

=


6 −2 4 4
3 −1 8 10
3 −1 2 8
3 −1 −1 20

−


6 −2 4 4
3 −1 2 2
3 −1 2 2
3 −1 2 2



=


0 0 0 0
0 0 6 8
0 0 0 6
0 0 −3 18



L =[L,C] =


1

0.5
0.5
0.5


U =[U ;R] =

[
6 −2 4 4

]
P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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We observe that L and U have been constructed so that their product exactly matches the first two columns of M . Hence,
when we subtract L · U from M , we are left with a problem that the second column of temp becomes an entire column of
zeros, meaning, in this case, the non-zero part is 3× 2.

k=2: C is the second column of Temp and it is all zeros,

C[2] = 1

C =


0
1
0
0

 ,

while R is the second row of Temp,

R =
[
0 0 6 8

]
.

Temp :=Temp− C ·R

=


0 0 0 0
0 0 6 8
0 0 0 6
0 0 −3 18

−


0
1
0
0

 · [ 0 0 6 8
]

=


0 0 0 0
0 0 6 8
0 0 0 6
0 0 −3 18

−


0 0 0 0
0 0 6 8
0 0 0 0
0 0 0 0



=


0 0 0 0
0 0 0 0
0 0 0 6
0 0 −3 18



L =[L,C] =


1 0

0.5 1
0.5 0
0.5 0


U =[U ;R] =

[
6 −2 4 4
0 0 6 8

]

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



When we subtract L · U from temp, we are left with a problem that is effectively two dimensions lower, meaning, in this
case, the non-zero part is 2 × 2 and we are making good progress on the LU factorization! Moreover, we observe that the
third column of Temp is not all zeros but the pivot value is zero. Hence, row permutation is required.
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k=3: C is the third column of Temp and has 0 pivot,

C =


0
0
0
−3


nrow = argmax (abs (C)) = 4

P [[3, 4], :] = P [[4, 3], :] =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Temp[[3, 4], :] = Temp[[4, 3], :] =


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 6



L[[3, 4], :] = L[[4, 3], :] =


1 0

0.5 1
0.5 0
0.5 0



C = Temp[:, 3] =


0
0
−3
0


pivot = C[3] = −3
C = C./pivot

=


0
0
1
0

 ,

while R is the third row of Temp,

R =
[
0 0 −3 18

]
.

Temp :=Temp− C ·R

=


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 6

−


0
0
1
0

 · [ 0 0 −3 18
]

=


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 6

−


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 0



=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6


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L =[L,C] =


1 0 0

0.5 1 0
0.5 0 1
0.5 0 0


U =[U ;R] =

 6 −2 4 4
0 0 6 8
0 0 −3 18



P =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



k=4: C is the fourth column of Temp scaled by its k = 4 entry,

C =


0
0
0
6


nrow = argmax (abs (C)) = 4

P = P

Temp = Temp
L = L

C = Temp[:, 4] = C

pivot = C[4] = 6

C = C./pivot

=


0
0
0
1

 ,

while R is the fourth row of Temp,

R =
[
0 0 0 6

]
.

Temp :=Temp− C ·R

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6

−


0
0
0
1

 · [ 0 0 0 6
]

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6



=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



89



L =[L,C] =


1 0 0 0

0.5 1 0 0
0.5 0 1 0
0.5 0 0 1

 = lower triangular matrix

U =[U ;R] =


6 −2 4 4
0 0 6 8
0 0 −3 18
0 0 0 6

 = upper triangular matrix

P =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Let’s remind ourselves why this works: As before,

Temp :=P ·M − L · U

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


6 −2 4 4
3 −1 8 10
3 −1 2 8
3 −1 −1 20

−


1 0 0 0
0.5 1 0 0
0.5 0 1 0
0.5 0 0 1

 ·


6 −2 4 4
0 0 6 8
0 0 −3 18
0 0 0 6



=


6 −2 4 4
3 −1 8 10
3 −1 −1 20
3 −1 2 8

−



1
0.5
0.5
0.5

 · [ 6 −2 4 4
]
+ ...+


0
0
0
1

 · [ 0 0 0 6
]

=


6 −2 4 4
3 −1 8 10
3 −1 −1 20
3 −1 2 8

−



6 −2 4 4
3 −1 2 2
3 −1 2 2
3 −1 2 2

+


0 0 0 0
0 0 6 8
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6




=




6 −2 4 4
3 −1 8 10
3 −1 −1 20
3 −1 2 8

−


6 −2 4 4
3 −1 2 2
3 −1 2 2
3 −1 2 2


−


0 0 0 0
0 0 6 8
0 0 0 0
0 0 0 0

−


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 0

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6



=




0 0 0 0
0 0 6 8
0 0 −3 18
0 0 0 6

−


0 0 0 0
0 0 6 8
0 0 0 0
0 0 0 0


−


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 0

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6



=




0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 6

−


0 0 0 0
0 0 0 0
0 0 −3 18
0 0 0 0


−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6



=




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6




=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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Hence, 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P

·


6 −2 4 4
3 −1 8 10
3 −1 2 8
3 −1 −1 20


︸ ︷︷ ︸

M

=


1 0 0 0

0.5 1 0 0
0.5 0 1 0
0.5 0 0 1


︸ ︷︷ ︸

L

·


6 −2 4 4
0 0 6 8
0 0 −3 18
0 0 0 6


︸ ︷︷ ︸

U

. (5.15)

■

Disclaimer

This is your book’s author speaking: We will never do this by hand again. Don’t even ask. The good thing for you, I will not
ask you do to something that I would not do myself! (Thank you, Miley.)

5.9 Solving Ax=b via LU with Row Permutations

Solving Ax = b when A is square and P · A = L · U

So, how does the permutation matrix change how one solves Ax = b? Because permutation matrices are invertible, the
main logic is

Ax = b ⇐⇒ P ·Ax = P · b ⇐⇒ L · Ux = P · b, (5.16)

where we have used P · A = L · U . Hence, (5.6) and (5.7) are modified as follows: if we define Ux = y as before, then
(5.16) becomes two equations

Ly = P · b (5.17)
Ux = y. (5.18)

The solution strategy is to solve (5.17) by forward substitution, and then, once we have y in hand, we solve (5.18) by back
substitution to find x, the solution to (5.16).

5.10 (Optional Read): Using the LU command native to Julia
Julia has a built-in command for LU Factorizations. It has a few quirks that are highlighted here.

• Quirk 1: The base command assumes row permutations. You can force it to return an LU factorization without row permuta-
tions

1 using LinearAlgebra
2 using Random
3 Random.seed!(12345678)
4

5 A=randn(4,4)
6 b=rand(4,1)

Output because b is the last thing in the cell, only it is printed

4×1 Matrix{Float64}:
0.9298795160436026
0.9240212608175158
0.5693478013892368
0.6619748541328005

1 # The option Val(false) turns off row permutations
2 F=lu(A,Val(false))
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Output

LU{Float64, Matrix{Float64}}
L factor:
4×4 Matrix{Float64}:

1.0 0.0 0.0 0.0
-0.77706 1.0 0.0 0.0
-0.943967 0.53299 1.0 0.0
-0.223178 0.12119 0.548212 1.0

U factor:
4×4 Matrix{Float64}:
-0.889751 -1.11357 -0.256081 -0.272776
0.0 -1.99388 0.63173 -0.3698
0.0 0.0 1.49897 -0.882234
0.0 0.0 0.0 -0.277314

We now have L and U and thus we can efficiently solve for x

1 y=forwardsub(L, b)
2 x=backwardsub(U, y)

Output

4-element Vector{Float64}:
1.1147933490640047
-0.6334718017433187
-1.1343956246238571
-2.4120580258922018

• Quirk 2: You can get L, U , and “the permutation” in two different ways that do not return the same information!

1 using LinearAlgebra
2 using Random
3

4 Random.seed!(12345678)
5 A=randn(4,4)
6 b=rand(4,1)

Output

4×1 Matrix{Float64}:
0.9298795160436026
0.9240212608175158
0.5693478013892368
0.6619748541328005

Method one for doing an LU Factorization in Julia: The thing to note here is that we deliberately used a lowercase p
because it is not the permutation matrix itself, but the vector of indices defining the permutation. What? Read on.

1 L,U,p = lu(A)
2 # Note that we are using a lowercase p anticipating it will NOT be a matrix

Output

LU{Float64, Matrix{Float64}}
L factor:
4×4 Matrix{Float64}:
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1.0 0.0 0.0 0.0
-0.77706 1.0 0.0 0.0
-0.943967 0.53299 1.0 0.0
-0.223178 0.12119 0.548212 1.0

U factor:
4×4 Matrix{Float64}:
-0.889751 -1.11357 -0.256081 -0.272776
0.0 -1.99388 0.63173 -0.3698
0.0 0.0 1.49897 -0.882234
0.0 0.0 0.0 -0.277314

1 p

Output

4-element Vector{Int64}:
4
2
3
1

We see that lowercase p is indeed not a matrix. It is column vector of indices that will bring the fourth row to the top, then keep
the second row where it is, also keep the third row where it is, and finally, the first row is moved to the bottom. Moreover, look
at how easily we can use the indices to permute the rows of b by forming b[p],

1 [b b[p]]

Output shows that the rows of b have been permuted, which is what we need

4×2 Matrix{Float64}:
0.92988 0.661975
0.924021 0.924021
0.569348 0.569348
0.661975 0.92988

This is very important so we say it again. The above shows that the rows of b have indeed been permuted.

1 y=forwardsub(L, b[p])
2 x=backwardsub(U, y)

Output

4-element Vector{Float64}:
1.1147933490640065
-0.633471801743319
-1.1343956246238587
-2.4120580258922035

Method two for doing an LU Factorization in Julia: The thing to note is that when we call the function using the
structure notation, then we can obtain the permutation matrix instead of only the list of indices.

1 # Structure method of calling a native Julia function
2 F=lu(A)
3 L=F.L
4 U=F.U
5 P=F.P
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F is called a structure, or struct for short. It contains the elements L, U, and P as fields. You extract L, U, and P as shown
above with the “dot” notation, such as L=F.L

Output Because P is the last thing in the code cell, the output is P , which we see is a matrix, namely

4×4 Matrix{Float64}:
0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0

We see that P will bring the fourth row to the top, then keep the second row where it is, also keep the third row where it is, and
finally, the first row is moved to the bottom.

1 [b P*b]

Output

4×2 Matrix{Float64}:
0.92988 0.661975
0.924021 0.924021
0.569348 0.569348
0.661975 0.92988

We see that when P is a matrix, we permute the rows of b by multiplying it by P , namely Pb, and when p is a column vector
of indices, we permute the rows by b[p]. Either way, we get the same answer for Ax = b because b[p] = P ∗ b

1 [b P*b b[p]]

Output two equivalent ways to permute the elements of b

4×3 Matrix{Float64}:
0.92988 0.661975 0.661975
0.924021 0.924021 0.924021
0.569348 0.569348 0.569348
0.661975 0.92988 0.92988

1 y1=forwardsub(L, P*b)
2 x1=backwardsub(U, y1)
3 y2=forwardsub(L, b[p])
4 x2=backwardsub(U, y2)
5 [x1 x2]

Output we obtain the same solution x in each case

4×2 Matrix{Float64}:
1.11479 1.11479
-0.633472 -0.633472
-1.1344 -1.1344
-2.41206 -2.41206

As you gain more experience, you may find that you like the structure method better. As a final note, you can obtain the list of
indices used in the permutation from the structure via the field F.p
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1 Random.seed!(12345678)
2 A=randn(4,4)
3 b=rand(4,1)
4 F=lu(A)
5 y=forwardsub(F.L, b[F.p])
6 x=backwardsub(F.U, y)

Output we obtain the same x as before

4-element Vector{Float64}:
1.1147933490640065
-0.633471801743319
-1.1343956246238587
-2.4120580258922035

Once again, we note that “F.p ← lowercase p” provides the list of permutation indices, while “F.P ← uppercase P”
provides the full permutation matrix. When using F.P, the correct code is

1 F=lu(A)
2 y=forwardsub(F.L, F.P*b)
3 x=backwardsub(F.U, y)

• Getting help

1 using LinearAlgebra
2

3 ? lu

Output It’s a lot to parse and understand. In the grey box, we highlight some very important information on the struct F.

search: lu lu! Luv LU LuvA blue flush ALuv values include include_string

lu(A, pivot=Val(true); check = true) -> F::LU
Compute the LU factorization of A.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility for checking the decomposition’s validity (via issuccess) lies with the user.

In most cases, if A is a subtype S of AbstractMatrix{T} with an element type T supporting +, -, * and /, the return type is LU{T,S{T}}. If pivoting is chosen (default) the element type should also support abs and <.

The individual components of the factorization F can be accessed via getproperty:

Component Description
F.L L (lower triangular) part of LU
F.U U (upper triangular) part of LU
F.p (right) permutation Vector
F.P (right) permutation Matrix
Iterating the factorization produces the components F.L, F.U, and F.p.

The relationship between F and A is

F.L*F.U == A[F.p, :]
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Left unsaid is:
F.L*F.U == F.P*A
The following is where the help information gives you the elements of the structure, F:

Component Description
F.L L (lower triangular) part of LU
F.U U (upper triangular) part of LU
F.p (right) permutation Vector
F.P (right) permutation Matrix

We note the distinction between Vector and Matrix.

Help! Help! How am I supposed to remember all of this?
You probably can’t. In any case, we don’t want you
to memorize the ROB 101 material. Instead, open up
a google doc or google sheet and make notes!
You need an organized method for keeping track of stuff.
In High School, you may have been able to remember all
the new notation without any special effort. In College,
it’s a bit different.

5.11 (Optional Read): Large Scale Example: Computing the Forces in a Truss Bridge

(a) (b)

Figure 5.1: Trusses are ubiquitous in construction. Here we show two uses in bridges and roofs. The techniques used to analyze the
forces in each member of a truss are taught in ME 211. They result in a large set of linear equations. We’ll use a bridge to exemplify
the main ideas. You can learn more at https://www.youtube.com/watch?v=Hn_iozUo9m4.

Figure 5.1 shows two truss structures, one for a railroad bridge and the other for a roof in a house or small office building. We’ll
analyze the simpler planar truss bridge in Fig. 5.2, which has joints labeled 1 to 13. In case you are interested, the basic method used
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(a)

(b) (c)

Figure 5.2: A planar truss bridge over an open span, say a road or body of water. As shown in (a), the bridge is pinned on the left
and “floating” on the right. In (b), the joints of the truss structure have been labeled along with some of the forces, such as the
horizontal and vertical forces at the left support point, the vertical force at the right support point, wind loading on the structure,
and a simplified representation of the structure’s weight pulling down on it. A free body diagram for joint 3 is shown in (c), where
it is assumed arbitrarily that each member is in compression. If a member is in tension instead of compression, the force will be a
negative number. To build the linear model for the truss structure, force balances must be computed at each joint in the horizontal
and vertical directions. Because there are 13 joints, the model will have 26 variables in it. The real-life structures in Fig. 5.1 would
have several hundreds of variables.

to develop a mathematical model of the structure is taught in ME 211 Introduction to Dynamics and Vibrations. At each joint, a free
body diagram is constructed as shown in Fig. 5.2-(c), where it has been arbitrarily assumed that all of the members in the truss are in
compression, and thus the forces transmitted by them are directed into the joint. With this convention, when we eventually solve for
the indicated forces, any member that is in tension will have a negative force associated to it.

The angled members in the diagram form an angle of π
3 , or 60◦, with respect to the horizontal axis. The force balance at joint 3 yields

two equations,
F2,3 − F3,4 + cos(π/3)F3,10 − cos(π/3)F3,11 = 0.0 horizontal components

−Fw1 − sin(π/3)F3,10 − sin(π/3)F3,11 = 0.0 vertical components,
(5.19)

the first for the horizontal components of the forces and the second for the vertical components of the forces. A similar process at
joint 10 yields

Fwind − F10,11 + cos(π/3)F1,10 − cos(π/3)F3,10 = 0.0 horizontal components
F2,10 + sin(π/3)F1,10 + sin(π/3)F3,10 = 0.0 vertical components.

(5.20)

Repeating this for each of the 13 joints yields a total of 26 equations for the 26 unknown forces. The resulting linear system of
equations Ax = b has an A matrix that is 26 × 26, which means it has 676 entries. As you can imagine, building the matrix
by hand would be very tedious! What to do about it? Write some code! The Julia code below is a bit advanced for where we
are right now in ROB 101. It is included for the sole purpose of illustrating that programming can be used to build models as

97



well as to solve equations.

The Julia code contains each of the 26 force balance equations, then from the force balance equations it creates the model Ax = b,
and finally it solves for x by LU factorization with row permutations. You are not expected to work through and understand the code.
Copying it into a jupyter notebook and playing with it may be fun. You can check that det(A) ≈ 1.46.

1 using LinearAlgebra
2

3 function Model(x,u)
4 # Units are kilo Newtons, or the force required to support 220 pounds
5 # Bridge model variables
6 # External forces
7 Fw1=u[1];Fw2=u[2];Fw3=u[3];Fwind=u[4]
8 # Internal Forces, where "c" stands for "comma"
9 F1c2=x[1]

10 F1c10=x[2]
11 F2c3=x[3]
12 F2c10=x[4]
13 F3c4=x[5]
14 F3c10=x[6]
15 F3c11=x[7]
16 F4c5=x[8]
17 F4c11=x[9]
18 F5c6=x[10]
19 F5c11=x[11]
20 F5c12=x[12]
21 F6c7=x[13]
22 F6c12=x[14]
23 F7c8=x[15]
24 F7c12=x[16]
25 F7c13=x[17]
26 F8c9=x[18]
27 F8c13=x[19]
28 F9c13=x[20]
29 F10c11=x[21]
30 F11c12=x[22]
31 F12c13=x[23]
32 FhorizLeft=x[24]
33 FvertLeft=x[25]
34 FvertRight=x[26]
35 #Bridge force balance equations
36 # Note cos(pi/3)=0.5 and sin(pi/3)=sqrt(3)/2
37 #joint 1, x component first then y
38 Eq1x=FhorizLeft-F1c2-F1c10*cos(pi/3)
39 Eq1y=FvertLeft-F1c10*sin(pi/3)
40 #joint 2, x component first then y
41 Eq2x=F1c2-F2c3
42 Eq2y=F2c10
43 #joint 3, x component first then y
44 Eq3x=F2c3-F3c4+cos(pi/3)*F3c10-cos(pi/3)*F3c11
45 Eq3y=-Fw1-sin(pi/3)*F3c10-sin(pi/3)*F3c11
46 #joint 4, x component first then y
47 Eq4x=F3c4-F4c5
48 Eq4y=-F4c11
49 #joint 5, x component first then y
50 Eq5x=F4c5-F5c6+cos(pi/3)*F5c11-cos(pi/3)*F5c12
51 Eq5y=-Fw2-sin(pi/3)*F5c11-sin(pi/3)*F5c12
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52 #joint 6, x component first then y
53 Eq6x=F5c6-F6c7
54 Eq6y=-F6c12
55 #joint 7, x component first then y
56 Eq7x=F6c7-F7c8+cos(pi/3)*F7c12-cos(pi/3)*F7c13
57 Eq7y=-Fw3-sin(pi/3)*F7c12-sin(pi/3)*F7c13
58 #joint 8, x component first then y
59 Eq8x=F7c8-F8c9
60 Eq8y=-F8c13
61 #joint 9, x component first then y
62 Eq9x=F8c9+F9c13*cos(pi/3)
63 Eq9y=FvertRight-F9c13*sin(pi/3)
64 #joint 10, x component first then y
65 Eq10x=Fwind-F10c11+cos(pi/3)*F1c10-cos(pi/3)*F3c10
66 Eq10y=F2c10+sin(pi/3)*F1c10+sin(pi/3)*F3c10
67 #joint 11, x component first then y
68 Eq11x=F10c11-F11c12+cos(pi/3)*F3c11-cos(pi/3)*F5c11
69 Eq11y=F4c11+sin(pi/3)*F3c11+sin(pi/3)*F5c11
70 #joint 12, x component first then y
71 Eq12x=F11c12-F12c13+cos(pi/3)*F5c12-cos(pi/3)*F7c12
72 Eq12y=F6c12+sin(pi/3)*F5c12+sin(pi/3)*F7c12
73 #joint 13, x component first then y
74 Eq13x=F12c13+cos(pi/3)*F7c13-cos(pi/3)*F9c13
75 Eq13y=F8c13+sin(pi/3)*F7c13+sin(pi/3)*F9c13
76 # Place all of the equations in a vector
77 y=[Eq1x;Eq1y;Eq2x;Eq2y;Eq3x;Eq3y;Eq4x;Eq4y;Eq5x;Eq5y;Eq6x;Eq6y;Eq7x;Eq7y;Eq8x;Eq8y;Eq9x;

Eq9y;Eq10x;Eq10y;Eq11x;Eq11y;Eq12x;Eq12y;Eq13x;Eq13y]
78 return y
79 end
80 # Query the equations to build the model in the form Ax=b
81 n=26
82 m=4
83 A=Array{Float64,2}(undef, n, 0)
84 Id=zeros(n,n)+I
85 #
86 for k =1:n
87 ek=Id[:,k]
88 ak=Model(ek,zeros(m,1))
89 A=[A ak]
90 # @show ak
91 end
92 @show det(A)
93 @show size(A)
94 Fw1=2000 #kilo Newtons
95 Fw2=3000
96 Fw3=2000
97 Fwind=500.
98 u=[Fw1;Fw2;Fw3;Fwind]
99 b=-Model(zeros(n,1),u)

100 # Solve the equations
101 # Uncomment the next line to see if A can be factored without permutations
102 #F=lu(A,Val(false))
103 F=lu(A)
104 L=F.L
105 U=F.U
106 P=F.P
107 # the functions forwardsub and backwardsub are NOT given. You learned how to
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108 # write them in previous chapters.
109 y=forwardsub(L, P*b)
110 x=backwardsub(U, y)

Here is the solution to Ax = b,

x =



−2458.2
3916.5
−2458.2

0.0
−5220.0
−3916.5
1607.1
−5220.0

0.0
−5095.0
−1607.1
−1857.1
−5095.0

0.0
−2083.2
1857.1
−4166.5
−2083.2

0.0
4166.5
4416.5
6023.5
4166.5
−500.0
3391.7
3608.3


26×1

. (5.21)

The variable names are in the code. We see that there are four “zero force members” highlighted in red, the beams between joints 2
and 10, 4 and 11, 6 and 12, and 8 and 13. While they are not load bearing elements in the nominal structure, they provide important
rigidity to the structure and they serve as safety elements in case one of the angled beams should fail. Finally, from the minus signs,
we see that under the given loading conditions, more than half of the beams are in tension. We emphasize that this does not invalidate
our analysis as tension vs compression is merely a direction convention, just like us assuming that forces that point up or to the right
are acting in a positive direction.

5.12 (Optional Read): An Algorithm for Rectangular LU Factorization with Row Per-
mutations

In Chapter 5.6, you were given an algorithm which generates the LU factorization of square matrices. However, it turns out that we
do not need much modification to also handle rectangular matrices!

1 using LinearAlgebra
2 function luJWG(M::Array{<:Number, 2})
3 a, b = size(M)
4 n=min(a,b)
5 Temp = deepcopy(M)
6 L = Array{Float64,2}(undef, a, 0)
7 U = Array{Float64,2}(undef, 0, b)
8 epsilon=1e-16
9 P=zeros(a,a) + I

10 K=100;
11 for k = 1:n
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12 C = Temp[:,k] # k-th column
13 if maximum(abs.(C)) <= K*epsilon #column of zeros
14 C=0.0*C; # set tiny entries to zero
15 C[k]=1.0;
16 R = Temp[k:k,:] # k-th row
17 Temp=Temp.-C*R;
18 L=[L C];
19 U=[U;R];
20 else # put the biggest entry to the top
21 ii=argmax( abs.(C) );
22 nrow=ii[1]
23 P[[k,nrow],:]=P[[nrow,k],:];
24 Temp[[k,nrow],:]=Temp[[nrow,k],:];
25 if k>1
26 L[[k,nrow],:]= L[[nrow,k],:];
27 end
28 pivot = Temp[k,k] # k-th column
29 C=Temp[:,k]/pivot #normalize all entires by pivot
30 R = Temp[k:k,:] # k-th row
31 Temp=Temp-C*R;
32 L=[L C];
33 U=[U;R];
34 end
35 end
36 return L, U, P
37 end

5.13 Looking Ahead
Once you have programmed in Julia

(a) algorithms for forward and back substitution (methods for solving triangular systems of equations), and

(b) the LU Factorization Algorithm,

you will be well placed for solving systems of linear equations of very large dimension. In the next chapter, we will fill in some of the
more standard results that students learn in linear algebra, where the focus is on solving “drill problems” and not “real engineering
problems”. In your later courses, most instructors will simply assume you know the more standard material and that you have no
clue about the more nuanced approach to problem solving that we have developed in ROB 101. We’ll do our best to throw in some
cool computational aspects as we go.
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Chapter 6

Determinant of a Matrix Product, Matrix
Inverses, Matrix Transposes, and Permutation
Matrices

Learning Objectives
• Fill in some gaps that we left during our sprint to an effective means for solving large systems of linear equations.

Outcomes
• Whenever two square matrices A and B can be multiplied, it is true that det(A ·B) = det(A) · det(B)

• You will learn what it means to “invert a matrix,” and you will understand that you rarely want to actually compute a matrix
inverse!

• If ad− bc ̸= 0, then
[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
.

• Moreover, this may be the only matrix inverse you really want to compute explicitly, unless a matrix has special structure.

• Matrix transpose takes columns of one matrix into the rows of another.
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6.1 A very Useful Fact Regarding the Matrix Determinant

Let A and B be two n× n matrices. Then,

det(A ·B) = det(A) · det(B).

We note that A and B must be square and have the same size for the above useful fact to be true.

Matrix Determinant via LU Factorization
Now suppose that we have done the LU factorization of a square matrix A. Then, using the fact that the determinant of a
product of two square matrices is the product their respective determinants, we have that

det(A) = det(L · U) = det(L) · det(U).

Because L and U are triangular matrices, each of their determinants is given by the product of the diagonal elements. Hence,
we have a way of computing the determinant for square matrices of arbitrary size.

Example 6.1 Compute the matrix determinant of  −2 −4 −6
−2 1 −4
−2 11 −4

 .
Solution Going back to Chap. 5, specifically, (5.8) and (5.9), we have that −2 −4 −6

−2 1 −4
−2 11 −4


︸ ︷︷ ︸

A

=

 1 0 0
1 1 0
1 3 1


︸ ︷︷ ︸

L

·

 −2 −4 −6
0 5 2
0 0 −4


︸ ︷︷ ︸

U

Hence,
det(A) = (1) · (1) · (1)︸ ︷︷ ︸

det(L)

· (−2) · (5) · (−4)︸ ︷︷ ︸
det(U)

= 40.

■

Once we know that det(A ·B) = det(A) · det(B), we immediately obtain from it

det(A ·B · C) = det(A) · det(B) · det(C)

because det(A ·B ·C) = det((A ·B) ·C) = det(A ·B) · det(C) = det(A) · det(B) · det(C). This formula extends to any
product of n× n matrices.
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6.2 Identity Matrix and Matrix Inverse
There is a special square matrix denoted I , or sometimes In to emphasize that it is an n × n matrix, which has ones on its diagonal
and zeros everywhere else,

I1 = [1], I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , etc.

Because In is diagonal, we see immediately that det(In) = 1.

Multiplication by the Identity Matrix

Suppose that A is an n×m matrix. Then
A = In ·A = A · Im.

In other words, as long as the matrix product is defined, multiplying a matrix (on either side) by an identity matrix does not
change it.

Example 6.2 Suppose that A is 2× 3. Show that I2 ·A = A and A · I3 = A.

Solution: We apply our “second definition” of matrix multiplication,[
1 0
0 1

]
·
[
a11 a12 a13
a21 a22 a23

]
=

[
1
0

]
·
[
a11 a12 a13

]
+

[
0
1

]
·
[
a21 a22 a23

]
=

[
a11 a12 a13
0 0 0

]
+

[
0 0 0
a21 a22 a23

]
=

[
a11 a12 a13
a21 a22 a23

]
and [

a11 a12 a13
a21 a22 a23

]
·

1 0 0
0 1 0
0 0 1

 =

[
a11
a21

]
·
[
1 0 0

]
+

[
a12
a22

]
·
[
0 1 0

]
+

[
a13
a23

]
·
[
0 0 1

]
=

[
a11 0 0
a21 0 0

]
+

[
0 a12 0
0 a22 0

]
+

[
0 0 a13
0 0 a23

]
=

[
a11 a12 a13
a21 a22 a23

]
.

■
So, if multiplying a matrix by an identity matrix does not change it, for what is it used? The answer is similar to the number 1.0 in
the reals: we know that

1.0× x = x× 1.0 = x

for all x ∈ R, which is handy to know, but it’s real importance is that we use it to define the multiplicative inverse of x.

Recall: For a given number x ∈ R, a second number y ∈ R is called the multiplicative inverse of x if

x · y = y · x = 1.

We can prove that if a multiplicative inverse exists, it is unique. And, we can prove that a multiplicative inverse exists if, and only if,
x ̸= 0. Finally, when a multiplicative inverse exists, we typically denote it by 1

x , though sometimes we might use x−1.

In a similar, manner, the identity matrix is very useful for defining the inverse of a matrix. In ROB 101, we will only define inverses
for square matrices. It is possible to define inverses for non-square matrices, which are often called Moore-Penrose Inverses, after
their inventors. For a first introduction to matrix inverses, handling the topic for square matrices is really enough!
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1 using LinearAlgebra
2 # Creating an identiy matrix in Julia
3

4 n=5
5 myI=zeros(n,n)+I

Output

5×5 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0

The Inverse of a Square Matrix

Let A be an n× n matrix. A second n× n matrix B is a multiplicative inverse of A if

A ·B = B ·A = In.

• When such a matrix exists, it can be shown to be unique.

• We say that A is invertible and we denote the inverse by A−1 and we simply call it A inverse or the inverse of A.

• It is a major faux pas (means, no-no, in French) to write 1/A in place of A−1.

• Very Useful Fact: A is invertible if, and only if, det(A) ̸= 0. It is so useful we will state it a second time below!

Example 6.3 Consider A =

[
4 2
5 3

]
. Let’s check if B = 1

2

[
3 −2
−5 4

]
is in fact an inverse for A.

Solution: According to the definition, we need to check that A ·B = B ·A = I2. Well,

A ·B =

[
4 2
5 3

]
·
(
1

2

[
3 −2
−5 4

])
=

1

2

[
(4 · 3− 2 · 5) (4 · (−2) + 2 · 4)
(5 · 3− 3 · 5) (5 · (−2) + 3 · 4)

]
=

1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
and, because we passed the first part of the test, we do the second part

B ·A =

(
1

2

[
3 −2
−5 4

])
·
[

4 2
5 3

]
=

1

2

[
(3 · 4− 2 · 5) (3 · 2− 2 · 3)

((−5) · 4 + 4 · 5) ((−5) · 2 + 4 · 3)

]
=

1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
and hence we conclude that B = A−1. ■

Most Important Matrix Inverse for ROB 101

Consider A =

[
a b
c d

]
and suppose that det(A) = a · d− b · c ̸= 0. Then,

A−1 =
1

a · d− b · c

[
d −b
−c a

]
=

1

det(A)

[
d −b
−c a

]
Applying the above formula for the inverse of a 2× 2 matrix immediately gives that[

4 2
5 3

]−1

=
1

2

[
3 −2
−5 4

]
.
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Remarks: We’ve already stated that if a matrix has an inverse, it is unique (that is, there is only one of them). The definition of the
inverse we used was, if A and B are both n× n, then

(A ·B = B ·A = In) ⇐⇒ B = A−1 ⇐⇒ A = B−1.

For square matrices with real (or complex) elements, you do not have to check both A · B = I and B · A = I to conclude that
B = A−1. It is enough to check one of them because

(A ·B = I) ⇐⇒ (B ·A = I) ⇐⇒ B = A−1.

For more general notions of numbers, one does have to check both sides.

The Matrix Inverse and the Matrix Determinant:

• Suppose that A is n× n and invertible. Because the “determinant of a product is the product of the determinants”, we
have that

1 = det(In) = det(A ·A−1) = det(A) · det(A−1).

• It follows that if A has an inverse, then det(A) ̸= 0 and det(A−1) = 1
det(A)

• The other way around is also true: if det(A) ̸= 0, then A has an inverse (one also says that A−1 exists). Putting these
facts together gives the next result.

Major Important Fact

An n× n matrix A is invertible if, and only if, det(A) ̸= 0.

Another useful fact about matrix inverses is that if A and B are both n× n and invertible, then their product is also invertible and

(A ·B)−1 = B−1 ·A−1.

Note that the order is swapped when you compute the inverse. To see why this is true, we note that

(A ·B) · (B−1 ·A−1) = A · (B ·B−1) ·A−1 = A · (I) ·A−1 = A ·A−1 = I.

Hence, (A ·B)−1 = B−1 ·A−1 and NOT A−1 ·B−1.

LU and Matrix Inverses

A consequence of this is that if A is invertible and A = L · U is the LU factorization of A, then

A−1 = U−1 · L−1.

While we will not spend time on it in ROB 101, it is relatively simple to compute the inverse of a triangular matrix whose
determinant is non-zero.

6.3 Utility of the Matrix Inverse and its Computation
The primary use of the matrix inverse is that it provides a closed-form solution to linear systems of equations. Suppose that A is
square and invertible, then

Ax = b ⇐⇒ x = A−1 · b. (6.1)
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While it is a beautiful thing to write down the closed-form solution given in (6.1) as the answer to Ax = b, one should rarely
use it in computations. It is much better to solve Ax = b by factoring A = L · U and using back and forward substitution, than to
first compute A−1 and then multiply A−1 and b. Later in ROB 101, we’ll learn another good method called the QR factorization.

We (your instructors) know the above sounds bizarre to you! You’ve been told that Ax = b has a unique solution for x if, and only
if, det(A) ̸= 0, and you know that A−1 exists if, and only if, det(A) ̸= 0. Hence, logic tells you know that x = A−1b is the unique
solution to Ax = b if, and only if, det(A) ̸= 0. So what gives?

(Optional Read) Theory vs Reality: I

If what you really want to solve isAx = b, then it is numerically inefficient to first compute the matrix inverse, A−1, and then
to do the matrix multiplication A−1b. This is because each column of A−1 is the solution to a system of linear equations,
namely,

A ·A−1 = In ⇐⇒ A−1 =
[
xsol 1 xsol 2 · · · xsol n

]
, where, Axsol i = ei, 1 ≤ i ≤ n, (6.2)

and, in Julia notation,

ei[j] =

{
1 if i = j

0 otherwise
.

In other symbols, just to further drive home the point, solving for A−1 is equivalent to solving n different linear systems of
equations,

Axsol i = ei,

and then using the solutions as the columns of A−1.

Do you really want to solve n systems of linear equations just to solve one? (That’s a rhetorical question, and the answer is NO!)

Example 6.4 Use the method in (6.2) to compute A−1 and then apply the formula x = A−1b to solve 0.9737 0.4123 1.3861
0.7551 0.6366 1.3918
0.6529 0.1277 0.7807

 x1
x2
x3

 =

 0.5568
0.4081
0.5018

 (6.3)

Solution: We compute A−1 using the method indicated in (6.2), namely, solving Ax = ei three times. 0.9737 0.4123 1.3861
0.7551 0.6366 1.3918
0.6529 0.1277 0.7807

 x1
x2
x3

 =

 1.0
0.0
0.0

 =⇒

 x1
x2
x3

sol 1

=

 19151.4036
19150.4446
−19149.6564


 0.9737 0.4123 1.3861

0.7551 0.6366 1.3918
0.6529 0.1277 0.7807

 x1
x2
x3

 =

 0.0
1.0
0.0

 =⇒

 x1
x2
x3

sol 2

=

 −8691.1842−8688.3033
8689.9911


 0.9737 0.4123 1.3861

0.7551 0.6366 1.3918
0.6529 0.1277 0.7807

 x1
x2
x3

 =

 0.0
0.0
1.0

 =⇒

 x1
x2
x3

sol 3

=

 −18507.8638−18511.2973
18508.1696


Putting these together gives

A−1 =

 19151.4036 −8691.1842 −18507.8638
19150.4446 −8688.3033 −18511.2973
−19149.6564 8689.9911 18508.1696

 =⇒ x = A−1b =

 −8860.1245−8860.7769
8860.1837


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Remark: Why are there relatively large numbers in the solution of Ax = b when A and b have modestly sized entries? In this case,
we could have computed det(A) = 1.67e− 5 and seen ahead of time that A is close to singular. Unfortunately, in the real world, it
is easy to have examples where the determinant of a matrix is “relatively far from zero” and yet the matrix is “barely invertible”.

■

(Optional Read) Theory vs Reality: II

While in the world of perfect arithmetic, “A−1 exists if, and only if, det(A) ̸= 0” , in the approximate arithmetic done by
a computer, or by a hand calculator, for that matter, the determinant being nonzero is not a reliable indicator of “numerical
invertibility”. The problem is that the determinant of a matrix can be “very nice”, meaning its absolute value is near 1.0,
while, from a numerical point of view, the matrix is “barely invertible”.

Example 6.5 Consider A =

[
1 10−15

1010 1

]
. For this small example, we can see that A has a huge number and a tiny number in

it, but imagine that A is the result of an intermediate computation in your algorithm and hence you’d never look at it, or the matrix
is so large, say 50 × 50, you would not notice such numbers. If you want to check whether A is invertible or not, you find that
det(A) = 1− 10−5 = 0.99999, which is very close to 1.0, and thus the determinant has given us no hint that A has crazy numbers
of vastly different sizes in it. ■

(Optional Read) Theory vs Reality: III

The value of |det(A)| (magnitude of the determinant of A) is a poor predictor of whether or not A−1 has very large and
very small elements in it, and hence poses numerical challenges for its computation. For typical HW “drill” problems, you
rarely have to worry about this. However, for “real” engineering problems, where a typical dimension (size) of A may be 50
or more, then please please please avoid the computation of the matrix inverse whenever you can!

The LU factorization is a more reliable predictor of numerical problems that may be encountered when computing
A−1. But once you have the LU Factorization, you must ask yourself, do you even need A−1? In the majority of cases,
the answer is NO! Once you have the LU Factorization, solving for Ax = b is cake.

Example 6.6 Consider a 3× 3 matrix

A =

 100.0000 90.0000 −49.0000
90.0000 81.0010 5.4900
100.0000 90.0010 59.0100

 . (6.4)

We compute the determinant and check that it is not close to zero. Indeed, det(A) = 0.90100 (correct to more than ten decimal
places1), and then bravely, we use Julia to compute the inverse, yielding

A−1 =

 −178.9000 −10, 789.0666 9, 889.0666
198.7791 11, 987.7913 −10, 987.981
−110.9878 −0.1110 0.1110

 ,
which we see has some really large numbers, such as 11, 987. As a contrast, we compute A = L · U , the LU factorization (without
permutation), yielding

L =

 1.0 0.0 0.0
0.9 1.0 0.0
1.0 1.0 1.0

 U =

 100.000 90.000 −49.000
0.000 −0.001 99.000

0.000 0.000 9.010

 .
We see that U has a small number on the diagonal, and hence, if we do back substitution to solve Ux = y, for example, as part of
solving

Ax = b ⇐⇒ L · Ux = b ⇐⇒ (Ly = b and Ux = y)

1det(A)− 0.9010 = −1.7× 10−11.
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we know in advance that we’ll be dividing by −0.001, which could easily yield a big number.

Moreover, we see the diagonal of L is [1.0, 1.0, 1.0], and hence det(L) = 1. The diagonal of U is [100.0,−0.001, 9.01], and hence
det(U) = 0.901, and we realize that we ended with a number close to 1.0 in magnitude by multiplying a large number and a small
number. ■

1 # Using the inverse command in Julia
2 using LinearAlgebra
3 using Random
4 Random.seed!(12345678)
5

6 A=randn(6,6)
7 @show det(A)
8 inv(A)

Output

det(A) = 49.345449482491595

6×6 Matrix{Float64}:
-0.0313214 0.407173 -0.00884134 -0.550231 0.420031 -0.17968
0.0915914 -0.0232623 0.268212 -0.0834243 0.400871 0.174108

-0.303567 0.103855 -0.240916 -0.325997 0.345296 0.406821
0.346315 0.24365 -0.162719 -0.347234 0.346664 0.00357876

-0.121959 0.284931 0.135561 0.305418 -0.0151208 0.140373
0.0575381 0.248593 0.467928 0.0124006 -0.0322815 0.440638

6.4 Matrix Transpose and Symmetric Matrices

Transpose of a Matrix

Let A be an n×m matrix with entries [A]ij = aij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then A⊤, the transpose of A, is an m×n
matrix with its ij-entry equal to the ji entry of A,

[A⊤]ij = [A]ji, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Most of us remember the definition more “graphically” as the transpose takes the rows of A and turns them into columns to
form the matrix transpose,

A⊤ :=


a11 a12 · · · a1m

a21 a22 · · · a2m
...

an1 an2 · · · anm


⊤

:=


a11
a12
...

a1m

a21
a22
...

a2m

· · ·

an1
an2
...

anm

 .

Equivalently, you can view the matrix transpose as taking each column of one matrix and laying the elements out as rows in
the transposed matrix

A⊤ :=


a11
a21
...
an1

a12
a22
...
an2

· · ·

a1m
a2m
...

anm


⊤

:=


a11 a21 · · · an1

a12 a22 · · · an2
...

a1m a2m · · · anm

 .
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Example 6.7 Compute the transpose of

A =

[
1 2 3
4 5 6

]
(6.5)

.

Solution:

A⊤ =

 1 4
2 5
3 6

 . (6.6)

Did we just turn the rows into columns or the columns into rows? Trick question! We get the same result either way. :-) Also, is it
clear that transposing the matrix in (6.6) gives back the original matrix in (6.5)? We’ll let you try this on your own.

■

Appearances can be Deceiving

At first blush, the matrix transpose seems kind of pointless. We will learn, however, special types of matrices whose inverses
are equal to their transpose:

• Permutation matrices, which we revisit in the next section.

• Orthogonal matrices, which we study in Chap. 9.5.

Clearly the transpose is super easy to compute. It’s awesome that there are useful matrices with inverses that can be computed
by simply transposing the matrix!

Properties of the Transpose Operation

For any matrix A,
(A⊤)⊤ = A and if A is square ,det(A⊤) = det(A).

Suppose that A is n×m and B is m× p, so that A ·B makes sense. Then

(A ·B)⊤ = B⊤ ·A⊤,

and just as with the matrix inverse, the order of the matrices is reversed.

Note to self: For non-square matrices, it’s often easy to detect your mistake when you attempt to form the product in the
wrong order, namelyA⊤ ·B⊤ because, in general, you cannot multiply anm×nmatrix with a p×mmatrix [consider n = 7,
m = 5 and p = 3, for example]. Of course, when A and B are square, Julia will not complain and you will have simply
introduced an error in your code! The same can happen when n = p ̸= m.

Symmetric and Skew-symmetric Matrices

An n × n matrix is symmetric if A⊤ = A (the transpose of A is equal to A itself). An n × n matrix is skew-symmetric if
A⊤ = −A (the transpose of A is equal to minus A).

Example 6.8 Determine which matrices are symmetric, skew-symmetric, or neither.

A1 =

 1 −2 5
2 0 6
−5 −6 7

 , A2 =

 1 3 7
3 0 −6
7 −6 7

 , A3 =

[
1 2 3
4 5 6

]
, and A4 =

 0 −2 5
2 0 6
−5 −6 0

 .
Solution: We compute each of the transposes and then compare them to either the original matrix or its negative, to check for the
matrix being symmetric, skew-symmetric, or neither.

A⊤
1 =

 1 2 −5
−2 0 −6
5 6 7

 , A⊤
2 =

 1 3 7
3 0 −6
7 −6 7

 , A⊤
3 =

 1 4
2 5
3 6

 , and A⊤
4 =

 0 2 −5
−2 0 −6
5 6 0

 .
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Because A⊤
1 is neither equal to A1 nor −A1, it is neither symmetric nor skew-symmetric. Because A⊤

2 equals A2 it is symmetric.
Because A3 is not square, it cannot be either symmetric or skew-symmetric. Because A⊤

4 equals −A4, it is skew-symmetric. ■

(Optional Read) Remarks: For an n× n matrix to be skew-symmetric, can you see that its main diagonal must be zero (because it
must equal the negative of itself)? Also, that its super-diagonal and sub-diagonal must be negatives of one another, and the same for
each successive pair of diagonals? This is illustrated below where the main diagonal is in red font, the super- and sub-diagonals in
blue font, and the next diagonals are in bold black font,

A4 =

 0 −2 5
2 0 6
−5 −6 0

 .
Similarly, for an n × n matrix to be symmetric, can you see that its main diagonal can be arbitrary (because it just has to be equal
to itself)? Also, that its super-diagonal and sub-diagonal must be equal to one another, and the same for each successive pair of
diagonals? This is illustrated below where the main diagonal is in red font, the super- and sub-diagonals in blue font, and the next
diagonals are in bold black font,

A2 =

 1 3 7
3 0 −6
7 −6 7

 . (6.7)

A Key Source of Symmetric Matrices

Let A be an n×m real matrix. Then A⊤ ·A is an m×m symmetric matrix and A ·A⊤ is an n× n symmetric matrix.

Remark: Why is the above true? Because
(
A⊤ ·A

)⊤
= (A)

⊤ ·
(
A⊤)⊤ = A⊤ · A, where we have used the property

(A ·B)
⊤
= B⊤ ·A⊤. Similar reasoning shows that

(
A ·A⊤)⊤ = A ·A⊤.

6.5 Revisiting Permutation Matrices
In Chap. 4.7, we jumped ahead and introduced permutation matrices before properly treating the matrix transpose and the matrix
inverse. We’ll set things right here. Let’s recall the definition first.

Permutation Matrices

Matrices that consist of all ones and zeros, with each row and each column having a single one, are called permutation
matrices. In fact, the requirement that each and every column and row have exactly one 1 and all other entries zero implies
that a permutation matrix has to be square. Hence, an n×n permutation matrix must have exactly n ones and n(n−1) zeros.

Example 6.9 Determine which matrices are permutation matrices.

A1 =

 1 −1 0
0 1 2
2 0 1

 , A2 =

 0 1 0
0 0 1
1 0 0

 , A3 =

[
1 0 0
0 1 0

]
, A4 =

 1 0 0
1 0 0
0 1 0

 , and A5 =

 1 0 0
0 1 1
0 0 1

 .
Solution: A1 is not a permutation matrix because it has entries that are neither zero nor one, such a12 = −1 and a23 = a31 = 2.
A2 is a permutation matrix because we can check that each and every row and column has precisely one 1 and all other entries
are 0’s. In passing, we note that A2 is not symmetric, and thus permutation matrices are not required to be symmetric. A3 is not a
permutation matrix because it’s third column is all zeros; one could also say that it fails because it is not square. A4 is 3× 3 and has
exactly 3 entries equal to one and all the rest zero; however, it is not a permutation matrix because its first column has two ones. A5

is not a permutation matrix because its second row has two ones; it also fails because its third column has two ones. ■

Inverting a Permutation Matrix is Cake

If P is a permutation matrix, then P⊤ · P = P · P⊤ = I . In other words,

P−1 = P⊤.
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Here is one of the permutations we considered before where applying the permutation twice does not undo the swapping of rows,
1
2
3
4
5

→


4
2
1
5
3

 ; (6.8)

see (5.15). As we did before, we put the 5× 5 identity matrix on the left and the corresponding permutation matrix P on the right

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

↔ P =


0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

↔


3→ 1
2→ 2
5→ 3
1→ 4
4→ 5

 . (6.9)

The matrix P is still just a re-ordering of the rows of I . We can check that P is not a symmetric matrix by either applying the
“diagonal test” indicated in (6.7), or by computing the transpose

P⊤ =


0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0


and noting that P⊤ ̸= P . Direct, albeit tedious multiplication gives that

P · P⊤ = e4 · e⊤4 + e2 · e⊤2 + e1 · e⊤1 + e5 · e⊤5 + e3 · e⊤3 = I5 and

P⊤ · P = e3 · e⊤3 + e2 · e⊤2 + e5 · e⊤5 + e1 · e⊤1 + e4 · e⊤4 = I5,

where ei is the i-th column of the identity matrix. Hence, computing the inverse of a permutation matrix is a snap!

Below is a snippet of Julia code that shows how to take a desired permutation of rows and build the corresponding permutation matrix
from the identity matrix.

Objective: Bring the fourth row to the top, leave the second row where it is, move the first row to the third row, move the fifth row
to the fourth row, and move the third row to the last position. In other symbols,

4→ 1
2→ 2
1→ 3
5→ 4
3→ 5


1 # Building a permutation matrix
2 using LinearAlgebra
3 p=[4, 2, 1, 5, 3]
4 myI=zeros(5,5)+I
5 P=myI[p,:]

Output we obtain the permutation matrix, P ,

5×5 Matrix{Float64}:
0.0 0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0 0.0
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We illustrate two ways to permute the elements of a column vector, similar to what we saw in Chapter 5.10,

1 b=[1 2 3 4 5]’
2 [b b[p] P*b]

Output yielding,

5×3 Matrix{Float64}:
1.0 4.0 4.0
2.0 2.0 2.0
3.0 1.0 1.0
4.0 5.0 5.0
5.0 3.0 3.0

so that we see once again that b[p] = P ∗ b.

6.6 Matrix Determinants, Matrix Inverses, and the Matrix Transpose

Our final useful facts of the Chapter deal with the transpose of a square matrix.

Determinant and Matrix Inverse of A⊤

Some useful facts:

• For any n× n square matrix A, det(A⊤) = det(A).

• Hence, if A is invertible, then so is its transpose.

• Moreover, when det(A) ̸= 0, the inverse of A⊤ is the transpose of the inverse of A, that is(
A⊤)−1

=
(
A−1

)⊤
.

Remark: Because the order does not matter when inverting and transposing a matrix, one often writes A−⊤ for
(
A⊤)−1

.

(Optional Read:) Even though proofs are not a big thing in ROB 101, we’ll sketch out the reasoning for these two facts.

We recall that by the definition of a matrix inverse, it must satisfy A · A−1 = A−1 · A = In. By the product rule for the matrix
transpose, we have that (

A−1
)⊤ ·A⊤ =

(
A ·A−1

)⊤
=
(
A−1 ·A

)⊤
= A⊤ ·

(
A−1

)⊤
= I⊤n = In.

Because (
A−1

)⊤ ·A⊤ = A⊤ ·
(
A−1

)⊤
= In,

we deduce that
(
A⊤)−1

=
(
A−1

)⊤
.

For the next part, we will need to use one fact that we have not covered in the book, namely, if P is a permutation matrix, then
det(P ) = det(P⊤) = ±1. Suppose that A is square and perform its LU Factorization, P · A = L · U . Then, multiplying both sides
by P⊤ and using P⊤ · P = In, we have A = P⊤ · L · U. Hence, by the product rule of determinants, we have that

det(A) = det(P⊤) · det(L) · det(U) = det(P⊤) · det(U) = det(P ) · det(U),

where we used det(L) = 1 (because L is uni-lower-triangular) and det(P⊤) = det(P ). Next, we note that A⊤ = U⊤ ·L⊤ ·P , using
the product rule for the matrix transpose. Hence,

det(A⊤) = det(U⊤) · det(L⊤) · det(P ).
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The transpose operation takes U to a lower-triangular matrix with diag(U) = diag(U⊤) and hence det(U) = det(U⊤). Similarly,
the transpose operation takes L to a uni-upper-triangular matrix with diag(L) = diag(L⊤) and hence det(L) = det(L⊤) = 1. We
conclude that

det(A) = det(P ) · det(U)

det(A⊤) = det(U) · det(P ),

and hence, det(A⊤) = det(A) = ± det(U).

6.7 Looking Ahead
You have now seen the most important material for solving systems of linear equations. You have been cautioned about the “theory
vs practice gap” when it comes to computing matrix inverses. In fact, your instructors often say, with a mix of seriousness and
joking, that “we don’t hang out with people who compute matrix inverses.” The purpose of the statement is to drive home the fact
that computing a matrix inverse is a numerically delicate operation and is often a sloppy way to solve a real problem with many
variables. for “toy problems” typically seen in lower-level courses, sure, you can use the matrix inverse and not suffer any adverse
consequences. But, did you come to Michigan to learn how to solve toy problems?

Our next task is to develop a deeper understanding of vectors and special sets built out of vectors, called “vector spaces.” We’ll learn
about linear independence, basis vectors, dimension, as well as how to measure the size of a vector and the distance between two
vectors. This knowledge will allow us to analyze systems of linear equations Ax = b that do not have an exact solution! Right
now, this might seem bizarre: if you already know there is not an exact solution, what could you possibly be analyzing? We will be
seeking an approximate answer that minimizes the error in the solution, where the error is defined as

e := Ax− b.

We seek a value of x that makes e as “small as possible in magnitude”. In Robotics as in life, most interesting problems do not
have exact answers. The goal is then to find approximate answers that are good enough!
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Chapter 7

The Vector Space Rn: Part 1

Learning Objectives
• Instead of working with individual vectors, we will work with a collection of vectors.

• Our first encounter with some of the essential concepts in Linear Algebra that go beyond systems of equations.

Outcomes
• Vectors as n-tuples of real numbers

• Rn as the collection of all n-tuples of real numbers

• Linear combinations of vectors

• Linear independence of vectors

• Relation of these concepts to the existence and uniqueness of solutions to Ax = b.

• How the LU Factorization makes it very straightforward to check the linear independence of a set of vectors, and how a small
modification to the LU factorization makes it equally straightforward to check if one vector is a linear combination of a set of
vectors.

Warning! Theory Ahead!! Additional Study Time May Be Required
For many students, the concepts in Chapters 7, 9 and 10 are significantly more challenging than the material in any of
the other chapters of the book. Why? Well, the reasons vary from person to person, but the biggest reason seems to be
the level of abstraction. All of our previous work has pretty much dealt with solving equations and that is something
most students of ROB 101 can wrap their heads around.

To be considered knowledgeable in Linear Algebra, you need to understand

• Linear Combinations and Linear Independence of Vectors

• Subspaces

• Span of a set of vectors

• Basis vectors and coordinates

• Dimension of a subspace

• Relations of the above to Matrices
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7.1 Motivation
At this point, if we have a matrix equation, Ax = b, we understand that x̄ is a solution to the equation if, and only if, Ax̄ − b = 0;
in other words, plugging x̄ into the equation results in there being “no error.” In this chapter, we are setting ourselves up for deeper
questions, such as what is the set of all solutions to an equation of the form Ax = b? What does it even mean to talk about “all
solutions” to an equation?

To make this last question a bit more concrete, let’s suppose that we have found two solutions to the equation Ax = 0n×1 (yes, we
took b = 0n×1), and we call them x̄ and ¯̄x. We now let α ∈ R and β ∈ R be two real numbers and we define a third potential solution
by

x̌ := αx̄+ β ¯̄x. (7.1)

Is there any chance it is really a solution? In other words, just by doing simple algebraic operations on existing solutions, can we find
other solutions? Let’s find out by plugging x̌ into the equation,

Ax̌ = A (αx̄+ β ¯̄x)

= A (αx̄) +A (β ¯̄x)

= αAx̄+ βA¯̄x

= 0 + 0

= 0.

Bingo, x̌ is also a solution. Since there can be more than one solution, we are motivated to define

Sall := {x | Ax = 0n×1}, (7.2)

the set of all possible solutions. Assuming we could compute such a set, what would we even do with it? Later in the course, we’ll
define what it means to say that one vector x̄ ∈ Sall is “better than” another vector ¯̄x ∈ Sall, in other words, we’ll define what it means
for one solution (to an engineering problem) to be better than another solution (to an engineering problem). If you can compare one
solution to another, then you can potentially quantify what is a “best” solution to a problem! For example, we could potentially pose
problems about how to go from point A to point B using the least amount of energy, or how to manufacture something at lowest cost.

We’re straying a bit from Linear Algebra here, but hopefully, the teaser was kind of fun. We summarize:

• It makes sense to perform algebraic operations on solutions of equations, as in (7.1).

• It is at least plausible that understanding the “structure” of abstract sets like (7.2) will make it easier to sort through the set to
find a “best element” in the set, when later in the course, we are able to define what we mean by “best”!

Need Intuition?
The YouTube Channel 3Blue1Brown has a video series on the “essence” of Linear Algebra. Here is one you may like which
talks about vectors, points, and coordinates https://youtu.be/fNk_zzaMoSs; there are many others. The series has
wonderful animations. If you find yourself struggling with the abstract concepts we are about to encounter, then this
video series may be for you! Others of you will not need the animations and the fact that the animations have to be done in
dimensions two and three may actually inhibit you from mastering the material. We all learn in different ways.

7.2 Vectors in Rn and Some Basic Algebra
An n-tuple is a fancy name for an ordered list of n numbers, (x1, x2, . . . , xn). If this sounds a lot like a vector, then good, because
we will systematically identify

Rn := {(x1, x2, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} (7.3)

with column vectors. In other words, for us,

Rn := {(x1, x2, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} ⇐⇒



x1
x2
...
xn


∣∣∣∣∣ xi ∈ R, 1 ≤ i ≤ n

 =: Rn. (7.4)
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The choice of identifying n-tuples of numbers with column vectors instead of row vectors is completely arbitrary, and yet, it is very
common.

Columns of Matrices are Vectors and Vice Versa
Suppose that A is an n×m matrix, then its columns are vectors in Rn and conversely, given vectors in Rn, we can stack them
together and form a matrix:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 =
[
acol1 acol2 · · · acolm

]
⇐⇒ acolj :=


a1j
a2j
...
anj

 ∈ Rn, 1 ≤ j ≤ m (7.5)

Example 7.1 The following are all vectors in R4

u =


1
−2
π√
17

 , v =


4.1
−1.1
0.0
0.0

 . w =


103

0
0.7
1.0

 .
Use them to make a 4× 3 matrix.

Solution:

A =


1 4.1 103

−2 −1.1 0.0
π 0.0 0.7√
17 0.0 1.0

 .
■

Example 7.2 The matrix A is a 2× 4. Extract its columns to form vectors in R2.

A =

[
1 2 3 4
5 6 7 8

]
.

Solution:

acol1 =

[
1
5

]
∈ R2, acol2 =

[
2
6

]
∈ R2, acol3 =

[
3
7

]
∈ R2, acol4 =

[
4
8

]
∈ R2.

■

For many applications, we go back and forth between columns of matrices and vectors. In such cases, we are really treating vectors
as ordered lists of numbers, where ordered simply means there is a first element, a second element, etc., just as we did way back in
Chapter 2. In other applications, we think of vectors as points in space. This is especially common with R2, the two-dimensional
plane, or R3, the three-dimensional world in which we live, but if you’ve heard of Einstein’s “space-time continuum”, the space in
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which his theory of general relativity lives, then you know about four-dimensional space!

Some Books use Different Notation for Vectors in Rn

For Rn := {(x1, x2, · · · , xn) | xj ∈ R, j = 1, 2, · · · , n}, the current way to denote a vector is

x =


x1
x2
...
xn

 .
The real numbers xj are called the components of the vector x or the entries of the vector x.

You will find many textbooks that place arrows over vectors, as in

x⃗ =


x1
x2
...
xn


The “arrow notation” for vectors is falling out of favor. When your instructors write out vectors, they will not use the
“arrow” notation. This actually helps to make your mathematics look closer to your programming, which is ALWAYS a
good thing, but it is not the primary motivation.

Definitions: Consider two vectors x ∈ Rn and y ∈ Rn. We define their vector sum by

x+ y =


x1
x2
...
xn

+


y1
y2
...
yn

 :=


x1 + y1
x2 + y2

...
xn + yn

 ,
that is, we sum their respective components or entries. Let α be a real number. Then we define

αx :=


αx1
αx2
...

αxn

 ,
that is, to multiply a vector by a real number, we multiply each of the components of the vector by the same real number. ■

With these definitions, two vectors x and y are equal if, and only if, they have the same components,

x :=


x1
x2
...
xn

 =


y1
y2
...
yn

 =: y ⇐⇒ xj = yj for all 1 ≤ j ≤ n.

Said another way,

x = y ⇐⇒ x− y =


0
0
...
0

 = 0n×1,

the zero vector in Rn.
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Remark: Normally, the zero vector in Rn is simply denoted by 0. From time to time, to help our learning, we’ll be very explicit and
write it as 0n×1 in order to emphasize its dimension!

(a) (b)

Figure 7.1: Images of the xy-plane with Cartesian coordinates x and y, courtesy of the WikiMedia Commons. (a) shows a vector
drawn to the point (2, 3) and labeled suggestively as a vector from the origin O to point A. (b) shows a point P represented with
coordinates (x, y), also with a vector drawn to it. These are both fine interpretations of vectors. In ROB 101, points and vectors are
the same thing: an ordered list of numbers.

Figure 7.1 shows two geometric depictions of vectors in 2D, one emphasizing a vector as a directed line segment from the originO to
a point A located at (2, 3), while the second is a directed line segment from the origin O to a point P located at (x, y). Both of these
are fine interpretations of vectors. In R2, graphical depictions of vectors are relatively straightforward to understand. Figure 7.2a
illustrates so-called unit vectors along the xyz-axes in R3, while Fig. 7.2b shows a point in R3 with Cartesian coordinates (x, y, z).
These depictions of vectors and points in R3 are fairly simple, but it is not hard to give other examples in R3 that are harder to
“picture” as a 2D-image, which is all we can show on a sheet of paper. So yes, it easy to get lost in 3D-space and if you have a hard
time “imagining” (that is, representing visually in your head for the purpose of building intuition) objects in 3D, you are not alone.
Anyone want to try R27, that is, 27D-space?

In ROB 101, points in Rn are vectors. We treat points and vectors as being different ways of representing the same mathematical
object: an ordered list of numbers. Don’t get hung up on the geometric aspect of vectors. In Physics, Dynamics, and Electromagnetics
courses, you’ll be challenged to “imagine” vectors in 3D. Deal with it there. For now, it is OK to think of vectors as lists of numbers
that obey some basic algebraic relationships and nothing more. Besides, when dealing with a vector that has hundreds of components,
what else can you do?

3 Special Vectors in R3

Figure 7.2a defines “unit” vectors î, ĵ, and k̂. You will see these a lot in Physics. The more accepted mathematical notation
in Linear Algebra is

e1 :=

10
0

 , e2 :=

01
0

 , and e3 :=

00
1

 .
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(a) (b)

Figure 7.2: Images of 3D space with Cartesian coordinates x, y, and z using two different color schemes. (a), courtesy of WikiMedia
Commons, emphasizes that the vector a = ax + ay + az is the sum of three vectors lying along the x-axis, y-axis, and z-axis,
respectively. (b), courtesy of Prof. Maani Ghaffari, emphasizes that the point P = (x, y, z) has an x-component Px, a y-component
Py , and z-component Pz . In ROB 101, points and vectors are the same thing. Moreover, we do not rely on your ability to imagine
vectors in n-dimensional space for n > 2.

Properties of Vector Addition and Scalar Times Vector Multiplication

1. Addition is commutative: For any x ∈ Rn and y ∈ Rn,

x+ y = y + x.

2. Addition is associative: For any x ∈ Rn, y ∈ Rn and z ∈ Rn,

(x+ y) + z = x+ (y + z) .

3. Scalar multiplication is associative: For any α ∈ R, β ∈ R, and any x ∈ Rn in

α (βx) = (αβ)x.

4. Scalar multiplication is distributive: For any α ∈ R, β ∈ R and for any x ∈ Rn, y ∈ Rn,

(α+ β)x = αx+ βx,

and
α (x+ y) = αx+ αy.

All of these properties follow from the corresponding properties for real numbers. Hence, there is no real reason to make a
big deal about them. You’ve been adding vectors and multiplying them by constants in Julia for several weeks now!

7.3 The Notion of Linear Combinations
Sums of vectors times scalars are called linear combinations. We’ll introduce the concept in two ways: first by studying what Ax
really means in terms of the columns of A and the components of x, and in a second pass, a more “pure” or “abstract” definition in
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Rn. If you enjoyed the previous 3Blue1Brown video, then I suggest you check out this one as well https://www.youtube.
com/watch?v=k7RM-ot2NWY.

7.3.1 Linear combinations through the lens of Ax=b
Let’s consider Ax = b and see if we truly understand the product of an n×m matrix A and an m× 1 column vector x, and then the
equation Ax = b! We write

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 and


x1
x2
...
xm

 . (7.6)

Then, using our column times row method for matrix multiplication, we have

Ax =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm




x1
x2
...
xm

 =


a11
a21
...
an1

x1 +

a12
a22
...
an2

x2 + · · ·+

a1m
a2m
...

anm

xm. (7.7)

If the above is not clicking for you, go back and look at our second method for matrix multiplication in Chapter 4. Note that the rows
of the vector x are simply its components; another way to look at is, because x is m× 1, its rows are 1× 1.

The next step is to move the xi in front of the column vectors of A, as in

Ax = x1


a11
a21
...
an1

+ x2


a12
a22
...
an2

+ · · ·+ xm


a1m
a2m
...

anm

 .
Because we are used to thinking of the xi as variables or unknowns, let’s substitute in a “numerical” value, such as αi. Of course,
this has not changed anything, but it might look different to you,

A


α1

α2

...
αm

 = α1


a11
a21
...
an1

+ α2


a12
a22
...
an2

+ · · ·+ αm


a1m
a2m
...

anm

 .
Linear Combination of the Columns of A

Definition The following sum of scalars times vectors,

α1


a11
a21
...
an1

+ α2


a12
a22
...
an2

+ · · ·+ αm


a1m
a2m
...

anm

 , (7.8)

is called a linear combination of the columns of A. When we set Aα = b, and turn it around as b = Aα, we arrive at an
important Fact: a vector α ∈ Rm is a solution to Ax = b (that is, Aα = b) if, and only if

b = α1


a11
a21
...
an1

+ α2


a12
a22
...
an2

+ · · ·+ αm


a1m
a2m
...

anm

 , (7.9)

that is, b can be expressed as a linear combination of the columns of A. We will revisit this later, but (7.9) is a primary
motivation for introducing the notion of linear combinations.
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7.3.2 Linear Combinations in Rn

Linear Combination

A vector v ∈ Rn is a linear combination of {u1, u2, . . . , um} ⊂ Rn if there exist real numbers α1, α2, . . . , αm such that

v = α1u1 + α2u2 + · · ·+ αmum. (7.10)

Example 7.3 Because −3−5
−7


︸ ︷︷ ︸

v

= 2

32
1


︸︷︷︸
u1

−9

11
1


︸︷︷︸
u2

,

we have that v is a linear combination of {u1, u2}.

When you are given the coefficients, it is easy to observe that a given vector is a linear combination of other vectors. But when you
have to check if such coefficients exist or do not exist, then it’s just a wee bit more challenging!

Example 7.4 Is the vector v =

44
4

 a linear combination of

u1 =

 3
1
−1

 and u2 =

 2
−2
1

?
Solution: The vector v is a linear combination of the vectors u1 and u2 if, and only if, there exist real numbers α1 and α2 such that

α1u1 + α2u2 = v. (7.11)

What we have done here is apply1 the definition of a linear combination. So, we write down the linear equations corresponding to
(7.11), namely

α1

 3
1
−1

+ α2

 2
−2
1

 =

 4
4
4


⇕ 3 2

1 −2
−1 1

[ α1

α2

]
=

 4
4
4


(7.12)

and see if we can find a solution for the unknowns α1 and α2! What makes this look hard is that we have a non-square (rectangular)
system of linear equations, namely, three equations and two unknowns.

What are the three equations? They may look more familiar to you if we write them out like this,

3α1 + 2α2 = 4

α1 − 2α2 = 4

−α1 + α2 = 4.

A systematic way to approach such problems is to observe that if α1 and α2 are to simultaneously satisfy all three equations, then
they must necessarily satisfy any two of them. Moreover, if you find that the solution to the resulting square system of two equations
and two unknowns is unique, then two things are possible:

1In the beginning, many of us are confused about how to go about solving a problem. Sound advice is to start with the definitions at your disposal. Then try to turn
the definition into a set of equations to be solved.

124



• the solution of the smaller square system of equations also satisfies the equation(s) you did not use, giving you a solution to
the full set of equations, or

• the solution of the smaller square system of equations does not satisfy the equation(s) you did not use, telling you that the full
set of equations is inconsistent and does not have a solution.

In our case, if we remove the last equation, we have[
3 2
1 −2

] [
α1

α2

]
=

[
4
4

]
, (7.13)

and we observe that the matrix multiplying the vector of unknowns has determinant −8, and thus (7.13) has a unique solution. A bit
of matrix magic with our formula for a 2× 2 inverse gives

α1 = 2 and α2 = −1.

Do these values satisfy the equation we did not use, namely, the last row of (7.13),

[
−1 1

] [ α1

α2

]
=
[
4
]
?

Clearly not, because −1α1 + α2 = −3 ̸= 4, and hence, v is NOT a linear combination of u1 and u2.

The key point is that α1 and α2 must satisfy all three equations in (7.12). It does not matter in what order we use the equations
when seeking a solution. To illustrate that, we’ll first solve the last two equations,

α1 − 2α2 = 4

−α1 + α2 = 4,

which yields, α1 = −12 and α2 = −8. We then check if these values satisfy the first equation

3α1 + 2α2 = 4 ⇐⇒ −36− 16 = 4 ⇐⇒ −52 = 4,

which is false, and therefore, v is NOT a linear combination of u1 and u2.

Rework the problem: Let’s keep u1 and u2 as given and change v to

ṽ =

 0
−8
5

 .
Applying the above strategy to the equations

3α1 + 2α2 = 0

α1 − 2α2 = −8
−α1 + α2 = 5

yields α1 = −2 and α2 = 3, as you can verify by direct substitution. Hence, ṽ is a linear combination of u1 and u2. ■

Remark: Checking whether a given vector can be written as a linear combination of other vectors always comes down to solving
a system of linear equations. If that system is square with a non-zero determinant, then solving the system of equations is cake.
Otherwise, solving the equations by hand is mostly painful. We will need to develop a better way to check if a vector is, or is not,
a linear combination of other vectors!

125



7.4 Existence of Solutions to Ax=b

Because it is so important, we now revisit the relation of linear combinations to the existence of solutions to systems of linear equa-
tions. We want to make sure you did NOT miss something important when reading Chapter 7.3.1. If you are confident of your
knowledge, then feel free to move on to the next section. Otherwise, please read on!

Let A be an n ×m matrix, not necessarily square, as in (7.5). Recall that columns of A and vectors in Rn are the same thing. We
write out Ax = b is all its glory, 

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


︸ ︷︷ ︸

A


x1
x2
...
xm


︸ ︷︷ ︸

x

=


b1
b2
...
bn


︸ ︷︷ ︸

b

. (7.14)

Existence of Solutions

The equation Ax = b has a solution if, and only if, b can be written as a linear combination of the columns of A.

The following is more or less a proof: Suppose that x̄ satisfies Ax̄ = b, which is the same thing as saying x̄ is a solution of
Ax = b. Then, doing the indicated multiplication of Ax̄ via our now favorite method, the columns of A times the rows of the
vector x̄, which are its scalar entries x̄i, yields

a11
a21
...
an1

 x̄1 +

a12
a22
...
an2

 x̄2 + · · ·+

a1m
a2m
...

anm

 x̄m =


b1
b2
...
bm

 (7.15)

Exchanging the two sides of the equal sign and moving the scalars x̄i to the front of the vectors give
b1
b2
...
bm

 = x̄1


a11
a21
...
an1

+ x̄2


a12
a22
...
an2

+ · · ·+ x̄m


a1m
a2m
...

anm

 ; (7.16)

in other words, b is a linear combination of the columns of A. The other way around works as well: if we manage to write

b = c1a
col
1 + c2a

col
2 + · · · cmacolm

for some real numbers ci ∈ R, then x̄ =
[
c1 c2 · · · cm

]⊤
satisfies Ax̄ = b, and hence it is a solution to Ax = b.

Recall that acolj :=
[
aij a2j · · · anj

]⊤
, 1 ≤ j ≤ m.

A weakness of the above result is that we do not yet have an effective means for checking whether or not a given vector is a linear
combination of a specified set of vectors. We will solve this problem too, a little bit later in the Chapter. All we have done so far is
indicate that the concept of a linear combination is related to the existence of a solution to a corresponding system of linear equations.
The result is mainly conceptual in that we have not yet provided a practical way to check this in code. That will come, though!
Long Live the LU Factorization!
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7.5 Linear Independence of a Set of Vectors

7.5.1 Preamble
The concept of linear independence, or its logical opposite, the concept of linear dependence, is one of the most important ideas
in all of linear algebra. In the beginning, most of us struggle with two things: (1) why is the property of linear independence so
important; and (2), how do you test for it? In this section, we highlight the importance of linear independence of vectors by relating
it to uniqueness of solutions to Ax = 0 and eventually, to uniqueness of solutions to Ax = b. We’ll also show that our friend, the
LU Factorization, makes testing for linear independence very straightforward.

7.5.2 Linear Independence through the Lens of Ax=0
Let A be an n×m matrix. We say that x ∈ Rm is a nontrivial solution to Ax = 0n×1 if

• Ax = 0n×1 (x is a solution), and

• x ̸= 0m×1 (x is not the zero vector in Rm).

Because x = 0 is always a solution to Ax = 0, for it to be the unique solution, there must not be a non-trivial solution to Ax = 0.

Why are we making such a big deal about this? Because uniqueness is a desirable property and we want to learn how to check for it
even in the case of rectangular systems of equations2. Our immediate goal is to see what this means in terms of the columns of A,
just as we did when introducing the notion of a linear combination.

To see what it means to have “non-trivial solutions” to Ax = 0n×1, once again, we replace x ∈ Rm by a vector α ∈ Rm and write

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 and α =


α1

α2

...
αm

 . (7.17)

Then, using our column times row method for matrix multiplication, and re-arranging terms a bit as we did in Chapter 7.3.1,

Aα =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm




α1

α2

...
αm



= α1


a11
a21
...
an1

+ α2


a12
a22
...
an2

+ · · ·+ αm


a1m
a2m
...

anm

 .
(7.18)

Hence, Aα = 0n×1 if, and only if,

α1


a11
a21
...
an1

+ α2


a12
a22
...
an2

+ · · ·+ αm


a1m
a2m
...

anm

 =


0
0
...
0


n×1

. (7.19)

Our takeaway is, α = 0m×1 is the unique solution to Aα = 0 if, and only if, the only way we can add up the columns of A and
obtain the zero vector in Rn is with

α1 = 0, α2 = 0, . . . , αm = 0.

Or equivalently, Aα = 0 has a non-trivial solution α ̸= 0m×1, if, and only if, there exists real numbers α1, α2, . . . , αm, NOT ALL
ZERO, such that (7.19) is satisfied.

2Recall, when A is square, uniqueness is equivalent to det(A) ̸= 0.
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7.5.3 Linear Independence in Rn (and why theory matters)
The definition of linear independence of an “abstract” set of vectors in Rn is 100% motivated by the study above on the uniqueness
of solutions to Ax = 0. Of course, vectors in Rn are columns of n×m matrices, so who’s to say what is abstract and what is not!

Linear Independence of a Set of Vectors

The set of vectors {v1, v2, ..., vm} ⊂ Rn is linearly dependent if there exist real numbers α1, α2, . . . , αm NOT ALL ZERO
yielding a linear combination of vectors that adds up to the zero vector,

α1v1 + α2v2 + . . .+ αmvm = 0n×1. (7.20)

On the other hand, the vectors {v1, v2, ..., vm} are linearly independent if the only real numbers α1, α2, . . . , αm yielding a
linear combination of vectors that adds up to the zero vector,

α1v1 + α2v2 + . . .+ αmvm = 0n×1, (7.21)

are α1 = 0,α2 = 0, . . . ,αm = 0.

Concise Definition of Linear Independence:

α1v1 + α2v2 + . . .+ αmvm = 0n×1 ⇐⇒


α1

α2

...
αm

 =


0
0
...
0

 = 0m×1.

Example 7.5 By applying the definition, determine if the set of vectors

v1 =

 √20
0

 , v2 =

 4
7
0

 , v3 =

 3
1
−1


is linearly independent or dependent.

Solution: We form the linear combination and do the indicated multiplications and additions

α1v1 + α2v2 + α3v3 = α1

 √20
0

+ α2

 4
7
0

+ α3

 3
1
−1

 =

 √2 α1 + 4 α2 + 3 α3

7 α2 + α3

−1 α3

 . (7.22)

Setting the right hand side of (7.22) to the zero vector yields √2 α1 + 4 α2 + 3 α3

7 α2 + α3

−1 α3

 =

 0
0
0

 . (7.23)

This is one of our friendly triangular systems of linear equations which we can solve via back substitution. We see immediately that
the only solution to the bottom equation is α3 = 0, the only solution to the middle equation is then α2 = 0, and finally, the only
solution to the top equation is α1 = 0. Hence, the only solution to

α1v1 + α2v2 + α3v3 = 0

is α1 = 0, α2 = 0, and α3 = 0, and hence the set of vectors {v1, v2, v3} is linearly independent.

The above analysis becomes even more clear when we write (7.23) as √2 4 3
0 7 1
0 0 −1

 α1

α2

α3

 =

 0
0
0

 . (7.24)
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We see that the matrix is square with a non-zero determinant, and hence we know it has a unique solution. ■

Example 7.6 By applying the definition, determine if the set of vectors

v1 =

 1
2
3

 , v2 =

 1
−2
−4


is linearly independent or dependent.

Solution: We seek to determine if there are non-zero coefficients α1 and α2 resulting in a linear combination that forms the zero
vector in R3,

α1v1 + α2v2 = α1

 1
2
3

+ α2

 1
−2
−4

 =

 α1 + α2

2α1 − 2α2

3α1 − 4α2

 =

 0
0
0

 . (7.25)

We observe that we have three equations in two unknowns and no obvious triangular structure to help us! What do we do? Well, if
we can take any two of the three equations and show that the only solution is the trivial solution, α1 = 0 and α2 = 0, then we are
done, because the trivial solution will always satisfy the remaining equation. Please check this reasoning out for yourself.

We arbitrarily group the equations into the first two equations and then the last equation, as follows

α1

[
1
2

]
+ α2

[
1
−2

]
=

[
0
0

]
(7.26)

α1

[
3
]
+ α2

[
−4

]
= 0. (7.27)

We can rewrite (7.26) in the form Aα = b [
1 1
2 −2

]
︸ ︷︷ ︸

A

[
α1

α2

]
︸ ︷︷ ︸

α

=

[
0
0

]
︸ ︷︷ ︸

b

. (7.28)

We note that det(A) = (1)(−2) − (1)(2) = −4 ̸= 0, and hence (7.28) has a unique solution. Because α1 = 0 and α2 = 0 is a
solution and the solution is unique, we know that there cannot exist a different set of non-zero α1 and α2 that also solve the equation.
We, therefore, conclude that the vectors {v1, v2} are linearly independent.

Remark: Let’s step back and see what is going on here. We have three equations and two unknowns. The trivial solution is always
a solution to the full set of equations. We wonder if there is any other solution. If we make a choice of two of the equations, so that
we have a more manageable square system of equations, and then find that those two equations constrain the solution to being the
trivial solution, we are done! (Why, because the trivial solution will automatically satisfy the remaining equation and it is then the
only solution that satisfies all three equations.) ■

That was a lot of work! It does not seem like it will scale to bigger sets of vectors. We’ll do one more example to convince you that
we are in dire need of a Pro Tip!

Example 7.7 By applying the definition, determine if the vectors

v1 =


1
2
3
1

 , v2 =


0
−2
4
5

 , v3 =


2
6
2
−3


are linearly independent or dependent.

Solution: We form the linear combination and set it equal to zero,

α1v1 + α2v2 + α3v3 = α1


1
2
3
1

+ α2


0
−2
4
5

+ α3


2
6
2
−3

 =


α1 + 2 α3

2α1 − 2α2 + 6α3

3α1 + 4α2 + 2α3

α1 + 5α2 − 3α3

 =


0
0
0
0

 . (7.29)
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We must check whether or not there are non-trivial solutions to (7.29), where non-trivial means at least one of the coefficients
α1, α2, or α3 is non-zero.

We observe that we have four equations in three unknowns. Similar to Example 7.6, we could select any three of the four equations,
solve those three, and then see if that solution is compatible with the remaining equation. Once again, this will be a lot of work. We’ll
save ourselves the effort and let you verify that α1 = 2, α2 = −1, α3 = −1 is a non-trivial solution to (7.29) and hence the vectors
v1, v2, v3 are linearly dependent. Where is that Pro Tip? ■

7.5.4 A Pro Tip for Checking Linear Independence

Pro-tip! Linear Independence in a Nutshell

Consider the vectors in Rn, v1 =


a11
a21
...
an1

 , v2 =


a12
a22
...
an2

 , ..., vm =


a1m
a2m
...

anm


 ,

and use them as the columns of a matrix that we call A,

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 . (7.30)

The following statements are equivalent:

• The set of vectors {v1, v2, . . . , vm} is linearly independent.

• The m×m matrix A⊤ ·A is invertible.

• det(A⊤ ·A) ̸= 0.

• For any LU Factorization P · (A⊤ · A) = L · U of A⊤A, the m × m upper triangular matrix U has no zeros on its
diagonal.

We’ll prove the Pro Tip shortly. For now, we’ll focus on how it makes our lives so much easier in terms of checking linear
independence.

Example 7.8 We apply the Pro Tip to Example 7.5

Solution: We use the vectors v1 =

 1
2
3

 and v2 =

 1
−2
−4

 as the columns of a matrix A := [v1 v2], so that

A =

 1 1
2 −2
3 −4

 .
We compute that

A⊤ ·A =

[
14.0 −15.0
−15.0 21.0

]
.

Because it is 2× 2, we can compute its determinant easily and obtain

det(A⊤ ·A) = 69.0 ̸= 0,

and hence the vectors {v1, v2} are linearly independent. ■
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Example 7.9 We apply the Pro Tip to Example 7.7.

Solution: We use the vectors

v1 =


1
2
3
1

 , v2 =


0
−2
4
5

 , v3 =


2
6
2
−3


and form the matrix

A :=


1 0 2
2 −2 6
3 4 2
1 5 −3

 .
We go to Julia and compute that

A⊤ ·A =

 15.0 13.0 17.0
13.0 45.0 −19.0
17.0 −19.0 53.0

 ,
and that its LU Factorization is P ·

(
A⊤ ·A

)
= L · U , where

P =

 0.0 0.0 1.0
0.0 1.0 0.0
1.0 0.0 0.0

 , L =

 1.0 0.0 0.0
0.8 1.0 0.0
0.9 0.5 1.0

 , and U =

 17.0 −19.0 53.0
0.0 59.5 −59.5
0.0 0.0 0.0

 .
We observe that U has a zero on its diagonal and hence the set {v1, v2, v3} is linearly dependent. ■

Yeah, that Pro Tip on Linear Independence is certainly worth using! Can something like it be used for testing whether a given vector
is (or is not) a linear combination of another set of vectors? The answer is YES! And we’ll get to that after we show why our current
Pro Tip works.

What if you really want to know a set of non-trivial coefficients such that Aα = 0 ?

Instead of solving Aα = 0, you can solve the triangular system of equations, Uα = 0. It is emphasized that we only do the
additional work of solving U · α = 0 if we want to find the explicit coefficients α1, α2, . . . , αm such that

α1v1 + α2v2 + · · ·+ αmvm = 0.

Many times we do not really need the coefficients. In HW and Quizzes, we’ll tell you if you need to find the coefficients or
whether a YES vs NO answer on linear independence is acceptable.

Example 7.10 Find a specific set of non-trivial coefficients for Example 7.7 that results in the linear combination equaling zero. For
ease of the reader, this is the same as finding Aα = 04×1 for

A :=


1 0 2
2 −2 6
3 4 2
1 5 −3

 .
Solution: From the LU Factorization of A computed in Example 7.9, we have that

U =

 17.0 −19.0 53.0
0.0 59.5 −59.5
0.0 0.0 0.0

 .
If we solve [

17.0 −19.0
0.0 59.5

] [
α1

α2

]
=

[
−53.0
59.5

]
⇐⇒

[
17.0 −19.0
0.0 59.5

] [
α1

α2

]
−
[
−53.0
59.5

]
=

[
0
0

]
,

we obtain [
α1

α2

]
=

[
−2.0
1.0

]
.
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It follows that

A

α1

α2

1

 = L · U

α1

α2

1

 = L ·

 17.0 −19.0
0.0 59.5
0.0 0.0

[α1

α2

]
+

 53.0
−59.5

0.0

 = L ·

00
0

 =

00
0

 .

An alternative perspective: Let’s write U in what is called “block form”, namely

U =

 17.0 −19.0 53.0
0.0 59.5 −59.5
0.0 0.0 0.0

 =:

[
A b

01×2 0

]
,

where

A :=

[
17.0 −19.0
0.0 59.5

]
and b :=

[
53.0
−59.5

]
.

We seek a non-zero vector such that Uv = 03×1. Because of the last row of U being all zeros, we are motivated to take v having a
special form, namely 17.0 −19.0 53.0

0.0 59.5 −59.5
0.0 0.0 0.0


︸ ︷︷ ︸

U

 α1

α2

1


︸ ︷︷ ︸

v

=

 0
0
0

 ⇐⇒ [
A b

01×2 0

] α1

α2

1

 =

 0
0
0

 ⇐⇒ A

[
α1

α2

]
+ b =

[
0
0

]
,

where in the last step we used the fact that the last row of U is all zeros. From this we obtain that

Uv = 03×1 ⇐⇒ A

[
α1

α2

]
= −b.

However, A is upper triangular with non-zero elements on its diagonal, and thus[
α1

α2

]
= −A−1b =

[
−2.0
1.0

]
.

We therefore have

v =

 −2.01.0
1.0

 .
■

Remark: In (7.37), we will introduce a refinement of the LU Factorization that makes it a snap to find solutions to Ax = 0. Right
now, it is still a bit clunky. Example 10.13 illustrates an algorithmic method that works on large matrices.

7.5.5 (Optional Read): Why the Pro Tip Works
We first consider a vector in Rn that we denote as

y =


y1
y2
...
yn

 .
We next note that

y⊤y =
[
y1 y2 · · · yn

]
·


y1
y2
...
yn

 = (y1)
2 + (y2)

2 + · · ·+ (yn)
2.

From this, we deduce the useful fact that

y = 0n×1 =


0
0
...
0

 ⇐⇒ y⊤ · y = 0.
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To determine linear independence or dependence, we are looking to exclude (or find) non-trivial solutions to Aα = 0, where

α =


α1

α2

...
αm

 ,
and A =

[
v1 v2 · · · vm

]
, the matrix formed from our set of vectors {v1, v2, · · · , vm}. Motivated by this, we let

y = Aα.

We then note the following chain of implications3

(Aα = 0) =⇒
(
A⊤ ·Aα = 0

)
=⇒

(
α⊤A⊤ ·Aα = 0

)
=⇒

(
(Aα)

⊤ · (Aα) = 0
)

=⇒ (Aα = 0) ,

where the last implication follows from y = 0n×1 ⇐⇒ y⊤y = 0.

From logic, we know that when we have

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (a),

a chain of implications that begins and ends with the same proposition, then we deduce that

(a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d).

In our case, we are only interested in (a) ⇐⇒ (b), that is,

Aα = 0 ⇐⇒
(
A⊤A

)
α = 0. (7.31)

We next note that the matrix A⊤ · A is m × m, because it is the product of m × n and n × m matrices, A⊤ and A, respectively.
Hence, the equation (

A⊤ ·A
)
α = 0 (7.32)

has a unique solution if, and only if, det(A⊤ ·A) ̸= 0.

Now, why are we done? If α = 0m×1 is the ONLY solution to (7.32), then it is also the only solution to Aᾱ = 0, and we deduce
that the columns of A are linearly independent. If α = 0m×1 is not a unique solution to (7.32), then there exists a non-zero vector
ᾱ ∈ Rm that is also a solution to (7.32), meaning that

(
A⊤A

)
ᾱ = 0. But we know from (7.31) that this also means that ᾱ ̸= 0 is a

solution of Aᾱ = 0, and hence the columns of A are linearly dependent. ■

Don’t miss seeing the forest for the trees!
Don’t let the last details of the proof distract you too much. The main steps of the Pro Tip are

• [rectangular system of equations] Aα = 0 ⇐⇒ A⊤ ·Aα = 0 [square system of equations].

• The square system of equations A⊤ · Aα = 0 has a unique solution of α = 0, the 0-vector in Rm, if, and only if,
det(A⊤ ·A) ̸= 0.

• Hence, Aα = 0 has a unique solution of α = 0, the 0-vector in Rm, if, and only if, det(A⊤ ·A) ̸= 0.

• Our final result is, Aα = 0 has a unique solution of α = 0, the 0-vector in Rm, if, and only if, the columns of A are
linearly independent, where the last implication uses the definition of linear independence.

3The second implication follows from the first by multiplying on the left by A⊤. The third implication follows from the second by multiplying on the left by α⊤.
The fourth implication follows from the third by recognizing that α⊤A⊤ = (Aα)⊤. The last implication uses our fact that y = 0 ⇐⇒ y⊤ · y = 0.
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7.6 LDLT and the Number of Linearly Independent Vectors in a Set

Consider a finite set of vectors in Rn, such as {v1, . . . , vm}. Is there an intelligent way to talk about the largest set of linearly inde-
pendent vectors that we could build from a given set of vectors? That is, the number of vectors that would remain if we discarded the
fewest vectors so that the resulting set of vectors is linearly independent?

Figure 7.3: Checking linear independence from left to right. You could also start from the right and go to the left, or you could start
in the middle and proceed to the two ends. You just need to do an organized search of the vectors!

In fact there is. As illustrated in Fig. 7.3, we can start from left to right and ask, is the set {v1} linearly independent? If it is, keep v1
and if not, discard it (meaning, in this case, v1 was the zero vector). For the sake of argument, let’s suppose that v1 ̸= 0 and hence
we keep it. Next, we ask, is the set {v1, v2} linearly independent? If not, then v2 is a linear combination of v1 and we discard it,
otherwise, we keep it. For the sake of argument, let’s suppose that v2 is a linear combination of v1 and hence we discard it. We next
ask, is the set {v1, v3} linearly independent? Let’s say it is, and then we would ask if the set {v1, v3, v4} is linearly independent, etc.
In the end, we have built the largest set of linearly independent vectors from the given set and we can ask, how many elements does

134



it contain?

Number of Linearly Independent Vectors in a Finite Set

The following statements are equivalent:

• One can divide the set of vectors in Rn

v1 =


a11
a21
...
an1

 , v2 =


a12
a22
...
an2

 , ..., vm =


a1m
a2m
...

anm

 (7.33)

into k linearly independent vectors and m− k vectors that are linearly dependent on them.

• The matrix

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 (7.34)

has k linearly independent columns and m− k columns that are linearly dependent on them.

• Let P ·
(
A⊤A

)
= L · U be an LU Factorization of A⊤A. Then U has k linearly independent columns and m − k

dependent columns. Because U is triangular, as in Example 7.5, checking linear independence is much easier than for
the original matrix A.

Example 7.11 How many columns of the matrix

A =



−0.2 −0.2 −0.4 0.3 0.3
0.3 1.0 −0.1 −1.1 −1.7
0.7 −1.9 1.5 −0.0 −3.0
0.9 −1.0 −0.7 0.6 −1.8
−0.5 0.8 −1.1 −0.5 −0.5
−2.0 −0.9 −0.5 0.2 0.3
−1.0 0.6 0.7 −0.9 0.2


7×5

(7.35)

are linearly independent? Doing this as shown in Fig. 7.3 would be painful.

Solution: We turn to Julia and perform the LU Factorization: P · (A⊤ ·A) = L ·U, for which we only report the upper triangular
matrix

U =


6.680 −1.090 1.320 0.900 −4.840
0.000 7.282 −1.965 −2.733 4.400
0.000 0.000 4.069 −1.525 −0.506
0.000 0.000 0.000 3.124 9.371
0.000 0.000 0.000 0.000 0.000


5×5

=
[
u1 u2 u3 u4 u5

]
5×5

, (7.36)

where we have labeled its columns as u1 . . . u5. Working from left to right with the columns of U , we have that because u1 ̸= 05×1,
the set {u1} is linearly independent. We next check the set {u1, u2}. To emphasize the beauty of the triangular structure in U , we
check if there exist non-trivial solutions to

α1u1 + α2u2 =


6.680 −1.090
0.000 7.282
0.000 0.000
0.000 0.000
0.000 0.000


[
α1

α2

]
=


0.0
0.0
0.0
0.0
0.0

 .
There answer is clearly no4, the unique solution is α1 = 0 and α2 = 0, and thus {u1, u2} is linearly independent. The same reasoning
works for {u1, u2, u3} and {u1, u2, u3, u4}. Indeed, we could have jumped straight to the set of vectors {u1, u2, u3, u4} because

4There are three rows of zeros. Hence, starting from the second row, back substitution provides that the unique answer is zero

135



checking its linear independence comes down to looking for solutions to
6.680 −1.090 1.320 0.900

0.000 7.282 −1.965 −2.733
0.000 0.000 4.069 −1.525
0.000 0.000 0.000 3.124
0.000 0.000 0.000 0.000



α1

α2

α3

α4

 =


0.0
0.0
0.0
0.0
0.0

 .

Ignoring the final row of zeros, we really have a square triangular system with a non-zero diagonal, hence the trivial solution
α1 = α2 = α3 = α4 = 0 is, in fact, the unique solution, proving linear independence.

What about {u1, u2, u3, u4, u5}? The answer is no, and to see this we note that

α1u1 + α2u2 + α3u3 + α4u4 + α5u5 = 05×1

⇕
α1u1 + α2u2 + α3u3 + α4u4 = −α5u5

Writing down this equation yields
6.680 −1.090 1.320 0.900

0.000 7.282 −1.965 −2.733
0.000 0.000 4.069 −1.525
0.000 0.000 0.000 3.124
0.000 0.000 0.000 0.000



α1

α2

α3

α4

 = −


−4.840
4.400
−0.506
9.371
0.000

α5.

If we set α5 = −1, for example, and once again ignore the bottom row of zeros because they do not affect the solution of the equations,
we can solve the resulting triangular system of equations for α1 through α4, giving us a non-trivial solution to α1u1+ · · ·+α5u5 = 0.
Hence, {u1, u2, u3, u4, u5} is linearly dependent. ■

Yes, the triangular structure of U is very helpful, but it still requires a lot of work to check for solutions. Is there anything like
our Pro-Tip for linear independence that we can apply for counting the maximum number of linearly independent vectors?

Uber Pro-Tip: Number of Linearly Independent Vectors via an Enhanced LU Factorization

Assume that a set of vectors in (7.33) have been stacked to form the columns of an n ×m matrix A as in (7.34), or that the
matrix A has been given to us directly. Fact: The matrix A⊤ ·A always has an LDLT Factorization

P ·A⊤ ·A · P⊤ = L ·D · L⊤, (7.37)

where

• P is a (row) permutation matrix;

• P⊤, the transpose of P , permutes the columns of A;

• L is uni-lower triangular and L⊤, the transpose of L, is therefore uni-upper triangular; and

• D is diagonal and has non-negative entries.

Moreover,

• the number of linearly independent columns of A is equal to the number of non-zero entries on the diagonal of
D; and, if we denote this number by k,

• then for the version of the LDLT given below, the first k-columns of A · P⊤ are linearly independent, and the
remaining (m− k)-columns (if any) are linearly dependent on the first k columns.

• Because the columns of A · P⊤ are simply the columns of A permuted by P⊤ (that is, re-ordered by the permutation
matrix), the first k-columns of A · P⊤ provide a selection of linearly independent columns of A.
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The algorithm for LDLT Factorization is derived in Chap. 7.11, in case you are curious. You are not responsible for its derivation.

Remarks: (Optional Read) The LDLT factorization may look intimidating, but once you realize that U := D ·L⊤ is upper triangular,
this is really a refined LU Factorization that is possible for matrices of the form A⊤ ·A. The name LDLT Factorization comes from
L ·D · L⊤, where the last T stands for transpose. It is also called a Cholesky Factorization. Whatever you call it, it is simply our
well known LU Factorization with U in the special form U := D · L⊤, which is possible for special kinds of matrices of the form
A⊤ ·A.

Recalling that the matrix transpose of a product is the product in reverse order of the matrix transposes, we check that(
P ·A⊤ ·A · P⊤)⊤ =

(
P⊤)⊤ · (A)⊤ · (A⊤)⊤ · (P )⊤

= P ·A⊤ ·A · P⊤,

once one notes that
(
A⊤)⊤ = A and

(
P⊤)⊤ = P . Hence P · A⊤ · A · P⊤ is symmetric. Without the P⊤ on the right, the term

P ·A⊤ ·A alone would not be symmetric in general. A similar computation shows that L ·D · L⊤ is also symmetric. ■

Here is the Julia code for computing the LDLT Factorization:

1 # the LDLT factorization is a special LU Factorization for M=A’A
2 # P A’ A P’ = L D L’, L unitriangular, D diagonal with non-negative entries, P

permutation matrix
3 # the P’ on the right does column permutations to maintain the symmetry of A’*A
4 #
5 function ldlt(A::Array{<:Number, 2})
6 epsilon=1e-12
7 M=A’*A
8 n,m= size(A)
9 Areduced = deepcopy(M)

10 L = Array{Float64,2}(undef, m, 0)
11 Id=zeros(m,m) + I
12 P=deepcopy(Id)
13 # could make D a vector for efficiency
14 D=zeros(m,m)
15 for i = 1:m
16 # move the biggest entry to the pivot position
17 ii=argmax( diag(Areduced[i:m,i:m]) );
18 mrow=ii[1]+(i-1)
19 if ~(i==mrow)
20 # row permuation
21 P[[i,mrow],:]=P[[mrow,i],:];
22 # row and column permutation
23 Areduced[[i,mrow],:]=Areduced[[mrow,i],:];
24 Areduced[:,[i,mrow]]=Areduced[:,[mrow,i]];
25 end
26 if i>1
27 L[[i,mrow],:] = L[[mrow,i],:];
28 end
29 pivot=Areduced[i,i]
30 if ~isapprox(pivot,0, atol=epsilon)
31 D[i,i]=pivot
32 C=Areduced[:,i]/pivot #normalize all entires by C[i]
33 L=[L C]
34 Areduced=Areduced-C*pivot*C’
35 else
36 # Remainder of factorization is trivial
37 L=[L Id[:,i:m]]
38 break
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39 end
40 end
41 diagD=diag(D)
42 return L, P, D, diagD
43 end

Example 7.12 We revisit Example 7.11: how many columns of the matrix

A =



−0.2 −0.2 −0.4 0.3 0.3
0.3 1.0 −0.1 −1.1 −1.7
0.7 −1.9 1.5 −0.0 −3.0
0.9 −1.0 −0.7 0.6 −1.8
−0.5 0.8 −1.1 −0.5 −0.5
−2.0 −0.9 −0.5 0.2 0.3
−1.0 0.6 0.7 −0.9 0.2


7×5

(7.38)

are linearly independent?

Solution: We turn to Julia and perform the LDLT Factorization: P ·A⊤ ·A ·P⊤ = L ·D · L⊤, for which we report the diagonal
of D

diag(D) =
[
15.6 5.2 4.4 2.3 0.000

]
1×5

(7.39)

Because there are four non-zero entries on the diagonal of D, we conclude that A has four linearly independent columns. ■

Example 7.13 How many columns of the matrix

A =



−0.2 −0.2 −0.4 0.3 0.3 −0.5
0.3 1.0 −0.1 −1.1 −1.7 0.1
0.7 −1.9 1.5 −0.0 −3.0 0.3
0.9 −1.0 −0.7 0.6 −1.8 −0.2
−0.5 0.8 −1.1 −0.5 −0.5 −1.3
−2.0 −0.9 −0.5 0.2 0.3 −3.2
−1.0 0.6 0.7 −0.9 0.2 −0.6


7×6

(7.40)

are linearly independent? Which ones are they?

Solution: We turn to Julia and perform the LDLT Factorization: P ·A⊤ ·A ·P⊤ = L ·D · L⊤, for which we report the diagonal
of D

diag(D) =
[
15.6 12.6 3.6 2.6 0.0 0.0

]
1×6

(7.41)

which has four non-zero elements. We conclude that A has four linearly independent columns.

We next compute

A · P⊤ =



0.3 −0.5 −0.4 0.3 −0.2 −0.2
−1.7 0.1 −0.1 −1.1 0.3 1.0
−3.0 0.3 1.5 0.0 0.7 −1.9
−1.8 −0.2 −0.7 0.6 0.9 −1.0
−0.5 −1.3 −1.1 −0.5 −0.5 0.8
0.3 −3.2 −0.5 0.2 −2.0 −0.9
0.2 −0.6 0.7 −0.9 −1.0 0.6


(7.42)

and conclude that the first four columns of A · P⊤ are linearly independent and the last two columns are linearly dependent on the
first four.
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Here, we can see that the four linearly independent columns correspond to columns 3, 4, 5, and 6 of A, while columns 1 and 2 of A
can be written as a linear combination of columns 3, 4, 5, and 6. Indeed, one can show



0.3 −0.5 −0.4 0.3
−1.7 0.1 −0.1 −1.1
−3.0 0.3 1.5 0.0
−1.8 −0.2 −0.7 0.6
−0.5 −1.3 −1.1 −0.5
0.3 −3.2 −0.5 0.2
0.2 −0.6 0.7 −0.9




−0.33 0.33
0.67 0.33
−0.33 −0.67
0.33 −1.33

 =



−0.2 −0.2
0.3 1.0
0.7 −1.9
0.9 −1.0
−0.5 0.8
−2.0 −0.9
−1.0 0.6


. (7.43)

■

Identifying the Linearly Independent Vectors

Is there a simple way to look at the data from the LDLT Factorization of A⊤A and find a specific choice of columns of A to
form a linearly independent set? Yes! Here is the permutation matrix

P =


0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0

 (7.44)

for Example 7.13. We see that, starting with the first row of P , the ones are in columns {5, 6, 3, 4, 1, 2}, that is,

P15 = 1.0, P26 = 1.0, P33 = 1.0, P44 = 1.0, P51 = 1.0 and P62 = 1.0.

From this information, we can conclude that if we denote the columns of A as A =
[
A1 A2 A3 A4 A5 A6

]
, then

A · P⊤ =
[
A5 A6 A3 A4 A1 A2

]
.

Since we know that A · P⊤ has four linearly independent columns, we conclude that columns

{ A5 A6 A3 A4 }

of A are linearly independent.

You have to admit, it’s pretty cool to do the analysis in this manner.

Looking Ahead: We will later have a very nice name for the number of linearly independent vectors in a set of vectors: the dimen-
sion of span{v1, v2, . . . , vm} For now, we’re just counting the number of linearly independent vectors.
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7.7 Attractive Test for Linear Combinations
Pro Tip! Linear Combination or Not?

Fact: A vector v0 ∈ Rn can be written as a linear combination of {v1, . . . , vm} ⊂ Rn if, and only if, the set {v0, v1, . . . , vm}
has the same number of linearly independent vectors as {v1, . . . , vm}.

Applying this to determining if a linear system of equations Ax = b has a solution, we first define Ae := [A b] by appending
b to the columns of A. Then we do the corresponding LDLT Factorizations

• P ·
(
A⊤ ·A

)
· P⊤ = L ·D · L⊤

• Pe ·
(
A⊤

e ·Ae

)
· P⊤

e = Le ·De · L⊤
e .

Fact: Ax = b has a solution if, and only if, D and De have the same number of non-zero entries on their diagonals.

Why? We know that Ax = b has a solution if, and only if, b is a linear combination of the columns of A. That is, A and
Ae := [A b] must have the same number of linearly independent columns.

(Optional Remark): You get the same result by defining Ae := [b A]; in fact, you can insert b anywhere you want, even in
the middle of the columns of A.

Example 7.14 We consider a rectangular system that is on the edge of what we would like to analyze by hand,
3.5 1.0 5.0
5.0 2.0 6.0
6.5 3.0 7.0
8.0 4.0 8.0


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

x

=


4.0
4.0
4.0
4.0


︸ ︷︷ ︸

b

. (7.45)

Does it have a solution?

Solution: We seek to determine if (7.45) will have a solution. We do the indicated LDLT Factorizations

P ·
(
A⊤A

)
· P⊤ = L ·D · L⊤ and Pe ·

(
[A b]⊤[A b]

)
· P⊤

e = Le ·De · L⊤
e

and report the diagonals of D and De as row vectors

diag(D) =
[
174.0 1.8 0.0

]
1×3

(7.46)

diag(De) =
[
174.0 1.8 0.0 0.0

]
1×4

. (7.47)

Based on the above, we see thatA and [A b] have the same number of linearly independent columns. Hence, b is a linear combination
of the columns of A and therefore (7.45) has a solution. In fact, one can compute a solution is

x =

 0.0
−1.0
1.0

 . (7.48)

We now change the vector b to 
20.0
11.0
12.0
14.0

 ,
and repeat the analysis, giving

diag(D) =
[
174.0 1.8 0.0

]
1×3

(7.49)

diag(De) =
[
861.0 28.3 0.5 0.0

]
1×4

. (7.50)

This time, the analysis shows that [A b] has one more linearly independent column than A, and hence b is linearly independent of the
columns of A. We conclude, therefore, that the new system of linear equations does not have a solution. ■
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7.8 Existence and Uniqueness of Solutions to Ax=b

In Chapter 7.4, we showed that Ax = b has a solution if, and only if, b is a linear combination of the columns of A. Here, we will
show that uniqueness of a solution follows from the columns of A being linearly independent. When both of these conditions hold,
we have existence and uniqueness of solutions.

Let A be an n×m matrix, not necessarily square, and consider


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


︸ ︷︷ ︸

A


x1
x2
...
xm


︸ ︷︷ ︸

x

=


b1
b2
...
bn


︸ ︷︷ ︸

b

. (7.51)

Suppose that x satisfies Ax = b, which is the same thing as saying x is a solution of Ax = b. Suppose also that x satisfies Ax = b.
We give conditions that guarantee x = x.

If both x and x satisfy Ax = b, we have that

Ax−Ax = A (x− x) = b− b = 0.

We define α := x− x and write out its components as

α :=


α1

α2

...
αm


Expanding the expression Aα = 0 in terms of the columns of A and the components of the vector α gives

α1


a11
a21
...
an1


︸ ︷︷ ︸

acol
1

+α2


a12
a22
...
an2


︸ ︷︷ ︸

acol
2

+ · · ·+ αm


a1m
a2m
...

anm


︸ ︷︷ ︸

acol
m

=


0
0
...
0

 . (7.52)

We know that α1 = 0, α2 = 0, . . . , αm = 0 is the unique solution to

α1a
col
1 + α2a

col
2 + . . . αma

col
m = 0,

if and only if, the vectors {acol1 , acol2 , . . . , acolm } are linearly independent. Hence, if Ax = b has a solution, it will be unique if,
and only if, the columns of A are linearly independent.
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Existence and Uniqueness of Solutions to Ax = b

The following two statements are equivalent

(a) The system of linear equations Ax = b has a solution, and, it is unique.

(b) b is a linear combination of the columns of A, and, the columns of A are linearly independent.

Remark: If b is not a linear combination of the columns of A, then Ax = b does not have a solution. If the columns of A
are not linearly independent, then if Ax = b has one solution, it also has an infinite number of solutions.

Remark: Please return to Chapter 1.2 and re-work the examples using this knowledge. Our new results do not even require
the system of equations to be square, and moreover, thanks to our Pro and Uber-Pro Tips, our results are not limited to a small
number of equations that are amenable to hand calculations!

Example 7.15 Let’s analyze an example that most of us could not get right if done by hand! We consider Ax = b, where

A =



−0.2 −0.2 −0.4 0.3 0.3
0.3 1.0 −0.1 −1.1 −1.7
0.7 −1.9 1.5 −0.0 −3.0
0.9 −1.0 −0.7 0.6 −1.8
−0.5 0.8 −1.1 −0.5 −0.5
−2.0 −0.9 −0.5 0.2 0.3
−1.0 0.6 0.7 −0.9 0.2


7×5

and b =



−0.5
0.1
0.3
−0.2
−1.3
−3.2
−0.6


7×1

(7.53)

Does it have a solution? If it does, is it unique?

Solution: We form A⊤A and compute in Julia its LDLT Factorization and report the diagonal of D as a row vector

diag(D) =
[
15.6 5.2 4.4 2.3 0.0

]
1×5

(7.54)

There is a single zero on the diagonal and four non-zero elements. Thus we know that exactly four of the five columns of A are
linearly independent. Hence, if there does exist a solution to Ax = b, it will not be unique.

Next, we form Ae := [A b] and compute in Julia the LDLT Factorization of A⊤
e Ae. We report the diagonal of De written as a row

vector

diag(De) =
[
15.6 12.6 3.6 2.6 0.0 0.0

]
1×6

(7.55)

and note that it also has four non-zero entries. We deduce that b is a linear combination of the columns of A. Hence, the system of
linear equations (7.53) has a solution and it is not unique. Therefore, it has an infinite number of solutions!

We select a different right hand side for (7.53) and report the key result of its LDLT Factorization,

b̃ =



0.6
0.4
0.9
1.0
0.8
0.8
0.9


=⇒ diag(D̃e) =

[
15.6 5.2 1.2 2.3 0.9 0.0

]
1×6

. (7.56)

This time diag(D̃e) has five non-zero entries, whereas diag(D) had four non-zero entries. Hence, b̃ is not a linear combination of
the columns of A, and the system of equations, with this new right hand side, does not have a solution. ■
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7.9 When are the Solutions to Ax = b the same as the Solutions to M · Ax = M · b?
So far, we have seen two special cases of multiplying (both sides of) a set of equations on the LEFT by a matrix M of compatible
size.

a) In Chapter 6.3, we noted that if A is invertible, then

Ax = b ⇐⇒ A−1 ·A︸ ︷︷ ︸
I

x = A−1b ⇐⇒ x = A−1b.

b) In Chapter 5.9, for P a permutation matrix, we noted that

Ax = b ⇐⇒ P ·Ax = Pb,

where we needed this result when applying the LU Factorization P ·A = L · U to solve Ax = b.

Here, we will generalize these two special cases to a more general situation of multiplying on the left by a size-compatible matrix M
that can be rectangular.

We assume that A is n×m and b is m×1. Then for any p×n matrix M , the matrix multiplications M ·A and Mb both make sense.
We now ask the question, for what matrices M is it true that Ax = b and M · Ax = Mb have the same solutions? It turns out that
linear independence of the columns of M is sufficient for this to hold.

To see this, we define y = Ax− b and note that x ∈ Rm is a solution to Ax = b if, and only if, y = 0n×1; we have simply said that
Ax = b ⇐⇒ Ax− b = 0n×1. Similarly, we note that x ∈ Rm is a solution to M · Ax = M · b if, and only if, My = 0p×1, which
is because M ·Ax =M · b ⇐⇒ M · (Ax− b) = 0p×1. So far, so good.

Surprisingly, the proof is done! Why? From our proof of the Pro-Tip in Chapter 7.5.5, we have that if the columns of M are linearly
independent, then

y = 0n×1 ⇐⇒ M y = 0p×1.

In other words, if the columns of M are linearly independent, then x is a solution of Ax = b if, and only if, x is a solution of
M ·Ax =M · b.

What about the converse? (that is, the other direction?) IfAx = b andM ·Ax =M ·b have the same solutions, can we conclude
that the columns of M are linearly independent? In general, that statement is false. Consider, 1 0

1 1
1 0


︸ ︷︷ ︸

A

[
x1
x2

]
=

10
1


︸︷︷︸

b

and define M :=

 1 0 0
0 1 0
0 0 0

 so that

 1 0
1 1
0 0


︸ ︷︷ ︸

M ·A

[
x1
x2

]
=

10
0


︸︷︷︸
M ·b

.

Then x1 = 1, x2 = −1 is the unique solution to both systems of linear equations, but the columns of M are not linearly independent
because of the column of zeros. Finding a counterexample is how we go about showing something is false.

Remark 1 In Chapter 8, we will deliberately multiply both sides of an equation that has no solutions by a matrix with columns that
are linearly dependent so as to create a system of equations that has a unique solution. It’s kind of mind-blowing, we know! That’s
part of why Linear Algebra is so exciting! Like a good mystery novel, its plot has unexpected twists and turns.

7.10 (Optional Read): Why LDLT and not Simply LU?
This is intended for instructors! Why can’t one simply use the LU Factorization to determine the number of linearly independent
columns? Why must one use the LDLT Factorization? For those with a driving sense of curiosity or simply a high tolerance for pain,
here is an example of a matrix A where the number of non-zero elements on the diagonal of U with a standard LU Factorization does
not correspond to the number of linearly independent columns of A, where

P ·A⊤ ·A = L · U.
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Consider

A =

 0 0 0
0 1 0
0 0 0

 .
A is symmetric, meaning that A⊤ = A. Moreover, you can check that A⊤ · A = A. The following is a valid LU Factorization with
row permutations  0 1 0

1 0 0
0 0 1


︸ ︷︷ ︸

P

·

 0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

A⊤·A

=

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

L

·

 0 1 0

0 0 0

0 0 0


︸ ︷︷ ︸

U

.

We see that U has one linearly independent column (the same as A), while diag(U) has three zeros. Hence, the number of non-zero
elements on the diagonal of U does not always correspond to the number of linearly independent columns of A and U . For the
magicians, we note that the eigenvalue zero of U has algebraic multiplicity three and geometric multiplicity two. When we include
the necessary column permutations to maintain the symmetry of P ·A⊤ ·A·P⊤ at each step of the factorization, we avoid this problem
because eigenvalues of symmetric matrices always have equal geometric and algebraic multiplicities. This fact is way beyond the
scope of ROB 101. ■

7.11 (Optional Read): LU Factorization for Symmetric Matrices
Recall that a matrix M is symmetric if M⊤ = M . For such matrices, we seek to refine our way of computing the LU Factorization
so that at each stage of the reduction, Tempk+1 = Tempk − Ck · Rk, we preserve the symmetry of the matrix. We will discover a
condition that will allow us to write

P ·M · P⊤ = L ·D · L⊤, (7.57)

where P is a permutation matrix, L is uni-lower triangular, andD is a diagonal matrix. When we can accomplish such a factorization,
it will follow that the number of linearly independent columns of M is precisely equal to the number of non-zero elements on the
diagonal ofD. A useful application of this result would then be counting the number of linearly independent columns in a rectangular
matrix A by counting the number of linearly independent columns of A⊤A, which is always symmetric.

To build up our intuition, consider a 3× 3 symmetric matrix

Temp1 :=M =

 a b c
b d e
c e f

 , (7.58)

which has six parameters. If a ̸= 0, our first step in constructing the LU Factorization is to define

C̃1 =

 a
b
c

 1

a
and R̃1 =

[
a b c

]
, (7.59)

where we are using a bar over the extracted columns and rows to distinguish them from a slightly different definition we will give
shortly. The symmetry in C̃1 and R̃1 is clearly visible and it comes from the symmetry in M .

We can take better advantage of the symmetry in M if we define instead

C1 =

 a
b
c

 1

a
, D11 = a and R1 = C⊤

1 . (7.60)

It follows that
C1 ·D11 · C⊤

1 = C1 ·D11 ·R1 = C̃1 · R̃1. (7.61)

A nice property of C1 ·D11 ·C⊤
1 is that it is clearly symmetric. Also, if we subtract one symmetric matrix from another, the result is

another symmetric matrix, so the symmetry property propagates. In our case, we’d have something like

Temp2 :=M − C1 ·D11 · C⊤
1 =

 a b c
b d e
c e f

−

a b c

b b2

a
bc
a

c bc
a

c2

a

 =

 0 0 0
0 α β
0 β γ

 . (7.62)
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We let the reader fill in the values of α, β, and γ because all we care is that Temp2 is symmetric and we can repeat the process.

When doing the LU Factorization, there were two other cases to consider. One is when there is an entire column of zeros, as in

Temp1 :=M =

 0 0 0
0 d e
0 e f

 , (7.63)

so that a = b = c = 0. Because of the symmetry in Temp1, if we have an entire column of zeros, we also have an entire row of
zeros! When we had entire column of zeros, we defined

C̃1 =

 1
0
0

 and R̃1 =
[
a b c

]
=
[
0 0 0

]
, (7.64)

We can take better advantage of the symmetry if we instead define

C1 =

 1
0
0

 , D11 = 0 and R1 = C⊤
1 . (7.65)

It still follows that

C1 ·D11 · C⊤
1 = C1 ·D11 ·R1 = C̃1 · R̃1, (7.66)

and Temp2 := M − C1 · D11 · C⊤
1 is once again symmetric, with the first column and first row identically zero, so the process

continues. So far, no permutation matrices have shown up!

A permutation of rows is required when our matrix has a zero in the entry that is supposed to define the pivot, such as here,

Temp1 :=M =

 0 b c
b d e
c e f

 , (7.67)

where a = 0. If b ̸= 0, we would swap the first and second rows to arrive at

P · Temp1 :=

 b d e
0 b c
c e f

 , (7.68)

where to swap the first two rows, we have

P =

 0 1 0
1 0 0
0 0 1

 . (7.69)

But, in (7.68), we have destroyed the symmetry of our matrix!

145



Destroyed Symmetry!

A key observation is that we can RESTORE SYMMETRY if we also swap the first and second columns, like this, d b e
b 0 c
e c f

 , (7.70)

but oops, we no longer have b ̸= 0 at the pivot position. We’ve moved d, an element of the diagonal, to the pivot position.
If we had instead swapped rows one and three, followed by a swap of columns one and three, we’d end up with f , another
element of the diagonal, at the pivot position! Hence, if preserving symmetry is our goal, we need to look at the diagonal
of Tempk for a non-zero element, and then to a double swap, two rows and two columns, to move it to the pivot position
and continue the algorithm. The swapping of the columns is achieved by multiplying Tempk on the right (instead of the left,
which we do for row swapping), and the required permutation matrix can be shown to be the transpose of the matrix used to
do the row swapping! Go to Julia and play round with it. It’ll be fun!

For a general symmetric matrix, if we arrive at a step where diag(Tempk) is all zeros, then the algorithm fails and
we cannot factor M as in (7.57). A matrix that will lead to immediate failure is

M =

[
0 1
1 0

]
. (7.71)

However, if M = A⊤ ·A for some matrix A, then M is a positive semi-definite matrix. For such matrices,

diag(Tempk) = 0 ⇐⇒ Tempk = 0,

in which case the algorithm can be completed as we did for the LDLT Factorization presented earlier.

We give the resulting algorithm and then revisit a few of our previous examples. So that a novice user can play around and check
whether or not Q = P⊤ and U = D · L⊤, we compute the additional matrices. You are free to remove them.

1 # LU Factorization for Symmetric Matrices
2 # P M P’ = L D L’, L unitriangular, D diagonal, P permutation matrix
3 #
4 function luJWGSymD(M::Array{<:Number, 2})
5 epsilon=1e-12; K=100
6 if isapprox(norm(M-M’),0, atol=epsilon)
7 # M is indeed symmetric
8 n, m = size(M)
9 Areduced = deepcopy(M)

10 L = Array{Float64,2}(undef, n, 0)
11 # Could remove U for efficiency
12 U = Array{Float64,2}(undef, 0, n)
13 P=zeros(n,n) + I
14 # Could remove Q for efficiency
15 Q=zeros(n,n) + I
16 # could make D a vector for efficiency
17 D=zeros(n,n)
18 for i = 1:n
19 C = Areduced[:,i] # i-th column
20 R = C’ # i-th row
21 if maximum(abs.(C)) <= K*epsilon #column of zeros
22 C=0.0*C; C[i]=1.0; R = 0.0*R
23 U=[U;R];
24 L=[L C];
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25 D[i,i]=0.0
26 Areduced=Areduced-C*R;
27 else # move the biggest entry to the pivot position
28 ii=argmax( abs.(diag(Areduced)) );
29 nrow=ii[1]
30 P[[i,nrow],:]=P[[nrow,i],:];
31 Q[:,[i,nrow]]=Q[:,[nrow,i]];
32 Areduced[[i,nrow],:]=Areduced[[nrow,i],:];
33 Areduced[:,[i,nrow]]=Areduced[:,[nrow,i]];
34 if i>1
35 L[[i,nrow],:] = L[[nrow,i],:];
36 U[:,[i,nrow]] = U[:,[nrow,i]];
37 d1=D[i,i];d2=D[nrow,nrow]
38 D[i,i]=d2;D[nrow,nrow]=d1
39 end
40 C = Areduced[:,i] # i-th column
41 R = C’ # i-th row
42 pivot = C[i];
43 if isapprox(pivot,0, atol=epsilon)
44 if isapprox(norm(Areduced),0, atol=K*epsilon)
45 # Remainder of factorization is trivial
46 L=[L Id[:,i:m]]
47 # U=D*L’; Q=P’; # All matrices included for pedagogical reasons
48 return L, U, P, Q, D
49 break
50 else
51 println("Algorthm failed at step $i")
52 println("A symmetric factorization PMP’ = L D L’ is not possible.")
53 return -1.0
54 break
55 end
56 else
57 D[i,i]=pivot
58 C=C/pivot #normalize all entires by C[i]
59 U=[U;R]; # could remove U for efficiency
60 L=[L C];
61 Areduced=Areduced-C*R;
62 end
63 Areduced[:,i]=0*Areduced[:,i]; Areduced[i,:]=0*Areduced[i,:];
64 end
65 end
66 # U=D*L’; Q=P’; # All matrices included for pedagogical reasons
67 return L, U, P, Q, D
68 else
69 println("Matrix is not symmetric")
70 return 0.0
71 end
72 end

Why does the LDLT Factorization work for matrices of the form A⊤ · A? The proof needs ideas from positive semi-definite
matrices as presented in Appendix A.3. Here we’ll sketch the proof assuming the material in the Appendix is known, which may
help instructors using the book. We suppose that M := Tempk is positive semi-definite and we arrive at a step of LDLT where the
diagonal of M consists only of zeros. We write the matrix as

M =

[
0 M12

M⊤
12 M22

]
,

and note that M22 must be positive semi-definite by the assumption on M . We claim that necessarily, M12 = 0, the zero vector. To
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show this, we form the product

x⊤Mx =
[
x1 x⊤2

] [ 0 M12

M⊤
12 M22

] [
x1
x2

]
= 2x1M12x2 + x⊤2 M22x2.

If M12 ̸= 0, then there exists x2 such that M12x2 < 0. It follows that by taking x1 > 0 sufficiently large, that

2x1M12x2 + x⊤2 M22x2 < 0,

which contradicts M being positive semi-definite. This argument can be repeated. Applying it by induction to M22, we arrive at M
is the zero matrix, which can be easily factored. Otherwise, at each step, we have non-zero elements on the diagonal ofM := Tempk
and the LDLT Factorization can be continued.

7.12 Looking Ahead
In the next Chapter, we show how to measure the “length” of a vector and use that to formulate the problem of finding approximate
solutions to linear systems of equations that do not have exact solutions. At first blush, this seems like a strange thing to do. In real
engineering, however, the data we collect is never exact. The data is perturbed by various sources of errors, from imprecision in our
instruments, to the fact that experiments are hard to repeat! To get around this, we take many more measurements than we need,
which gives us sets of what we call “overdetermined equations,” which means more equations than unknown variables. We seek to
“smooth” or “average” out the measurement errors by finding approximate solutions so that e := Ax− b, the error in the “equation,”
is small. We measure the “length of the error vector” by a function called the “Euclidean norm.”
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Chapter 8

Euclidean Norm, Least Squared Error Solutions
to Linear Equations, and Linear Regression

Learning Objectives
• Learn one way to assign a notion of length to a vector

• The concept of finding approximate solutions toAx = b when an exact solution does not exist and why this is extremely useful
in engineering.

Outcomes
• Euclidean norm and its properties

• If Ax = b does not have a solution, then for any x ∈ Rn, the vector Ax − b is never zero. We will call e := Ax − b the error
vector and search for the value of x that minimizes the norm of the error vector.

• An application of this idea is Linear Regression, one of the “superpowers” of Linear Algebra: fitting functions to data.
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8.1 Norm or “Length” of a Vector

Definition: The norm of a vector in Rn

Let v =


v1
v2
...
vn

 be a vector in Rn. The Euclidean norm of v, denoted ||v||, is defined as

||v|| :=
√
(v1)2 + (v2)2 + · · ·+ (vn)2 (8.1)

Example: The length of the vector v =

 √2−1
5

 is

||v|| :=
√
(
√
2)2 + (−1)2 + (5)2 =

√
2 + 1 + 25 =

√
28 =

√
4 · 7 = 2

√
7 ≈ 5.29.

Properties of the Norm of a vector

Let’s get used to term norm of a vector, which is the correct mathematical term for the length of a vector. There are actually
many different ways of defining a notion of “length” to a vector. The particular norm defined in Definition 4.14 is the
“Euclidean norm.” All norms satisfy the following properties

• For all vectors v ∈ Rn, ||v|| ≥ 0 and moreover, ||v|| = 0 ⇐⇒ v = 0.

• For any real number α ∈ R and vector v ∈ Rn,

||αv|| = |α| · ||v||.

• For any pair of vectors v and w in Rn,
||v + w|| ≤ ||v||+ ||w||.

The first property says that v has norm zero if, and only if, v is the zero vector. It seems pretty obvious for our notion of
norm and it is!

For the second property, we note that we have to take the absolute value of the constant when we “factor it out” of the norm.
This is because

√
a2 = |a| and NOT a when a < 0. Of course, when a ≥ 0,

√
a2 = a.

The third property is often called the triangle inequality. It says that the norm of a sum of vectors is upper bounded by the
sum of the norms of the individual vectors. Another way to say this is, “the length of v + w can never be strictly larger than
the length of v plus the length of w.” What happens if you have ||v − w||? Well,

||v − w|| = ||v + (−w)||
≤ ||v||+ || − w||
= ||v||+ | − 1| · ||w||
= ||v||+ ||w||.

(8.2)

Hence, a minus sign changes nothing!

Remark: Equation 8.2 is correct with the “equals sign” in the last two equations because ||v||+ || − w|| = ||v||+ | − 1| · ||w|| and
||v|| + | − 1| · ||w|| = ||v|| + ||w||. Some authors would carry the “less than or equal to symbol” all the way through. With our
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notation, you know where the upper bounding took place!

Example We’ll take three vectors in R4 and check the “triangle inequality.”

u =


2
−1
5
2

 , v =


1
2
0
3

 , w =


0
1
0
4



We first compute the norms of the three vectors

||u|| =
√
34 ≈ 5.83, ||v|| =

√
14 ≈ 3.74, ||w|| =

√
17 ≈ 4.12

and we then form a few sums against which to test the triangle inequality

u+ v =


3
1
5
5

 , u+ v + w =


3
2
5
9

 , v + w =


1
3
0
7

 .

Then we can check that

||u+ v|| =
√
60 ≈ 7.75 ≤ 5.8 + 3.7 ≤ ||u||+ ||v||

||u+ v + w|| =
√
119 ≈ 10.91 ≤ 7.7 + 4.1 ≤ ||u+ v||+ ||w||

||u+ v + w|| =
√
119 ≈ 10.91 ≤ 5.8 + 3.7 + 4.1 ≤ ||u||+ ||v||+ ||w||

8.2 Least Squared Error Solutions to Linear Equations

In this section, we tackle the problem of providing a notion of “best approximate solution” to a system of linear equations that does
not have an exact solution. If the system of equations does have an exact solution, our approximate solution will be identical to it.
Hence, our development can be viewed as an alternative means of defining solutions to linear equations.

Consider a system of linear equations Ax = b and define the vector

e(x) := Ax− b (8.3)

as the error in the solution for a given value of x. Normally, we’ll simply write e := Ax− b, but in (8.3), we are emphasizing that
the error really is a function of x. Hence, as we vary x, the “length” of e(x) can become bigger or smaller.

If the system of equations Ax = b has a solution, then it is possible to make the error zero. In the previous section, we introduced the
Euclidean norm as a means of measuring the ”length” of a vector. It is traditional when posing the best approximation problem to
use the square of the norm instead of the norm itself, which means we are simply removing the square root operation in the formula
for a norm.
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Least Squared Error Solution: Consider a linear system of equations expressed in matrix form Ax− b, where A is n×m,
x is m× 1 and b is n× 1. For a given value of x ∈ Rm, define the error as in (8.3), an n× 1 vector. The norm squared of the
error vector e(x) is then

||e(x)||2 :=

n∑
i=1

(ei(x))
2 = e(x)⊤e(x) = (Ax− b)⊤(Ax− b) = ||Ax− b||2. (8.4)

We note that ||e(x)||2 ≥ 0 for any x ∈ Rm and hence zero is a lower bound on the norm squared of the error vector. A value
x∗ ∈ Rm is a Least Squared Error Solution to Ax = b if it satisfies

||e(x∗)||2 = min
x∈Rm

||Ax− b||2 (8.5)

If such an x∗ ∈ Rm exists and is unique, we will write it as

x∗ := argmin
x∈Rm

||Ax− b||2. (8.6)

With this notation, the value of x that minimizes the error in the solution is what is returned by the function argmin, while
the minimum value of the error is what is returned by the function min,

• x∗ = argminx∈Rm ||Ax − b||2 is the value of x that achieves the minimum value of the squared norm of the error,
||Ax− b||2, while

• ||e(x∗)||2 = ||Ax∗ − b||2 = minx∈Rm ||Ax− b||2 is the minimum value of the “squared approximation error”.

If Ax = b has a solution, then

min
x∈Rm

||Ax− b||2 = 0,

because the norm squared error cannot be negative; indeed, zero is the smallest possible value. Hence, while we are most interested
in cases where Ax = b does not have a solution, if it does have a unique solution x̄ such that Ax̄ = b, then

x̄ = x∗ := argmin
x∈Rm

||Ax− b||2.

We recall that uniqueness of solutions to Ax = b is tied to the columns of A being linearly independent. Let’s also observe that if
Ax = b, then

• multiplying both sides of Ax = b by A⊤ gives

A⊤ ·Ax = A⊤ · b.

• The indicated matrix multiplications are well defined because A⊤ is m× n, A is n×m, and b is n× 1.

• A⊤ ·A is therefore square and m×m.

• A⊤ ·A is symmetric because (
A⊤ ·A

)⊤
= A⊤ ·

(
A⊤)⊤ = A⊤ ·A

because
(
A⊤)⊤ = A.
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Least Squared Error Solutions to Linear Equations

Here are the main results on solutions to Ax = b that minimize the squared error ||Ax− b||2.

(a) A⊤A is invertible if, and only if, the columns of A are linearly independent.

(b) If A⊤A is invertible, then there is a unique vector x∗ ∈ Rm achieving minx∈Rm ||Ax− b||2 and it satisfies the equation(
A⊤A

)
x∗ = A⊤b. (8.7)

(c) Therefore, if A⊤A is invertible,

x∗ = (A⊤A)−1A⊤b ⇐⇒ x∗ = argmin
x∈Rm

||Ax− b||2 ⇐⇒
(
A⊤A

)
x∗ = A⊤b. (8.8)

As you might guess by now, your instructors prefer that for large systems of equations, you solve (8.7) to obtain the least
squares solution and avoid doing the inverse. For small systems, we’ll cut you some slack.

Useful Remark: Suppose that A is a “tall matrix” (more rows than columns) and suppose that Ax = b has a solution (hence,
b is a linear combination of the columns of A). Then, if the columns of A are linearly independent, you can compute the
solution using (8.7) and the squared error will be zero, meaning x∗ really is a solution to the equation because

the squared error is zero ⇐⇒ ||Ax∗ − b||2 = 0 ⇐⇒ ||Ax∗ − b|| = 0 ⇐⇒ Ax∗ − b = 0 ⇐⇒ Ax∗ = b.

Try it on your own in Julia!

Example 8.1 Let’s consider a system of linear equations, with more equations than unknowns. The extra equations provide more
conditions that a solution must satisfy, making non-existence of a solution a common occurrence! We take

1.0 1.0
2.0 1.0
4.0 1.0
5.0 1.0
7.0 1.0


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=


4
8

10
12
18


︸ ︷︷ ︸

b

, (8.9)

and note that the columns of A are linearly independent. If a regular solution exists, find it. If not, then a least squared solution will
be fine.

Solution: We’ll compute a least squared error solution to the equations, and then we’ll evaluate the error; if the error is zero, we’ll
also have an exact solution to (8.9). We compute

A⊤ ·A =

[
95.0 19.0
19.0 5.0

]
, A⊤ · b =

[
246.0
52.0

]
=⇒ x∗ =

[
2.12
2.33

]
For the record, det(A⊤ ·A) = 114. We also compute

e∗ := Ax∗ − b =


0.456
−1.421
0.825
0.947
−0.807

 , ||e|| = 2.111, and ||e||2 = 4.456

Because the “smallest” error vector e∗ = Ax∗− b is non-zero, we now know that (8.9) does not have an exact solution. Next, we take

a new vector b =


0.30
1.00
2.40
3.10
4.50

 and check if there is an exact solution or not. We proceed in the same manner and solveA⊤ ·Ax∗ = A⊤b
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and compute

x∗ =

[
0.7000
−0.4000

]
and e := Ax∗ − b =


0.0000
0.0000
0.0000
0.0000
0.0000

 ,
and hence for this new vector b, the rectangular system Ax = b has an exact solution. Moreover, we found it by applying our theory
for least squared error solutions to overdetermined equations, which is pretty nifty! ■

The set of linear equations (8.9) and its solution look rather ho hum. They are actually anything but boring. Figure 8.1 shows that
the equations and their solution correspond to fitting a line through data, while minimizing the “fitting error”! In the next section,
we will develop this idea thoroughly and give you a hint of some of the things you can do with least squared error solutions to linear
equations.

Figure 8.1: The physical basis for the numbers in (8.9), which is really about fitting a line to data with minimum squared error! The
dots are the (x, y) values of the raw (measured) data, while the line is a model that summarizes the data in the form y = mx + b.
One important aspect of the model is that you can now predict values of y for values of x that you did not directly measure. This is
called interpolation when x is within the limits of the measured data (here, 1 ≤ x ≤ 7) and extrapolation otherwise.

8.3 Linear Regression or Fitting Functions to Data
The goal of this section is explain how to fit functions to data. The following is a prototypical problem: given the data shown in Table
8.1, which is also plotted in Fig. 8.2, find a function that explains the data.

It is clear that the data do NOT lie exactly on a straight line. How can we approximately fit a straight line to the data? In particular,
how can we find a function that minimizes a meaningful sense of fitting error to the data?

Table 8.1: Data for our first fitting problem.

i xi yi
1 1 4
2 2 8
3 4 10
4 5 12
5 7 18
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Figure 8.2: Plot of data in Table 8.1

Let’s suppose that we wish to fit a linear model ŷ = mx + b to the data, which has been plotted in Fig. 8.2. We set up the linear
equations

yi = mxi + b =
[
xi 1

] [m
b

]
, 1 ≤ i ≤ N,

where N is the number of data points (five in the case of Table 8.1), and write it out in matrix form
y1
y2
...
yN


︸ ︷︷ ︸

Y

=


x1 1
x2 1
... 1
xN 1


︸ ︷︷ ︸

Φ

·
[
m
b

]
︸︷︷︸

α

, (8.10)

where Y is the vector of y-data, Φ is called the regressor matrix and α is the vector of unknown coefficients that parameterize the
model.
From the data in Table 8.1, the matrices are

Y =


4
8
10
12
18

 , Φ =


1.0 1.0
2.0 1.0
4.0 1.0
5.0 1.0
7.0 1.0

 , and α =

[
m
b

]
.

Y is the vector of “measured” y-values. α is the vector of unknown coefficients that we seek to estimate. Φ, the regressor matrix, is
defined so that the i-th row of Y = Φα corresponds to yi = mxi + b.

The fitting error will be ei = yi − (mxi + b), which when written as a vector gives
e1
e2
e3
e4
e5


︸ ︷︷ ︸

e

=


4
8

10
12
18


︸ ︷︷ ︸

Y

−


1.0 1.0
2.0 1.0
4.0 1.0
5.0 1.0
7.0 1.0


︸ ︷︷ ︸

Φ

·
[
m
b

]
︸ ︷︷ ︸

α

,

that is, e := Y − Φα. We propose to choose the coefficients in α so as to minimize the total squared error

Etot =

5∑
i=1

(ei)
2 = e⊤e = ||e||2 = ||Y − Φα||2.
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Least Squares Fit to Data also called Linear Regression

From Chapter 8.2, if the columns of Φ are linearly independent, or equivalently, Φ⊤Φ is invertible, then the following are
equivalent

α∗ =
(
Φ⊤Φ

)−1
Φ⊤Y ⇐⇒ α∗ = argmin

α
||Y − Φα||2 ⇐⇒

(
Φ⊤Φ

)
α∗ = Φ⊤Y. (8.11)

The associated equations are formulated and solved in the Julia code given below. The plot of the fit is given in Fig. 8.1. You can
generate your own plots too!

1 using Plots
2 gr()
3

4 # Given data
5 X=[1 2 4 5 7]’
6 Y=[4 8 10 12 18]’
7

8 # Scatter plot
9 scatter(X,Y)

10 plot!(xlabel="X", ylabel="Y", title="dataSet1", leg=false)
11 plot!(fmt = :png)
12

13 # Build the regressor matrix
14 Phi=[X ones(5,1)]
15 @show Phi
16

17 Phi = [1.0 1.0; 2.0 1.0; 4.0 1.0; 5.0 1.0; 7.0 1.0]
18 5x2 Array{Float64,2}:
19 1.0 1.0
20 2.0 1.0
21 4.0 1.0
22 5.0 1.0
23 7.0 1.0
24

25 # Take a shortcut to finding alpha
26 # because the problem is small
27 alphaStar=inv(Phi’*Phi)*Phi’*Y
28 2x1 Array{Float64,2}:
29 2.1228070175438596
30 2.3333333333333375
31

32 # Extract the physically meaningful parameters
33 m=alphaStar[1]
34 b=alphaStar[2]
35

36 # Build the line for plotting
37 XX=[1, 7]
38 YY=m*XX.+b
39 scatter(X,Y)
40 plot!(xlabel="X", ylabel="Y", title="Least Squares Fit of a Line to Data", leg=false)
41 plot!(fmt = :png)
42

43 # Plot the line over the scatter plot of the data
44 plot!(XX,YY)
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The above shows you how to formulate a least squares fit to data by working through THE CLASSIC EXAMPLE, fitting a line to
data by minimizing the total squared error (square of the norm of the error vector). We’ll do another example so that you understand
that you are not limited to fitting “linear functions” to data.

Table 8.2: Data for our second fitting problem.

i xi yi
1 0 1.0
2 0.25 1.0
3 0.5 1.5
4 0.75 2.0
5 1.0 3.0
6 1.25 4.25
7 1.5 5.5
8 1.75 7.0
9 2.0 10.0

Figure 8.3: Scatter plot of the data in Table 8.2. The curve looks nonlinear!

Example 8.2 Our method of fitting a line to data is more general than it might seem. Consider the data in Table 8.2, which has been
plotted in Fig. 8.3. It sure doesn’t seem like we should fit a line to it. How about a quadratic?

Solution: Let’s choose a model of the form

y = c0 + c1x+ c2x
2 =

[
1 x x2

] c0c1
c2

 .
Note that even though the model is nonlinear in x, it is linear in the unknown coefficients c0, c1, c2. This is what is important!!! Just
as before, define ŷi = c0 + c1xi + c2x

2
i , the i-th term of the error vector is then

ei := yi − ŷi = yi − (c0 + c1xi + c2x
2
i )

and the total squared error is

Etot =

N∑
i=1

e2i .
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Writing out the equation yi = c0 + c1xi + c2x
2
i , i = 1, · · · , N in matrix form yields
y1
y2
...
yN


︸ ︷︷ ︸

Y

=


1 x1 (x1)

2

1 x2 (x2)
2

...
...

1 xN (xN )2


︸ ︷︷ ︸

Φ

 c0
c1
c2


︸ ︷︷ ︸

α

,

which gives us the equation Y = Φα. We plug in our numbers and check that det(Φ⊤ · Φ) = 40.6 ̸= 0. The resulting fit is given in
Fig. 8.4. The Julia code is also given.

Figure 8.4: A least squares fit of a quadratic curve, ŷ = c0 + c1x+ c2x
2, to data.

1 # Data set
2 dataSet2=[
3 1 0.0 1.0
4 2 0.25 1.0
5 3 0.5 1.5
6 4 0.75 2.0
7 5 1.0 3.0
8 6 1.25 4.25
9 7 1.5 5.5

10 8 1.75 7.0
11 9 2.0 10.0]
12

13 # Extract relevant data
14 X=dataSet2[:,2]
15 Y=dataSet2[:,3]
16

17 # Look at data to see what kind of curve it may be
18 using Plots
19 gr()
20 scatter(X,Y)
21 plot!(xlabel="X", ylabel="Y", title="dataSet2", leg=false)
22 plot!(fmt = :png)
23

24 # Build the regressor matrix
25 Phi=[ones(9,1) X X.^2]
26 9 x 3 Array{Float64,2}:
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27 1.0 0.0 0.0
28 1.0 0.25 0.0625
29 1.0 0.5 0.25
30 1.0 0.75 0.5625
31 1.0 1.0 1.0
32 1.0 1.25 1.5625
33 1.0 1.5 2.25
34 1.0 1.75 3.0625
35 1.0 2.0 4.0
36

37 # Solve Regression Problem
38 alphaStar=inv(Phi’*Phi)*Phi’*Y
39

40 # Plot the curve: first way to do it
41 Yhat=Phi*alphaStar
42 plot!(X,Yhat)
43

44 # Plot the curve with more points in x so that it is smoother
45 temp=1:200
46 XX=vec(temp/100.0);
47 N=length(XX)
48 PHI=[ones(N,1) XX XX.^2]
49 #YY=c0.+ c1.*XX + c2.*(XX).^2;
50 YY=PHI*alphaStar
51

52 # Plot used in the notes
53 scatter(X,Y)
54 plot!(xlabel="X", ylabel="Y", title="dataSet2", leg=false)
55 plot!(fmt = :png)
56 plot!(XX,YY)

In HW and in Project 2, we’ll explore more refined aspects of regressing functions and surfaces to data. We’ll actually divide the
data set into two pieces: one to be used for fitting the data and a second portion of the data reserved for checking the quality of the
fit. We will be looking to see that the fit to data that was not used in the regression problem is comparable to the fit produced by
the regression algorithm. The idea is that the second piece of data better represents how your regressed function (or surface) will
work in the real world. If you have heard of Machine Learning, these ideas are very close to current practice when “training”
Supervised Machine Learning Algorithms.

■

Large Scale Least Squares via the LU Factorization

From Chapter 8.2, if the columns of Φ are linearly independent, or equivalently, Φ⊤Φ is invertible, we know the following
are equivalent

α∗ =
(
Φ⊤Φ

)−1
Φ⊤Y ⇐⇒ α∗ = argmin

α
||Y − Φα||2 ⇐⇒

(
Φ⊤Φ

)
α∗ = Φ⊤Y. (8.12)

The suggested “pipeline” for computing a least squared error solution to
(
Φ⊤Φ

)
α∗ = Φ⊤Y is

• factor P ·
(
Φ⊤Φ

)
=: L · U , that is, do the LU Factorization of Φ⊤ · Φ,

• compute b := P · Φ⊤Y , and then

• solve Ly = b via forward substitution, and

• solve Uα∗ = y via backward substitution.
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Reminder on Calling LU Correctly in Julia

1 # Find alphaStar by solving Phi’ * Y= Phi’ * Phi*alphaStar (Ax = b) using LU
decomposition

2 using LinearAlgebra
3 F = lu(Phi’ * Phi)
4 L = F.L
5 U = F.U
6 P = F.P
7 #
8 # Phi’ * Y = Phi’ * Phi * alphaStar
9 # after LU Factorization of Phi’*Phi, we have

10 # P * Phi’ * Y = L * U * alphaStar
11 #
12 y_alpha = forwardsub(L, P*Phi’*Y)
13 alphaStar = backwardsub(U, y_alpha)

As a reminder, the following is erroneous:

1 # Find alphaStar by solving Phi’ * Y= Phi’ * Phi*alphaStar (Ax = b) using LU
decomposition

2 using LinearAlgebra
3 L,U,P = lu(Phi’ * Phi)
4 #
5 y_alpha = forwardsub(L, P*Phi’*Y)
6 alphaStar = backwardsub(U, y_alpha)

Why? Because P will NOT contain the permutation matrix. It will contain the list of permutation indices. Give a try!

8.4 (Optional Read): How to Derive the Main Regression Formula

The main method is “completing the square”. You probably learned that in High School when you studied the quadratic formula.
We recall first the derivation of the quadratic formula via “completing the square” and then give the main steps for a “vector-matrix
version of completing the square.”

8.4.1 Completing the Square for the Quadratic Formula:

We assume that a ̸= 0 and that all coefficients are real numbers. The main “trick” is to recall that (x+ d)2 = x2 +2dx+ d2. Hence,
if you see something like x2 + 2dx, you can complete the square by adding and subtracting d2 to obtain x2 + 2dx = (x+ d)2 − d2.
Below, we do this for d = b

2a .

ax2 + bx+ c = 0

⇕

x2 +
b

a
x+

c

a
= 0

⇕

x2 + 2
b

2a
x+

c

a
= 0

⇕(
x2 + 2

b

2a
x+

(
b

2a

)2
)
−
(
b

2a

)2

+
c

a
= 0 (the square was completed here!)
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Really? Yes, because x2 + 2
(

b
2a

)
x +

(
b
2a

)2
=
(
x+ b

2a

)2
. Once we have completed the square, the rest is basic manipulation of

terms, (
x+

b

2a

)2

=

(
b

2a

)2

− c

a

⇕(
x+

b

2a

)2

=
b2 − 4ac

4a2
(a perfect square)

⇕(
x+

b

2a

)
= ±

√
b2 − 4ac

4a2
(note the plus-minus sign)

⇕(
x+

b

2a

)
= ±
√
b2 − 4ac

2a
(the rest is “algebra”)

⇕

x = − b

2a
±
√
b2 − 4ac

2a
⇕

x =
−b±

√
b2 − 4ac

2a
.

That’s a lot of steps. You probably forgot how it went, right? We had to refresh our own thoughts on completing the square.

8.4.2 Completing the Square for Least Squares Solutions to Systems of Linear Equations:
Consider the set of equations Ax = b and suppose that the columns of A are linearly independent, or equivalently, that A⊤A is
invertible (i.e., det(A⊤A) ̸= 0). Then the value of x that minimizes the error satisfies

A⊤Ax∗ = A⊤b.

Sketch:
||Ax− b||2 = (Ax− b)⊤(Ax− b)

= x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤b
(8.13)

This is where completing the square comes in. It is much easier to do if you already know that answer from other techniques! In
Linear Algebra, an expression of the form (

A⊤Ax−A⊤b
)⊤ (

A⊤A
)−1 (

A⊤Ax−A⊤b
)

is the equivalent of a perfect square. We expand all the terms(
A⊤Ax−A⊤b

)⊤ (
A⊤A

)−1 (
A⊤Ax−A⊤b

)
=
(
x⊤A⊤A− b⊤A

) (
A⊤A

)−1 (
A⊤Ax−A⊤b

)
=
(
x⊤ − b⊤A

(
A⊤A

)−1
) (
A⊤Ax−A⊤b

)
= x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤A

(
A⊤A

)−1
A⊤b

and then relate them to the equation we are trying to minimize.

Substituting this result into (8.13) gives

||Ax− b||2 = (Ax− b)⊤(Ax− b)
= x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤b

= x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤b+ b⊤A
(
A⊤A

)−1
A⊤b− b⊤A

(
A⊤A

)−1
A⊤b

=
(
A⊤Ax−A⊤b

)⊤ (
A⊤A

)−1 (
A⊤Ax−A⊤b

)
+ b⊤b− b⊤A

(
A⊤A

)−1
A⊤b

161



Here is the coup de grâce: We note that b⊤b − b⊤A
(
A⊤A

)−1
A⊤b does not depend on x. Hence, the x∗ that minimizes (8.13) is

that same as the x∗ that minimizes (
A⊤Ax−A⊤b

)⊤ (
A⊤A

)−1 (
A⊤Ax−A⊤b

)
.

Therefore, the solution is (
A⊤Ax∗ −A⊤b

)
= 0 ⇐⇒ A⊤Ax∗ = A⊤b.

Remark: Uniqueness follows because A⊤A is invertible. A more complete derivation would use properties of positive definite
matrices that are covered in Appendix A.3.

8.5 Looking Ahead
The next two Chapters will conclude our introduction to Computational Linear Algebra. We want to leave space for covering some
nonlinear topics in Chapters 11 and 12, topics that are very computational in nature and super useful in engineering practice.

Our next chapter will build on our notions of linear combinations and linear independence to introduce a tool, called a dot product,
that allows us to study the notion of “orthogonal vectors” (also called perpendicular vectors) in Rn for any n ≥ 2. You probably
recall “right angles” from planar geometry? Don’t worry, we will not be doing “similar triangles” or the “side-angle-side theorem”.
What we will be doing is more on the level of difficulty of the Pythagorean Theorem, a2+ b2 = c2. We’ll introduce an algorithm that
you will want to program up in Julia for constructing orthogonal vectors from a set of linearly independent vectors. And from such
vectors, we build matrices that have the amazing property that their inverse is equal to their transpose! We know, it seems too good
to be true. And we’ll learn how to write any matrix A as the product of one of these magical matrices and an upper triangular matrix.
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Chapter 9

The Vector Space Rn: Part 2

Learning Objectives
• A second encounter with some of the essential concepts in Linear Algebra.

• A more abstract view of Rn as a vector space.

Outcomes
• What is a vector space, a subspace, and the span of a set of vectors.

• Range, column span, and null space of a matrix.

• The dot product and orthogonality.

• Gram Schmidt process for generating a basis consisting of orthogonal vectors

• Orthogonal matrices: they have the magical property that their inverse is the matrix transpose.

• The QR Factorization is the most numerically robust method for solving systems of linear equations.

• Our second recommended “pipeline” (CS-speak for method) for solving Ax = b.

Reminder: Additional Study Time May Be Required
For many students, the concepts in Chapters 7, 9 and 10 are significantly more challenging than the material in any of
the other chapters of the book. Why? Well, the reasons vary from person to person, but the biggest reason seems to be
the level of abstraction. All of our previous work has pretty much dealt with solving equations and that is something
most students of ROB 101 can wrap their heads around.
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9.1 Motivation
Up to this point, everything we have studied has been built around the notion of solving systems of linear equations. We found that it
is very powerful to express linear equations in terms of matrices and vectors, namely in the form Ax = b. While x is really a vector
of “unknowns”, we’ve become so comfortable with the vector x being an object in and of itself that we’re perfectly content to call x
“the unknown”. Likewise, we’re content to think of the matrix A as an object, and even though it may be 50 × 50 and hence have
2, 500 individual entries, we’ve learned that moving our attention away from the individual entries to the bigger object, namely the
matrix formed by the entries, is a very useful and powerful idea for solving equations.

Being able to think in terms of vectors and matrices was a big step in the level of abstraction from how we initially expressed equa-
tions in Chapter 1. For those of you who had seen matrices in High School, you took it in stride and thought for sure we’d be doing
eigenvalues and eigenvectors pretty soon, though you would not have been able to say why studying them would be important for
engineers, and for sure, you did not see triangular matrices, LU Factorization, and least-squared-error solutions coming nor how these
tools would allow us to solve (exactly or approximately) equations with hundreds, or even thousands of variables. For those of you
who had not seen matrices and vectors in High School, it was initially very hard to grasp the idea of vectors and matrices, but once
you had accepted them as valid mathematical objects, you got to immediately manipulate them in Julia instead of only doing hand
calculations. By working with vectors and matrices in a programming language, you could associate them with doing “math at the
scale of life” instead of the tedium, not to mention the high chance of error, of doing hand calculations with vectors and matrices.
And when we said “NOPE” to formulas for computing determinants or matrix inverses for general square matrices, but instead took a
structured approach through triangular matrices and factorizations, you probably thought, yeah, this is how it is supposed to be done,
and you were right!

In this Chapter, we take another big step in the level of abstraction. In fact, it’s a really big step. Instead of looking at a given set of
vectors or a particular linear combination formed from a set of vectors, we will look at the “set of all possible linear combinations”
that one can generate from the set of vectors! Or, instead of looking at one solution to a set of linear equations, we will look at the
“set of all possible solutions” to the set of equations! Why in the world would we ever want to do that? You’re probably saying to
yourself, “ the payoffs better be worth it, because, just thinking about the term all possible is hurting my brain!”

For sure. Now, back in Chapter 2, if we had tried to foreshadow everything we would be able to do with vector and matrices, you
would have been overwhelmed. In fact, some of you may have sought a different course altogether. We’ll take a chance that you are
now more mathematically sophisticated and can handle the truth. If you are not so sure, you can stop here and begin Chapter 9.2.

(a) When we form all possible linear combinations from a set of vectors that live in Rn, we’ll generate a subset of Rn called a
subspace. We’ll come to realize that we can sort of go back and forth between this larger set, namely the subspace, and the
original set of vectors. Now, once we have accepted the existence of this larger set called a subspace, we will ask the questions,
“Can a different set of vectors generate the same subspace that we generated from our original vectors? And if so, could these
vectors be simpler to work with, or “better” in some sense?” The answers will be “yes” and “yes”! This will lead us to the QR
Factorization of a matrix, one of the most recommended1 methods for computing solutions to large systems of linear equations,
the other being the LU Factorization.

(b) So far in ROB 101, we have not come to grips with how to treat systems of linear equations Ax = b that have an infinite
number of solutions! We’ll look at the set of all possible solutions and realize that it can be formed by knowing any particular
solution to the equation, say Ax = b, and a subspace called the null space of A. We’ll then search within the set of all possible
solutions for a solution having minimum norm. In Project 3, you’ll use this idea to balance a Segway! Here, we’ll not do
anything so cool.

9.2 Rn as a Vector Space
Let’s recall that an n-tuple is a fancy name for an ordered list of n numbers, (x1, x2, . . . , xn) and that we typically identify them with
column vectors, as in

(x1, x2, . . . , xn)←→


x1
x2
...
xn

 .
1The world’s leading experts argue back and forth over which is better: QR or LU? The QR Factorization is often better in the face of the numerical errors that

arise from representing numbers in digital computers via a finite set of zeros and ones, while in many situations, the LU Factorization can be faster to compute, and
hence allow one to solve larger problems.
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Moreover, we identify Rn with the set of all n-column vectors with real entries

{(x1, x2, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} ⇐⇒ Rn ⇐⇒



x1
x2
...
xn


∣∣∣∣∣ xi ∈ R, 1 ≤ i ≤ n


Finally, the choice of identifying n-tuples of numbers with column vectors instead of row vectors is completely arbitrary, and yet, we
have to choose one or the other when doing computations, and the most common choice is to use column vectors.

Two absolutely key properties of vectors in Rn is that we know how to add them and obtain another vector in Rn, namely
x1
x2
...
xn

+


y1
y2
...
yn

 :=


x1 + y1
x2 + y2

...
xn + yn

 , (9.1)

and we know how to multiply a scalar times a vector and obtain another vector in Rn, namely

α ·


x1
x2
...
xn

 :=


αx1
αx2
...

αxn

 . (9.2)

Equation (9.1) says that the sum of two vectors is DEFINED by the sum of their respective components using the definition
of addition of real numbers. Equation (9.2) says that the product of a scalar and a vector is DEFINED by the multiplication
of the real numbers constituting the components of the vector by the scalar, which is another real number. It is emphasized
that the vector operations are defined in terms the elementary operations of addition and multiplication of real numbers.

Now, (9.1) and (9.2) are special cases of linear combinations. In fact, the following statements are equivalent (means,
one holds if, and only if, the other holds)

(a) For all real numbers α and β, and all vectors x and y in Rn

α


x1
x2
...
xn

+ β


y1
y2
...
yn

 =


αx1 + βy1
αx2 + βy2

...
αxn + βyn

 (9.3)

(b) Both (9.1) and (9.2) hold individually.

Remark: To see the equivalency, note that if in (9.3), you take α = β = 1, you obtain (9.1), while if you take β = 0, you obtain
(9.2). To go the other way around, we observe that, by (9.2),

α


x1
x2
...
xn

+ β


y1
y2
...
yn

 =


αx1
αx2
...

αxn

+


βy1
βy2
...

βyn

 ,
and that by (9.1), 

αx1
αx2
...

αxn

+


βy1
βy2
...

βyn

 =


αx1 + βy1
αx2 + βy2

...
αxn + βyn

 .
Therefore, (9.1) and (9.2) together imply (9.3).
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9.3 Subspaces

Recall that a set V is a subset of some other set, say W , if x ∈ V =⇒ x ∈ W . One writes V ⊂ W to denote V is a subset of W .
We say that V =W if V ⊂W and W ⊂ V both hold.

9.3.1 Subspaces of Rn

Many students find this material challenging. Yet, it is too important to leave out of any linear algebra course. Chapter 9.3.2 takes a
more abstract view of the topic. Surprisingly, for many of us, stepping back for a moment and looking at a topic in a totally different
(and perhaps surprising) way can help. For those who wish this experience, please check out Chapter 9.3.2.

Subspace of Rn

Suppose that V ⊂ Rn is nonempty, that is, V is a subset of Rn and it contains at least one element.

Def. V is a subspace of Rn if any linear combination constructed from elements of V and scalars in R is once again an
element of V . One says that V is closed under linear combinations. In symbols, V ⊂ Rn is a subspace of Rn if for all real
numbers α and β, and all vectors v1 and v2 in V

αv1 + βv2 ∈ V. (9.4)

From the equivalence of (9.3) with the separate conditions given in (9.1) and (9.2), one is free to check that a subset is a sub-
space by checking individually that it is closed under vector addition and closed under scalar times vector multiplication.

Being “closed under something” simply means that if you perform the operation “something” on an element of a set, you get
a new element that is once again an element of the set. For us, “something” is the operation of "forming linear combinations",
“doing vector addition”, or “doing scalar times vector multiplication”. If you do one of these operations and you end up with
something new that is NOT in the subset V , then V is NOT a subspace.

Figure 9.1: If a line does not pass through the origin, then it does not contain the origin, and hence it cannot be a subspace.
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Easy First Test for Subspaces:

Every subspace must contain the zero vector. Why? Suppose that V ⊂ Rn is a subspace and that v ∈ V . Then 0 · v ∈ V
because V is closed under scalar times vector multiplication. But 0 · v = 0, the zero vector. Figure 9.1 drives home the
point that, even in R2, not all lines are subspaces. In fact, almost no lines are subspaces! It’s a very special case when the
y-intercept equals zero.

Example 9.1 Let V ⊂ R2 be the set of all points that lie on a line y = mx+ b, that is

V :=

{[
x

mx+ b

] ∣∣∣ x ∈ R

}
.

Then V is a subspace of R2 if, and only if, b = 0, that is, the line must pass through the origin.

Solution: V contains the zero vector if, and only, if the y-intercept is zero. But this means that b = 0. Now, 0 ∈ V is a necessary
condition, but not a sufficient condition for V to be a subspace. So, let’s check if V , with b = 0 is closed under vector addition and
scalar times vector multiplication. V is then

V :=

{[
x
mx

] ∣∣∣ x ∈ R

}
.

We take

v1 =

[
x1
mx1

]
and v2 =

[
x2
mx2

]
for x1 and x2 arbitrary real numbers. Then

v1 + v2 =

[
x1 + x2

mx1 +mx2

]
=

[
x1 + x2

m(x1 + x2)

]
∈ V,

and hence V is closed under vector addition. To be extra clear, we note that

v1 + v2 =

[
x
mx

]
, for x = x1 + x2,

and that is why v1 + v2 ∈ V.

We now let α ∈ R be arbitrary and check scalar times vector multiplication.

αv1 = α

[
x1
mx1

]
=

[
αx1
αmx1

]
=

[
αx1

m(αx1)

]
∈ V,

and hence V is closed under scalar times vector multiplication. To be extra clear, we note that

αv1 =

[
x
mx

]
, for x = αx1,

and that is why αv1 ∈ V.

Suppose that b ̸= 0. Can we show that V is not a subspace without taking the shortcut of first checking that V contains the zero
vector? The answer is yes. Let’s do vector addition with b ̸= 0. Then

v1 =

[
x1

mx1 + b

]
and v2 =

[
x2

mx2 + b

]
and

v1 + v2 =

[
x1 + x2

mx1 +mx2 + 2b

]
=

[
x1 + x2

(m(x1 + x2) + b) + b

]
̸∈ V.

We see that we cannot write

v1 + v2 =

[
x

mx+ b

]
for some x in R, when b ̸= 0, and that is why V is not closed under vector addition. You can also check that it is not closed under
scalar times vector multiplication, but for the purpose of showing a subset of Rn is not a subspace, you only need to violate ONE of
the conditions. ■
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Example 9.2 V := Rn is a subspace of Rn and W := {0n×1} ⊂ Rn, the zero vector, is a subspace of Rn

Solution: We’ll let you apply the definition to V and check that it is a subspace. V is the largest subspace of Rn, because it is all of
Rn, while W is the smallest subspace of Rn, since it consists only of the zero vector. Is W really a subspace? Well, if we add any
two vectors in W , we are adding n× 1 zero vectors, and we’ll get the n× 1 zero vector. If we take any real number α ∈ R and vector
w ∈W , then we are multiplying the n× 1 zero vector by α, and we get once again the n× 1 zero vector. Hence, W is closed under
the operations of vector addition and scalar times vector multiplication, showing that it is a subspace. ■

Example 9.3 V :=


 x1

0
x1 + 4x2

 ∣∣∣ x1, x2 ∈ R

 is a subspace of R3, while W :=


 x1

5
x1 + 4x2

 ∣∣∣ x1, x2 ∈ R

 is a NOT sub-

space of R3.

Solution: W does not contain the zero vector and hence it cannot be a subspace. What about V ? We write

v1 =

 x1
0

x1 + 4x2

 and v2 =

 x1
0

x1 + 4x2

 .
Then,

v1 + v2 =

 x1 + x1
0

x1 + 4x2 + x1 + 4x2

 =

 (x1 + x1)
0

(x1 + x1) + 4(x2 + x2)

 =

 x1
0

x1 + 4x2


for x1 = (x1 + x1) and x2 = (x2 + x2). Hence, v1 + v2 ∈ V.

Working out αv1 ∈ V for all α ∈ R follows the same pattern. We conclude that V is a subspace. ■

9.3.2 (Optional Read:) A Broader View of Subspaces
For some readers, this section may be very helpful and for others, it may be a total distraction. You have to decide for yourself!

The key property of vectors is that we know how to form linear combinations of them. Do we know other sets of “things” where we
can add them up and get another element of the set and also multiply an element of the set by an arbitrary real number and obtain
another element of the set? We submit that you know how to add a finite number of functions to produce another function, and you
know how to multiply a function by a real number to define a new function! Hence, the set of all functions from the reals to the reals,

X := {f : R→ R},

is closed under linear combinations and is a vector space. The set includes complicated functions such as f(x) = x3 sin(ex) − x5,

radial basis functions r(x) = e
(x−xc)

2

s2 , and simpler functions such as g(x) = 1 + x.

Example 9.4 What is the zero vector in the vector space X?

Solution: It would be the zero function, zero : R → R by zero(x) = 0 for all x ∈ R. It is the only function satisfying
zero(x) + f(x) = f(x) for all vectors (functions) in X . ■

Can we define any interesting subsets of this vector space? And would they be subspaces of X? How about we consider the set of all
polynomials with real coefficients? That is,

P := {p(x) ∈ X | p(x) is a polynomial }.

P is clearly a subset ofX because polynomials are special types of functions. Is it a subspace? Well, the sum of any two polynomials
is a polynomial, and when we multiply a polynomial by a real number (that is, we multiply each of its coefficients by the same real
number), we obtain another polynomial. Hence, P is a subspace of X .

We could also define
Pn := {p(x) ∈ P | the degree of p(x) is less than or equal to n}.
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Do we know specific vectors in Pn? Sure! How about

{1(x), x, x2, . . . , xn},

where 1(x) here is denoting the constant function 1(x) := 1 = x0 for all x ∈ R. Wait, those are vectors? They are vectors in the
vector space X , the set of all functions from the reals to the reals: vk(x) := xk, 0 ≤ k ≤ n are perfectly good functions, called the
monomials. Moreover, every polynomial consists of linear combinations of monomials!

Using notation that we introduce in the next section,

Pn = span{x0, x, x2, . . . , xn},

which means that every polynomial of degree less than or equal to n can be written as a linear combination of the monomials from
x0 to xn. It’s also clear that if we remove any elements from this set, then there would be polynomials of degree less than or equal to
n that we could not generate. Hence, this set is the smallest one that can generate all polynomials of degree n or less.

Using ideas from Chapter 13.5, we could find a polynomial of a fixed degree that is the best approximation2 of a general function in
X . That is a useful idea and we have explored a special case of it in homework and in Project 2.

Example 9.5 Is the set V := {p(x) ∈ P | the degree of p(x) is exactly equal to n} a subspace, for n ≥ 1?

Solution: No, because the zero vector does not have degree n and hence is not an element of the set, V . Another way to see it is that
if we define p1(x) = 2 + 3xn and p2(x) = xn, then p1(x), p2(x) ∈ V , but their linear combination p1(x)− 3p2(x) ̸∈ V .

■

9.4 Three Sources of Subspaces in Rn: Matrix Null Space, Span of a set of Vectors,
and Column Span of a Matrix

Null Space of a Matrix
For an n×m matrix A, its null space is

null(A) := {x ∈ Rm | Ax = 0n×1},

the set of all solutions (that is, vectors) that result in Ax being the zero vector or the “null vector”.

Remark: Ax = 0 has a unique solution if, and only if, null(A) = {0m×1}, the zero vector in Rm. If Ax = b has a solution
and null(A) ̸= {0m×1}, then the equation has an infinite number of solutions. We will later find the solution with minimum
norm.

Example 9.6 Compute the null space of A =

[
1 3 0
0 4 1

]
.

Solution: We note that A is a 2× 3 matrix. Hence, its null space is

null(A) := {x ∈ R3 | Ax = 02×1} ⊂ R3.

Moreover,

Ax = 02×1 ⇐⇒
[

1 3 0
0 4 1

] x1
x2
x3

 = 02×1 ⇐⇒
{
x1 + 3x2 + 0x3 = 0
0x1 + 4x2 + 1x3 = 0

⇐⇒
{
x1 = −3x2
x3 = −4x2.

2There are some technicalities that we are skipping. The function and its square would have to be Riemann integrable (for us engineers, Lebesgue integrable for
mathematicians), and we would have to do the best fit over a bounded interval [a, b] ⊂ R, a < b.
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Hence,

x ∈ null(A) ⇐⇒ x =

 −3x2x2
−4x2

 =

x2
 −31
−4

 ∣∣∣ x2 ∈ R

 =

α
 −31
−4

 ∣∣∣ α ∈ R

 ,

where we replaced x2 with α for purely cosmetic reasons, meaning that we did it to emphasize that x2 was really just an arbitrary
scalar. ■

Remark: Anticipating the next definition, we can express the null space of A as

null(A) = span{

 −31
−4

} :=
α

 −31
−4

 ∣∣∣ α ∈ R

 .

Remark: Additional worked examples are in Chapter 10, Example 10.11.

Example 9.7 For an n×m matrix A, show that null(A) is a subspace of Rm.

Solution: Suppose v1, v2 ∈ null(A), so that Av1 = Av2 = 0n×1. We need to show that for all real numbers α and β,

αv1 + βv2 ∈ null(A) (closed under linear combinations). (9.5)

But, A (αv1 + βv2) = αAv1 + βAv2 = α 0n×1 + β 0n×1 = 0n×1, and thus αv1 + βv2 ∈ null(A). ■

Span of a Set of Vectors
Suppose that S ⊂ Rn, then S is a set of vectors. The set of all possible linear combinations of elements of S is called the
span of S,

span{S} := {all possible linear combinations of elements of S}.

It follows that span{S} is a subspace of Rn because, by definition, it is closed under linear combinations. This is true
for any subset S ⊂ Rn.

What is the span good for? The span operation is how one takes an arbitrary set of vectors and generates a subspace from
it. If S is a set, span{S} is the smallest subspace that contains all of the elements of the set S. Shortly, we’ll find a different
set, S̃, such that span{S} = span{S̃} AND S̃ is a “nicer” set of vectors.

If a set S is already known to be a subspace of Rn, then taking its span does not add any new vectors because a subspace is closed
under linear combinations. Hence, S ⊂ Rn and S a subspace =⇒ span{S} = S. When S is not a subspace, then there is at least
one linear combination of elements of S that is not in S itself. In this case, the span is a bigger set, meaning that S ⊂ span{S} and
S ̸= span{S}.

Example 9.8 Consider the vector space R3 and two vectors e1 and e2, where for k = 1, 2, ek has a one in the k-th entry and zeros
elsewhere. In other words, e1 and e2 are the first and second columns of I3, the 3×3 identity matrix. Compute span{e1+e3, e2+e3}.

Solution: We have S = {e1 + e3, e2 + e3}. The set {e1 + e3, e2 + e3} is not a subspace because the vector e1 − e2 = (e1 + e3)−
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(e1 + e3) ̸∈ S.

span{S} := {all possible linear combinations of elements of S}

=
{
α1(e1 + e3) + α2(e2 + e3)

∣∣∣ α1 ∈ R, α2 ∈ R
}

=

α1

 1
0
1

+ α2

 0
1
1

 ∣∣∣ α1 ∈ R, α2 ∈ R


=


 α1

α2

α1 + α2

 ∣∣∣ α1 ∈ R, α2 ∈ R


=


 x

y
x+ y

 ∣∣∣ x ∈ R, y ∈ R


=


 x
y
z

 ∣∣∣ z = x+ y, x ∈ R, y ∈ R

 .

Hence, span{e1 + e3, e2 + e3} is the plane given by z = x+ y in R3. ■

For this very simple and very special case, we could “recognize” what the span of the set of vectors turned out to be and name it.
More generally, we cannot “recognize” what the span looks like. We simply use it as convenient notation when we want to work with
the linear combinations associated with a set of vectors and not just the vectors themselves.

(a) (b)

Figure 9.2: Where do null spaces come from ? (a) A chamber to cool molecules to near absolute zero, courtesy of Imperial College of
London. The laser beams cool the center object by pushing on it to reduce its “vibrational energy”. You can think of it as “clamping
the molecule in place”. (b) A toy example we use to illustrate null spaces. Arrows 2, 3, 5, and 6 are at 45o.

Example 9.9 (Combining null space, span, and physical intuition) For the image in Fig. 9.2-(b), we imagine the laser beams as
applying forces to the center molecule. Labeling the forces as F1 through F6 and balancing their x and y components to achieve an
equilibrium results in

 1
√
2
2 −

√
2
2 −1 −

√
2
2

√
2
2

0 −
√
2
2 −

√
2
2 0

√
2
2

√
2
2


︸ ︷︷ ︸

A


F1

F2

F3

F4

F5

F6


︸ ︷︷ ︸

x

=

[
0
0

]
. (9.6)

Compute the null space of A and interpret it!
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Solution: Newton’s Laws tell us that for a particle to be in equilibrium, the forces acting on it must “balance out”, which is “physics-
speak” for saying that when you treat the forces as vectors in R2, their vector sum must add up to zero. This can also be interpreted
as the sum of the forces in the x-direction must be zero and the same for the sum in the y-direction. This vector sum has been done
for you in Equation (9.6). The purpose of the problem is to understand that equilibrium problems like the one posed in the example
correspond to null spaces of a matrix.

Pure mathematical computation of the null space: The matrix A has two rows and six columns. A non-zero vector in the null
space gives a non-trivial linear combination of the columns of A that add up to the zero vector. We claim that there are four linearly
independent vectors in the null space. Let’s compute them!

The first two columns of A are linearly independent; indeed the matrix 1
√
2
2

0 −
√
2
2


︸ ︷︷ ︸

A

is triangular and has non-zero entries on its diagonal. We can use the linear independence of these two columns to express each of
the remaining four columns as linear combinations of the first two.

We write [
b1 b2 b3 b4

]
:=

 −
√
2
2 −1 −

√
2
2

√
2
2

−
√
2
2 0

√
2
2

√
2
2

 ,
so that the vectors bi, 1 ≤ i ≤ 4 are the remaining columns of A. We set up the equations 1

√
2
2

0 −
√
2
2


︸ ︷︷ ︸

A

αi,1

αi,2

 = bi,

and note that because A is invertible, each of the equations has a unique solution. After slightly rearranging the above we have

αi,1

[
1
0

]
+ αi,2

[ √
2
2

−
√
2
2

]
− bi = 02×1.

It follows that the four vectors
v1 =


α1,1

α1,2

−1
0
0
0

 , v2 =


α2,1

α2,2

0
−1
0
0

 , v3 =


α3,1

α3,2

0
0
−1
0

 , v4 =


α4,1

α4,2

0
0
0
−1




are in the null space of A because

Avi =

 1
√
2
2 −

√
2
2 −1 −

√
2
2

√
2
2

0 −
√
2
2 −

√
2
2 0

√
2
2

√
2
2

 vi
= αi,1

[
1
0

]
+ αi,2

[ √
2
2

−
√
2
2

]
− bi

= 02×1.

We’ll leave it to the reader to check that the four vectors {v1, v2, v3, v4} are linearly independent. Once you note that the last four
entries of {v1, v2, v3, v4} consist of zeros and negative ones, showing independence is very quick!
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Could there be more than four linearly independent vectors in the null space of A? We’ll prove in Chapter 10.5 that four is the magic
number and that this follows from the much easier observation that A has two linearly independent rows and six columns! Hence,

null(A) = span{v1, v2, v3, v4}.

We next give a completely different method and claim that we can “see” the null space from the diagram. If we increase F1

and F4 by the same amount, then they cancel in both the x and y directions. If we increase F2 and F5 by the same amount, then they
cancel. If we increase F3 and F6 by the same amount, then they cancel. And finally, if we increase F2 and F6 by the same amount,
their y-components cancel but, not their x-components, so we need to offset that by F4. Ta da! Pretty cool, right? This gives

null(A) = span




1
0
0
1
0
0

 ,


0
1
0
0
1
0

 ,


0
0
1
0
0
1

 ,


0
1
0√
2
0
1




, (9.7)

where 
1
0
0
1
0
0

↔ F1 and F4 balancing one another,


0
1
0
0
1
0

↔ F2 and F5 balancing one another


0
0
1
0
0
1

↔ F3 and F6 balancing one another,


0
1
0√
2
0
1

↔ F2,
√
2F4 and F6 balancing.

The null space is then all linear combinations of forces that result in the particle being in equilibrium. This same principle was used
to analyze the truss-bridge example in Fig. 5.2.

Statics Problems and Null Spaces

When you take a Statics & Dynamics course, all of the statics problems involve computing forces that lie in null spaces of
matrices, where the matrices represent the (vector) sum of the forces (and possibly torques) being zero.

Question: Are we missing the linear combination of F3, F5 and F1 given by

√
2
0
1
0
1
0

?

Analogously to how F2, F6, and F4 work together, this vector will also result in a zero net change to the force equilibrium, won’t it?
The answer is a resounding yes, but it is already included in the above span, because

√
2
0
1
0
1
0

 =
√
2


1
0
0
1
0
0

+


0
1
0
0
1
0

+


0
0
1
0
0
1

−


0
1
0√
2
0
1

 .
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Question: Is it a problem that the four vectors we found in our mathematical calculation are different than the four vectors we found
using physical reasoning based on force balancing? The answer is no. We invite you to go to Julia and check that the two spans are the
same, which you can do by writing the vectors in one span as linear combinations of the vectors in the other span. In Chapter 10.2, we
will introduce the notion of a basis for a subspace. Our two methods of computing the null space of A have produced two different
sets of basis vectors. Is one better than the other? No. Do you like one more than the other? Probably! Some of you will like the
physical reasoning and some will be hard-core math types. The world needs all types!

Hopefully, this example helps to clarify linear combinations, span, and null space. ■

Example 9.10 Let S be the unit circle in R2. Compute span{S}.

Solution: We have that S := {(x1, x2) |(x1)2 + (x2)
2 = 1} ⊂ R2, which has an infinite number of elements. Hence, computing its

span must be super tricky, right? Not really. We note that e1 and e2 are both elements of S because e1 corresponds to x1 = 1 and
x2 = 0, while e2 corresponds to x1 = 0 and x2 = 1. Hence,

span{e1, e2} ⊂ span{S}.

But we know that span{e1, e2} = R2 and span{S} ⊂ R2, where the last statement is true because every element of S is in R2 and a
linear combination of vectors in R2 gives another vector in R2. Therefore,

R2 = span{e1, e2} ⊂ span{S} ⊂ R2,

which shows that span{S} = R2. ■

Column Span of a Matrix
Let A be an n×m matrix. Then its columns are vectors in Rn. Their span is called the column span of A.

col span{A} := span{acol1 , . . . , acolm }.

We saw in Chapter 7.4 that Ax = b has a solution if, and only if, b is a linear combination of the columns of A. A more
elegant way to write this is

Ax = b has a solution if, and only if, b ∈ col span{A} .

Example 9.11 Suppose A =

 3 2
1 −2
−1 1

 and b =

 0
−8
5

. Does Ax = b have a solution?

Solution: This is identical to the problems we solved in Chapter 7.7. We check that

b = −2acol1 + 3acol2 ∈ span{acol1 , acol2 },

and hence b is in the column span of A, and the system of linear equations has a solution, namely,

x =

[
−2
3

]
is a solution! ■

Here is an intriguing example.

Example 9.12 Consider the matrices

A :=


0.8399 −1.1136 −0.7449
−0.8898 0.9555 −0.1578
0.0069 0.8307 −0.8218
−1.1286 2.0774 −0.2728
−0.0115 −0.2561 0.1850


5×3

and Q :=


0.5046 0.1296 −0.7328
−0.5345 −0.3516 −0.6560
0.0041 0.8038 −0.1712
−0.6780 0.3812 −0.0287
−0.0069 −0.2612 −0.0492


5×3

. (9.8)
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Is the vector

b :=


−0.4524
−0.9162
0.8603
0.4963
−0.3618

 (9.9)

a linear combination of the columns of A? In other words, is b ∈ col span{A}?

Solution: The matrix Q has been constructed using methods covered in Chapter 9.5 to satisfy Q⊤Q = I3 and

col span{A} = col span{Q};

hence,
b ∈ col span{A} ⇐⇒ b ∈ col span{Q}.

For matrices that satisfy Q⊤ ·Q = In for some n, it must be easy to check b ∈ col span{Q}, right? Indeed, we’ll later show that

b ∈ col span{Q} ⇐⇒ b = Qα, for α := Q⊤b.

In Julia, we verify these conditions, and we’re done. We have checked that Ax = b has a solution. ■

(Optional Read) Remark: Is the above method (which we will study in more detail later), better than our previous method
with LDLT (recall Chapter 7.7)? It can be faster in Julia because it involves fewer computations. In Example 9.12, once we
had Q, we needed to perform two matrix times vector multiplications, namely

α := Q⊤b =

 0.5046 −0.5345 0.0041 −0.6780 −0.0069
0.1296 −0.3516 0.8038 0.3812 −0.2612
−0.7328 −0.6560 −0.1712 −0.0287 −0.0492


3×5


−0.4524
−0.9162
0.8603
0.4963
−0.3618

 =

 −0.06901.2386
0.7889



and

Qα =


0.5046 0.1296 −0.7328
−0.5345 −0.3516 −0.6560
0.0041 0.8038 −0.1712
−0.6780 0.3812 −0.0287
−0.0069 −0.2612 −0.0492


5×3

 −0.06901.2386
0.7889

 =


−0.4524
−0.9162
0.8603
0.4963
−0.3618

 ,
and then verify Qα− b = 05×1. We will learn shortly that Q comes from an algorithm that is similar to a matrix factorization. With
LDLT, we would have to perform two matrix products, namely A⊤ · A and A⊤

e · Ae for Ae := [A b], and two matrix factorizations.
A product of a matrix and a vector is generally faster to compute than a matrix times another matrix, and all things being equal,
computing one “factorization” is faster than computing two of them. While this is not a rigorous analysis, it gives you a sense that it
may be worthwhile to learn about matrices that satisfy Q⊤ ·Q = In!

Example 9.13 Check if the following subsets of R3 are also subspaces of R3.

(a) S1 = {x ∈ R3 |
[
2.0 −1.0 11.0

]
x = 1.0}

(b) S2 = {x ∈ R3 |
[
2.0 −1.0 11.0

]
x = 0.0}

(c) S3 = span{S1}

Solution:

(a) The zero vector is not contained in S1. According to the fact that every subspace must contain the zero vector, S1 is not a
subspace of R3.

(b) S2 is the null space of the 1× 3 matrix A :=
[
2.0 −1.0 11.0

]
, and hence is a subspace.

(c) The span of any subset of Rn is always a subspace. This is a sufficient answer.
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■

Example 9.14 For each example, find linearly independent vectors that span the given subspace:

(a) V1 is defined to be the span of the columns of B1, where

B1 =

 1 2
1 3
1 4

 .
(b) V2 is defined to be the span of the columns of B2, where

B2 =

 1 2
1 2
1 2

 .
(c) V3 := span{S3}, where S3 = {x ∈ R2 | (x1)2 + (x2)

2 = 1} (do not miss that V3 ⊂ R2).

(d) V4 := span{S4}, where S4 = {x ∈ R4 | x1 + 3x2 + x3 + 3x4 = 3} (do not miss that V4 ⊂ R4).

Solutions: The first two problems are easy because you are directly given a finite set of vectors that span the subspace in question.
The only issue is whether they are linearly independent or not. The last two problems are more challenging! Let’s get to work.

(a) V1 := span{

 1
1
1


︸ ︷︷ ︸

v1

,

 2
3
4


︸ ︷︷ ︸

v2

}. Hence, we already know vectors that span V1. We need to check if the given vectors are linearly

independent or not. If not, we’ll throw away dependent vectors.

We quickly check that α1v1 + α2v2 = 03×1 if, and only if, α1 = α2 = 0. Thus the columns of B1 are linearly independent
and they span the subspace V1.

(b) This time, V2 := span{

 1
1
1


︸ ︷︷ ︸

v1

,

 2
2
2


︸ ︷︷ ︸

v2

}. We observe that 2v1− v2 = 03×1 and thus they are linearly dependent. Because each

vector is non-zero, either one alone is linearly independent and hence we can choose either one as the linearly independent
vector. For example,

• V2 = span{

 1
1
1


︸ ︷︷ ︸

v1

}, or

• V2 = span{

 2
2
2


︸ ︷︷ ︸

v2

}.

• We could also write V2 = span{

 11
11
11

} because any non-zero multiple of v1 is also a valid solution.

(c) This problem is quite different from the previous two because we are not given an explicit finite set of vectors that span the
subspace. Instead, we are given an implicit description of a set and then we are asked to compute the span of that set of vectors.
This is more common in applications.

Before attacking the problem, it’s good to establish:
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Lemma. If A ⊂ B ⊂ Rn, then span{A} ⊂ span{B} ⊂ span{Rn} = Rn.

Proof: If v ∈ span{A}, then v =
∑K

i=1 ci · vi for some constants ci ∈ R and vectors vi ∈ A. But because A ⊂ B, we have
that vi ∈ B for all 1 ≤ i ≤ K and hence

∑K
i=1 ci · vi ∈ span{B}. Therefore, v ∈ span{A} =⇒ v ∈ span{B}, which

means that span{A} ⊂ span{B}. The same reasoning can be applied to B ⊂ Rn. Finally, why is span{Rn} = Rn? One way
to look at it: Rn is (already) a vector space and is thus closed under linear combinations. Hence, the span operation does not
create any new vectors. ■

Let’s now find some vectors in S3. We note that v1 :=

[
1
0

]
∈ S3 and v2 :=

[
0
1

]
∈ S3. Hence, applying the Lemma, we

have that

{v1, v2} ⊂ S3 ⊂ R2 =⇒ span{v1, v2} ⊂ span{S3} ⊂ span{R2} = R2.

Next, we note that

span{v1, v2} = span{
[

1
0

]
,

[
0
1

]
} = R2

and, therefore,

R2 = span{v1, v2} ⊂ span{S3} ⊂ R2.

The only way this can hold is if span{S3} = R2. Hence, an answer to the problem is

span{S3} = span{
[

1
0

]
,

[
0
1

]
}

and we have expressed the subspace as a span of linearly independent vectors.

Are other solutions possible? Yes! v̄1 := 1√
2

[
1
1

]
∈ S3 and v̄2 := 1√

2

[
−1
1

]
∈ S3. Moreover, these vectors are linearly

independent. Hence, we can write span{S3} = span{v̄1, v̄2}. In fact, there are an infinite number of choices for linearly
independent vectors that span V3.

(d) This problem is nearly identical to the previous one. We will enumerate a few vectors in the set and use them to compute the
span.

We note that v1 :=


3
0
0
0

 ∈ S4, v2 :=


0
1
0
0

 ∈ S4, v3 :=


0
0
3
0

 ∈ S4, and v4 :=


0
0
0
1

 ∈ S4. These four vectors

are linearly independent and their span is all of R4. Hence, following the same reasoning as in part (c), we have that V4 =
span{v1, v2, v3, v4} = R4.

■
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9.5 Dot Product and Orthonormal Vectors

Dot Product or Inner Product
Definition: We let u ∈ Rn and v ∈ Rn be column vectors,

u :=


u1
u2
...
un

 , v :=


v1
v2
...
vn

 .
The dot product of u and v is defined as

u • v :=

n∑
k=1

ukvk.

We note that

u⊤ · v =
[
u1 u2 · · · un

]
·


v1
v2
...
vn

 =

n∑
k=1

ukvk =: u • v

For many people, this is how they remember the dot product: as u⊤v. In fact, you are welcome to use this as the definition
of the dot product.

The dot product is also called the inner product. The terminology of inner product is very common. In ROB 101, you can
choose your preferred terminology in this regard. Your instructors prefer inner product.

Example 9.15 Compute the dot product for

u =

10
3

 , v =

24
1

 .
Solution:

u • v = (1)(2) + (0)(4) + (3)(1) = 5

u⊤v = (1)(2) + (0)(4) + (3)(1) = 5.

You can use either notation. ■

Example 9.16 Compute the inner product for

u =


1
0
−1
0

 , v =


0
1
0
1

 .
Solution:

u • v = (1)(0) + (0)(1) + (−1)(0) + (0)(1) = 0

u⊤v = (1)(0) + (0)(1) + (−1)(0) + (0)(1) = 0.

You can use either notation. ■
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Key Use of the Dot (aka Inner) Product of Two Vectors
The inner product will provide us a generalization of a right angle (90 deg angle) between two vectors in Rn.

w1 ⊥ w2 ⇐⇒ w1 • w2 = 0 ⇐⇒ w⊤
1 w2 = 0

(Read it as: w1 is orthogonal to w2 if, and only if, their inner product is zero. Orthogonal means “at right angle”)

Source: https://study.com/academy/lesson/the-gram-schmidt-process-for-orthonormalizing-vectors.html

Reading the values from the graph, we have

w1 =

[
3
4

]
, w2 =

[
− 7

3

7
4

]
=⇒ w1 • w2 = w⊤

1 w2 = −37
3
+ 4

7

4
= 0

It’s very useful and amazing that this works for all vector spaces Rn, as long as n ≥ 2. Can you picture a right angle in R27?
Neither can your instructors, but later we’ll see how useful the idea can be!

Pythagorean Theorem in Rn, n ≥ 2.

Suppose that w1 ⊥ w2. Then,
||w1 + w2||2 = ||w1||2 + ||w2||2.

Remark In the above plot, draw the line from w1 to w2 and call its length c; in addition, label the length of w1 as a and that
of w2 as b. Then yes, we have the classic relationship: c2 = a2 + b2.

Example 9.17 Why is this true?

Solution: [Trigger Warning: This is a proof. You may want to skip it.] Because w1 ⊥ w2, we know that w1 • w2 = 0, which
means that w⊤

1 · w2 = w⊤
2 · w1 = 0. Finally, we recall that the norm-squared of a vector v is ||v||2 = v⊤ · v. Using these facts we

grind out the computation and see

||w1 + w2||2 : = (w1 + w2)
⊤ · (w1 + w2)

= w⊤
1 · (w1 + w2) + w⊤

2 · (w1 + w2)

= w⊤
1 · w1 + w⊤

1 · w2 + w⊤
2 · w1 + w⊤

2 · w2

= w⊤
1 · w1︸ ︷︷ ︸
||w1||2

+w⊤
1 · w2︸ ︷︷ ︸

0

+w⊤
2 · w1︸ ︷︷ ︸

0

+w⊤
2 · w2︸ ︷︷ ︸
||w2||2

= ||w1||2 + ||w2||2.
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Example 9.18 Determine which pairs of vectors, if any, are orthogonal

u =

 2
1
−1

 , v =

 1
3
5

 , w =

 −50
1

 .
Solution

u • v = u⊤ · v =
[
2 1 −1

]
·

13
5

 = (2)(1) + (1)(3) + (−1)(5) = 0

u • w = u⊤ · w =
[
2 1 −1

]
·

 −50
1

 = (2)(−5) + (1)(0) + (−1)(1) = −11

v • w = v⊤ · w =
[
1 3 5

]
·

 −50
1

 = (1)(−5) + (3)(0) + (5)(1) = 0,

and hence, u ⊥ v, u ̸⊥ w, and v ⊥ w. In words, u is orthogonal to v, u is not orthogonal to w, and v is orthogonal to w. ■

Orthogonal and Orthonormal Vectors
A set of vectors {v1, v2, . . . , vn} is orthogonal if, for all 1 ≤ i, j ≤ n, and i ̸= j

vi • vj = 0. (9.10)

We can also write this as v⊤i vj = 0 or vi ⊥ vj .

A set of vectors {v1, v2, . . . , vn} is orthonormal if,

• they are orthogonal, and

• for all 1 ≤ i ≤ n, ||vi|| = 1.

Example 9.19 Scale the vector w so that its norm becomes one,

w =

 −50
1

 .
Solution: In general, if α := ||w|| ≠ 0 and we define w̃ := 1

αw, then

||w̃|| = 1.

This is true because

||w̃|| = || 1
α
· w||

=

∣∣∣∣ 1α
∣∣∣∣ · ||w|| (property of norms)

=
1

α
· ||w|| ( 1

α
is positive)

=
1

α
· α (definition of α)

=
α

α
= 1 (how scalar multiplication and division work)
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Hence, we need to form w
||w|| , which gives

w̃ :=
1

||w||
· w =

1√
26

 −50
1

 .
■

Example 9.20 From Example 9.18, we already know that the set {u, v} is orthogonal, that is, u ⊥ v. Make it an orthonormal set.

u =

 2
1
−1

 , v =

 1
3
5

 .

Solution: We need to normalize their lengths to one. We compute

||u|| =
√
(2)2 + (1)2 + (−1)2 =

√
6

||v|| =
√

(1)2 + (3)2 + (5)2 =
√
35

and thus ũ :=
1√
6

 2
1
−1

 , ṽ :=
1√
35

 1
3
5


is an orthonormal set of vectors. ■

Orthonormal Vectors are Linearly Independent
For a set of vectors {v1, v2, . . . , vk} in Rn, the following statements are true:

(a) {v1, v2, . . . , vk} orthonormal implies it is linearly independent

(b) {v1, v2, . . . , vk} orthogonal and for all i, vi ̸= 0n×1, together imply that the set is linearly independent

Remark: In (b), the zero vector would be orthogonal to everything, but we needed to exclude it for us to have a linearly
independent set. In (a), the lengths of the vectors being 1.0 excludes the zero vector.

What about the other direction? That is, given linearly independent vectors, can we construct a set of orthonormal vectors that span
them? And if we can, would it even be useful? In Chapter 9.7.2, we address these questions.

9.6 Orthogonal Matrices or Why Orthonormal Vectors are Super Useful

This section is super cool! You will first learn about a kind of matrix whose inverse is equal to its transpose!! This is only the second
inverse formula that your instructors want you to know and actually use!!!

The hardest aspect of the this section is the vocabulary BECAUSE a square matrix is orthogonal if its columns are orthonormal
vectors. I know, why not call them orthonormal matrices? Because that would be too easy? Because, by making it confusing, we can
check who really knows what they are doing and who does not? No, it’s another one of those historical accidents that we live with.
Fortunately, the terminology orthonormal matrices is used for a rectangular version of orthogonal matrices, and in applications, those
are very important too.

Let’s recall something about the sizes of matrices. If a matrixQ is n×m, then its transpose is m×n. Therefore, we can formQ⊤ ·Q
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and have an m×m square matrix and we can form Q ·Q⊤ and have an n× n square matrix.

Orthonormal and Orthognal Matrices
An n×m rectangular matrix Q is orthonormal:

• if n > m (tall matrix), its columns are orthonormal vectors, which is equivalent to Q⊤ ·Q = Im; and

• if n < m (wide matrix), its rows are orthonormal vectors, which is equivalent to Q ·Q⊤ = In.

A square n× n matrix is orthogonal if Q⊤ ·Q = In and Q ·Q⊤ = In, and hence, Q−1 = Q⊤.

Remarks:

• For a square matrix, n = m, (Q⊤ ·Q = In) ⇐⇒ (Q ·Q⊤ = In) ⇐⇒ (Q−1 = Q⊤).

• For a tall matrix, n > m, (Q⊤ ·Q = Im) ≠⇒ (Q ·Q⊤ = In).

• For a wide matrix, m > n, (Q ·Q⊤ = In) ≠⇒ (Q⊤ ·Q = Im).

Determinants of Orthogonal Matrices

Suppose that Q is n × n and orthogonal so that Q⊤Q = In. Then [det(Q)]
2
= 1, and hence det(Q) = ±1. This follows

from the determinant rule for a product of matrices, once you know for a square matrix A that det(A⊤) = det(A).

Q orthogonal =⇒ det(Q) = ±1.

9.7 Constructing Orthonormal Vectors: the Gram-Schmidt Process
We already know how to normalize a set of orthogonal vectors to create a set of orthonormal vectors. Hence, we next look at how we
might go about building a set of orthogonal vectors from vectors that are not orthogonal. We’ll then learn the Gram-Schmidt Process,
which is simply an algorithmic form of our process for building orthogonal vectors from non-orthogonal vectors.

9.7.1 Building Orthogonal Vectors
Example 9.21 Suppose we have two vectors in R3,

u1 =

 1
1
1

 and u2 =

 1
−1
2

 .
It is easy to compute u⊤1 · u2 = 2 ̸= 0, and thus the two vectors are not orthogonal. Find, if possible, two vectors v1 and v2 such that

• v1 ⊥ v2,

• span{v1} = span{u1}, and

• span{v1, v2} = span{u1, u2}.

In other words, v1 and v2 are orthogonal and yet they “generate” the same subspace as u1 and u2, which are not orthogonal.

Solution: If we set v1 = u1, then we trivially satisfy span{v1} = span{u1}. Let’s see if we can write v2 as a linear combination of
u1 and u2 in such a way that v2 • v1 = 0 and span{v1, v2} = span{u1, u2}, where we have used the fact that

v1 ⊥ v2 ⇐⇒ v1 • v2 = 0 ⇐⇒ v2 • v1 = 0.
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Step 1: v1 := u1 =

 1
1
1

 .
Step 2: v2 := u2 − αv1, where we seek to choose α such that v2 • v1 = 0. We compute

v2 • v1 = (u2 − αv1) • v1
= u2 • v1 − αv1 • v1.

If v1 • v1 ̸= 0, then we can set u2 • v1 − αv1 • v1 = 0 and solve for α, namely

α =
u2 • v1
v1 • v1

.

Important Formula to Build v1 ⊥ v2 from u1 and u2 while Preserving Spans

v1 = u1

v2 = u2 −
(
u2 • v1
v1 • v1

)
v1

span{v1} = span{u1}
span{v1, v2} = span{u1, u2}

(9.11)

In our case,

u2 • v1 = u⊤2 · v1 =
[
1 −1 2

]
·

 1
1
1

 = 2

v1 • v1 = u1 • u1 = u⊤1 · u1 =
[
1 1 1

]
·

 1
1
1

 = 3 ̸= 0,

and thus

α =
u2 • v1
v1 • v1

=
2

3
.

and hence

v2 = u2 − αv1 =

 1
−1
2

− 2

3

 1
1
1

 =


1
3

− 5
3

4
3


Did it work? Let’s check if the vectors are orthogonal, that is, v1 ⊥ v2,

v1 • v2 = v⊤1 · v2 =
[
1 1 1

]
·


1
3

− 5
3

4
3

 = 0.

What about the span property? Well, as we noted when we started, span{v1} = span{u1} because v1 = u1.

What about span{v1, v2} = span{u1, u2}? This part becomes a bit technical, so feel free to stop reading here and skip to the
next subsection. We first ask, what does it even mean that span{v1, v2} = span{u1, u2}? Well, it means that if we take all linear
combinations of the vectors {v1, v2}, we obtain the same “set of vectors” as taking all linear combinations of the vectors {u1, u2}
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We note that v1 = u1 and hence,

v2 = u2 − αv1 (9.12)
⇕

v2 = u2 − αu1 (9.13)
⇕

u2 = v2 + αv1 (9.14)

From (9.13), we have that

span{v1, v2} = span{u1, u2 − αu1} ⊂ span{u1, u2},

while from (9.14),

span{u1, u2} = span{v1, v2 + αv1} ⊂ span{v1, v2}.

But for arbitrary subsets S1 and S2,

S1 = S2 ⇐⇒ (S1 ⊂ S2 and S2 ⊂ S1) ,

and thus we have shown that span{v1, v2} = span{u1, u2}.

To be clear, this kind of proof was maybe a bit over the top for ROB 101! ■

9.7.2 Gram-Schmidt Process (aka the Gram-Schmidt Algorithm) for Building Orthonormal Vectors

Let’s do one more step of producing orthogonal vectors. Let’s assume that we have three linearly independent vectors {u1, u2, u3}
and that we have already computed v1 := u1 and v2 := u2 −

(
u2•v1
v1•v1

)
v1 so that v1 • v2 = 0. Let’s now work on a third orthogonal

vector. We define

v3 := u3 − α1v2 − α2v2,

and try to find values for α1 and α2 so that v1 • v3 = 0 and v2 • v3 = 0.

We compute

v1 • v3 = v1 • (u3 − α1v1 − α2v2)

= v1 • u3 − α1v1 • v1 − α2v1 • v2
= v1 • u3 − α1v1 • v1 (because v1 • v2 = 0)

and

v2 • v3 = v2 • (u3 − α1v1 − α2v2)

= v2 • u3 − α1v2 • v1 − α2v2 • v2
= v2 • u3 − α2v2 • v2 (because v2 • v1 = 0).

Solving for α1 and α2 and substituting yields

v3 := u3 −
u3 • v1
v1 • v1

v1 −
u3 • v2
v2 • v2

v2. (9.15)
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Figure 9.3: Illustration of the Gram Schmidt Process. In the above, yi ↔ ui and vi ↔ vi. Image courtesy of Abhishek Venkataraman
and Bruce Huang.

Gram-Schmidt Process
Suppose that that the set of vectors {u1, u2, . . . , um} is linearly independent and you generate a new set of vectors by

v1 = u1

v2 = u2 −
(
u2 • v1
v1 • v1

)
v1

v3 = u3 −
(
u3 • v1
v1 • v1

)
v1 −

(
u3 • v2
v2 • v2

)
v2

...

vk = uk −
k−1∑
i=1

(
uk • vi
vi • vi

)
vi (General Step)

(9.16)

Then the set of vectors {v1, v2, . . . , vm} is

• orthogonal, meaning, i ̸= j =⇒ vi • vj = 0

• span preserving, meaning that, for all 1 ≤ k ≤ m,

span{v1, v2, . . . , vk} = span{u1, u2, . . . , uk}, (9.17)

and

• linearly independent.

Suggestion: If you do not see the pattern in the steps of the Gram-Schmidt Algorithm, please compare (9.16) to (9.11).

Preview of Basis Vectors

A set of vectors that is linearly independent and spans a given subspace is called a basis for the subspace. We are delaying
the study of basis vectors until Chapter 10. Equation (9.17) means that if you apply Gram-Schmidt to a set of basis vectors,
then you will end with a basis made of orthogonal vectors. If you then normalize the orthogonal basis, you will produce
an orthonormal basis!

Example 9.22 You are given that the set below is a basis for R3. Produce from it an orthonormal basis.

{u1, u2, u3} =


 1

1
0

 ,
 1

2
3

 ,
 0

1
1


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Solution:
Step 1 is to apply Gram-Schmidt to produce an orthogonal basis.

v1 = u1 =

 1
1
0


v1 • v1 = (v1)

⊤v1 = 2;

v2 = u2 −
u2 • v1
v1 • v1

v1

=

 1
2
3

− [ 1 1 0
]  1

2
3


︸ ︷︷ ︸

3

1

2

 1
1
0

 =


− 1

2

1
2

3


v2 • v2 = v⊤2 v2 =

19

2

v3 = u3 −
u3 • v1
v1 • v1

v1 −
u3 • v2
v2 • v2

v2

=

 0
1
1

− [ 1 1 0
]  0

1
1


︸ ︷︷ ︸

1

1

2

 1
1
0

− [ − 1
2

1
2 3

]  0
1
1


︸ ︷︷ ︸

3 1
2

1
19
2


− 1

2

1
2

3



=

 0
1
1

−
 1

2
1
2
0

−

− 7

38

7
38

21
19

 =


− 6

19

6
19

− 2
19

 .
Collecting the answers, we have

{v1, v2, v3} =


 1

1
0

 ,

− 1

2

1
2

3

 ,

− 6

19

6
19

− 2
19




Step 2: Normalize to obtain an orthonormal basis (often useful to do this, but not always required).

ṽ1 =
v1
∥v1∥

=

√
2

2

 1
1
0


ṽ2 =

v2
∥v2∥

=

√
38

38

 −11
6


ṽ3 =

v3
∥v3∥

=

√
19

19

 −33
−1


All of this is quite tedious by hand, while being super fast and fun in Julia!

■

When we program the Gram-Schmidt process in Julia, we typically do the normalization as we go. When we normalize by
vi ← vi/||vi||, it follows that vi • vi = 1. Hence, the algorithm simplifies to the following.
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Gram-Schmidt Process with Normalization
Suppose that that the set of vectors {u1, u2, . . . , um} is linearly independent and you generate a new set of vectors by applying
Gram-Schmidt with normalization as we go, via

v1 = u1

v1 ← v1/||v1||
v2 = u2 − (u2 • v1) v1
v2 ← v2/||v2||
v3 = u3 − (u3 • v1) v1 − (u3 • v2) v2
v3 ← v3/||v3||

...

vk = uk −
k−1∑
i=1

(uk • vi) vi (General Step)

vk ← vk/||vk||,

(9.18)

where the symbol← means that we reassign the vector vk to its normalized value.

Then the set of vectors {v1, v2, . . . , vm} is

• orthonormal, meaning, i ̸= j =⇒ vi • vj = 0 and for all i, ||vi|| = 1,

• span preserving, meaning that, for all 1 ≤ k ≤ m,

span{v1, v2, . . . , vk} = span{u1, u2, . . . , uk},

and

• linearly independent.

9.8 QR Factorization and Solutions of Linear Equations

In Chapter 9.3 we introduced the column span of an n × m matrix as the subspace of Rn generated by taking all of the linear
combinations of the columns of the matrix. Applying Gram-Schmidt to the columns of a matrix yields the QR Factorization, which
is one of the most advanced numerical methods for solving systems of linear equations.
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QR Factorization
Suppose thatA is an n×mmatrix with linearly independent columns. Then there exists an n×mmatrixQ with orthonormal
columns and an upper triangular, m ×m, invertible matrix R such that A = Q · R. Moreover, Q and R are constructed as
follows:

• Let {u1, . . . , um} be the columns of A with their order preserved so that

A =
[
u1 u2 · · · um

]
• Q is constructed by applying the Gram-Schmidt Process to the columns of A and normalizing their lengths to one,

{u1, u2, . . . , um}
Gram-Schmidt−−−−−−−→

Process
{v1, v2, . . . , vm}

Q :=
[

v1
||v1||

v2
||v2|| · · · vm

||vm||

]
• Because Q⊤Q = Im, it follows that A = Q ·R ⇐⇒ R := Q⊤ ·A.

• Recalling that the columns of A are linearly independent, if, and only if x = 0 is the unique solution to Ax = 0, we
have that

x = 0 ⇐⇒ Ax = 0 ⇐⇒ Q ·Rx = 0 ⇐⇒ Q⊤ ·Q ·Rx = Q⊤ · 0 ⇐⇒ Rx = 0 ⇐⇒ det(R) ̸= 0,

where the last step follows because R is square.

Remark: Because R is upper triangular, everything below its diagonal is zero. Hence, the calculation of R can be sped up by
extracting its coefficients from the Gram-Schmidt Process instead of doing the indicated matrix multiplication. We explore
this in HW.

Example 9.23 Compute the QR Factorization of A =

 1 1 0
1 2 1
0 3 1

 .
Solution: We extract the columns of A and obtain

{u1, u2, u3} =


 1

1
0

 ,
 1

2
3

 ,
 0

1
1


From Example 9.22, we have thatṽ1 =

v1
∥v1∥

=

√
2

2

 1
1
0

 , ṽ2 =
v2
∥v2∥

=

√
38

38

 −11
6

 , ṽ3 =
v3
∥v3∥

=

√
19

19

 −33
−1


and therefore,

Q ≈

 0.707107 −0.162221 −0.688247
0.707107 0.162221 0.688247
0.000000 0.973329 −0.229416


and

R = Q⊤ ·A ≈

 1.41421 2.12132 0.707107
0.00000 3.08221 1.13555
0.00000 0.00000 0.458831

 .
As a numerical check, we also compute how close Q⊤ is to being a matrix inverse of Q,

Q⊤ ·Q− I =

 −2.22045e− 16 9.71445e− 17 1.11022e− 16
9.71445e− 17 0.00000e− 17 −2.49800e− 16
1.11022e− 16 −2.49800e− 16 0.00000e− 17

 .
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In addition, we check that det(Q) = −1.0. ■

Suggested Pipeline: Solutions of Linear Equations via the QR Factorization
Suppose that A is n× n and its columns are linearly independent. Let A = Q ·R be its QR Factorization. Then

(Ax = b) ⇐⇒ (Q ·Rx = b) ⇐⇒ (Rx = Q⊤b). (9.19)

Hence, whenever det(A) ̸= 0, the suggested “pipeline” for solving Ax = b is

• factor A =: Q ·R,

• compute b := Q⊤b, and then

• solve Rx = b via back substitution.

Example 9.24 Use the suggested pipeline to solve the system of linear equations

 1 1 0
1 2 1
0 3 1


︸ ︷︷ ︸

A

x =

 1
4
7


︸ ︷︷ ︸

b

.

Solution: From Example 9.23,

 1 1 0
1 2 1
0 3 1


︸ ︷︷ ︸

A

=

 0.707107 −0.162221 −0.688247
0.707107 0.162221 0.688247
0.000000 0.973329 −0.229416


︸ ︷︷ ︸

Q

·

 1.41421 2.12132 0.707107
0.00000 3.08221 1.13555
0.00000 0.00000 0.458831


︸ ︷︷ ︸

R

.

We form

b := Q⊤b =

 3.53553
7.29996
0.45883


and then use back substitution to solve 1.41421 2.12132 0.707107

0.00000 3.08221 1.13555
0.00000 0.00000 0.458831


︸ ︷︷ ︸

R

x =

 3.535534
7.299964
0.458831


︸ ︷︷ ︸

b

,

which yields

x =

 −12
1

 .
■
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Least Squares via the QR Factorization
Suppose that A is n×m and its columns are linearly independent (tall matrix). Let A = Q ·R be its QR Factorization. Then
A⊤A = R⊤ ·Q⊤ ·Q ·R = R⊤ ·R and thus

(A⊤ ·Ax = A⊤b) ⇐⇒ (R⊤ ·Rx = R⊤ ·Q⊤b) ⇐⇒ (Rx = Q⊤b), (9.20)

where we have used the fact that R is invertible. Hence, whenever the columns of A are linearly independent, the suggested
“pipeline” for computing a least squared error solution to Ax = b is

• factor A =: Q ·R,

• compute b := Q⊤b, and then

• solve Rx = b via back substitution.

Yes! The two pipelines are identical!! Your surprise will be tempered when you go back to our discussion of least squared error
solutions of linear equations where we noted that if A is square and its determinant is non-zero, then

(Ax = b) ⇐⇒ (A⊤ ·Ax = A⊤b).

The only difference in the two cases is that when A is square, Q is an orthogonal matrix whereas, when A is a tall matrix, then Q is
an orthonormal matrix. Yes, it’s a subtle difference! Is it an important difference? Not really, as long as you only form Q⊤ · Q and
you avoid Q ·Q⊤.

Example 9.25 We rework Example 8.1 from Chapter 8.2, where we seek a least squared error solution to the system of linear
equations 

1.0 1.0
2.0 1.0
4.0 1.0
5.0 1.0
7.0 1.0


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=


4
8

10
12
18


︸ ︷︷ ︸

b

. (9.21)

Solution: Since the columns of A are linearly independent, we compute the QR factorization of A and obtain

Q =


0.102598 0.730297
0.205196 0.547723
0.410391 0.182574
0.512989 0.000000
0.718185 −0.365148

 , R =

[
9.74679 1.94936
0.0 1.09545

]
, and Q⊤ · b =

[
25.23906
2.556038

]
.

We then use back substitution to solve [
9.74679 1.94936
0.0 1.09545

]
x =

[
25.23906
2.556038

]
which yields

x∗ =

[
2.1228
2.3333

]
.

■

For small made-up problems like this one, there is no real numerical advantage to using a sophisticated solution like our “suggested
pipeline”. In real engineering, it makes a huge difference. Prof. Grizzle’s and Ghaffari’s students use the suggested pipeline, either
as given with QR or its equivalent via LU, when working with Cassie Blue.
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LU vs QR: Which is Better?
The answer seems to be highly situational. One of the giants of Linear Algebra education, Prof. Gilbert Strang, writes “The
LU vs QR choice comes up for example with least squares equations A⊤ ·Ax = A⊤b. If we actually form A⊤ ·A and solve
by LU, it is a bit faster than using A = QR, but less [numerically] stable : We could do R⊤ ·Q⊤ ·Q ·Rx = R⊤ ·QT b, which
is just Rx = Q⊤b and [is] more stable. Cleve Moler [a co-founder of the Mathworks] and I are testing various methods for
underdetermined systems with n >> m (because deep learning often has more parameters than equations to determine them,
and it still works).”

9.9 Underdetermined Equations or What to do When Ax=b has an Infinite Number
of Solutions?

We consider Ax = b and recall what we know about its solutions:

• b ∈ col span{A} ⇐⇒ a solution exists;

• the solution is unique if, and only if, the columns of A are linearly independent; and thus

• if there exists one solution and the columns of A are linearly dependent, then there exist an infinite number of solutions.

Underdetermined Equations
The columns of A will be linearly dependent when Ax = b has fewer equations than unknowns. In other words, A is n×m
and m > n; we’ve been calling these wide matrices: more columns than rows. When dealing with an equation Ax = b
with fewer equations than unknowns, one says that it is underdetermined. Why? Because, to determine x uniquely, at a
minimum, we need as many equations as unknowns.

Is there a difference between being underdetermined and having an infinite number of solutions? Yes. It’s possible to
be underdetermined and have no solution at all when b ̸∈ col span{A}. If the rows of A are linearly independent, then

Ax = b is underdetermined ⇐⇒ Ax = b has an infinite number of solutions.

The rows of A being linearly independent is equivalent to the columns of A⊤ being linearly independent.

When Ax = b has an infinite number of solutions, is there a way that we can make one of them appear to be more interesting, more
special, or just flat out “better” than all the other solutions? Is there a property that we could associate with each solution and op-
timize our choice of solution with respect to that property? The most common approach is to choose the solution with minimum norm!
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Minimum Norm Solution to Underdetermined Equations
Consider an underdetermined system of linear equations Ax = b. If the rows of A are linearly independent (equivalently, the
columns of A⊤ are linearly independent), then

x∗ = argmin
Ax=b

||x|| ⇐⇒ x∗ = A⊤ · (A ·A⊤)−1b ⇐⇒ x∗ = A⊤α and A ·A⊤α = b. (9.22)

We recommend that the minimum norm solution x∗ be computed with the right-hand side of (9.22) so that the matrix inverse
is avoided, but for small problems, the middle answer is fine.

Suppose we do the QR Factorization of A⊤ instead of A itself, so that

A⊤ = Q ·R.

Because the columns of A⊤ are linearly independent, R is square and invertible. It follows that A = R⊤ ·Q⊤ and A ·A⊤ =
R⊤ ·R because Q⊤ ·Q = I . Using these facts, (9.22) can be rewritten as

x∗ = argmin
Ax=b

||x|| ⇐⇒ x∗ = Q ·
(
R⊤)−1

b ⇐⇒ x∗ = Qβ and R⊤β = b. (9.23)

We note that R⊤ is lower triangular, and thus R⊤β = b can be solved via forward substitution. Hence, our suggested
“pipeline” for underdetermined problems Ax = b is

• Check that the columns of A⊤ are linearly independent and compute A⊤ = Q ·R.

• Solve R⊤β = b by forward substitution.

• x∗ = Qβ.

Remark: In case you are curious, β in (9.23) is related to α in (9.22) by β = Rα. The two x∗ are the same!

Example 9.26 Use the suggested pipeline to determine a minimum norm solution to the system of underdetermined equations[
1 1 0
1 2 1

]
︸ ︷︷ ︸

A

x =

[
1
4

]
︸ ︷︷ ︸

b

.

Solution: The columns of A⊤ are linearly independent and we compute the QR Factorization to be

A⊤ =

 1 1
1 2
0 1

 =

 0.707107 −0.408248
0.707107 0.408248
0.000000 0.816497


︸ ︷︷ ︸

Q

·
[

1.41421 2.12132
0.00000 1.22474

]
︸ ︷︷ ︸

R

.

We solve R⊤β = b and obtain

β =

[
0.70711
2.04124

]
,

and then x∗ = Qβ to arrive at the final answer

x∗ =

 −0.333331.33333
1.66667

 .
To verify that x∗ is indeed a solution, we substitute it into Ax− b and obtain

Ax∗ − b =
[

0.000000
−4.441e-16

]
,
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which looks like a pretty good solution! ■

A Quick Check

Is x∗ in Example 9.26 the solution of smallest norm? Of course! Don’t you trust us? To which you respond, “of course not!”

Let’s see about that. What are other solutions? We claim they all have the form x∗ + x̄, where Ax̄ = 0, because then

A(x∗ + x̄) = Ax∗ +Ax̄ = b+ 0 = b.

Indeed, we compute that all solutions to Ax = 0 have the form

x̄ = γ

 1
−1
1

 ,
and therefore, all solutions to Ax = b have the form

xsol = x∗ + x̄.

The next thing we can check is that for all γ ∈ R, x∗ ⊥ x̄, and hence, by the Pythagorean Theorem, we have that

||xsol||2 = ||x∗ + x̄||2 = ||x∗||2 + ||x̄||2 = ||x∗||2 + 3γ2.

It follows that
min
γ
||xsol||2 = min

γ

(
||x∗||2 + 3γ2

)
= ||x∗||2 +min

γ

(
3γ2
)

and thus the minimum occurs for γ = 0. Hence, x∗ is indeed the minimum norm solution!

Optional Read: The Pythagorean Theorem is a powerful ally when one seeks to establish minimum norm properties. We use it to
show that (9.22) has the claimed minimum norm property among all solutions of Ax = b. All of the ideas are actually present in our
analysis of Example 9.26. Here we sketch the general case.

The proposed minimum norm solution to Ax = b has the form x∗ = A⊤α, which is a linear combination of the columns of A⊤.
Indeed, for A an n×m matrix we write

A =

 arow1
...

arown

 and α =

 α1

...
αn

 so that A⊤α =
[
(arow1 )

⊤ · · · (arown )
⊤
] α1

...
αn

 = α1 (a
row
1 )

⊤
+ · · ·+ αn (a

row
n )

⊤
.

We next note that Ax̄ = 0 if, and only if, for all 1 ≤ i ≤ n, arowi x̄ = 0, which is equivalent to (arowi )⊤ ⊥ x̄. Hence, we have that

x∗ ⊥ x̄

A general solution to Ax = b can be written as xsol = x∗ + x̄, where x̄ is any solution to Ax = 0. Applying the Pythagorean
Theorem we have

||xsol||2 = ||x∗ + x̄||2 = ||x∗||2 + ||x̄||2.

Because ||x∗||2 + ||x̄||2 is smallest for x̄ = 0, it follows that

min
x̄
||xsol||2 = min

x̄
||x∗||2 + ||x̄||2 = ||x∗||2,

which shows that (9.22) really is the minimum norm solution.
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9.10 Steering a Mobile Robot as a Practical Example of an Underdetermined System
of Linear Equations

We first develop a model of a mobile robot. We assume that the robot moves in R2 with its x-position denoted px and y-position
denoted py . We gather these two coordinates together and write them as a vector

p :=

[
px

py

]
, (9.24)

which is typically called the state of the robot. Because we are modeling a mobile robot, its position/state changes with time. For
reasons explained in Appendix B of our textbook, we discretize time into uniform samples. So, we let δt > 0 be some base unit or
duration of time, typically small, and define t0, t1, t2, . . . , tk, . . ., where tk := kδt. We denote the robot’s position at time tk by

pk :=

[
pxk
pyk

]
; (9.25)

in other words, the subscript k keeps track of time. With this notation, p0 will be the initial position of the robot in the plane (i.e., in
R2) at time t0.

(a) (b)

Figure 9.4: Two mobile robots. (a) Michigan M-bot as used in ROB 103, ROB 320, ROB 330, and ROB 550. (b) iRobot’s roomba
vacuum cleaning robot.

The next thing we posit is that our mobile robot has “dynamics”, meaning that its state at time tk+1 can be expressed as a function of
its state at time tk and any motor commands that we provide. Because we are studying linear algebra, we assume that

pk+1 = Apk +Buk, (9.26)

where uk ∈ R2 is a pair of motor commands, the 2×2 matrixB distributes the motor commands to effect motion of the robot (that is,
change its next position), and A is a 2× 2 matrix that in a realistic model would capture the mass of the robot, the inertia of rotating
parts, and other effects from physics.

Even though the following values are not so realistic, we’ll go ahead and assume that

δt = 0.1

A = I2×2 + δt

[
0.0 −0.5
0.5 0.0

]
B = δtI2×2,

(9.27)

so that the we can focus on the process of steering the robot and not the complexity of the robot’s model.
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(a) (b)

Figure 9.5: Controlling the motion of a mobile robot. (a) shows the evolution of the robot if we apply motor commands that are
identically zero. With our chosen model, the robot wanders around like a Roomba. (b) shows us deliberately steering the robot to the
origin using methods from Linear Algebra. The problem turns out to be one of an underdetermined system of linear equations.

Why do we want a model? So that we can predict the future behavior of the robot. Not only do we have a way to compute the
state at the next time instant based on the current state and current input, we can also iterate forward and predict the state at some
future time, say N , as a function of a hypothesized input sequence, {u0, u1, . . . , uN−1} as follows

p0 = given initial position
p1 = Ap0 +Bu0

p2 = Ap1 +Bu1 = A(Ap0 +Bu0) +Bu1 = A2p0 +ABu0 +Bu1

p3 = Ap2 +Bu2 = A(A2p0 +ABu0 +Bu1) +Bu2 = A3p0 +A2Bu0 +ABu1 +Bu2

...

pN = ANp0 +AN−1Bu0 +AN−2Bu1 + · · ·+ABuN−2 +BuN−1

That’s a lot of symbols, but what do they tell us? Suppose we start the robot at

p0 :=

[
px0
py0

]
=

[
1.0
1.0

]
and we set the motor commands to be identically zero. Then we can predict how the robot will move “on its own”. Figure 9.5-(a)
shows the evolution of our robot for 0 ≤ tk ≤ 20 seconds, that is, 0 ≤ k ≤ 200 (because δt = 0.1). When we are not actively
modifying its trajectory, our robot is a bit like a wandering Roomba, spiraling outward trying to get its bearings!

Let’s suppose we want to actively steer the robot to the origin in 2 seconds, that is,

pN :=

[
pxN
pyN

]
=

[
0.0
0.0

]
,

where N = 20. Then we are seeking a solution to the equation

pN = ANp0 +AN−1Bu0 +AN−2Bu1 + · · ·+ABuN−2 +BuN−1

⇕
pN −ANp0 = AN−1Bu0 +AN−2Bu1 + · · ·+ABuN−2 +BuN−1

⇕

pN −ANp0 =
[
AN−1B AN−2B · · · AB B

]


u0
u1
...

uN−2

uN−1

 ,
(9.28)
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where the unknowns are the control decisions useq := (u0, u1, . . . , uN−2, uN−1). For N = 20, we have 40 control values to
compute, because each uk ∈ R2,

useq :=


u0
u1
...

uN−2

uN−1

 ∈ R2N . (9.29)

The problem is clearly underdetermined because we have two equations and 2N = 40 unknowns. If we view the Euclidean norm
of the control sequence as a measure of control effort (perhaps, energy drawn from a battery to operate motors on the robot), then it
makes sense to solve for

u∗seq := argmin
Museq=(pN−Sp0)

||useq||2, (9.30)

where M :=
[
AN−1B AN−2B · · · AB B

]
and S := AN .

Minimum Norm Solution to Steering a Robot
The solution to the minimum norm-squared problem in (9.30) was given by (9.22) in the previous big green box! Some of
you may see that immediately. For those who don’t, we’ll relate the “generic” notation used in finding the minimum norm
solution of Ax = b to the problem at hand.

Correspondence between the variables:

x∗ = argmin
Ax=b

||x||2 ←→ u∗seq := argmin
Museq=pN−Sp0

||useq||2

A ←→ M
b ←→ pN − Sp0

x, x∗ ←→ useq, u
∗
seq

(9.31)

Correspondence between the solutions:

x∗ = A⊤ · (A ·A⊤)−1b ←→ u∗seq =M⊤ · (M ·M⊤)−1 (pN − Sp0) for small problems, and

x∗ = A⊤α and A ·A⊤α = b ←→ u∗seq =M⊤α and M ·M⊤α = (pN − Sp0) for larger problems.
(9.32)

Solution via the QR Factorization pipeline:

• Check that the columns of M⊤ are linearly independent and compute M⊤ = Q ·R.

• Solve R⊤β = (pN − Sp0) by forward substitution.

• u∗seq = Qβ.

Just for fun, we’ll print out on the next page the resulting optimal control sequence for N = 20, namely
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u∗seq =



−0.4864
−0.5375
−0.4583
−0.5605
−0.4292
−0.5819
−0.3991
−0.6019
−0.3681
−0.6203
−0.3363
−0.6371
−0.3037
−0.6523
−0.2704
−0.6658
−0.2365
−0.6776
−0.2021
−0.6877
−0.1673
−0.6961
−0.1322
−0.7027
−0.0968
−0.7075
−0.0612
−0.7106
−0.0257
−0.7119
0.0099
−0.7114
0.0454
−0.7091
0.0806
−0.7051
0.1156
−0.6993
0.1502
−0.6918



. (9.33)

Figure 9.5-(b) shows the evolution of the robot’s trajectory in R2 as we steer it efficiently to the origin in 2 seconds. Do you think
you could do that by hand? Not a chance!

It is possible to steer the robot to the origin in 0.1 seconds. The control sequence is

u∗short seq =

[
−9.5
−10.5

]
.

Its norm squared is 200.5, while the norm squared of the longer control sequence in (9.33) is 10.26, twenty times smaller. Just for the
fun of it, we let the controller have 20 seconds to reach the origin, and then the norm squared of the control sequence drops to 1.27,
a further factor of eight smaller. At 2,000 seconds, the norm squared of u∗very long seq plateaus at 0.5. As an engineer, we would need
to trade off speed of response (how quickly we reach a goal state) versus how much it costs us to reach the goal in a given interval of
time. Traveling

√
2 meters in 2 seconds is a pretty good pace without being ridiculously expensive.
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9.11 (Optional Read): In the QR Factorization, Why R is Upper Triangular and How
to Efficiently Obtain its Coefficients from the Gram-Schmidt Process

Going back to Example 9.22, we were given that the set {u1, u2, u3} obtained from the columns of A was linearly indepen-
dent. Applying Gram-Schmidt and normalizing gave the columns of Q, { v1

∥v1∥ ,
v2

∥v2∥ ,
v3

∥v3∥}, which form an orthonormal basis for
span{u1, u2, u3}. Moreover, Gram-Schmidt naturally gives us a triangular relationship among the two sets of linearly independent
vectors

span{u1} = span{ v1
∥v1∥

}

span{u1, u2} = span{ v1
∥v1∥

,
v2
∥v2∥

}

span{u1, u2, u3} = span{ v1
∥v1∥

,
v2
∥v2∥

,
v3
∥v3∥

}.

The triangular structure of R is a reflection of this triangular relationship between the columns of A and the columns of Q. In
particular, we can write u1 as a linear combination of v1

∥v1∥ , u2 as a linear combination of v1
∥v1∥ and v2

∥v2∥ , and finally, u3 as a linear
combination of v1

∥v1∥ , v2

∥v2∥ , and v3
∥v3∥ . If we use rij to denote the coefficients in the linear combinations, we end up with

u1 = r11
v1
∥v1∥

u2 = r12
v1
∥v1∥

+ r22
v2
∥v2∥

u3 = r13
v1
∥v1∥

+ r23
v2
∥v2∥

+ r33
v3
∥v3∥

.

Writing this out in matrix form then gives A = Q ·R,

[
u1 u2 u3

]︸ ︷︷ ︸
A

=
[
r11

v1
∥v1∥ r12

v1
∥v1∥ + r22

v2
∥v2∥ r13

v1

∥v1∥ + r23
v2

∥v2∥ + r33
v3

∥v3∥

]
︸ ︷︷ ︸

Q·R

=
[

v1

∥v1∥
v2

∥v2∥
v3

∥v3∥

]
︸ ︷︷ ︸

Q

·

 r11 r12 r13
0 r22 r23
0 0 r33


︸ ︷︷ ︸

R

In case that last step was too much, too fast, we break it down into Q multiplying the various columns of R,

[
v1

∥v1∥
v2

∥v2∥
v3

∥v3∥

]
︸ ︷︷ ︸

Q

·

 r11
0
0

 = r11
v1
∥v1∥

[
v1

∥v1∥
v2

∥v2∥
v3

∥v3∥

]
︸ ︷︷ ︸

Q

·

 r12
r22
0

 = r12
v1
∥v1∥

+ r22
v2
∥v2∥

[
v1

∥v1∥
v2

∥v2∥
v3

∥v3∥

]
︸ ︷︷ ︸

Q

·

 r13
r23
r33

 = r13
v1
∥v1∥

+ r23
v2
∥v2∥

+ r33
v3
∥v3∥

.
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More Efficient QR Factorization by Reading R Directly from Gram-Schmidt
Suppose that the columns of A =: [u1 u2 · · · um] are linearly independent. We can then re-arrange the steps of the
Gram-Schmidt Process (9.16) and introduce normalization to obtain

u1 = ||v1||
v1
||v1||

u2 =

(
u2 • v1
v1 • v1

)
||v1||

v1
||v1||

+ ||v2||
v2
||v2||

u3 =

(
u3 • v1
v1 • v1

)
||v1||

v1
||v1||

+

(
u3 • v2
v2 • v2

)
||v2||

v2
||v2||

+ ||v3||
v3
||v3||

...

uk =

k−1∑
i=1

(
uk • vi
vi • vi

)
||vi||

vi
||vi||

+ ||vk||
vk
||vk||

, 3 ≤ k ≤ m.

(9.34)

Recognizing that Q :=
[

v1
||v1||

v2
||v2|| · · · vm

||vm||

]
, we identify that

u1 = ||v1||︸︷︷︸
r11

v1
||v1||

u2 =

(
u2 • v1
v1 • v1

)
||v1||︸ ︷︷ ︸

r12

v1
||v1||

+ ||v2||︸︷︷︸
r22

v2
||v2||

u3 =

(
u3 • v1
v1 • v1

)
||v1||︸ ︷︷ ︸

r13

v1
||v1||

+

(
u3 • v2
v2 • v2

)
||v2||︸ ︷︷ ︸

r23

v2
||v2||

+ ||v3||︸︷︷︸
r33

v3
||v3||

...

uk =

k−1∑
i=1

(
uk • vi
vi • vi

)
||vi||︸ ︷︷ ︸

rik

vi
||vi||

+ ||vk||︸ ︷︷ ︸
rkk

vk
||vk||

, 3 ≤ k ≤ m.

(9.35)

Hence, for 1 ≤ i, j ≤ m

rij =


0 i > j

||vi|| i = j(
uj•vi

vi•vi

)
||vi|| i < j

.

9.12 (Optional Read): Modified Gram-Schmidt Algorithm
The classical Gram-Schmidt Process is straightforward to understand, which is why it is taught in courses. Unfortunately, it behaves
poorly under the round-off error that occurs in digital computations! Here is a standard example:

u1 =


1
ε
0
0

 , u2 =


1
0
ε
0

 , u3 =


1
0
0
ε

 , ε > 0

Let {e1, e2, e3, e4} be the standard basis vectors corresponding to the columns of the 4× 4 identity matrix. We note that

u2 = u1 + ε(e3 − e2)
u3 = u2 + ε(e4 − e3)
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and thus, for ϵ ̸= 0,

span{u1, u2} = span{u1, (e3 − e2)}
span{u1, u2, u3} = span{u1, (e3 − e2), (e4 − e3)}

Hence, Gram-Schmidt applied to {u1, u2, u3} and {u1, (e3 − e2), (e4 − e3)} should “theoretically” produce the same or-
thonormal vectors. To check this, we go to Julia, and for ε = 0.1, we do indeed get the same results. You can verify this
yourself. However, with ε = 10−8,

Q1 =


1.0000 0.0000 0.0000
0.0000 −0.7071 −0.7071
0.0000 0.7071 0.0000
0.0000 0.0000 0.7071



Q2 =


1.0000 0.0000 0.0000
0.0000 −0.7071 −0.4082
0.0000 0.7071 −0.4082
0.0000 0.0000 0.8165


where

Q1 =
[

v1
∥v1∥

v2
∥v2∥

v3
∥v3∥

]
has been computed with Classical-Gram-Schmidt for {u1, u2, u3} while

Q2 =
[

v1
∥v1∥

v2
∥v2∥

v3
∥v3∥

]
has been computed with Classical-Gram-Schmidt for {u1, (e3 − e2), (e4 − e3)}. Hence we do NOT obtain the same result!

Modified Gram-Schmidt has better Numerical Performance
for k = 1 : n

vk = uk #copy over the vectors
end

for k = 1 : n
vk = vk

∥vk∥

for j = (k + 1) : n

vj = vj − (vj • vk)vk #Makes vj orthogonal to vk
end

end

At Step 1, v1 is normalized to length one, and then v2, . . . , vn are redefined to be orthogonal to v1. At Step 2: v2 is normalized
to length one, and then v3, . . . , vn are redefined to be orthogonal to v2. We note that they were already orthogonal to v1. At
Step k: vk is normalized to length one, and then vk+1, . . . , vn are redefined to be orthogonal to vk. We note that they were
already orthogonal to v1, . . . , vk−1.
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Hence, if Modified Gram-Schmidt is so great, when applied to {u1, u2, u3} and {u1, (e3− e2), (e4− e3)}, it should produce
the same orthonormal vectors and it does! To check this, we go to Julia for ε = 10−8 and obtain

Q1 =


1.0000 0.0000 0.0000
0.0000 −0.7071 −0.7071
0.0000 0.7071 0.0000
0.0000 0.0000 0.7071



Q2 =


1.0000 0.0000 0.0000
0.0000 −0.7071 −0.7071
0.0000 0.7071 0.0000
0.0000 0.0000 0.7071


where Q1 and Q2 are defined above. When one is equipped with the right Algorithm, the world is truly a marvelous
place.

9.13 (Optional Read) Source of the Definition of Orthogonal Vectors

(a) (b)

Figure 9.6: How do we go from right triangles to orthogonal vectors satisfying v1 • v2 = 0?

Earlier in the Chapter, we defined two vectors to be orthogonal if their dot product was zero. That’s fine, we can make any definition
we want, but does this really correspond to our notion of perpendicular vectors? It does, and we can prove that here if you accept that
the triangle in Fig. 9.6-(a) is a right triangle if, and only if, the Pythagorean Theorem holds, that is, a2 + b2 = c2 ⇐⇒ the triple
(a, b, c) forms a right triangle. In the following we take this as a given. You may need to go back to a High School Geometry book
to find this fact.

Fig. 9.6-(b) interprets the three sides of the triangle in terms of vectors v1, v2, v3 and their norms. We seek to understand the relation
that must hold between these vectors for the Pythagorean Theorem to hold. We note that

||v1 + v2||2 := (v1 + v2)
⊤(v1 + v2)

= v⊤1 v1 + v⊤1 v2 + v⊤2 v1 + v⊤2 v2

v⊤1 v1 + v⊤2 v2 + 2v⊤1 v2

=: ||v1||2 + ||v2||2 + 2v1 • v2.

(9.36)

Hence,
Pythagorean Theorem holds ⇐⇒

(
||v1 + v2||2 = ||v1||2 + ||v2||2

)
⇐⇒ v1 • v2 = 0 ⇐⇒ v1 ⊥ v2,

which is what we wanted to show!
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How general do you want to go?

The notions of inner products and orthogonality can be greatly extended. We have merely scratched the surface here. ROB
501 explores these topics in great detail. You may also enjoy this YouTube video by Michael Penn: https://youtu.be/
Dz_tsaocWek. He has a massive channel full of Math videos: https://www.youtube.com/@MichaelPennMath.

9.14 Looking Ahead
We will complete our introduction to Linear Algebra by introducing you to eigenvalues and eigenvectors. We’ll also apply to matrices
the concepts of subspace and dimension. This will give us a more complete understanding of solutions to systems of linear equations.
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Chapter 10

The Vector Space Rn: Part 3

Learning Objectives
• Learn how to define coordinates in a subspace of Rn and understand how many coordinates you need.

• An introduction to eigenvalues and eigenvectors of square matrices.

• Applying to matrices some of the essential concepts in Linear Algebra.

Outcomes
• Basis vectors, dimension, and coordinates

• Eigenvalues, eigenvectors, and understanding when when eigenvectors provide a basis of Rn.

• Range of a matrix and its relation to column span and null space.

• Handy matrix properties dealing with rank and nullity.
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(a) (b)

(c) (d)

Figure 10.1: Basis vectors {u, v} (blue and green) for R2 with the corresponding coordinates. The graphs (a) and (b) show coordinates
on R2 with the natural basis vectors, {u = e1, v = e2}. The red dot in (b) is the point 3u + 2v, that is, the point with coordinates
(3, 2) in the basis {u, v}. The graphs (c) and (d) show coordinates on R2 with basis vectors, {u = [1.0,−0.2]⊤, v = [0.2, 1.0]⊤}.
The red dot in (b) is the point 3u+ 2v, that is, the point with coordinates (3, 2) in the basis {u, v}. You go along the u-axis for three
units and then follow the v-axis for two units. That is what the point (3, 2) means in a basis {u, v}. The vectors in the second basis
are still orthogonal, because u • v = 0. They are rotated a few degrees clockwise with respect to the natural basis, however, and their
lengths are not equal to one. When we study eigenvectors, you’ll see a clear motivation for using bases on Rn that are distinct from
the natural basis. For now, we are just saying that we can use different basis vectors, but not why we might want to do that.

10.1 Motivation
Our first main topic, the notion of coordinates, links the notions of basis vectors, subspace, and dimension in a very tangible manner.
Eigenvalues and eigenvectors are required in EECS 442 (Computer Vision), EECS 445 (Machine learning), and ME 561 (Digital
Control). The material on rank and nullity collects in one place useful facts that your author had to learn over his first five or six years
of using Linear Algebra. Having them all in one place like this is almost too nice of a gift!

10.2 Basis Vectors, Coordinates, and Dimension
We consider Rn again, and define some special vectors. Let In be the n × n identity matrix. Then ei := i-th column of In. For
example, when n = 4,

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 .
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Looking at R2 just to make things definite, we recall that {e1, e2} is a linearly independent set, because

(
α1e1 + α2e2 =

[
α1

α2

]
=

[
0
0

])
⇐⇒

(
α1 = 0, α2 = 0

)
. (10.1)

An important property of the set {e1, e2} ⊂ R2 is that any vector x ∈ R2 can be written as a linear combination of e1, e2. Indeed,

x =:

[
x1
x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
= x1e1 + x2e2. (10.2)

Moreover, there is only one linear combination of {e1, e2} that yields the point x = [x1, x2]
⊤ ∈ R2.

(a) (b)

(c) (d)

Figure 10.2: Basis vectors {u,v} (blue and green) for R2 with the corresponding coordinates. The graphs (a) and (b) show coor-
dinates on R2 with the “almost natural” basis vectors, {u = e1, v = 2e2}. Note that we now have a rectangular grid instead of a
square grid because the lengths of u+ e1 and v = 2e2 are not equal. The red dot in (b) is the point 3u+ 2v, that is, the point (3, 2)
in the basis {u, v}. The graphs (c) and (d) this time show coordinates on R2 with basis vectors, {u = [1.0, 0.2]⊤, v = [−0.9, .7]⊤},
which are not orthogonal. Some of you may see the grid rotated out of the plane of the page...is so, this is an optical illusion.
Everything is plotted in the same plane. The red dot in (b) is still the point 3u+2v, that is, the point (3, 2) in the basis {u, v}. You
go along the u-axis for three units and then follow the v-axis for two units.
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(a) (b) (c)

Figure 10.3: R3 with a two-dimensional subspace z = −(x + y)/2 (the colored planar surface) that we’ll call V in shown in (a),
while part (b) shows the natural basis (which gives the (x, y, x) coordinates in R3) do not lie in V and hence do not form natural
coordinates for the surface. Hence, expressing locations in V in terms of the “natural coordinates” (x,y,x) from R3 is not very
natural at all! It is much simpler, and more natural, to express points in V in terms of basis vectors that lie in the plane, such as
the vectors {u, v} shown in (c). Here, the vectors {u, v} were NOT selected to be orthogonal, but we could have applied G-S and
produced an orthonormal basis for V . Any pair of linearly independent vectors in V will work, as illustrated in Figures 10.1 and
10.2.

Basis Vectors and Dimension
Suppose that V is a subspace of Rn. Then {v1, v2, . . . , vk} is a basis for V if

1. the set {v1, v2, . . . , vk} is linearly independent, and

2. span{v1, v2, . . . , vk} = V .

The dimension of V is k, the number of basis vectorsa.

We note that the above definition applies to Rn because Rn is a subset of itself and it is closed under linear combinations. In
particular, Rn has dimension n, or we say that Rn is an n-dimensional vector space.

aA more correct definition is the maximum number of vectors in any linearly independent set contained in V . For ROB 101, the definition we gave is
good enough

Basis Intuition
The essence of a basis: a set of vectors that is (a) “small enough” to be linearly independent and yet (b) “big enough” to
generate all vectors in a vector space or a subspace by forming linear combinations.

Yes, it’s kind of a “Goldilocks” notion: a set of vectors that is not too big (linearly independent) and not too small (spans
the subspace). Just the right size!

If we add one more vector to a basis for V , then either the new set will become linearly dependent or it will span a set that is
larger than V . If we take away even one vector from a basis, then it will no longer span the original set. So yes, a basis really
is a “Goldilocks” notion.

Basis vectors are important because they provide a simple means to generate all vectors in a vector space or a subspace by forming
linear combinations from a finite list of vectors. The basis and the subspace can be essentially treated as one and the same object when
it comes to computations: we can manipulate a subspace in a computer by computing with its basis vectors! An under appreciated
aspect of a basis for a subspace V is that it defines a set of coordinates for V as illustrated in Figures 10.1, 10.2, and 10.4.
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Figure 10.4: This figure is an alternative representation of what we showed in Fig. 10.3, namely R3 with a two-dimensional subspace
(the gridded planar surface) V , this time with an orthogonal basis {u, v}. The natural basis {e1, e2, e3}, which gives the (x, y, x)
coordinates in R3, do not lie in V . Hence, expressing locations in V in terms of the “natural coordinates” from R3 is not very
natural at all! Because V = span{u, v}, it is much simpler, and more natural, to express points in V in terms of the basis vectors u
and v. Here, u and v were selected to be orthogonal, but that is not a requirement. Any pair of linearly independent vectors in V will
work, as illustrated in Figures 10.1 and 10.2.

Vector Space Coordinates and Vector Representation
Suppose that V is a k-dimensional subspace of Rn with basis {v1, v2, . . . , vk} or all of Rn itself (in which case, k = n). Then
each x ∈ V can be expressed (uniquely) as a linear combination of basis vectors

x = α1v1 + α2v2 + · · ·+ αkvk. (10.3)

Stacking the coefficients α1, α2, . . . , αk into a column vector yields

[x]{v1,...,vk} :=


α1

α2

...
αk

 , (10.4)

which is called the representation of x in the basis {v1, v2, . . . , vk}. The k-tuple

α := (α1, α2, . . . , αk) (10.5)

forms the coordinates of x associated to the basis {v1, v2, . . . , vk}.
Remark: We could just as easily written x = z1v1 + z2v2 + · · · + zkvk, and then denoted our coordinates on V as
z := (z1, z2, . . . , zk). When you think of the coefficients in the linear combination as being constants, then denoting them as
αk, ck or ak is rather common. If you are thinking of them as being variables, then denoting them as xk, yk, or zk is common.
There is not fixed convention.

Example 10.1 We consider the subspace of R3 defined by

V :=

x =

x1x2
x3

 ∈ R3 | x1 + x2 + x3 = 0

 .
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Show that v1 =

 1
0
−1

 , v2 =

 0
1
−1


is a basis for V and hence V is a two dimensional subspace of R3. In addition, show that

v :=

 3
−4
1

 ∈ V
and find its coordinates on V .

Solution: To show that {v1, v2} is a basis for V , we need that to check that

• {v1, v2} ⊂ V ,

• the set {v1, v2} is linearly independent, and

• span{v1, v2} = V .

We leave the reader to show the first two properties: that v1 and v2 are in V and they are linearly independent. The hard part is
showing the span property, namely, that all vectors in V can be written as a linear combination of v1 and v2. To do this, we note that

x =

x1x2
x3

 ∈ V ⇐⇒ x1 + x2 + x3 = 0 ⇐⇒ x3 = −(x1 + x2) ⇐⇒ x =

 x1
x2

−(x1 + x2)

 .
Taking x1 = 1 and x2 = 0 gives v1, while taking x1 = 0 and x2 = 1 gives v2.

We have

x =

x1x2
x3

 ∈ V ⇐⇒ x =

 x1
x2

−(x1 + x2)

 ⇐⇒ x = x1v1 + x2v2 ⇐⇒ x ∈ span{v1, v2}.

The dimension follows from the number of elements in the basis.

Now, we could just as easily have written

x =

x1x2
x3

 ∈ V ⇐⇒ x1 + x2 + x3 = 0 ⇐⇒ x2 = −(x1 + x3) ⇐⇒ x =

 x1
−(x1 + x3)

x3

 .
Then, taking x1 = 1 and x3 = −1 gives v1, while taking x1 = 0 and x3 = −1 gives v2.

To complete the problem, we first verify that v⊤ =
[
3 −4 1

]⊤
is in V because the sum of its components equals zero. Next,

we check that

v :=

 3
−4
1

 = 3v1 − 4v2

and hence its coordinates are (3,−4) in the basis {v1, v2}. ■

The point is that V is now rather simple to understand and manipulate as the set of linear combinations of v1 and v2. Moreover, we
can navigate within V by using the natural coordinates induced by our choice of basis vectors.

The same idea applies to Rn itself. We are used to thinking of coordinates (x1, x2, . . . , xn) corresponding to the vector (or point)

(x1, x2, . . . , xn)←→ x1e1 + x2e2 + · · ·+ xnen =


x1
x2
...

xn

 ,
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just as we did in (10.2). However, we are not obliged to use the natural basis vectors. We can in fact use any basis {v1, v2, . . . , vn}
for Rn and express a vector x in the new basis

(x1, x2, . . . , xn)←→ x1e1 + x2e2 + · · ·+ xnen = z1v1 + z2v2 + · · ·+ znvn ←→ (z1, z2, . . . , zn) .

Canonical or Natural Basis Vectors
Let n ≥ 1 and, as before, define ei := i-th column of the n× n identity matrix, In. Then

{e1, e2, . . . , en}

is a basis for the vector space Rn. Its elements ei are called both natural basis vectors and canonical basis vectors. The
frequency of usage of one name vs the other is about fifty-fifty!

Remark: Showing linear independence is identical to (10.1) and showing that the span is all of Rn is the same as in (10.2).

Columns of Matrices and Bases of Rn

We let A be an n× n matrix. The following statements are equivalent

(a) det(A) ̸= 0.

(b) The columns of A are linearly independent.

(c) The columns of A form a basis for Rn.

Remark: As a special case, we can take A = In, the columns of which give the canonical basis vectors.

Example 10.2 Determine if the vectors {v1, . . . , v5} form a basis for R5.

v1 =


1.0
2.0
0.0
0.0
2.0

 , v2 =


−1.0
0.0
0.0
1.0
1.0

 , v3 =


1.0
2.0
−2.0
0.0
2.0

 , v4 =


0.0
2.0
−2.0
0.0
0.0

 , v5 =


−1.0
2.0
0.0
0.0
2.0

 . (10.6)

Solution: We define

A =


1.0 −1.0 1.0 0.0 −1.0
2.0 0.0 2.0 2.0 2.0
0.0 0.0 −2.0 −2.0 0.0
0.0 1.0 0.0 0.0 0.0
2.0 1.0 2.0 0.0 2.0


5×5

. (10.7)

In Julia, we compute det(A) = 16.0 and hence the set of vectors {v1, . . . , v5} does form a basis for R5.
■

Example 10.3 Compute a QR Factorization of A in (10.7) and relate the vectors in (10.6), that is, the columns of A, to the matrices
Q and R.

Solution: We apply the Gram-Schmidt Process with Normalization to {v1, . . . , v5}, the columns of A, and obtain

Q =


0.3333 −0.6537 0.0000 −0.4193 −0.5345
0.6667 −0.1307 0.0000 0.7338 0.0000
0.0000 0.0000 −1.0000 0.0000 0.0000
0.0000 0.5883 0.0000 0.1048 −0.8018
0.6667 0.4576 0.0000 −0.5241 0.2673

 , R =


3.0000 0.3333 3.0000 1.3333 2.3333
0.0000 1.6997 0.0000 −0.2615 1.3074
0.0000 0.0000 2.0000 2.0000 0.0000
0.0000 0.0000 0.0000 1.4676 0.8386
0.0000 −0.0000 0.0000 0.0000 1.0690

 .
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By construction, the columns of Q form an orthonormal basis for span{v1, . . . , v5} =: col span{A}. Indeed, we let {q1, . . . , q5}
denote the columns of Q and then verify that

v1 = 3q1, v2 = 0.33q1 + 1.7q2, v3 = 3q1 + 3q3, v4 = 1.33q1 − 0.26q2 + 2.0q3 + 1.47q4, v5 = 2.22q1 + 1.31q2 + 0.84q4 + 1.07q5,

confirming what we know from Gram-Schmidt, namely that

span{v1, . . . , v5} = span{q1, . . . , q5}.

■

(Optional Read): Proof the Facts (a) ⇐⇒ (b) ⇐⇒ (c) for Columns of Matrices and Bases of Rn.

(a) ⇐⇒ (b). We denote the columns of A by {v1 = acol1 , v2 = acol2 , . . . , vn = acoln }. The columns of A are linearly independent if,
and only if, the unique solution to

α1a
col
1 + α2a

col
2 + · · ·+ αna

col
n = 0n×1 (10.8)

is the trivial solution, α1 = 0, α2 = 0, . . . , αn = 0. But this is equivalent to

[
acol1 acol2 acoln

]︸ ︷︷ ︸
A


α1

α2

...
αn


︸ ︷︷ ︸

α

= 0n×1

⇕
Aα = 0n×1

When A is square, we know that det(A) ̸= 0 if, and only if, the unique solution to Aα = 0 is the trivial solution α = 0n×1

(b) ⇐⇒ (c). The direction (c) =⇒ (b) is trivial, hence we only need to show that (b) =⇒ (c) To do so, we assume that A is
n× n and its columns are linearly independent, and must show that they span Rn, that is, we must show that

span{v1, v2, . . . , vn} = Rn.

Well, spans are simply linear combinations, so the question becomes, can every vector in b ∈ Rn be written as a linear combination
of the columns of A? Because the dimension of Rn equals n, we know that the set

{b, v1, v2, . . . , vn}

is linearly dependent. Hence, there there exist coefficients α0, . . . , αn not all zero such that

α0b+ α1v1 + α2v2 + · · ·αnvn = 0.

We observe that if α0 ̸= 0, because if it were zero, then

α1v1 + α2v2 + · · ·αnvn = 0,

which is not possible because {v1, v2, . . . , vn} is linearly independent. Hence, we have that

b = −α1

α0
v1 −

α2

α0
v2 − · · · −

αn

α0
vn,

proving that b ∈ span{v1, v2, . . . , vn}. ■

10.3 Eigenvalues and Eigenvectors
For a first introduction to eigenvalues and eigenvectors, this video by 3Blue1Brown is quite good1: https://www.youtube.
com/watch?v=PFDu9oVAE-g. Here, we provide a cursory introduction to the topic, hitting only some of the highlights. A more

1In the video, when they talk about î, they mean our natural basis vector e1, and when they say ĵ, they mean our natural basis vector e2
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thorough treatment is given in Appendices A.1.5 and A.2.

What does “eigen” even mean? From Quora, “eigen” is a German word that in English means “own”, “unique to”, “peculiar to”, or
“characteristic of” the originating matrix. Your author likens it to the English word self. A non-zero vector v ∈ Rn such that when
you multiply it by an n×n matrix you basically get the vector itself back, is called an eigenvector, or a self-vector. Exactly the same
vector back? No, but almost! An eigenvector v satisfies Av = λv, with λ being a scalar called the eigenvalue, or self-value. The
exactly true “itself” part is that whenever λ ̸= 0

span{Av} = span{v}.
It’s kind of amazing to contemplate: an n× n matrix has n2 entries so how is it even possible that there are non-zero n× 1-vectors
such that Av = λv, without A being something trivial like a constant times an identity matrix?

In fact, when we multiply a matrix times a vector, we expect the terms to get all jumbled up. For example, we know that a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

 =

 a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3
a31x1 + a32x2 + a33x3

 ,
and thus it is very hard to imagine that we could have a11 a12 a13

a21 a22 a23
a31 a32 a33

 x1
x2
x3

 = λ

 x1
x2
x3


for some “magical values” of x1, x2 and x3.

(a) (b)

Figure 10.5: Matrices tend to both rotate and scale vectors, and at firt blush, the amount of rotation and scaling is seemingly hard
to predict. (a) Shows a set of eight vectors vi ∈ R2, with each vector having length one. We’ve also plotted the negative of each
vector so that you can more easily visualize their span as one-dimensional subspaces in R2. (b) Shows the vectors Avi for a 2 × 2
matrix A given in Example 10.4. If you look carefully, you will see that vectors {v1, v7} are not rotated by A; they are only scaled.
Indeed Av1 = 1.4v1 and Av7 = 0.7v7. The remaining vectors {v2, v3, v4, v5, v6, v8} are both rotated and scaled. Non-zero vectors
that satisfy Av = λv are called eigenvectors of A and λ is called an eigenvalue. Comparing Figures (a) and (b), we observe that
span{Av1} = span{v2} and span{Av7} = span{v7}.

Example 10.4 For the matrix A :=

[
1.0643 0.8795
0.1509 1.0643

]
and the vectors {v1, v2, . . . , v8} plotted in Fig. 10.5, compute Avi and

check if you can find a real constant λi such that Avi = λivi.

Solution: We first give the vectors and immediately below them, their multiplication by A.[
0.9239
0.3827

]
︸ ︷︷ ︸

v1

,

[
0.7071
0.7071

]
︸ ︷︷ ︸

v2

,

[
0.3827
0.9239

]
︸ ︷︷ ︸

v3

,

[
0.0000
1.0000

]
︸ ︷︷ ︸

v4

,

[
−0.3827
0.9239

]
︸ ︷︷ ︸

v5

,

[
−0.7071
0.7071

]
︸ ︷︷ ︸

v6

,

[
−0.9239
0.3827

]
︸ ︷︷ ︸

v7

,

[
−1.0000
0.0000

]
︸ ︷︷ ︸

v8

(10.9)
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[
1.3198
0.5467

]
︸ ︷︷ ︸

Av1

,

[
1.3744
0.8593

]
︸ ︷︷ ︸

Av2

,

[
1.2198
1.0410

]
︸ ︷︷ ︸

Av3

,

[
0.8795
1.0643

]
︸ ︷︷ ︸

Av4

,

[
0.4052
0.9255

]
︸ ︷︷ ︸

Av5

,

[
−0.1307
0.6459

]
︸ ︷︷ ︸

Av6

,

[
−0.6467
0.2679

]
︸ ︷︷ ︸

Av7

,

[
−1.0643
−0.1509

]
︸ ︷︷ ︸

Av8

(10.10)

For there to exist λ1 such that Av1 = λ1v1, we know from the first rows of v1 and Av1 that their ratio is 1.3198/0.9239 ≈ 1.4; we
further check that the same ratio holds for the second components, and hence Av1 = 1.4v1. We’ll leave it to the reader to apply the
same method on the remaining vectors and verify that Av7 = 0.7v7, while none of the other vectors satisfies Avi = λivi for some
scalar λi. ■

Example 10.5 Multiply the matrix

A :=

 −8.0 10.0 10.0
−2.0 5.0 2.0
−10.0 9.0 12.0

 (10.11)

times each of the vectors {v1, v2, v3}, where

v1 =

 1.0
0.0
1.0

 , v2 =

 0.0
−1.0
1.0

 , and v3 =

 5.0
2.0
4.0

 . (10.12)

Solution: It’s more impressive if you do the required multiplications by hand, but turning to Julia we obtain

Av1 =

 2.0
0.0
2.0

 = 2v1, Av2 =

 0.0
−3.0
3.0

 = 3v2, and Av3 =

 20.0
8.0
16.0

 = 4v3. (10.13)

Hence, when A acts on this set of vectors, all it does is scale the vector by a factor of 2, 3 or 4, respectively. There is no “rotation” of
the vector. That seems kind of magical. ■

Eigen Stuff: Temporary Definitions
LetA be an n×nmatrix with real coefficients. A scalar λ ∈ R is an eigenvalue ofA, if there exists a non-zero vector v ∈ Rn

such that Av = λv. Any such vector v is called an eigenvector associated with λ. We note that if v is an eigenvector, then so
is αv for any α ̸= 0, and therefore, eigenvectors are not unique. The true definition is given in Appendix A.2.

To find eigenvalues, we need to have conditions under which there exists v ∈ Rn, v ̸= 0, such that Av = λv. We first note that

Av = λv ⇐⇒ λv −Av = 0n×1 ⇐⇒ λIv −Av = 0n×1 ⇐⇒ (λI −A)v = 0n×1.

We then note that there exists v ̸= 0n×1 such that (λI −A)v = 0n×1 if, and only if

det(λI −A) = 0.

Example 10.6 Let A be the 2× 2 real matrix A =

[
1 2
3 2

]
. Determine, if any, its eigenvalues and eigenvectors.

Solution: To find eigenvalues, we need to solve

det(λI −A) =
∣∣∣∣ λ− 1 −2
−3 λ− 2

∣∣∣∣ = (λ− 1)(λ− 2)− 6 = λ2 − 3λ− 4 = 0.

We compute the discriminant of this quadratic equation and we find

b2 − 4ac = 9 + 16 = 25 > 0,

and therefore there are two real solutions. We compute them with the quadratic formula to be λ1 = −1 and λ2 = 4.
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To determine an eigenvector associated with λ1 = −1, we need to find v1 ∈ R2 such that

(A− λ1I2)v1 = 02×1

⇕([
1 2
3 2

]
− (−1)

[
1 0
0 1

])[
v1a
v1b

]
=

[
0
0

]
⇕[

2 2
3 3

] [
v1a
v1b

]
=

[
0
0

]
⇕[

v1a
v1b

]
= α1

[
1
−1

]
, α1 ̸= 0.

Similarly, to determine an eigenvector associated with λ2 = 4, we need to find v2 ∈ R2 such that

(A− λ2I2)v2 = 02×1

⇕([
1 2
3 2

]
− (4)

[
1 0
0 1

])[
v2a
v2b

]
=

[
0
0

]
⇕[

−3 2
3 −2

] [
v2a
v2b

]
=

[
0
0

]
⇕[

v2a
v2b

]
= α2

[
2
3

]
, α2 ̸= 0.

■

Finding Eigenvectors and Eigenvalues with Julia
Beyond 2× 2 matrices, we do not compute eigenvalues or eigenvectors by hand! In ROB 101, we use Julia!

1 Random.seed!(876543212345678);
2 B=randn(4,4)
3 A=B’*B # symmetric matrices have real eigenvalues
4

5 E=eigen(A)
6 @show E.values
7 E.vectors

Output

E.values = [0.06287200462929299, 0.6813033999332612, 2.9738855645273268, 4.4839915456638]

4 x 4 Matrix{Float64}:
0.339074 0.0385456 -0.71411 -0.61122
0.551488 0.528452 -0.226828 0.604275

-0.191731 0.824533 0.318536 -0.426521
0.737651 -0.19849 0.58063 -0.281676

Example 10.7 Let A be the 2 × 2 real matrix A =

[
0 1
−1 0

]
. Using our temporary definition, determine, if any, its eigenvalues

and eigenvectors.
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Solution: To find eigenvalues, we need to solve

det(λI −A) =
∣∣∣∣ λ −1
1 λ

∣∣∣∣ = λ2 + 1 = 0.

We compute the discriminant of this quadratic equation and we find

b2 − 4ac = −4 < 0,

and therefore there are no real solutions. Hence, by our temporary definition, this 2 × 2 real matrix does not have any eigenvalues,
and hence, neither does it have any eigenvectors.
■

Full Story on Eigenstuff
The correct definition of eigenvalues and eigenvectors requires complex numbers. Example 10.7 shows that if we allow
eigenvalues to be complex numbers, then we’ll have two eigenvalues corresponding to the two complex solutions of the
quadratic equation λ2 + 1 = 0, namely, λ1 = i and λ2 = −i. As illustrated in Example 10.8, when seeking solutions to
(A− λi)vi = 0, you’ll find that you need to allow the eigenvectors to have complex entries as well.

The full and correct treatment of eigenstuff is given in Appendices A.1.5 and A.2. Here, we are giving you a simplified
treatment.

Example 10.8 (Optional Read:) LetA be the 2×2 real matrix that we treated in Example 10.7, namely,A =

[
0 1
−1 0

]
.Determine

its eigenvalues and eigenvectors in the sense of Appendix A.2.

Solution: As in Example 10.7, to find eigenvalues, we solve

det(λI −A) =
∣∣∣∣ λ −1
1 λ

∣∣∣∣ = λ2 + 1 = 0.

We apply the quadratic equation and determine λ1 = i and λ2 = −i. To find the eigenvectors, we solve

(A− λiI)vi = 0.

The eigenvectors are

v1 =

[
1
i

]
, v2 =

[
1
−i

]
.

Note that the eigenvalues and eigenvectors each form complex conjugate pairs. Indeed,

λ2 = λ∗1 and v2 = v∗1 .

■

When the Eigenvalues are Real and Distinct, the Eigenvectors form a Basis of Rn

Let A be an n× n matrix with real coefficients. If the eigenvalues {λ1, . . . , λn} are real and distinct, that is, λi ̸= λj for all
1 ≤ i ̸= j ≤ n, then the eigenvectors {v1, . . . , vn} are real and provide a basis of Rn.

Once again, the full story is given in Appendices A.1.5 and A.2. An interesting tidbit is that symmetric matrices always have
real eigenvalues. Moreover, their eigenvectors can always be selected to form an orthogonal matrix; see Appendix A.2.2.
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Example 10.9 Using Julia, find the eigenvalues and eigenvectors of the 3× 3 (symmetric) matrix below. Furthermore, determine if
the eigenvectors form a basis of R3.

A :=

 2.2216 1.6798 −0.2670
1.6798 0.8457 −0.1651
−0.2670 −0.1651 0.6391

 . (10.14)

Solution:

1 E=eigen(A)
2 E.values
3 E.vectors
4 det(E.vectors)

Using Julia, we compute that

[
λ1 λ3 λ3

]
=
[
−0.2817 0.6034 3.3848

]
and

[
v1 v3 v3

]
=

 0.5581 0.0870 −0.8252
−0.8297 0.0741 −0.5533
0.0131 0.9934 0.1135

 . (10.15)

Because the eigenvalues are distinct, we know that set {v1, v2, v3} forms a basis of R3. To double check this, we determine that
det(E.vectors) = 1 ̸= 0 so that indeed, the eigenvectors are linearly independent and hence form a basis. ■

Utility of Eigenvalues and Eigenvectors: They Explain how a Square Matrix acts
on a Vector
Let A be an n × n real matrix with real eigenvalues {λ1, . . . , λn} that are distinct, that is, λi ̸= λj for all 1 ≤ i ̸= j ≤ n.
It then follows that the eigenvectors {v1, . . . , vn} provide a basis for Rn. Let x ∈ Rn be arbitrary and write it as a linear
combination of the basis of eigenvectors

x = α1v1 + α2v2 + · · ·+ αnvn. (10.16)

Then because Avi = λivi,
Ax = α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn. (10.17)

If we apply A to both sides of (10.17), we obtain

A2x = α1λ1Av1 + α2λ2Av2 + · · ·+ αnλnAvn

= α1(λ1)
2v1 + α2(λ2)

2v2 + · · ·+ αn(λn)
2vn,

(10.18)

where A2 := A ·A and we have used again, Avi = λiv. Moreover, using this fact iteratively yields that, for all k ≥ 2,

Akx = α1(λ1)
kv1 + α2(λ2)

kv2 + · · ·+ αn(λn)
kvn. (10.19)

Remarks:

• Equation (10.19) for k = 1 says that if we write a vector x in the coordinates provided by the “eigen-basis” of a matrix, then
how the matrix acts on the vector is very transparent: it simply scales each component by the corresponding eigenvalue. When
a matrix has real eigenvalues, what we perceive as the matrix “rotating a vector” in the natural basis vectors {e1, e2, . . . , en}
is an illusion; what is really happening is that the matrix is expanding, contracting, or leaving the same length individual
components of the vector along various directions determined by the matrix’s eigenvectors.

• The above property is exploited heavily in the design of feedback control systems.

• Equation (10.19) explains the phenomenon in Fig. 10.6, because
|λi| < 1 ⇐⇒ limk→∞ ||(λi)kvi|| = limk→∞ |λi|k||vi|| = 0

|λi| > 1 ⇐⇒ limk→∞ ||(λi)kvi|| = limk→∞ |λi|k||vi|| =∞
|λi| = 1 ⇐⇒ ||(λi)kvi|| = |λi|k||vi|| = ||vi||, k ≥ 0
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(a) (b)

(c) (d)

Figure 10.6: The data for this figure come from Example 10.4. The matrix A is 2 × 2 and has real eigenvalues and eigenvectors
that satisfy Av1 = 1.4v1 and Av2 = 0.7v2. A is “expanding” in the direction v1 and “contracting” in the direction v2. (a) Shows
a uniform distribution of points, with the two eigenvectors highlighted in red. (b) For each point x in the grid of (a), (b) shows it’s
image Ax. The circle is being squished into an ellipse under the action of A. This phenomenon is accentuated in (c), which shows
A3x, and even more so in (d), which shows A5x. If we looked at Anx as n → ∞, all of the points would lie on the “expanding”
eigenvector, v1.

• For the matrix in Example 10.4, we see that the component of a vector x along the eigenvector v2 is “squished” (contracted)
by the matrix because λ2 = 0.7, while its component along the eigenvector v1 gets “spread out” (expanded) because λ1 = 1.4.

• If the sign of an eigenvalue were negative, then the matrix would also “flip the direction” of a vector’s component along a
corresponding eigenvector, in addition to possibly expanding or contracting it.

Example 10.10 Michael Penn poses this problem on YouTube https://youtu.be/EBdEMIJK6aY with the title
“Just an average recursion...OR IS IT?" Consider a sequence of real numbers defined by

an+2 =
an+1 + an

2
(10.20)

with a0 = α and a1 = β. What is the limit of the sequence as n tends to infinity? That is, what is

L := lim
n→∞

an? (10.21)

Your gut reaction is probably L = α+β
2 , because each term in the sequence is taking the average or mean of the preceding two terms.

Is that really the answer?
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Solution: It turns out this problem can be analyzed very simply with eigenvalues and eigenvectors! What, you didn’t see that coming?
We’ll set it up as a vector recursion problem. To do that, we define

xn :=

[
an−1

an

]
(10.22)

and we note that

xn+1 =

[
an
an+1

]
=

[
an

an+an−1

2

]
=

[
0 1
1
2

1
2

] [
an−1

an

]
=

[
0 1
1
2

1
2

]
xn.

In other words,

xn+1 =

[
0 1
1
2

1
2

]
︸ ︷︷ ︸

A

xn. (10.23)

Either by hand or using Julia, we compute that the eigenvalues of A are λ1 = 1 and λ2 = − 1
2 with eigenvectors

v1 =

[
1
1

]
and v2 =

[
2
−1

]
.

We express our initial condition for (10.23) as a linear combination of the eigenvectors v1 and v2,

x1 =

[
a0
a1

]
=

[
α
β

]
=
α+ 2β

3
v1 +

α− β
3

v2 (10.24)

so that we can apply (10.19). We obtain that

xn+1 = Anx1

=
α+ 2β

3
(λ1)

nv1 +
α− β
3

(λ2)
nv2

=
α+ 2β

3
(1)n︸︷︷︸
(λ1)n

[
1
1

]
︸ ︷︷ ︸

v1

+
α− β
3

(−1)n

2n︸ ︷︷ ︸
(λ2)n

[
2
−1

]
︸ ︷︷ ︸

v2

.

(10.25)

Because (1)n = 1 and limn→∞
(−1)n

2n = 0, we have that

lim
n→∞

xn =
α+ 2β

3

[
1
1

]
and hence

lim
n→∞

an =
α+ 2β

3
,

which is not equal to α+β
2 ! We now understand Michael Penn’s title was a pun, “Just an average recursion or IS IT” NOT!

■

10.4 Range, Column Span, and Null Space

A Function View of a Matrix Defines two Subspaces: its Null Space and its Range
Let A be an n×m matrix. We can then define a function f : Rm → Rn by, for each x ∈ Rm

f(x) := Ax ∈ Rn. (10.26)

The following subsets are naturally motivated by the function view of a matrix.

Definition:

(a) null(A) := {x ∈ Rm | Ax = 0n×1} is the null space of A.

(b) range(A) := {y ∈ Rn | y = Ax for some x ∈ Rm} is the range of A.

In Example 10.15, we show that the null space and range of a matrix are in fact subspaces.
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Example 10.11 Find the null spaces of

A1 =

[
1 0 0
0 −1 1

]
and A2 =

 1 2 3
0 1 2
0 0 1

 .
Solution:

A1x = 0 ⇐⇒
[

1 0 0
0 −1 1

] x1
x2
x3

 = 0 ⇐⇒
[

x1
−x2 + x3

]
=

[
0
0

]
⇐⇒ x =

 0
α
α

 , for α ∈ R.

Hence,

null(A1) =

α
 0

1
1

 ∣∣∣ α ∈ R

 .

For the second matrix,

A2x = 0 ⇐⇒

 1 2 3
0 1 2
0 0 1

 x1
x2
x3

 =

 0
0
0

 ⇐⇒
 x1
x2
x3

 =

 0
0
0

 .
Hence,

null(A2) =


 0

0
0

 .

In passing, we note that

null(A1) = span{

 0
1
1

},
and hence is a one-dimensional subspace, and that null(A2) = {03×1}, which is a zero-dimensional subspace. ■

Example 10.12 Find the ranges of

A3 =

[
1 0 0
0 −1 1

]
and A4 =

 1 2 3
0 0 2
0 0 1

 .
Solution: We note that A3 is 2× 3 and A4 is 3× 3. Hence,

range(A3) =
{
A3x | x ∈ R3

}
=


[

1 0 0
0 −1 1

] x1
x2
x3

 ∣∣∣
 x1
x2
x3

 ∈ R3


=


[

1 0 0
0 −1 1

] α1

α2

α3

 ∣∣∣ α1, α2, α3 ∈ R


=

{
α1

[
1
0

]
+ α2

[
0
−1

]
+ α3

[
0
1

] ∣∣∣ α1, α2, α3 ∈ R

}
=

{
α1

[
1
0

]
+ α2

[
0
−1

] ∣∣∣ α1, α2 ∈ R

}
,
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where the third column of A3 was eliminated because it is linearly dependent on the first two columns; in fact, it is the negative of
the second column.

range(A4) =
{
A4x | x ∈ R3

}
=


 1 2 3

0 0 2
0 0 1

 x1
x2
x3

 ∣∣∣
 x1
x2
x3

 ∈ R3


=


 1 2 3

0 0 2
0 0 1

 α1

α2

α3

 ∣∣∣ α1, α2, α3 ∈ R


=

α1

 1
0
0

+ α2

 2
0
0

+ α3

 3
2
1

 ∣∣∣ α1, α2, α3 ∈ R


=

α1

 1
0
0

+ α3

 3
2
1

 ∣∣∣ α1, α3 ∈ R

 ,

where the second column was eliminated because it is dependent on the first column (in fact, it is twice the first column).

We note that

range(A3) = span{
[

1
0

]
,

[
0
−1

]
} and range(A4) = span{

 1
0
0

 ,
 3

2
1

},
which are both two-dimensional subspaces. ■

Null Space of A Consists of Vectors Orthogonal to the Rows of A

Let A be an n×m matrix so that its rows are m-vectors.

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 =:


arow1

arow2
...

arown

 ,
with (arowi )

⊤ ∈ Rm for 1 ≤ i ≤ n. Then

x ∈ null(A) ⇐⇒ A · x = 0 ⇐⇒ x ⊥ (arowi )
⊤
, 1 ≤ i ≤ n ⇐⇒ x • (arowi )

⊤
= 0, 1 ≤ i ≤ n.

Remark: The above fact means we can use Gram-Schmidt to compute the null space of a matrix!

Remark: Note that A · x =


arow1

arow2
...

arown

 · x =

For an n×m matrix A, we seek a basis for Rm where the last part of the basis is orthogonal to {(arow1 )
⊤
, (arow2 )

⊤
, . . . , a (rown )

⊤}.
To do this, we apply Gram-Schmidt to

{(arow1 )
⊤
, (arow2 )

⊤
, . . . , (arown )

⊤
, e1, . . . , em}, (10.27)

where {e1, . . . , em} are the canonical basis vectors for Rm. Why does this work? The set of vectors in (10.27) span all of Rm,
because

span{(arow1 )
⊤
, (arow2 )

⊤
, . . . , (arown )

⊤
, e1, . . . , em} ⊃ span{e1, . . . , em} = Rm.
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When we apply Gram-Schmidt working from left to right, we’ll build an orthogonal (or orthonormal, it’s our choice) basis for
span{(arow1 )

⊤
, (arow2 )

⊤
, . . . , (arown )

⊤}, and then complete it with a set of vectors that are orthogonal to these vectors. These last
vectors will be an orthogonal (or orthonormal, it’s our choice) basis for the null space of A. Here is the idea implemented in code.

1 function NullSpace(A)
2 n,m=size(A)
3 myI=zeros(m,m)+I
4 M=[copy(A’) myI]
5 V=Array{Float64,2}(undef,m,0)
6 epsilon=1e-8
7 i=0
8 # Build an orthonormal basis for the column span of transpose(A)
9 # It is not assumed that the columns are linearly independent in R^m

10 for k = 1:n
11 vi=M[:,k]
12 for j=1:i
13 vi= vi-(vi’*V[:,j])*V[:,j]
14 end
15 norm_vi=sqrt(vi’*vi)
16 if norm_vi > epsilon
17 V=[V vi/norm_vi]
18 i=i+1
19 end
20 end
21 dimColSpan=i
22 # Now, we complete the above basis for the column span to a basis for all of R^m.
23 # Gram-Schmidt will make sure that these extra vectors are orthonormal to
24 # the column span of transpose(A), and hence they form a basis for null space of A
25 for k = n+1:n+m
26 vi=M[:,k]
27 for j=1:i
28 vi= vi-(vi’*V[:,j])*V[:,j]
29 end
30 norm_vi=sqrt(vi’*vi)
31 if norm_vi > epsilon
32 V=[V vi/norm_vi]
33 i=i+1
34 end
35 end
36 # We could easily have combined the two for loops, but we separated them so we could
37 # explain what is being done at each part of the computations
38 dimNullSpace=m-dimColSpan
39 if dimNullSpace > 0
40 nullSpace=V[:,(dimColSpan+1):i]
41 else
42 nullSpace=0.0*myI[:,1]
43 end
44 return nullSpace, dimColSpan, dimNullSpace, V
45 end
46

Example 10.13 Use Gram-Schmidt to compute the null spaces of the matrices in Example 10.11.
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Solution: The algorithm returns

null(A1) = span{

 0.0000
0.7071
0.7071

} and null(A2) = span{

 0.0000
0.0000
0.0000

},
which we can compare to the solutions in Example 10.11. ■

Example 10.14 Find the null space of the 6× 5 matrix

A :=


1.0857 −0.8998 −0.0514 −2.3708 0.6346
−1.2072 −0.5681 0.7294 0.5572 1.0732
0.2926 0.0825 0.8810 −0.1519 1.1934
0.6916 −0.1154 0.3295 −0.8731 0.6363
−0.8576 1.2444 0.4510 2.6148 −0.2469
−0.3632 −0.1200 −1.0146 0.1691 −1.3654

 (10.28)

as well as an orthonormal basis for R5.

Solution: We apply our Julia function NullSpace(A) and compute that an orthonormal basis for R5 is given by the columns of
the matrix

V =


0.3835 −0.5382 0.5258 0.5356 0.0000
−0.3178 −0.3922 0.5123 −0.6693 0.1867
−0.0182 0.3847 0.4783 −0.0700 −0.7861
−0.8375 0.0643 0.1579 0.5092 0.1016
0.2242 0.6360 0.4555 0.0314 0.5804

 .
Our function conveniently returns the dimension of (A) = 2, from which we know that the last two columns of V are a basis for the
null space of A. Just to drive home the point, we compute

A · V =


2.8310 0.0000 0.0000 0.0000 0.0000
−0.5217 1.8714 −0.0000 −0.0000 −0.0000
0.4647 0.8983 1.1371 0.0000 0.0000
1.1698 0.1484 0.6141 0.0000 0.0000
−2.9777 0.1581 0.7027 −0.0000 −0.0000
−0.5305 −1.0053 −1.3329 −0.0000 −0.0000

 ,

from which we confirm that the last two columns of V form a basis for the null space of A,

null(A) = col span{


0.5356 0.0000
−0.6693 0.1867
−0.0700 −0.7861
0.5092 0.1016
0.0314 0.5804

} =: span{v1, v2}.

Chapter 10.5 provides more information on the relation of dimnull(A) and the number of columns of A. In particular, it defines the
terms rank and nullity, which allow one to deduce that the first three columns of V form an orthonormal basis for the column
span of A⊤, while the last two provide an orthonormal basis for the null space of A. ■

Remark: We note that

Av1 = 0.535


1.0857
−1.2072
0.2926
0.6916
−0.8576
−0.3632

−0.669

−0.8998
−0.5681
0.0825
−0.1154
1.2444
−0.1200

−0.070

−0.0514
0.7294
0.8810
0.3295
0.4510
−1.0146

+0.509


−2.3708
0.5572
−0.1519
−0.8731
2.6148
0.1691

+0.031


0.6346
1.0732
1.1934
0.6363
−0.2469
−1.3654

 =


0.0
0.0
0.0
0.0
0.0
0.0

 ,
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showing that vectors in the null space provide linear combinations of the columns that add up to the zero vector.

Range of A Equals Column Span of A
Let A be an n×m matrix so that its columns are vectors in Rn,

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 =:
[
acol1 acol2 . . . acolm

]

Then
range(A) := {Ax | x ∈ Rm} = span{acol1 , acol2 , . . . , acolm } =: col span{A}.

Remark: {Ax | x ∈ Rm} = {x1acol1 + x2a
col
2 + · · ·+ xma

col
m | (x1, x2, . . . , xm) ∈ Rm} =: col span{A}

Example 10.15 Show that both the null space and range of an n×m matrix A are subspaces.

Solution: (a) We suppose that v1 and v2 are in null(A). Hence, Av1 = 0 andAv2 = 0.We form a linear combination α1v1+α2v2 ∈
Rn and check if it is also in null(A). For the linear combination to be in null(A), we must have that A multiplying α1v1 + α2v2
yields zero. So we check

A(α1v1 + α2v2) = α1Av1 + α2Av2 = 0 + 0 = 0.

Hence, null(A) is closed under linear combinations and it is therefore a subspace.

(b) We suppose that v1 and v2 are in range(A). Hence, there exists u1 and u2 such that Au1 = v1 and Au2 = v2. We form a linear
combination α1v1 + α2v2 ∈ Rn and check if it is also in range(A). For the linear combination to be in range(A), we must produce
a u ∈ Rm such that Au = α1v1 + α2v2. We propose u = α1u1 + α2u2 and check that

Au = A(α1u1 + α2u2) = α1Au1 + α2Av2 = α1v1 + α2v2,

and hence α1v1 + α2v2 ∈ range(A). Because it is closed under linear combinations, range(A) is therefore a subspace. ■

Relation of Null Space and Range to Solutions of Linear Equations
Suppose that A is n×m. Here are the key relations between solutions of Ax = b and the null space and range of A.

(a) Ax = b has a solution if, and only if, b ∈ range(A).

(b) If Ax = b has a solution, then it is unique if, and only if, null(A) = {0m×1}.

(c) Suppose that x is a solution of Ax = b, so that Ax = b. Then the set of all solutions is

{x ∈ Rm | Ax = b} = x+ null(A) := {x ∈ Rm | x = x+ η, η ∈ null(A)}.

(d) Ax = b has a unique solution if, and only if b ∈ range(A) and null(A) = {0m×1}.

(e) When b = 0n×1, then it is always true that b ∈ range(A). Hence we deduce that Ax = 0n×1 has a unique solution if,
and only if, null(A) = {0m×1}.

In the following, we sketch the steps that prove why the above statements are true.
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• Recall that range(A) := {y ∈ Rn | y = Ax for some x ∈ Rm}. If we simply rename y ∈ Rn by b ∈ Rn, we have that

range(A) := {y ∈ Rn | y = Ax for some x ∈ Rm}
= {b ∈ Rn | b = Ax for some x ∈ Rm}
= {b ∈ Rn | Ax = b for some x ∈ Rm}
= {b ∈ Rn | Ax = b has a solution}.

Hence, Ax = b has a solution if, and only if, b ∈ range(A).

• Suppose that x is a solution of Ax = b, that is, Ax = b, and let η ∈ null(A). Is x = x+ η also a solution?

Ax = A(x+ η) = Ax︸︷︷︸
b

+ Aη︸︷︷︸
0n×1

= b.

• Does this tell us how to generate all solutions to Ax = b? In fact, yes! If x and x are any two solutions of the system of
equations, then A(x− x) = Ax− Ax = b− b = 0n×1, and thus x− x ∈ null(A) Hence, once we know any one solution to
Ax = b and we know null(A), we can generate all solutions of Ax = b.

• Moreover, if Ax = b has a solution, then it is unique if, and only if, null(A) = {0m×1}, the zero vector in Rm.

10.5 Rank and Nullity
When we think about the columns of a matrix, it seems pretty clear that the sum of the number of linearly independent vectors and
the number of linearly dependent vectors has to equal the number of columns in the matrix. When you first learn about null space
and range (or column span) of a matrix, it may not be clear at all that their dimensions are related. We will now show that for an
arbitrary n×m matrix A, the number of linearly dependent columns of A is equal to dimnull(A). On the one hand, this is kind of
remarkable because the columns of A are vectors in Rn, while vectors in the null space of A are in Rm, which are different vector
spaces. On the other hand, if the columns of A are (all) linearly independent, then the unique solution to Ax = 0 is the zero vectors,
which means that null(A) = {0m×1}, so yeah, there is some connection here!

Definition of Rank and Nullity

For an n×m matrix A,

Def. rank(A) := dim range(A).

Def. nullity(A) := dimnull(A).

Remark: If a system of equations Ax = b has a solution, x̄, then A(x̄ + η) = b for all η ∈ nullA. Hence, nullity(A) is
measuring the “dimension” of the set of solutions. Because range(A) ⊂ Rn, we see that rank(A) ≤ n.

Useful Properties of Rank and Nullity

For an n×m matrix A, the following all hold:

Fact rank(A) + nullity(A) = m, the number of columns in A.

Fact rank(A⊤ ·A) = rank(A).

Fact rank(A⊤) = rank(A).

Fact nullity(A⊤ ·A) = nullity(A).

Fact nullity(A⊤) +m = nullity(A) + n.

Fact For any m× k matrix B, rank(A ·B) ≤ rank(A).

Fact For any p× n matrix C, rank(C ·A) ≤ rank(A).
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Rank-Nullity Theorem
For an n×m matrix A, the property

rank(A) + nullity(A) = m number of columns of A,

is so important that it has a name of its own: the Rank-Nullity Theorem. Since rank(A) is equal to the number of linearly
independent columns of A, it follows that nullity(A) is counting the number of linearly dependent columns of A. If all of
the columns of A are linearly independent, then none are dependent, and hence null(A) = {0m×1}.

Example 10.16 Verify the Rank-Nullity Theorem for the matrices of Example 10.12, namely

A3 =

[
1 0 0
0 −1 1

]
2×3

and A4 =

 1 2 3
0 0 2
0 0 1


3×3

.

Solution: From Example 10.12, we have that rank(A3) = 2 and rank(A4) = 2. From Example 10.11, nullity(A3) = 1 and thus
2 + 1 = 3, the number of columns of A3. A quick calculation gives that

null(A4) = span{

 2
−1
0

}.
Hence, nullity(A4) = 1 and 2 + 1 = 3, the number of columns of A4.

■

10.6 Finding a Basis for the Null Space without Using Orthogonality
In Chapter 10.4, we characterized the null space of a matrix through the lens of the Gram-Schmidt Algorithm. Specifically, a vector
x ∈ null(A) ⇐⇒ x ⊥ col span{A⊤}. The link with the Gram-Schmidt Algorithm is that it allows us to compute vectors that are
orthogonal to the columns of A⊤. This is developed extensively in Chapter 8 of the Lab Manual.

Here we’ll take a different approach. Our hope is that seeing things from multiple perspectives will advance your understanding. You
may find it helpful to look back at Example 9.9, where we carried out the process given below on a concrete example.

Suppose that A is an n×m matrix and we partition its columns as

A =
[
acol1 · · · acolr acolr+1 · · · acolm

]
, (10.29)

where the first r columns are linearly independent and the last m − r columns are linearly dependent on the first r columns. In the
language of this Chapter, we have

• {acol1 , . . . , acolr } is a basis for col span{A} := span{acol1 , . . . , acolr , acolr+1, . . . , a
col
m } and we recall that range(A) = col span{A}.

• r = rank(A) := dim range(A) = dim col span{A}

• by the Rank-Nullity Theorem, m− r = nullity(A) := dimnull(A).

Hence, to build a basis for the null space, we need to find m − r linearly independent vectors {u1, u2, . . . , um−r} such that Aui =
0n×1. Toward this goal, we define the following matrix and set of vectors,

• A1 :=
[
acol1 · · · acolr

]
• bi := acolr+i, 1 ≤ i ≤ (m− r)

• A1vi = bi, 1 ≤ i ≤ (m − r), where we note that the vectors {v1, v2, . . . , vm−r} ⊂ Rr are defined implicitly through the
solution of the given equations (the length of the vectors vi must equal the number of columns of A1).
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By construction, the columns of A1 are linearly independent and each bi is a linear combination of the columns of A1. These two
statements are true because the columns of A1 are a basis for the column span of A and each vector bi is a column of A. Hence, there
exists a (unique) solution to the equations A1vi = bi, 1 ≤ i ≤ (m− r). We claim that we can use the solutions vi to build a basis for
the null space of A.

Indeed, we define

u1 :=



v1
−1
0
...
0
0


, u2 :=



v2
0
−1
...
0
0


, . . . , um−r :=



vm−r

0
0
...
0
−1


, (10.30)

or equivalently,

u1 :=

[
v1
−e1

]
, u2 :=

[
v2
−e2

]
, . . . , um−r :=

[
vm−r

−em−r

]
, (10.31)

where {e1, e2, . . . , em−r} are the natural basis vectors for Rm−r. The linear independence of the vectors in (10.30) follows from

α1u1 + · · ·+ αm−rum−r =



α1v1 + · · ·+ αm−rvm−r

−α1

−α2

...
−αm−r−1

−αm−r


= 0m×1,

if, and only if, α1 = · · · = αm = 0. By design, the vectors {u1, u2, . . . , um−r} satisfy

Aui =
[
A1 b1 b2 · · · bm−r

] [ vi
ei

]
= A1vi − bi = 0n×1,

and hence vi ∈ null(A).

Remark 2 Recall that because the columns of A1 are linearly independent and bi is a linear combination of the columns of A1, we
can use least squares to compute the solution to Avi = bi, even when A1 is rectangular. Namely,

A1vi = bi ⇐⇒ A⊤
1 ·A1vi = A⊤

1 bi ⇐⇒ vi = (A⊤
1 ·A1)

−1 ·A⊤
1 bi.

Please see Chapter 8.2 and review the big green box before Example 8.1. Also, when you look at Example 8.1, ask yourself how the
conclusion would change if ||Ax∗ − b|| equaled zero.

10.7 (Optional Read): Proofs of the Rank and Nullity Relations
This example is useful in the proof.

Example 10.17 (Basis and Null Space Example Combined): Suppose that n = n1 + n2, where n1 ≥ 1 and n2 ≥ 1, and let M be
an n1 × n2 matrix. Let’s note that we can write any vector x ∈ Rn by stacking two vectors x1 ∈ Rn1 and x2 ∈ Rn2 as in

x =

[
x1
x2

]
.

Define a subset of Rn by

V :=

{
x =

[
x1
x2

]
∈ Rn | x1 +Mx2 = 0

}
.

Show that V is a subspace of Rn and that{
v1 =

[
−Me1
e1

]
, v2 =

[
−Me2
e2

]
, . . . , vn2

=

[
−Men2

en2

]}
(10.32)

is a basis for V , where the ei are the canonical basis vectors for Rn2 . This will show that V is an n2-dimensional subspace of Rn.
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Solution: (Optional Read:) V is the null space of the matrix
[
In1×n1 M

]
because

[
In1×n1

M
] [x1
x2

]
= 0 ⇐⇒ x1 +Mx2 = 0.

Hence, V is a subspace. Moreover, we see that x1 +Mx2 = 0 ⇐⇒ x1 = −Mx2 and thus

x =

[
x1
x2

]
∈ V ⇐⇒ x =

[
−Mx2
x2

]
, x2 ∈ Rn2 . (10.33)

Let {e1, e2, . . . , en2} ⊂ Rn2 be the canonical basis vectors for Rn2 and define

{v1, v2, . . . , vn2
} ⊂ Rn

by

vi :=

[
−Mei
ei

]
. (10.34)

By (10.33), vi is indeed an element of V . To show the vectors in (10.34) form a basis, we need to investigate:

• Is the set {v1, v2, . . . , vn2
} linearly independent?

• Does the set {v1, v2, . . . , vn2
} span V ?

We look at these one at a time. Let α1, α2, . . . , αn2
be real numbers and consider the linear combination α1v1+α2v2+ · · ·+αn2

vn2
.

Then,
0 = α1v1 + α2v2 + · · ·+ αn2vn2

⇕[
0
0

]
= α1

[
−Me1
e1

]
+ α2

[
−Me2
e2

]
+ · · ·+ αn2

[
−Men2

en2

]
⇕[

0
0

]
=

[
−α1Me1
α1e1

]
+

[
−α2Me2
α2e2

]
+ · · ·+

[
−αn2

Men2

αn2
en2

]
⇓ (one way implication)

0 = α1e1 + α2e2 + · · ·+ αn2
en2

⇕
α1 = 0, α2 = 0, . . . , αn2

= 0,

(10.35)

where the last line follows from the linear independence of the canonical basis vectors. Hence, {v1, v2, . . . , vn2
} is linearly indepen-

dent.

Next, we note that any vector x2 ∈ Rn2 can be written as a linear combination

x2 = α1e1 + α2e2 + · · ·αn2
en2

,

because the canonical basis vectors, as their name suggests, are a basis. Hence, from (10.33), we have that x ∈ V can be written as

x =

[
−Mx2
x2

]
=

[
−M (α1e1 + α2e2 + · · ·αn2

en2
)

α1e1 + α2e2 + · · ·αn2
en2

]
= α1

[
−Me1
e1

]
+ α2

[
−Me2
e2

]
+ · · ·+ αn2

[
−Men2

en2

]
= α1v1 + α2v2 + · · ·+ αn2

vn2
,

and therefore, x ∈ V ⇐⇒ x ∈ span{v1, v2, . . . , vn2
}. We conclude that (10.32) is a basis for V and hence V has dimension n2. ■
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Useful Properties of Rank and Nullity
For an n×m matrix A, the following are true:

(a) rank(A) + nullity(A) = m, the number of columns in A.

(b) nullity(A⊤ ·A) = nullity(A).

(c) rank(A⊤ ·A) = rank(A).

(d) rank(A ·A⊤) = rank(A⊤).

(e) For any m× k matrix B, rank(A ·B) ≤ rank(A).

(f) rank(A⊤) = rank(A).

(g) rank(A⊤ ·A) = rank(A ·A⊤).

(h) nullity(A⊤) +m = nullity(A) + n.

(a) If rank(A) = m, then the columns of A are linearly independent, which implies that x = 0 is the unique solution of Ax = 0.
Hence, null(A) = {0m×1}. It follows that the nullity(A) = 0 and therefore (a) holds. If rank(A) = 0, then A must be the
zero matrix, and hence null(A) = Rm, and we once again verify that (a) holds.

Hence, we define ρ := rank(A) and suppose that 0 < ρ < m. Our goal is to determine the dimension of the null space of A.

From the equivalence of the range and column span of a matrix, we know thatA has ρ linearly independent columns andm−ρ
columns that are dependent on them. Because permuting the order of the columns of A does not change its rank, we assume
without loss of generality that the first ρ columns of A are linearly independent and for ρ+ 1 ≤ j ≤ m, we have

acolj ∈ {acol1 , acol2 , . . . , acolρ },

which means there exist coefficients βij ∈ R such that

acolj = β1j a
col
1 + β2j a

col
2 + · · ·+ βρj a

col
ρ . (10.36)

Based on the above, we partition the columns of A as

A = [A1 A2]

whereA1 is given by the first ρ independent columns ofA andA2 consists of the remaining dependent columns. From (10.36),
it follows that A2 = A1B, where

B =

 β1(ρ+1) · · · β1m
...

...
...

βρ(ρ+1) · · · βρm

 .
Therefore, we have

A = [A1 A1B] = A1 [Iρ B] , (10.37)

where the columns of A1 are linearly independent. From the same reasoning in Chapter 7.5.5 that we employed in our Pro Tip,
we have

Ax = 0 ⇐⇒ A1 [Iρ B]x = 0 ⇐⇒ A⊤
1 A1 [Iρ B]x = 0 ⇐⇒ [Iρ B]x = 0,

where the last equality is because A⊤
1 A1 is invertible. Based on the above, we partition x as

x =

[
x1
x2‘

]
,

where x1 ∈ Rρ and x2 ∈ Rm−ρ, and obtain
x = 0 ⇐⇒ x1 +Bx2 = 0.

From here, we can apply the result in Example 10.17 and deduce that the dimension of the null space of A is m − ρ, which
completes the proof.
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(b) Our Pro Tip in Chapter 7.5.5 showed that Ax = 0 ⇐⇒ A⊤ ·Ax = 0. Hence,

null(A⊤ ·A) = null(A),

and therefore their nullities agree.

(c) Combining (a) and (b) proves (c).

(d) True by starting with A⊤ in place of A and then recognizing that
(
A⊤)⊤ = A.

(e) From the sum of columns times row form of matrix multiplication, we have that the columns of A ·B are a linear combination
of the columns of A. Hence, col span{A ·B} ⊂ col span{A}, which implies that rank(A ·B) ≤ rank(A).

(f) Combining (e) with (c) we have
rank(A⊤) ≤ rank(A⊤ ·A) = rank(A)

and then combining (e) with (d) we have

rank(A) ≤ rank(A ·A⊤) = rank(A⊤).

Hence, rank(A⊤) ≤ rank(A) ≤ rank(A⊤), and therefore rank(A⊤) = rank(A).

(g) Combining (f) with (c) and (d) proves (g).

(h) Combining (a) with (f) implies (h). Indeed, from (a), the Rank-Nullity Theorem,

m+ nullity(A⊤) + rank(A⊤) = m+ n and n+ nullity(A) + rank(A) = n+m;

hence
m+ nullity(A⊤) + rank(A⊤) = n+ nullity(A) + rank(A).

Using (f), we can cancel rank(A⊤) from the left-hand side and rank(A) from the right-hand side, which yields (h).

■

10.8 Looking Ahead
So far in ROB 101, we’ve only looked at linear problems. However, it turns out that techniques from Linear Algebra, namely vectors
and matrices, can be very useful for some problems involving nonlinear functions. Hence, we will disengage from pure Linear
Algebra and explore two very interesting problems:

1. Root finding: this is the problem of finding x ∈ Rn such that f(x) = 0. A special case would be f(x) = Ax − b, in which
case, “root finding” is the same as solving Ax = b, a problem we know a lot about! What we will do is assume a result from
Calculus2 which says that near a root of f(x) = 0, we can approximate the nonlinear function f(x) by an affine function,
Ax− b. Solving Ax− b = 0 will give us an approximation of a solution to f(x) = 0. We can then re-approximate the function
f(x) near our current estimate of the root and attempt to improve the quality of the solution. Putting this in a for-loop gives us
an algorithm.

2. Minimizing a real-valued function of x: this is the problem of finding x∗ such that

x∗ = argmin
x∈Rn

c(x),

where c : Rn → [0,∞). A special case is
c(x) := ||Ax− b||2,

our least-squared error solution toAx = b. Modern engineering is broadly based on “optimization”, the process of maximizing
the efficiency of some process or minimizing the energy consumed in making a product. In Robotics, we formulate “perception”
problems as one of minimizing the error in the estimated position of objects that we “perceive” with a camera or LiDAR, for
example.

You will find both of these tools broadly applicable throughout your engineering career, and of course, in your engineering subjects
at UofM. In Project 3, we will see how to use optimization to do “balance control” of a Segway! Your project will be a simplified
version of an algorithm that could be used on Cassie Blue, the amazing bipedal robot at Michigan.

2We will teach you the result without proof. For theory, you can see Calculus I.
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Chapter 11

Changing Gears: Solutions of Nonlinear
Equations

Learning Objectives
• Extend our horizons from linear equations to nonlinear equations.

• Appreciate the power of using algorithms to iteratively construct approximate solutions to a problem.

• Accomplish all of this without assuming a background in Calculus.

Outcomes
• Learn that a root is a solution of an equation of the form f(x) = 0.

• Learn two methods for finding roots of real-valued functions of a real variable, that is for f : R → R, namely the Bisection
Method and Newton’s Method

• Become comfortable with the notion of a “local slope” of a function at a point and how to compute it numerically.

• Linear approximations of nonlinear functions.

• Extensions of these ideas to vector-valued functions of several variables, that is f : Rm → Rn, with key notions being the
gradient and Jacobian of a function and their use in the Newton-Raphson Algorithm.
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11.1 Motivation and Simple Ideas

The focus of ROB 101 has been systems on linear equations. Long before you came to ROB 101, however, you had studied some
Algebra and solved a few nonlinear equations. Our goal here is to develop numerical methods for finding solutions to systems of
nonlinear equations.

We will limit our notion of a solution to the set of real numbers or real vectors. Limiting our search for solutions to the real numbers
has consequences. We already know that

x2 + 1 = 0,

for example, has no real solutions because its discriminant is ∆ = b2 − 4ac = −4 < 0. Nevertheless, many interesting problems in
Engineering and Science can be formulated and solved in terms of “real solutions” to systems of equations1.

Root of an Equation

Let f : Rn → R be a function. Then f(x) = 0 defines an equation. A solution to the equation is also called a roota; that is
x∗ ∈ Rn is a root of f(x) = 0 if

f(x∗) = 0. (11.1)

Just as with quadratic equations, it is possible that (11.1) has multiple real solutions or no real solutions.

You may wonder if we could seek solutions to f(x) = π, for example, and if we were to do that, would we still call them
roots? Technically, the answer is no. The term root is reserved for solutions to f(x) = 0. However, if we define a new
function, f̄(x) := f(x)− π, then

f̄(x∗) = 0 ⇐⇒ f(x∗)− π = 0 ⇐⇒ f(x∗) = π,

and x∗ is a root of our new function f̄(x). If this seems like we are splitting hairs, yeah, it’s hard to disagree with that
sentiment!

aIn the 9th century, Arab writers usually called one of the solutions to a polynomial equation jadhr (âĂIJrootâĂİ), and their medieval European translators
used the Latin word radix; see https://www.britannica.com/science/root-mathematics.

(a) (b) (c)

Figure 11.1: Examples of a continuous function, a discontinuous function, and a graph that is not a function. Yes, in (c), the point
x = 0 is mapped to the interval [−1, 2]. To be a function, each point in the domain can only map to a single point in the range.

We will say very informally that a function f : R → R is continuous if you can draw the graph of y = f(x) on a sheet of paper
without lifting your pencil (from the paper)! Figure 11.1-(a) clearly passes this test while Fig. 11.1-(b) does not. Figure 11.1-(c)
“seems” to pass the “without lifting your pencil test,” but the graph does not represent a function! Recall that a function is a rule that
associates to each element of the domain, a single value in the range, meaning, that for a given x ∈ R, there can be only one value of
y ∈ R such that y = f(x). In Fig. 11.1-(c), for x = 0, we have f(x) = y for all y ∈ [−1, 2], which makes it not a function. What
about the part of the graph where the “non-function” is constant, does that also make it not a function? No, it is fine for the single
value of y = −1.0 to be associated with many values of x; it’s the other way around that is a problem. Functions map points to points

1In addition, we should not overlook the fact that as a first introduction to the subject of numerical methods for solving systems of nonlinear equations, working
with real numbers and vectors is a great place to start!
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and not points to non-trivial sets, such as the interval [−1, 2].

In Calculus, you will encounter a formal definition, which goes something like this: f : R → R is continuous at a point x0 ∈ R if
for every ϵ > 0, there exists a δ > 0 such that,

|x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ.

And then one says that f is continuous if it is continuous at x0 for all x0 in its domain of definition! For our purposes, the pencil test
is good enough.

11.2 Bisection

We begin with the most straightforward and intuitive method for finding roots of scalar equations

f(x) = 0,

where f : R → R, that is, f maps real numbers to real numbers. The method is based on the following fact, which, once again, is
something you will encounter in Calculus. In ROB 101, we are giving you a reason to pay attention to the result when it is presented
in Calculus!

Intermediate Value Theorem

Assume that f is a continuous real valued function and you know two real numbers a < b such that f(a) · f(b) < 0. Then
there exists a real number c such that

• a < c < b (c is between a and b), and

• f(c) = 0 (c is a root).

The values a and b are said to bracket the root, c.

Remarkably, this leads to a “method” for approximating roots with arbitrary accuracy! Here is the basic idea.

Bisection Algorithm Pseudo Code

• Initialize: define a < b such that f(a) · f(b) < 0

• Start: compute c := a+b
2 , the midpoint of the interval [a, b].

• Two things are possible:

– f(c) = 0, in which case, we are done. x∗ = c.

– f(c) ̸= 0, in which case, either f(c) · f(a) < 0 or f(c) · f(b) < 0. (We’ll leave to you the task of “proving” that
at least one of these statements must be true and they cannot both be true.)

• If f(c) · f(a) < 0
b = c; # b updates while a stays the same

Else
a = c; # a updates while b stays the same

End If

• Loop Back to Start. ( Wash, rinse, and repeat! )

Now, as written, the above is not an effective algorithm because it may never terminate, meaning it could loop for ever and ever. For
example, suppose you wanted to solve x2 − 2 = 0. You know that answer is x∗ =

√
2, an irrational number. You might think to start

with the initial guesses being a = 0 and b = 2, because then f(0) · f(2) = (−2) · (2) = −4 < 0. However, c = a+b
2 = 1, a rational
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number, and because f(c) · f(b) < 0, your next step is a = 1 and b = 2. In fact, you can check that [a c b] evolves like this

a c b
0.0 1.0 2.0
1.0 1.5 2.0
1.0 1.25 1.5
1.25 1.375 1.5
1.375 1.4375 1.5
1.375 1.40625 1.4375
1.40625 1.421875 1.4375
1.40625 1.4140625 1.421875
1.4140625 1.41796875 1.421875
1.4140625 1.416015625 1.41796875
1.4140625 1.4150390625 1.416015625

the point being that c will always be a rational number and hence it will never be true that f(c) = 0. Of course, we can get very close
to zero and we need to define what does close enough mean!

Figure 11.2: Plot of y = 0.2x5+x3+3x+1. There does not exist any formula that provides the roots of general quintic polynomials
(no quintic equation)! If we want to find a root, we are forced to use numerical methods.

Example 11.1 Figure 11.2 presents a graph of the function f(x) = 0.2x5 + x3 + 3x+ 1. Find a root of the function, that is, find a
solution of

0.2x5 + x3 + 3x+ 1 = 0.

Because formulas for the roots of quintic polynomials do not exist2, you must use a numerical method.

Solution: We apply the bisection method. Based on Fig. 11.2, we’ll bracket the root with a = −2 and b = 1. We run the algorithm
and obtain the following data

a c = a+b
2 b sign (f(a) · f(c)) f(c)

−2.0 −0.5 1.0 +1.0 −0.6312500000000001
−0.5 0.25 1.0 −1.0 1.7658203125
−0.5 −0.125 0.25 −1.0 0.623040771484375
−0.5 −0.3125 −0.125 −1.0 0.031386375427246094
−0.5 −0.40625 −0.3125 +1.0 −0.28801019787788396

−0.40625 −0.359375 −0.3125 +1.0 −0.12573728393763295
−0.359375 −0.3359375 −0.3125 +1.0 −0.046580093697411895
−0.3359375 −0.32421875 −0.3125 +1.0 −0.007453918341161714

(11.2)

2In fact, N. Abel proved in 1826 that formulas for roots do not exist for families of polynomials of degree higher than four. In 1835, while still in his teens, E.
Galois was able to determine a necessary and sufficient condition for any given polynomial to be solvable by “roots”, thereby resolving a problem that had been open
for 350 years. The story goes that he wrote down his solution days before being killed in a duel.
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Figure 11.3 shows the evolution of the bracketing points a and b as well as the midpoint c for the first four steps of the algorithm,
while Fig. 11.4 zooms in to show more detail. From (11.2), the logic of the algorithm can be pinned down.

Logic of the Algorithm in Detail

• In Step 1, we compute c = a+b
2 and f(a) · f(c) > 0. Recall that at each step, the Intermediate Value Theorem says we

need f(a) · f(b) < 0 to ensure that there exists a c ∈ (a, b) such that f(c) = 0. Because f(a) · f(c) > 0, we know
without checking that f(b) · f(c) < 0, and therefore, in the next step, we update a = c and leave b unchanged so that
f(a) · f(b) < 0. Similar logic applies in the followign steps.

• As noted, in Step 2, we have anew = c = −0.5, while b = 1.0 is unchanged. This gives c = a+b
2 = 0.25 and

f(a) · f(c) < 0.

• Hence, in Step 3, we have bnew = c = −0.5, while a = 0.25 is unchanged. This gives c = a+b
2 = −0.125 and

f(a) · f(c) < 0.

• Hence, in Step 4, we have bnew = c = −0.125, while a = 0.25 is once again unchanged. This gives c = a+b
2 =

−0.3125 and f(a) · f(c) < 0.

■

From the zooms in Fig. 11.4, we observe that the more we zoom into our function at a point, the more it looks like a straight line! In
fact, already at Step 4, we see that if we had the formula for the line that approximates the function, we’d use it to approximate the
root instead of doing more iterations with the Bisection Algorithm.

Figure 11.3: Evolution of the bracketing points a and b as well as the midpoint c in the first four steps of the Bisection Algorithm for
finding a root of 0.2x5 + x3 + 3x+ 1 = 0. It is very clear that the algorithm hones in on a root!
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Figure 11.4: Zooms of the first four steps of the Bisection Algorithm for finding a root of 0.2x5 + x3 +3x+1 = 0 that lies between
−1 and 2. Observe that as we zoom into the function at a point, it looks more and more like a straight line!

Linear Approximations of Functions can be Very Useful

Let’s write the “line” in Step 4 of Fig. 11.4 in the form

y = yc +m(x− c),

where yc is the value of the line at x = c and m is the slope of the line. Using the data in (11.2), and the traditional notion of
“rise over run” to define the slope, we obtain

c = −0.3125
yc = f(c) ≈ 0.0313864

m =
f(b)− f(a)

b− a
=

0.623041− (−0.63125)
−0.125− (−0.5)

≈ 3.34478

In Fig. 11.5, we visually illustrate how good of a fit the “line approximation”

y = 0.0313864 + 3.34478(x+ 0.3125) = 3.34478x+ 1.07663

provides to the function. To show its utility, we set y = 0 and solve for x. Doing so, we obtain

x∗ = −0.321884 =⇒ f(x∗) = 0.00030674,

an estimate of the root that it is much better than the value given by the Bisection Algorithm at Step 4! In fact, the Bisection
Algorithm has to muddle along until its 12-th iteration to better this approximation of the root. Issac Newton made this
same observation back in 1669 and turned it into an algorithm for finding roots of equations.
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Figure 11.5: Linear Approximation (black) of f(x) = 0.2x5 + x3 + 3x + 1 compared to the function itself (red). The linear
approximation is very good in a sufficiently small region.

Bisection Algorithm with Sanity Checks and Tolerance Included

The algorithm takes as input a generic function f(x), bracketing points a and b, and a tolerance value, tol, for terminating the
algorithm, where convergence is declared when |f(c)| ≤ tol. The algorithm also terminates after 104 iterations. The function
returns the final values for c and prints out k, the number of iterations it took to meet the convergence criteria.

1 function Bisection(f,a,b,tol)
2 # First check the input data makes sense
3 if !(a < b)
4 println("a is not strictly less than b")
5 return NaN
6 end
7 if !( f(a)*f(b) < 0)
8 println("a and b fail the test provided by the Intermediate Value Theorem")
9 return NaN

10 end
11 if tol < 1e-15
12 println("tolerance is too tight")
13 return NaN
14 end
15 c= (a+b)/2.0
16 fc=f(c)
17 k=0
18 #
19 # Ready to run the bisection algorithm
20 #
21 while (abs(fc) > tol) & (k < 1e4)
22 if fc*f(a) < 0
23 b=copy(c)
24 else
25 a=copy(c)
26 end
27 c = (a+b)/2
28 fc=f(c)
29 k=k+1
30 end
31 println("Root is $c found at iteration $k")
32 return c
33 end
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1 f(x)=0.2*x^5 + x^3 + 3*x + 1
2 a0=-2;b0=1
3 c=Bisection(f,a,b,1e-10)
4 @show f(c);

Output

Root is -0.3219763464294374 found at iteration 21
f(c) = -3.854006003223276e-11

11.3 The Concept of a Derivative and Its Numerical Approximation

(a) (b)

Figure 11.6: (a) The line segments represent the local slope (“rise over run”) of f(x) = sin(x) at the points [−π,− 3π
4 , . . . ,

3π
4 , π].

Notice that each line segment is also a local linear approximation of the function. In a practical sense, what this means is that in a
small region about a given point, we can replace the function with a local linear equivalent and then use linear techniques to analyze
the function! In Calculus, the “local slope of a function” is called the derivative of the function. (b) The derivative of f(x) is another
function, denoted df(x)

dx . In Calculus, you will learn that d
dx sin(x) = cos(x). Here, were are NOT using Calculus. We have computed

the derivative numerically and plotted it! The maximum error in our numerical estimation of the derivative is less than 6.58× 10−6.

Another concept that you will learn in Calculus is the derivative of a function. Geometrically, it is the slope of the function
at a given point, say x0 ∈ R. Note that if x1 ≤ x0 < x2, then the “rise” of the function over the interval (x1, x2) would be
df(x0) := f(x2)− f(x1), while the “run” would be dx = x2 − x1, and hence the “slope” would be

slope :=
rise

run
=
df(x0)

dx
=
f(x2)− f(x1)

x2 − x1
.

In Fig. 11.6, we have attached short line segments with slopes corresponding to the derivative of the function sin(x) computed at a
number of points. The hope is that this helps you grasp the geometric meaning of a derivative of a function at point as the “local
slope” of the function at that point. We see that the “local slope of the function” varies with x. To tie the idea of “slope equals rise
over run” to a given point, say x0, we let h ̸= 0 be a small number and then we define x1 and x2 in terms of x0 and h, by x1 = x0
and x2 = x0 + h. This leads to

df(x0)

dx
=
f(x2)− f(x1)

x2 − x1
=
f(x0 + h)− f(x0)
(x0 + h)− x0

=
f(x0 + h)− f(x0)

h
. (11.3)

In Calculus, one analyzes what happens in the limit when h becomes very small, and in particular, one works hard to understand
when the ratio in (11.3) approaches a well defined value as h becomes smaller and smaller. While we’ll explore this a bit in HW, it
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is beyond the scope of our effort here.

Numerical Approximations of a Derivative

We will adopt the traditional notation from Calculus for the limiting value in (11.3), namely

df(x0)

dx
:= lim

h→0

f(x0 + h)− f(x0)
h

. (11.4)

In practice, we will use “small values” for h and never compute the exact limit. Hence, we have an approximation for the
derivative at a point, namely

df(x0)

dx
≈ f(x0 + h)− f(x0)

h
, (11.5)

which is called a forward difference approximation to the derivative. Note that we have replaced the informal term
“slope” with the symbol for the derivative at a point, namely df(x0)

dx .

You can also do a backward difference approximation to the derivative,

df(x0)

dx
≈ f(x0)− f(x0 − h)

h
, (11.6)

and a symmetric difference approximation, where you go both forward and backward from the point x0,

df(x0)

dx
≈ f(x0 + h)− f(x0 − h)

2h
. (11.7)

The forward and backward difference approximations to the derivative are in fact exact for linear functions, while the
symmetric difference approximation is exact for quadratic polynomials. The symmetric difference is also sometimes called
a central difference.

If the derivative of f(x) at a point x0 exists, then for h sufficiently small, the forward difference, backward difference,
and symmetric difference approximations to the derivative will always agree. If they provide different answers, then
the limit in (11.4) does not exist and the function is said to be not differentiable.

1 f(x)=sin.(x)
2 #
3 #
4 function SymmetricDifference(f,a,b)
5 # f = generic function
6 # does 100 equally spaced points from a to b
7 # returns x and df/dx using Symmetric Differences
8 if !(b > a)
9 println("You need b > a")

10 end
11 N=100
12 h=(b-a)/(10*N)
13 x=LinRange(a,b,N)
14 x=collect(x)
15 dfdx=0*x;
16 for k=1:N
17 dfdx[k]=(f(x[k]+h) - f(x[k]-h))/(2*h)
18 end
19 return dfdx, x
20 end
21 #
22 (dfdx,x)=SymmetricDifference(f,pi,-pi)
23 #

237



24 p1=plot(x, dfdx, legend=false, linewidth=3, color=:black)
25 plot!(yzero,-3.5,3.5)
26 x0=[-pi -3*pi/4 -pi/2 -pi/4 0 pi/4 pi/2 3*pi/4 pi]’
27 df(x)=cos.(x) #Known from Calculus
28 #included to make the plot look pretty??
29 y0=df(x0)
30 scatter!(x0,y0, color=:red)
31 plot(p1)
32 plot!(fmt = :png)

Linear Approximation at a Point

The importance of being able to approximate a function in a region about a point by a linear function cannot be overstated.
When studying the Bisection Method for finding roots, we noted that as we zoomed in on the function near the root, it looked
more and more like a straight line. This property holds for all points x0 at which a function is differentiable, that is, all points
at which we can compute a derivative.

The linear function y(x) that passes through the point (x0, y0) with slope m can be written as

y(x) = y0 +m (x− x0) .

We use this to define the linear approximation of a function at a point x0 by taking y0 := f(x0) and m := df(x0)
dx . This

gives us

f(x) ≈ f(x0) +
df(x0)

dx
(x− x0). (11.8)

Figure 11.7 shows the linear approximation of a cubic about a point. For the record, in Calculus, this is called a First-order
Taylor Expansion. You do not need to recall this terminology in ROB 101, but when you see it again in Calculus, you can
say, yeah, I know why that is important!

Are all functions differentiable? No. A minimum requirement for a function to be differentiable at a point is that the function be
continuous at that point. Are there functions that are continuous and not differentiable? Yes, the classic example is f(x) = |x|, which
is plotted in Fig. 11.8 and discussed in Example 11.2.

Example 11.2 Explain why the function f(x) = |x| is not differentiable at x0 = 0.

Solution: We compute the forward difference, backward difference, and symmetric difference approximations to the derivative at the
point x0 = 0 and see if we obtain similar answers or not. For this, we let h > 0 be arbitrarily small. We note that then

|h| = h, and | − h| = −(−h) = h.

Proceeding, we compute

forward difference
df(0)

dx
≈ f(0 + h)− f(0)

h
=
|h| − 0

h
=
h

h
= +1

backward difference
df(0)

dx
≈ f(0)− f(0− h)

h
=

0− | − h|
h

=
−h
h

= −1

symmetric difference
df(0)

dx
≈ f(0 + h)− f(0− h)

2h
=
|h| − | − h|

2h
=
h− h
2h

= 0

These three methods giving very different approximations to the “slope” at the origin is a strong hint that the function is not differ-
entiable at the origin. What they are telling us is that by following different paths as we approach x0, approaching x0 from the left
versus the right for example, gives different answers for the “slope” of the function at x0. In Calculus, you’ll learn that this means
the function is not differentiable at x0.

■
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Figure 11.7: The function f(x) = x3 is plotted in cyan. The value of the function at the point x0 = 1.5 is indicated in red. The
line in black passing through f(x0) with slope m = df(x0)

dx satisfies y(x) := f(x0) +
df(x0)
dx (x− x0). The line is called the linear

approximation of f(x) at x0. The linear approximation represents the function well in a sufficiently small region about x0. This
approximation can be done for any point x0 at which the derivative exists.

Figure 11.8: The function f(x) = |x| is not differentiable at the origin (x = 0). The slope of the function just to the left of the
origin is −1, the slope just to the right of the origin is +1, and the slope at the origin is undefined. Everywhere else, the function is
differentiable.

11.4 Newton’s Method for Scalar Problems

We consider again the problem of finding roots of scalar equations f(x) = 0, where f : R→ R. In the Bisection Algorithm, we only
required that the function be continuous. The method we develop now uses the “local slope information” of a function, and hence
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requires that the function be differentiable, that is, that we can define df(x)
dx .

Let xk be our current approximation of a root of the function f . We write the linear approximation of f about the point xk as

f(x) ≈ f(xk) +
df(xk)

dx
· (x− xk). (11.9)

We want to chose xk+1 so that f(xk+1) = 0. Based on our linear approximation in (11.9), we have that

f(xk+1) ≈ 0 ⇐⇒ 0 = f(xk) +
df(xk)

dx
· (xk+1 − xk).

If df(xk)
dx ̸= 0, we can solve for xk+1, giving us

df(xk)

dx
xk+1 =

df(xk)

dx
xk − f(xk)

⇓

xk+1 = xk − f(xk)
/df(xk)

dx

For reasons that will become clear when we attempt a vector version of Newton’s Algorithm, let’s rewrite the division operation in
the above formula as

xk+1 = xk −
(
df(xk)

dx

)−1

f(xk).

The above equation is screaming for us to put it in a loop! One step of Newton’s Method is shown in Fig. 11.9.

Newton’s Method

The iterative process

xk+1 = xk −
(
df(xk)

dx

)−1

f(xk) (11.10)

for finding a root of a nonlinear equation is called Newton’s Method or Newton’s Algorithm. Given the current approxima-
tion xk to a root of f(x), Newton’s Method corrects the approximation by the term

−
(
df(xk)

dx

)−1

f(xk) = −f(xk)
/df(xk)

dx
.

The validity of the next approximation xk+1 rests upon:

• the function f being differentiable;

• the derivative df(xk)
dx not vanishing at points generated by the algorithm in (11.10); and

• the linear equation (11.9) is a good approximation to the function.

We boxed this last item because it is easy to overlook and is often a source of failure for the algorithm. Because (11.10) has
“total faith” in (11.9) being a good approximation, it sometimes takes very big “steps” (meaning xk+1 − xk is large) when
generating xk+1 to zero the linear approximation in (11.9). A safer update is to go only “part way” to the linear solution.
This leads to the so-called damped or modified Newton Method,

xk+1 = xk − ϵ
(
df(xk)

dx

)−1

f(xk) , (11.11)

where 0 < ϵ < 1. A typical value may be ϵ = 0.1.

The standard way to “ensure” that Newton’s Method generates points xk such that the linear equation (11.9) is a good
approximation to f(xk) is to start the algorithm “near” a root. As you can imagine, this is easier said than done! Hence, the
damped version of Newton’s Algorithm is very useful in practice.
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Figure 11.9: This figure demonstrates one step of Newton’s Algorithm. At a point xk, one uses the derivative to compute a linear
approximation to the function. Solving for where the linear approximation (red line) crosses the x-axis gives the next value, xk+1.

Visual Representation of Newton’s Algorithm

Some of you are undoubtedly more visually wired than algebraically wired (did you know that was a thing?). Here are some
potential visual sources:

• Wikipedia https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_
Ani.gif (The words in the legend are function and tangent.) You’ll find additional textual information here as well
https://en.wikipedia.org/wiki/Newton%27s_method

• Kahn Academy https://www.youtube.com/watch?v=WuaI5G04Rcw

• Christine Breiner, MIT Calculus I, https://www.youtube.com/watch?v=ER5B_YBFMJo

Example 11.3 For the same function as treated in Example 11.1, namely, f(x) = 0.2x5 + x3 + 3x+ 1, find a root using Newton’s
Algorithm.

Solution: We apply the basic Newton’s Method in (11.9) (that is, no damping), using each of the derivative methods given in (11.5),
(11.6), and (11.7). We take x0 = 2 and h = 0.01 for the approximate derivatives. We iterate until |f(k)| < 10−4 or the algorithm
fails by

∣∣∣df(xk)
dx

∣∣∣ < 10−4.

Using the Symmetric Difference Approximation for the derivative, Newton’s Method converges in five steps

xk f(xk)
df(xk)

dx k

2.0000 21.4000 31.2209 0.0000
1.3146 8.0005 11.1709 1.0000
0.5984 3.0247 4.2025 2.0000
−0.1214 0.6341 3.0445 3.0000
−0.3296 −0.0255 3.3379 4.0000
−0.3220 −0.0001 3.3219 5.0000

(11.12)

Using the Forward Difference Approximation for the derivative, Newton’s Method fails after 45 steps due to the estimated deriva-
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tive vanishing

xk f(xk)
df(xk)

dx k

2.0000 21.4000 31.2209 0.0000
1.3146 8.0005 −1328.6981 1.0000
1.3206 8.0680 18.1162 2.0000
0.8752 4.3989 −360.9904 3.0000

...
...

...
...

5.4e+ 01 8.9e+ 07 7.6e+ 03 41.0000
−1.2e+ 04 −4.5e+ 19 −4.5e+ 21 42.0000
−1.2e+ 04 −4.5e+ 19 −8.1e+ 10 43.0000
−5.5e+ 08 −1.0e+ 43 −1.0e+ 45 44.0000
−5.5e+ 08 −1.0e+ 43 0.0e+ 00 45.0000

(11.13)

Using the Backward Difference Approximation for the derivative, Newton’s Method converges after 23 steps

xk f(xk)
df(xk)

dx k

2.0000 21.4000 31.2209 0.0000
1.3146 8.0005 1351.0399 1.0000
1.3086 7.9346 17.5719 2.0000
0.8571 4.2934 369.8273 3.0000
0.8455 4.2272 12.2347 4.0000
0.5000 2.6311 163.4044 5.0000
0.4839 2.5702 9.8345 6.0000
0.2225 1.6787 92.2938 7.0000
0.2043 1.6216 8.8299 8.0000
0.0207 1.0621 58.9551 9.0000
0.0027 1.0080 8.4054 10.0000
−0.1173 0.6466 39.1841 11.0000
−0.1338 0.5963 8.0873 12.0000
−0.2075 0.3685 25.9194 13.0000
−0.2217 0.3239 7.6217 14.0000
−0.2642 0.1887 16.7398 15.0000
−0.2755 0.1524 6.8761 16.0000
−0.2976 0.0803 10.4913 17.0000
−0.3053 0.0552 5.8084 18.0000
−0.3148 0.0238 6.4494 19.0000
−0.3185 0.0116 4.5491 20.0000
−0.3210 0.0031 4.1765 21.0000
−0.3218 0.0006 3.5817 22.0000
−0.3220 0.0000 3.3919 23.0000

(11.14)

■

242



Symmetric Difference Makes a Difference

In general, the symmetric difference is a better approximation to the true analytical derivative than are the forward and
backward difference approximations. When used in Newton’s Method, the big difference in performance of the three
approximate derivative methods surprised us as well!

Why do people not use the symmetric difference all the time? Depending on the situation, you may have the value of
f(xk) already at hand, in which case, to determine a forward or backward difference, you only need one additional function
evaluation, namely, either f(xk + h) or f(xk − h), whereas with the symmetric difference, you must do both additional
function evaluations. If f is complicated to evaluate, that may bias you toward the computationally “lighter” methods. On
the other hand, as we saw in our example with Newton’s Algorithm, if you converge faster, you may still come out way ahead!

The fact that the decision of which numerical differentiation method to use is not obvious and depends on the problem
being solved is actually A GREAT THING: it keeps Engineers and Applied Mathematicians employed!

Remark 3 We redo the above example using the forward difference approximation of the derivative with ϵ = 0.9. The results are
that Newton’s Method with damping converges, though very slowly.

xk f(xk)
df(xk)

dx k

2.0000 21.4000 31.2209 0.0000
1.3831 8.8075 −1246.7601 1.0000
1.3895 8.8867 20.5359 2.0000
1.0000 5.2000 −361.6178 3.0000
1.0129 5.2914 16.3261 4.0000
0.7212 3.5779 −166.4880 5.0000
0.7406 3.6725 14.4315 6.0000
0.5116 2.6755 −95.8236 7.0000
0.5367 2.7735 13.7664 8.0000
0.3554 2.1121 −62.7388 9.0000
0.3857 2.2160 13.8764 10.0000

...
...

...
...

−0.3387 −0.0558 6.8063 368.0000
−0.3313 −0.0311 5.8011 369.0000
−0.3265 −0.0150 4.9292 370.0000
−0.3237 −0.0059 4.2261 371.0000
−0.3225 −0.0017 3.7289 372.0000
−0.3221 −0.0003 3.4495 373.0000
−0.3220 −0.0000 3.3411 374.0000

11.5 Vector Valued Functions: Linear Approximations, Partial Derivatives, Jaco-
bians, and the Gradient

When developing Newtons’ Method of root finding for functions f : R → R, we started with the notion of a derivative being the
local slope of a function at a point, and from there, we were led to the idea of locally approximating a nonlinear function by a line!
Once we had the idea of a linear approximation of the function about a given point, Newton’s Algorithm basically fell into our lap by
solving for a root of the linear approximation.

For the vector case of functions f : Rm → Rn, we’ll turn things around a bit and start with the idea of a linear approximation of the
function about a point and see how that leads us to the notion of a partial derivative. Once we have that concept down, the rest is
book keeping, in other words, the rest is developing a nice matrix-vector formulation of a derivative of a function. It sounds harder
than it is. Let’s do it!

Remark: A more traditional approach that starts by introducing the notion of a partial derivative and, from there, builds the gradient,
the Jacobian, and only then, introduces the idea of a linear approximation, maybe better for some readers. That path is followed in
Chap. 11.7.
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11.5.1 Linear Approximation about a Point: Take 1

Our goal is to generalize the idea of a linear approximation of a (nonlinear) function f : Rm → Rn at a point x0. What we’ll do is
posit that the appropriate generalization should be

f(x) ≈ f(x0) +A(x− x0), (11.15)

where A is an n ×m matrix. We note that the dimensions make sense because f(x0) is n × 1, (x − x0) is m × 1, and therefore,
A(x− x0) is n× 1. So far, so good.

Let’s now figure out what the columns of A need to be for (11.15) to hold of x “near” x0. We write A =:
[
acol1 acol2 · · · acolm

]
,

where acolj is the j-th column of A. Further, let {e1, e2, . . . , em} the canonical basis vectors for Rm (which we recall are the columns
of the m×m identity matrix). We next recall that our “sum over columns times rows” method of matrix multiplication gives us that

Aej = acolj ,

which is true because, using “Julia notation”,

(ej)[i] =

{
1 i = j

0 otherwise

implies that

Aej =

m∑
i=1

acoli (ej)[i] = acolj .

We let x = x0 + hej be a small perturbation about the nominal vlaue x0. We note that x = x0 + hej holds all components of x
constant and equal to x0, except for the j-th component, which is perturbed by an amount h. When h > 0 is sufficiently small,
(11.15) gives us

f(x0 + hej) = f(x0) +A(x0 + hej − x0)
⇓

f(x0 + hej) = f(x0) + hAej

⇓
f(x0 + hej) = f(x0) + hacolj

⇓
f(x0 + hej)− f(x0) = hacolj

⇓
f(x0 + hej)− f(x0)

h
= acolj .

(11.16)

In other words, the j-th column of the matrix A in (11.15) is given by

acolj =
f(x0 + hej)− f(x0)

h
, (11.17)

which looks suspiciously like the forward difference approximation of a derivative. In fact, it looks like here we are ignoring all
variables except the j-th one and computing a derivative of f with respect to xj . And indeed, that is exactly what we are doing!
Calculus has a term for it, the partial derivative of f(x) with respect to xj, and it uses a cool symbol,

∂f(x0)

∂xj
= lim

h→0

f(x0 + hej)− f(x0)
h

. (11.18)

The symbol ∂ is pronounced “partial”. We’d better dig into this!
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11.5.2 Partial Derivatives
Partial Derivatives as Motivated by a Linear Approximation to a Function about a Point

If we let {e1, e2, . . . , em} be the natural basis vectors for Rm, then we have three ways to numerically approximate a partial
derivative, just as we did with a “scalar” derivative

∂f(x0)

∂xj
=



f(x0 + hej)− f(x0)
h

forward difference approximation

f(x0)− f(x0 − hej)
h

backward difference approximation

f(x0 + hej)− f(x0 − hej)
2h

symmetric difference approximation.

(11.19)

Example 11.4 For the function

f(x1, x2, x3) :=

 x1x2x3
log(2 + cos(x1)) + xx1

2
x1x3

1+x2
2

 , (11.20)

compute the partial derivatives ∂f(x0)
∂x1

, ∂f(x0)
∂x2

, and ∂f(x0)
∂x3

at the point

x0 =

 π
1.0
2.0

 .
In the next example, we’ll interpret the computed partial derivatives in terms of derivatives of scalar valued functions, which we
intuitively understood as slopes of a function at a point.

Solution A We’ll compute the partial derivatives in Julia, two different ways. We only need one of them to click for you.

In the first solution, we write the function given in (11.20) as f(x), where x = [x1;x2;x3]. We can then apply the numerical
approximations in (11.19) directly. Because f(x) ∈ R3, the partial derivatives will also be vectors in R3. This follows from (11.19),
where each numerator is a vector in R3, while the denominators are scalars.

1 x0=[pi;1.0;2.0]
2 # function defined in terms of x as a vector with components [x1; x2; x3].
3 function f(x)
4 x1=x[1]
5 x2=x[2]
6 x3=x[3]
7 f=[x1*x2*x3; log(2 + cos(x1) + x2^x1); (x1*x3)/(1+x2^2)]
8 return f
9 end

10 h=0.001
11 Id=zeros(3,3)+I
12 e1=Id[:,1];e2=Id[:,2];e3=Id[:,3]
13 # Partial derivatives via symmetric differences
14 dfdx1=( f(x0+h*e1) - f(x0-h*e1) )/(2*h)
15 dfdx2=( f(x0+h*e2) - f(x0-h*e2) )/(2*h)
16 dfdx3=( f(x0+h*e3) - f(x0-h*e3) )/(2*h)
17

18

Using the above code, we determine

∂f(x0)

∂x1
=

 2.0
0.0
1.0

 , ∂f(x0)

∂x2
=

 6.2832
3.1416
−3.1416

 , ∂f(x0)

∂x3
=

 3.1416
0.0000
1.5708

 . (11.21)
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Solution B In the second method, we express the function exactly as it is written in (11.20). We then have to recognize that

x0 + he1 = (x01 + h, x02, x03), x0 + he2 = (x01, x02 + h, x03), and x0 + he3 = (x01, x02, x03 + h).

The point is, in Mathematics, we write a function that depends on several variables like this

f(x) = f(x1, x2, x3),

and never like this

f(x) = f(

 x1
x2
x2

). (11.22)

However, when we program, it is often easier to work with a function as if it were written as in (11.22), with x a column vector; as
an example,

f(x+ he2) = f(

 x1
x2
x2

+

 0
h
0

) = f(x1, x2 + h, x3).

You will learn quickly enough that it is easier to “vectorize” (that is, put operations in a loop) expressions such as f(x + he2) =
f(x+ hId[:, 2]) than it is expressions such asf(x1, x2 + h, x3), but we digress.

1 x0=[pi;1.0;2.0]
2 f(x1,x2,x3)=[x1*x2*x3; log(2 + cos(x1) + x2^x1); (x1*x3)/(1+x2^2)]
3 h=0.001
4

5 dfdx1=( f(pi+h,1.0,2.0) - f(pi-h,1,2) )/(2*h)
6 dfdx2=( f(pi,1.0+h,2.0) - f(pi,1-h,2) )/(2*h)
7 dfdx3=( f(pi,1.0,2.0+h) - f(pi,1,2-h) )/(2*h)
8

The results match those in (11.21). The code for the second solution looks simpler, doesn’t it? But imagine writing that out if you
have 25 variables! On the other hand, the code segment

1 # As a loop
2 n=3
3 dfdx=Array{Float64,2}(undef,n,0)
4 for k =1:n
5 dfdxk=( f(x0+h*Id[:,k]) - f(x0-h*Id[:,k]) )/(2*h)
6 dfdx=[dfdx dfdxk]
7 end
8 dfdx
9

10 3ÃŮ3 Array{Float64,2}:
11 2.0 6.28319 3.14159
12 0.0 3.14159 0.0
13 1.0 -3.14159 1.5708

is very easy to scale up! Vectors and matrices are really about careful bookkeeping. It’s kind of sad to say it that way, but it’s
also kind of true. ■

Example 11.5 For the function in Example 11.4, interpret the components of its partial derivatives in terms of “ordinary deriva-
tives”.

Solution Let’s quite arbitrarily focus on x2. We define a function g : R→ R3 by

g(x2) := f(π, x2, 2) =

 πx22
log(2 + cos(π)) + (x2)

π

π2
1+(x2)2

 =

 2πx2
(x2)

π

2π
1+(x2)2

 ,
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where we have set x1 = π and x3 = 2. Because the components of g only depend on the single variable x2, we can compute their
ordinary derivatives about the point x02 = 1 using symmetric differences. We do so and determine that

dg(x02)

dx2
≈ g(1 + h)− g(1− h)

2h
=

 6.2832
3.1416
−3.1416

 .
We observe that dg(x02)

dx2
= ∂f(x0)

∂x2
. We also note that g(x2) being a column vector with three components does not really change

anything: we are simply computing the slope of each component of g.
■

Partial Wisdom

Partial derivatives are simply ordinary derivatives that we perform one variable at time, while holding all other variables
constant.

∂f(x0)

∂xj
≈ f(x01, . . . ,x0j + h, . . . , x0m)− f(x01, . . . ,x0j, . . . , x0m)

h

=
f(x0 + hej)− f(x0)

h

=
df(x0 + xjej)

dxj
,

(11.23)

where the last expression is kind of awesome: it underlines that we have really fixed all of the components of x EXCEPT for
xj when we compute the partial derivative with respect to the j-th component of x; therefore, f(xj) := f(x0 + xjej) is now
a function of the scalar variable xj to which we can apply the ordinary derivative. The fact that f(xj) ∈ Rn means it has
n-components instead of one has not really changed anything. For us, working with vectors or scalars, it’s all the same.

11.5.3 The Jacobian and Linear Approximation of a Function about a Point
We now turn to functions f : Rm → Rn. Based the compact notation introduced in (11.19), we define the Jacobian of a function as

∂f(x)

∂x
:=
[

∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xm

]
(11.24)

by packaging the column vectors ∂f(x)
∂xj

into a matrix. There is no mystery here as we discovered partial derivatives as the columns
of a matrix back in (11.17). We need to keep in mind that, for each value of x ∈ Rm, the compact and innocent looking object

∂f(x)

∂x

is really an n×m matrix: once again, there are m columns of the form ∂f(x)
∂xj

, and each column is an n-vector. When computing the
Jacobian numerically, we typically build it up one column at a time as we did in Solution A to Example 11.4.

Just for the record, we will write out ∂f(x)
∂x as an n×m matrix. We write

f(x) =


f1(x)
f2(x)
...

fn(x)

 =


f1(x1, x2, . . . , xm)
f2(x1, x2, . . . , xm)

...
fn(x1, x2, . . . , xm)

 .
Writing out all of the entries in the n×m Jacobian matrix gives

∂f(x)

∂x
=



∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xm

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xm

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xm


. (11.25)
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In other symbols, the ij component of ∂f(x)
∂x is [

∂f(x)

∂x

]
ij

=
∂fi(x)

∂xj
,

which is much more intimidating than (11.24).

Perhaps it is better not to read any further? If you want to toss out the window all of the benefits of vector-matrix notation, you can
compute each entry of the Jacobian matrix one by one, as in

∂fi(x)

∂xj
≈ fi(x1, . . . , xj + h, . . . , xm)− fi(x1, . . . , xj − h, . . . , xm)

2h
. (11.26)

In case you are wondering, your instructors almost never do this when doing real robotics! We use the “vector version” of the
Jacobian where we compute each column of the matrix in a loop. However, for simple examples, such as n = m = 2, the above very
explicit scalar (means non-vector) calculations can be informative!

Linear Approximation at a Point for Functions of Vectors

The linear approximation of a (nonlinear) function f : Rm → Rn at a point x0 is defined to be

f(x) ≈ f(x0) +A(x− x0) = f(x0) +
∂f(x0)

∂x
(x− x0), (11.27)

where the n×m matrix A is the Jacobian of f at the point x0. As we did previously, we note that the dimensions make sense
because f(x0) is n× 1, (x− x0) is m× 1, and therefore, ∂f(x0)

∂x (x− x0) is n× 1.

Example 11.6 For the function

f(x1, x2, x3) :=

 x1x2x3
log(2 + cos(x1)) + xx1

2
x1x3

1+x2
2

 , (11.28)

compute its Jacobian at the point

x0 =

 π
1.0
2.0


and evaluate the “accuracy” of its linear approximation.

Solution From (11.21) in Example 11.4, we have that

∂f(x0)

∂x1
=

 2.0
0.0
1.0

 , ∂f(x0)

∂x2
=

 6.2832
3.1416
−3.1416

 , ∂f(x0)

∂x3
=

 3.1416
0.0000
1.5708

 .
Hence, packaging up the columns correctly gives the Jacobian at x0,

A :=
∂f(x0)

∂x
=

 2.0000 6.2832 3.1416
0.0000 3.1416 0.0000
1.0000 −3.1416 1.5708

 ,
and the linear approximation is

f(x) ≈ f(x0) +A(x− x0) =

 6.2832
1.0000
3.1416

+

 2.0000 6.2832 3.1416
0.0000 3.1416 0.0000
1.0000 −3.1416 1.5708

 x1 − π
x2 − 1.0
x3 − 2.0

 .
1 Jacf=[dfdx1 dfdx2 dfdx3]
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One way to think about the question of assessing the quality of the linear approximation is to measure the error defined as

e(x) := ||f(x)− flin(x)||,

where flin(x) := f(x0) +
∂f(x0)

∂x (x − x0). We will seek to estimate the maximum value of e(x) over a region containing the point
x0. Define

S(x0) := {x ∈ R3 | |xi − x0i| ≤ d, i = 1, 2, 3}

and
Max Error := max

x∈S(x0)
e(x) = max

x∈S(x0)
||f(x)− flin(x)||. (11.29)

For d = 0.25, we used a “random search” routine and estimated that

Max Error = 0.12.

To put this into context,
max

x∈S(x0)
||f(x)|| = 8.47,

and thus the relative error is about 1.5%. ■

11.5.4 The Gradient and Linear Approximation of a Function about a Point

The gradient is simply the special name given to the Jacobian of a function f : Rm → R, that is, for each x ∈ Rm, f(x) ∈ R is a
scalar. Along with its special name, it comes with a special symbol!

The Gradient and Linear Approximations

The gradient of f : Rm → R is simply the partial derivatives of f with respect to xi arranged to form a row vector,

∇f(x0) :=
[

∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
, (11.30)

which we can also call a 1 ×m matrix. The cool symbol ∇ is usually pronounced as “grad” and one says “grad f” when
speaking of∇f .

An important use of the gradient of a function of several variables is to form a linear approximation of the function about
a point

f(x) ≈ f(x0) +∇f(x0)(x− x0). (11.31)

Comparing this to (11.15), we see that A = ∇f(x0), a 1×m matrix. Expanding (11.31) into its components gives

f(x) ≈ f(x0) +∇f(x0)(x− x0)

= f(x0) +
[

∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
︸ ︷︷ ︸

A

·


x1 − x01
x2 − x02

...
xm − x0m


︸ ︷︷ ︸

(x−x0)

= f(x0) +

m∑
i=1

∂f(x0)

∂xi
(xi − x0i).

(11.32)

The linear approximation in (11.32) looks just like our linear approximation for functions of a single variable x, namely
f(x) ≈ f(x0) + df(x0)

dx (x− x0), where a = df(x0)
dx is 1× 1.

Example 11.7 Compute (approximately) the gradient of f : R2 → R, for f(x1, x2) = x1 cos(x2) and x0 = [2 π/4]⊤.
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(a) (b)

Figure 11.10: (a) Close up view. (b) A more global view. The function f(x1, x2) = x1 cos(x2) is plotted in blue, while in red is
shown its linear approximation about the point x0 = [2 π/4]⊤, that is, flin(x) := f(x0) + ∇f(x0)(x − x0). This approximation
can be done for any point x0 at which the partial derivatives exists. In Calculus, the red plane is also called the tangent plane at x0.
These linear approximations accurately represent the nonlinear function in a small enough region about a given point, allowing us to
use our Linear Algebra skills.

Solution: Let’s get the formulas for a general h > 0 and then we’ll build a Table comparing the results for several values of h. For
the partial derivative with respect to x1, we perturb x1 abut 2 while holding x2 constant and equal to π/4. This gives

∂f(x0)

∂x1
≈ f(2 + h, π/4)− f(2− h, π/4)

2h

=
(2 + h) cos(π/4)− (2− h) cos(π/4)

2h

=
2h cos(π/4)

2h

= cos(π/4) =

√
2

2
,

which is independent of h and hence there is nothing more to compute. For the next partial derivative, we perturb x2 about π/4 while
holding x1 constant and equal to 2. This gives

∂f(x0)

∂x2
≈ f(2, π/4 + h)− f(2, π/4− h)

2h

=
2 cos(π/4 + h)− 2 cos(π/4− h)

2h
,

(11.33)

which, though we could simply it with some trigonometric identities, we’ll stop here and turn to Julia. Doing so, leads to the following
results

f(2,π/4+h)−f(2,π/4−h)
2h h

−1.41421356001592 0.0001
−1.414213326670799 0.001
−1.4141899922649026 0.01
−1.4118577179998826 0.1
−1.4048043101898116 0.2
−1.3768017528243548 0.4

(11.34)

The true answer is
∂f(2, π/4)

∂x2
= −
√
2 ≈ −1.4142135623730951

■

Example 11.8 Compute a linear approximation of f(x1, x2) = x1 cos(x2) at the point x0 = [2 π/4]⊤.
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Solution: We know both of the partial derivatives of f at the point x0 = [2 π/4]⊤. Hence, we have

f(x) ≈ f(x0) +∇f(x0)(x− x0)

= f(x0) +
[

∂f(x0)
∂x1

∂f(x0)
∂x2

] [
x1 − x01
x2 − x02

]
= 2 cos(π/4) +

[ √
2
2 −

√
2
] [ x1 − 2

x2 − π/4

] (11.35)

Figure 11.10 compares the linear approximation to the nonlinear function in a region about x0. ■

Knowledge is Power

For root finding, an accuracy of a few percent is probably good enough. That said, learning how to compute the partial
derivatives analytically will make your code faster and will eliminate the question of how to choose the small pertur-
bation parameter h > 0.

11.5.5 Summary on Partial Derivatives

From slopes of lines→slopes of functions at points→ df(x0)
dx → ∇f(x0)→ ∂f(x0)

∂x

Derivatives, gradients, and Jacobians are all generalizations of the notion of the slope of a line being its “rise over run”. The
derivative of a function f : R→ R at a point x0 is the “local” slope of the function at that point. We compute it by “rise over
run”, where, for example

slope =
f(x0 + h)− f(x0)

h
−−−−−−→
h>0 small

df(x0)

dx
, (11.36)

and to make it local, we take h > 0 small. The gradient recognizes that a function f : Rm → R has a local slope in the
x1-direction, the x2-direction, all the way up to the xm-direction. If we let {e1, e2, . . . , em} be the natural basis vectors for
Rm, then we compute each component of the gradient by

slopej =
f(x0 + hej)− f(x0)

h
−−−−−−→
h>0 small

∂f(x0)

∂xj
, (11.37)

and we assemble the gradient by
∇f(x0) :=

[
∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
. (11.38)

Finally, for f : Rm → Rn, each of the n components of f(x) has a local slope with respect to each component of x. The
bookkeeping is easiest if we leave f(x) as a vector and write the Jacobian so that it looks just like the gradient,

∂f(x0)

∂x
:=
[

∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
, (11.39)

but now, because f(x) is an n-vector, we have

slope1j
...

slopeij
...

slopenj

 =
f(x0 + hej)− f(x0)

h
−−−−−−→
h>0 small

∂f(x0)

∂xj
. (11.40)
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Compact Way to Numerically Approximate the Jacobian

If we let {e1, e2, . . . , em} be the natural basis vectors for Rm, then vector notation allows us to compute each column of the
Jacobian by

∂f(x0)

∂xj
=
f(x0 + hej)− f(x0)

h
. (11.41)

Typically, this is easier to program up than (11.26). But of course, your experience may vary! For a symmetric difference,
we’d use

∂f(x0)

∂xj
=
f(x0 + hej)− f(x0 − hej)

2h
. (11.42)

11.6 Newton-Raphson for Vector Functions

We consider functions f : Rn → Rn and seek a root f(x0) = 0. Note that the domain and range are both Rn and thus this is the
nonlinear equivalent of solving a square linear equation Ax − b = 0. We recall that det(A) ̸= 0 was our magic condition for the
existence and uniqueness of solutions to Ax− b = 0.

The Newton-Raphson Algorithm is precisely a vector version of Newton’s Algorithm. Let xk be our current approximation of a root
of the function f . We write the linear approximation of f about the point xk as

f(x) ≈ f(xk) +
∂f(xk)

∂x
· (x− xk). (11.43)

We want to chose xk+1 so that f(xk+1) = 0. Based on our linear approximation in (11.43), we have that

f(xk+1) ≈ 0 ⇐⇒ 0 ≈ f(xk) +
∂f(xk)

∂x
· (xk+1 − xk). (11.44)

If det
(

∂f(xk)
∂x

)
̸= 0 we could naively solve for xk+1, giving us

xk+1 = xk −
(
∂f(xk)

∂x

)−1

f(xk).

By now, you know that we advise against blindly computing inverses of matrices unless you really need that matrix inverse. In our
case, what we really want is xk+1, and because we know to avoid computing unnecessary matrix inverses, we’ll write the algorithm
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down in a different way. As in the scalar case, the equation is screaming for us to put it in a loop!

Newton-Raphson Algorithm

Based on (11.44), we definea xk+1 := xk +∆xk, where ∆xk is our update to xk. We can then break the algorithm into two
steps, (

∂f(xk)

∂x

)
∆xk = −f(xk) (solve for ∆xk) (11.45)

xk+1 = xk +∆xk (use ∆xk to update our estimate of the root). (11.46)

While for toy problems, we can use the matrix inverse to solve (11.45) for ∆xk, for larger problems, we recommend using an
LU Factorization or a QR Factorization. Once (11.45) has been solved, xk+1 is updated in (11.46) and the process repeats.

A damped Newton-Raphson Algorithm is obtained by replacing (11.46) with

xk+1 = xk + ϵ∆xk, (11.47)

for some ϵ > 0. The validity of the Newton-Raphson Algorithm rests upon:

• the function f being differentiable;

• the Jacobian ∂f(xk)
∂x having a non-zero determinant at points generated by (11.45) and (11.46); and

• the linear equation flin(x) = f(xk) +
∂f(xk)

∂x (x− xk) being a good approximation to the function.

aNote that ∆xk = xk+1 − xk .

Example 11.9 Find a root of F : R4 → R4 near x0 =
[
−2.0 3.0 π −1.0

]
for

F (x) =


x1 + 2x2 − x1(x1 + 4x2)− x2(4x1 + 10x2) + 3

3x1 + 4x2 − x1(x1 + 4x2)− x2(4x1 + 10x2) + 4

0.5 cos(x1) + x3 − (sin(x3))
7

−2(x2)2 sin(x1) + (x4)
3

 .
Solution: We programmed up (11.45) and (11.46) in Julia and used a symmetric difference approximation for the derivatives, with
h = 0.1. Below are the first five results from the algorithm:

xk =


k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

−2.0000 −3.0435 −2.4233 −2.2702 −2.2596 −2.2596
3.0000 2.5435 1.9233 1.7702 1.7596 1.7596
3.1416 0.6817 0.4104 0.3251 0.3181 0.3181
−1.0000 −1.8580 −2.0710 −1.7652 −1.6884 −1.6846


and

f(xk) =


k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

−39.0000 −6.9839 −1.1539 −0.0703 −0.0003 −0.0000
−36.0000 −6.9839 −1.1539 −0.0703 −0.0003 −0.0000

2.9335 0.1447 0.0323 0.0028 0.0000 −0.0000
15.3674 −5.1471 −4.0134 −0.7044 −0.0321 −0.0001

 .
By iteration five, we have a good approximation of a root because ||f(x5)|| ≈ 10−4. We also provide the Jacobians at the initial and
final steps,

∂f(x0)

∂x
=


−19.0000 −42.0000 0.0000 0.0000
−17.0000 −40.0000 0.0000 0.0000

0.4539 0.0000 1.0000 0.0000
7.4782 10.9116 0.0000 3.0100

 and
∂f(x5)

∂x
=


−8.5577 −15.1155 0.0000 0.0000
−6.5577 −13.1155 0.0000 0.0000
0.3854 0.0000 0.9910 0.0000
3.9296 5.4337 0.0000 8.5616


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so that it is clear that as xk evolves, so does the Jacobian of f at xk. ■

11.7 (Optional Read): From the Gradient or Jacobian of a Function to its Linear
Approximation

This covers the same material as in Chap. 11.5, but in reverse order. Some may find it more digestible.

Consider a function f : Rm → Rn. We seek a means to build a linear approximation of the function near a given point x0 ∈ Rm.
When m = n = 1, we were able to approximate a function by

f(x) ≈ f(x0) +
df(x0)

dx
(x− x0).

In the above, df(x0)
dx is a scalar. For reasons that will become clear shortly, let’s denote that scalar by a := df(x0)

dx , so that we can
rewrite the linear approximation as

f(x) ≈ f(x0) + a(x− x0). (11.48)

We do this and note that a can be viewed as a 1× 1 matrix, that is, an n×m matrix for n = m = 1. We now ask the question, for n
and m not necessarily equal to one, and for f : Rm → Rn, can we find an n×m matrix A such that

f(x) ≈ f(x0) +A(x− x0). (11.49)

The answer is (mostly) yes. To do this, we need to extend the notion of a derivative to the case of vectors. We do this first for n = 1
and general m ≥ 1.

11.7.1 The Gradient
We restrict ourselves to functions f : Rm → R. Hence, for x ∈ Rm, we have f(x) ∈ R and we will make the components of x
explicit in the function by writing f(x) = f(x1, . . . , xm). One obvious way to extend our notion of a derivative is to perturb the
components of x one at time. In Calculus, these are called partial derivatives. We won’t try to justify the terminology; it is what it is.

We continue to use h ∈ R to denote a small non-zero real number. With this notation, we define the partial derivative of f with
respect to xi at a point x0 to be

∂f(x0)

∂xi
≈ f(x01, . . . ,x0i + h, . . . , x0m)− f(x01, . . . ,x0i, . . . , x0m)

h
, (11.50)

where we have highlighted that the increment is applied to xi and only to xi. What we are doing is holding constant all coordinates
except the i-th one, and then applying the “usual” definition of a derivative of a function that depends on the scalar variable xi.

Equation (11.50) is a forward difference approximation of the partial derivative with respect to xi about the point x0. Just as with
our previous treatment of the derivative, we can use a backward approximation or a symmetric difference approximation, such as

∂f(x0)

∂xi
≈ f(x01, . . . ,x0i + h, . . . , x0m)− f(x01, . . . ,x0i − h, . . . , x0m)

2h
. (11.51)

Example 11.10 Compute (approximately) the partial derivatives of f(x1, x2) = x1 cos(x2) with respect to both x1 and x2 about
the point x0 = [2 π/4]⊤.

Solution: Let’s get the formulas for a general h > 0 and then we’ll build a Table comparing the results for several values of h. For
the partial derivative with respect to x1, we perturb x1 abut 2 while holding x2 constant and equal to π/4. This gives

∂f(x0)

∂x1
≈ f(2 + h, π/4)− f(2− h, π/4)

2h

=
(2 + h) cos(π/4)− (2− h) cos(π/4)

2h

=
2h cos(π/4)

2h

= cos(π/4) =

√
2

2
,
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which is independent of h and hence there is nothing more to compute. For the next partial derivative, we perturb x2 about π/4 while
holding x1 constant and equal to 2. This gives

∂f(x0)

∂x2
≈ f(2, π/4 + h)− f(2, π/4− h)

2h

=
2 cos(π/4 + h)− 2 cos(π/4− h)

2h
,

(11.52)

which, though we could simply it with some trigonometric identities, we’ll stop here and turn to Julia. Doing so, leads to the following
results

f(2,π/4+h)−f(2,π/4−h)
2h h

−1.41421356001592 0.0001
−1.414213326670799 0.001
−1.4141899922649026 0.01
−1.4118577179998826 0.1
−1.4048043101898116 0.2
−1.3768017528243548 0.4

(11.53)

The true answer is
∂f(2, π/4)

∂x2
= −
√
2 ≈ −1.4142135623730951

■

Knowledge is Power

For root finding, an accuracy of a few percent is probably good enough. That said, learning how to compute the partial
derivatives analytically will make your code faster and will eliminate the question of how to choose the small pertur-
bation parameter h > 0.

The Gradient and Linear Approximations

The gradient of f : Rm → R is simply the partial derivatives of f with respect to xi arranged to form a row vector,

∇f(x0) :=
[

∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
, (11.54)

which we can also call a 1 ×m matrix. The cool symbol ∇ is usually pronounced as “grad” and one says “grad f” when
speaking of∇f .

An important use of the gradient of a function of several variables is to form a linear approximation of the function about
a point

f(x) ≈ f(x0) +∇f(x0)(x− x0). (11.55)

Comparing this to (11.49), we see that A = ∇f(x0), a 1×m matrix. Expanding (11.55) into its components gives

f(x) ≈ f(x0) +∇f(x0)(x− x0)

= f(x0) +
[

∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
︸ ︷︷ ︸

A

·


x1 − x01
x2 − x02

...
xm − x0m


︸ ︷︷ ︸

(x−x0)

= f(x0) +

m∑
i=1

∂f(x0)

∂xi
(xi − x0i).

(11.56)

The linear approximation in (11.56) looks just like our linear approximation for functions of a single variable x, namely
f(x) ≈ f(x0) + df(x0)

dx (x− x0), where a = df(x0)
dx is 1× 1.
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(a) (b)

Figure 11.11: (a) Close up view. (b) A more global view. The function f(x1, x2) = x1 cos(x2) is plotted in blue, while in red is
shown its linear approximation about the point x0 = [2 π/4]⊤, that is, flin(x) := f(x0) + ∇f(x0)(x − x0). This approximation
can be done for any point x0 at which the partial derivatives exists. In Calculus, the red plane is also called the tangent plane at x0.
These linear approximations accurately represent the nonlinear function in a small enough region about a given point, allowing us to
use our Linear Algebra skills.

Example 11.11 Compute a linear approximation of f(x1, x2) = x1 cos(x2) at the point x0 = [2 π/4]⊤.

Solution: From Example 11.10, we know both of the partial derivatives of f at the point x0 = [2 π/4]⊤. Hence, we have

f(x) ≈ f(x0) +∇f(x0)(x− x0)

= f(x0) +
[

∂f(x0)
∂x1

∂f(x0)
∂x2

] [ x1 − x01
x2 − x02

]
= 2 cos(π/4) +

[ √
2
2 −

√
2
] [

x1 − 2
x2 − π/4

] (11.57)

Figure 11.11 compares the linear approximation to the nonlinear function in a region about x0. ■

11.7.2 Expanding on Vector Notation
We have carefully defined derivatives and partial derivatives of functions at given points. We used the notation x0 for the given point
to make it seem like some concrete value, a fixed scalar in R of vector in Rm. However, in practice, such as in Newton’s Algorithm,
we keep updating the point x0 at which we are computing derivatives and linear approximations of functions. Hence, because the
point is not really fixed, we can just call it x. Then, for f : R→ R, we have

df(x)

dx
≈ f(x+ h)− f(x− h)

2h
, (11.58)

and for f : Rm → R, where x = (x1, x2, . . . , xm), we have

∂f(x)

∂xi
≈ f(x1, . . . , xi + h, . . . , xm)− f(x1, . . . , xi − h, . . . , xm)

2h
. (11.59)

With this notation in mind, we now define derivatives and partial derivatives for vector valued functions. When f : R→ Rn, we
have that x is a scalar and f(x) is a vector with n components, as in

f(x) =


f1(x)
f2(x)
...

fn(x)

 . (11.60)
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We define its derivative with respect to the scalar variable x as

df(x)

dx
:=


df1(x)
dx

df2(x)
dx
...

dfn(x)
dx

 , (11.61)

by differentiating each of the components of f(x). It’s the obvious thing to do. The key is that you must keep track that when f(x)
is vector valued, so is its derivative, df(x)

dx .

In terms of our symmetric difference approximation to the derivative, the formula,

df(x)

dx
≈ f(x+ h)− f(x− h)

2h
, (11.62)

is still valid and is even written in Julia the same way! Yes, you could re-write the above as

df(x)

dx
≈


f1(x+h)−f1(x−h)

2h

f2(x+h)−f2(x−h)
2h
...

fn(x+h)−fn(x−h)
2h

 , (11.63)

but that’s a lot of extra programming. The expression (11.62) is much more compact and convenient. This is the power of good
notation.

Similarly, when f : Rm → Rn, we know that x is a vector with m components and f(x) is a vector with n components, as in

f(x) =


f1(x1, . . . , xm)
f2(x1, . . . , xm)

...
fn(x1, . . . , xm)

 . (11.64)

We define its partial derivative with respect to component xi as

∂f(x)

∂xi
:=


∂f1(x)
∂xi

∂f2(x)
∂xi

...
∂fn(x)
∂xi

 , (11.65)

by doing the partial differentiation of each of the components of f(x). It’s the obvious thing to do.

In terms of our symmetric difference approximation to the derivative, the formula,

∂f(x)

∂xi
≈ f(x1, . . . , xi + h, . . . , xm)− f(x1, . . . , xi − h, . . . , xm)

2h
, (11.66)

is still valid and is even written in Julia the same way! Once again, you could re-write the above as

∂f(x)

∂xi
≈


f1(x1,...,xi+h,...,xm)−f1(x1,...,xi−h,...,xm)

2h

f2(x1,...,xi+h,...,xm)−f2(x1,...,xi−h,...,xm)
2h
...

fn(x1,...,xi+h,...,xm)−fn(x1,...,xi−h,...,xm)
2h

 , (11.67)

but that’s a lot of extra programming. The expression (11.66) is much more compact and convenient. This is again the power of
good notation. But to use the notation effectively, we have to do the bookkeeping and remember that the innocent expression

∂f(x)

∂xi

is really a vector with n components.
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11.7.3 The Jacobian

We now turn to functions f : Rm → Rn. Based on the compact notation covered in Chapter 11.5.5, we can define the Jacobian of a
function as

∂f(x)

∂x
:=
[

∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xm

]
. (11.68)

Comparing the above to (11.54), we see that the Jacobian of a function f : Rm → R is the gradient of the function. This is the
same as saying an n×m matrix reduces to a row vector when n = 1.

We need to keep in mind that, for each value of x ∈ Rm, the compact and innocent looking object

∂f(x)

∂x

is really an n ×m matrix. When computing it numerically, we typically build it up one column at a time as in the following Julia
code.

1 F(x1,x2,x3)=[x1.*x2.*x3; log.(2+cos.(x1)) .+ x2.^x1; x1.*x3/(1 .+ x2.^2)]
2 h=0.01
3 x0=[pi;1.0;2.0]
4 dfdx1 =(F(x0[1]+h,x0[2],x0[3])-F(x0[1]-h,x0[2],x0[3]))/(2*h)
5 dfdx2 =(F(x0[1],x0[2]+h,x0[3])-F(x0[1],x0[2]-h,x0[3]))/(2*h)
6 dfdx3 =(F(x0[1],x0[2],x0[3]+h)-F(x0[1],x0[2],x0[3]-h))/(2*h)
7 dfdx=[dfdx1 dfdx2 dfdx3]
8

9 3x3 Array{Float64,2}:
10 2.0 6.28319 3.14159
11 0.0 3.14172 0.0
12 1.0 -3.14159 1.5708
13

Just for the record, we will write out ∂f(x)
∂x as an n×m matrix. In case you are wondering, your instructors never do this when doing

real robotics! We use the “vector version” of the Jacobian where we compute each column of the matrix. For f : Rm → Rm,

∂f(x)

∂x
=



∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xm

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xm

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xm


. (11.69)

Hence, the ij component of ∂f(x)
∂x is ∂fi(x)

∂xj
. If one wishes, the Jacobian can be computed one element at time via

∂fi(x)

∂xj
≈ fi(x1, . . . , xj + h, . . . , xm)− fi(x1, . . . , xj − h, . . . , xm)

2h
. (11.70)
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From slopes of lines→slopes of functions at points→ df(x0)
dx → ∇f(x0)→ ∂f(x0)

∂x

Derivatives, gradients, and Jacobians are all generalizations of the notion of the slope of a line being its “rise over run”. The
derivative of a function f : R→ R at a point x0 is the “local” slope of the function at that point. We compute it by “rise over
run”, where, for example

slope =
f(x0 + h)− f(x0)

h
−−−−−−→
h>0 small

df(x0)

dx
, (11.71)

and to make it local, we take h > 0 small. The gradient recognizes that a function f : Rm → R has a local slope in the
x1-direction, the x2-direction, all the way up to the xm-direction. If we let {e1, e2, . . . , em} be the natural basis vectors for
Rm, then we compute each component of the gradient by

slopej =
f(x0 + hej)− f(x0)

h
−−−−−−→
h>0 small

∂f(x0)

∂xj
, (11.72)

and we assemble the gradient by
∇f(x0) :=

[
∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
. (11.73)

Finally, for f : Rm → Rn, each of the n components of f(x) has a local slope with respect to each component of x. The
bookkeeping is easiest if we leave f(x) as a vector and write the Jacobian so that it looks just like the gradient,

∂f(x0)

∂x
:=
[

∂f(x0)
∂x1

∂f(x0)
∂x2

· · · ∂f(x0)
∂xm

]
, (11.74)

but now, because f(x) is an n-vector, we have

slope1j
...

slopeij
...

slopenj

 =
f(x0 + hej)− f(x0)

h
−−−−−−→
h>0 small

∂f(x0)

∂xj
. (11.75)

Compact Way to Numerically Approximate the Jacobian

If we let {e1, e2, . . . , em} be the natural basis vectors for Rm, then a more compact notation allows us to compute each
column of the Jacobian by

∂f(x0)

∂xj
=
f(x0 + hej)− f(x0)

h
. (11.76)

Typically, this is easier to program up than (11.70). But of course, your experience may vary! For a symmetric difference,
we’d use

∂f(x0)

∂xj
=
f(x0 + hej)− f(x0 − hej)

2h
. (11.77)

11.7.4 Linear Approximation of Vector Valued Functions

Our goal remains to build linear approximations of the form f(x) ≈ f(x0) + A(x − x0). Just as with our previous investigations,
the matrix A is associated with derivatives of the function. In fact, we have

f(x) ≈ f(x0) +
∂f(x0)

∂x︸ ︷︷ ︸
A

(x− x0), (11.78)

in other words, A := ∂f(x)
∂x

∣∣∣
x=x0

.
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Example 11.12 For the function

f(x1, x2, x3) :=

 x1x2x3
log(2 + cos(x1)) + xx1

2
x1x3

1+x2
2

 , (11.79)

compute its Jacobian at the point

x0 =

 π
1.0
2.0


and evaluate the “accuracy” of its linear approximation.

Solution Using Symmetric Differences, the Jacobian at x0 is

A =
∂f(x0)

∂x
≈

 2.00 6.28 3.14
0.00 3.14 0.00
1.00 −3.14 1.57

 (11.80)

Figure 11.11 is the limit of what we can show in plots. Another way to think about the question of assessing the quality of the linear
approximation is to measure the error defined as

e(x) := ||f(x)− flin(x)||,

where flin(x) := f(x0) +
∂f(x0)

∂x (x − x0). We will seek to estimate the maximum value of e(x) over a region containing the point
x0. Define

S(x0) := {x ∈ R3 | |xi − x0i| ≤ d, i = 1, 2, 3}

and
Max Error := max

x∈S(x0)
e(x) = max

x∈S(x0)
||f(x)− flin(x)||. (11.81)

The for d = 0.25, we used a “random search” routine and estimate that

Max Error = 0.12.

To put this into context,
max

x∈S(x0)
||f(x)|| = 8.47,

and thus the relative error is about 1.5%. ■
If you made it to here, you should loop back to Chap. 11.6.

11.8 Looking Ahead
We’ve seen that an interesting idea from Calculus, called the derivative, allows nonlinear functions to be approximated by linear
functions. The matrices resulting from a derivative, gradient, or Jacobian were instrumental in building algorithms to find roots of
nonlinear equations.

In this next Chapter, we’ll use the derivative and the gradient to understand algorithms for finding a minimum or a maximum of a
function. We’ll be able to greatly extend the ideas we developed in Chapters 8.2 for least squared error solutions to Ax = b when it
had no solutions, Chapter 8.3 for regression of functions to data, and Chapter 9.9, where we were able to identify a unique solution
of minimum norm when Ax = b had an infinite number of solutions.
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Chapter 12

Changing Gears Again: Basic Ideas of
Optimization

Learning Objectives
• Mathematics is used to describe physical phenomena, pose engineering problems, and solve engineering problems. We close

our Y1-introduction to Computational Linear Algebra by showing how linear algebra and computation allow you to use a
notion of “optimality” as a criterion for selecting among a set of solutions to an engineering problem.

Outcomes
• Arg min should be thought of as another function in your toolbox,

x∗ = argmin
x∈Rm

f(x).

• Extrema of a function occur at places where the function’s first derivative vanishes.

• The gradient of a function points in the direction of maximum rate of growth.

• We will add to our knowledge of derivatives, specifically, second derivative.

• Second-order optimization methods are based on root finding

• Convex functions have global minima

• Quadratic programs are special kinds of least squares problems

• Optimization packages in Julia provide amazing tools for optimizing functions

261



12.1 Motivation and Basic Ideas

(a) (b)

Figure 12.1: (a) A “simple” cost function with a global minimum at x∗ = 2 and (b) a “less simple” cost function where there are two
local minima, one at x∗ ≈ 0.68 and one at x∗ ≈ 3.14, as well as a local maximum at ≈ 2.1.

Optimization is the process of finding one or more values x ∈ Rm that minimize a function f : Rm → R, where the scalar-valued
function f is called the cost function. The cost should be minimum at a point x∗ that is of interest to you, it should be “small”
for values of x that are “near” x∗ and it should be “large” for values of x that are “far” from your preferred value, x∗. In Machine
Learning, a cost function for minimization is also called a regret function in the sense that you regret being far from your preferred
value, x∗, and your regret is minimum at x∗. We will abuse notation1 and write

x∗ = argmin
x∈Rm

f(x) (12.1)

to denote the value of x achieving the minimum, even when there may be more than one such x.

One can also do the opposite of minimization, which is to maximize a cost function. In this case, the Machine Learning community
calls the cost function a reward, because hey, who does not like to maximize reward and minimize regret! We will stick to mini-
mization throughout the Chapter until the very end, when we’ll discuss briefly how maximization and minimization are very closely
related.

When m = 1, that is, the cost function depends on a scalar variable, it is easy to graphically understand what minimization is all
about. Figure 12.1a shows a “bowl-shaped” function that has a minimum at x∗ = 2. Moreover, if the function outside of the interval
[−1, 5] continues growing as shown, then x∗ = 2 is a global minimum, meaning that for all x ̸= x∗,

f(x∗) < f(x).

Even more special, if you imagine setting a marble on the curve at any point other than x∗ = 2, you can easily imagine the marble
rolling and settling at the global minimum (assuming some friction).

On the other hand, Fig. 12.1b presents a more complicated situation, where if the function outside of the interval [−1, 5] continues
growing as shown, then there is a global minimum at x∗a ≈ 0.68, but if you set a marble near x = 4, you can imagine it getting stuck
at the local bowl at x∗b ≈ 3.14, while if you start the marble at x = 1.5, you can imagine it settling in at the local bowl x∗a ≈ 0.68.
The local bowls in the cost function are called local minima in that for all x sufficiently near one of the x∗i ,

f(x∗i ) ≤ f(x),

for i ∈ {a, b}.

1Abusing notation means that one is being a bit sloppy with one’s use of symbols, which is what notation is! One often abuses notation when doing the right thing
is a bit painful and would cause more of a distraction to explain the good notation than to caution about using poor notation!
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(a) (b)

Figure 12.2: The derivatives of the cost functions have been added at strategic points. (a) A “simple” cost function with a global
minimum at x∗ = 2 and (b) a “less simple” cost function where there are two local minima, one at x∗ ≈ 0.68 and one at x∗ ≈ 3.14,
and a local maximum at 2.1.

Derivative of the Cost Tells You How to Move Toward a Local Minimum

In Fig. 12.2, we have plotted the derivatives of the cost functions at several points. Recall that the slope of the line segment
at each point is equal to the derivative at that point. The plots tell us some really important things:

• the derivative of the cost is zero at each local minimum;

• to the left of a local minimum, the derivative is negative (slope angles downward), while to the right of a local minimum,
the derivative is positive (slope angles upward);

• hence, if you are at a point xk, defining the next value as

xk+1 = xk − s
df(xk)

dx
, (12.2)

where s > 0 is called the step size, moves you in the direction of a local minimum (of course, if s > 0 is too large, you
can overshoot the local minimum);

• because the derivative is zero at a local minimum, we can use the value of the derivative as a stopping criterion for the
algorithm in (12.2); and

• the derivative also vanishes at local maxima, and hence if you start the algorithm in (12.2) at a local maxima, you will
be stuck there!

Example 12.1 Implement (12.2) in Julia to find local minima of f : R→ R by

f(x) = (x− 2)2 + 5(sin(x− 2))2 + 0.03(x+ 1)3 + 4.

Solution: We wrote the Julia code given below and selected a set of initial conditions

x0 ∈
{
−1.00 0.00 0.68 2.10 2.15 3.14 4.00 5.00

}
(12.3)

for the Algorithm (12.2) such that it would be started to the left and right of local minima and very close to the local maxima. The
results are reported in (12.4) for a step size of h = 0.1 and in (12.5) for a step size of h = 0.2. The Algorithm converged quickly in
all cases for a step size of h = 0.1 and mostly failed for a step size of h = 0.2 (we set a limit of 103 iterations before terminating).
You have to chose your step sizes carefully! for h = 0.1, when started just to the left of the local maximum, the algorithm con-
verged to the local minimum at 0.68 and when started just to the right of the local maximum, it coverged to the local minimum at 3.14.
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1 #Optimization
2 cost2(x)=(x.-2).^2 .+ 1 .- 5*(sin.(x.-2)).^2 .+ 3 .+ 0.03*(x.+1).^3
3 titre ="Less Simple Example"
4 p2=plot(cost2,xmin,xmax,legend=false, title=titre, linewidth=3, color=:red )
5 s=0.2
6 delta=0.01
7 x0=[-1;0;0.68;2.1;2.15;3.14;4;5]
8 y0=cost2(x0)
9 IntermediateValues=Array{Float64}(undef, 0, 6)

10 for k =1:length(x0) #try various initial values of x0
11 xk=x0[k]
12 dcostdxk =( cost2(xk+delta)-cost2(xk-delta) )/(2*delta)
13 fk=cost2(xk)
14 j=0
15 while (abs(dcostdxk)>1e-5)&(j < 1e3)
16 j=j+1
17 xk=xk-s*dcostdxk
18 dcostdxk =( cost2(xk+delta)-cost2(xk-delta) )/(2*delta)
19 fk=cost2(xk)
20 end
21 IntermediateValues=[IntermediateValues; j s x0[k] xk fk dcostdxk]
22 end
23 display(IntermediateValues)
24 # Show how to get latex code for printing matrices
25 using Latexify
26 set_default(fmt = "%.3f", convert_unicode = false)
27 latexify (IntermediateValues) |> print

N0. Iterations s x0 x∗ f(x∗) df(x∗)
dx

6 0.100 −1.000 0.678 1.193 0.000
6 0.100 0.000 0.678 1.193 0.000
4 0.100 0.680 0.678 1.193 0.000
15 0.100 2.100 0.678 1.193 0.000
12 0.100 2.150 3.137 3.300 0.000
4 0.100 3.140 3.137 3.300 0.000
7 0.100 4.000 3.137 3.300 0.000
8 0.100 5.000 3.137 3.300 0.000

(12.4)

N0. Iterations s x0 x∗ f(x∗) df(x∗)
dx

FAILED 0.200 −1.000 XX XX XX
FAILED 0.200 0.000 XX XX XX
FAILED 0.200 0.680 XX XX XX
FAILED 0.200 2.100 XX XX XX

65 0.200 2.150 3.137 3.300 0.000
47 0.200 3.140 3.137 3.300 −0.000

FAILED 0.200 4.000 XX XX1 XX
69 0.200 5.000 3.137 3.300 −0.000

(12.5)

■.

We give next a more analytical take on our update law in (12.2). Which derivation is better? The intuition from plots or an analysis
via linear approximations? The answer depends on how your brain is wired. I would say the best derivation is the one that gives you
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that “ah ha” moment!

Linear Approximation to the Rescue!

Let’s recall our linear approximation to a function f : R→ R near a point xk by

f(x) ≈ f(xk) +
df(xk)

dx
(x− xk) . (12.6)

We seek to define xk+1 so that f(xk+1) < f(xk), that is, f(xk+1)− f(xk) < 0. We define ∆xk := xk+1−xk and note that
(12.6) gives

f(xk+1)− f(xk) ≈
df(xk)

dx
∆xk. (12.7)

If we believe in the approximation (which is fine as long as xk+1 is “near” xk), then we can replace the approximation sign
with an equals sign so that

f(xk+1)− f(xk) < 0 ⇐⇒ df(xk)

dx
∆xk < 0. (12.8)

We see that if df(xk)
dx = 0, there is no choice of ∆xk that yields df(xk)

dx ∆xk < 0, which is why the derivative vanishing is our
stopping criterion for a local extremum. We assume therefore df(xk)

dx ̸= 0, in which case

∆xk = −sdf(xk)
dx

=⇒ df(xk)

dx
∆xk = −s

[
df(xk)

dx

]2
< 0 for all s > 0,

and our update law becomes

xk+1 = xk +∆xk = xk − s
df(xk)

dx
,

which agrees with (12.2).

12.2 Contour Plots and the Gradient of the Cost

We acquired some good intuition by looking at plots of cost functions depending on a scalar variable x ∈ R. We’ll now augment our
intuition by exploring the case x ∈ R2. We’ll look at contour plots of cost functions. We’ll also encounter an important property
of the gradient of a cost function that will generalize to arbitrary dimensions.

We introduced the norm of a vector as a means to measure the length of vectors. We used the square of the norm in Chapter 8.2 to
find a least squared error solution to a system of linear equations2. In engineering, the square of the norm is a very common cost
function. In Fig. 12.3a we plot

f(x) := ||x||2 = (x1)
2 + (x2)

2

on the z-axis versus x1 and x2. It’s hard to imagine anything simpler to optimize! From the plot, we see a “generalized bowl shape”,
though it’s hard to clearly identify where the minimum value occurs (yes, we know it occurs at x = 0). To the right of the plot, in
Fig. 12.3b, we show a contour plot of f(x1, x2). The circles about the origin show values of x = (x1, x2) where the cost function is
constant; in the inner circle, f(x) = ||x||2 = 1, then f(x) = ||x||2 = 4, . . ., until f(x) = ||x||2 = 25. In the contour plot, it is easy
to see where the minimum value occurs.

Similarly, in Fig. 12.3c, we show a plot of

f(x) = ||x− x0||2 = (x1 − x01)2 + (x2 − x02)2 (12.9)

for x0 = [1; 2]. In the corresponding contour plot, Fig. 12.3d, it is equally easy to see where the minimum occurs. We will use the
contour plots to show the correct direction to follow from a given point xk so that one moves efficiently toward a value of x∗ that is
a local minimum.

2Recall that used the square of the norm when assessing the error e := Ax− b in equations that do not have exact solutions.
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(a) (b)

(c) (d)

Figure 12.3: The graphs of two functions are shown in (a) and (c), with their corresponding contour plots shown in (b) and (d).
Contour plots are lines where a function is constant. If you have ever used a topographical map when hiking, the lines on those maps
indicate constant terrain height. In our case, the lines are constant z = f(x1, x2) values as (x1, x2) vary. Because the cost function
we use here is very simple, its lines of constant contour are circles. More “interesting” examples will follow.

Recall that the gradient of (12.9) is a row 3 vector of the form ∇f(x) =
[
∂f(x)
∂x1

∂f(x)
∂x2

]
. Hence, the transpose of the gradient is a

column vector in R2, namely

[∇f(x)]⊤ =

[
∂f(x)
∂x1

∂f(x)
∂x2

]
. (12.10)

Figure 12.4a shows two contour plots. In addition, we have plotted in green arrows the gradients of the cost functions at several
points and overlaid them on the contour plots. In both cases, the gradients are pointing in the direction of maximum increase of the
function. It follows that the negative of the gradient is the direction of maximum decrease.
In Fig. 12.4, we could not plot the gradients at the minima because the length of the gradient vector is zero at a (local) minimum! In
case you want to see why this is true, from Calculus, one obtains that

∇
(
(x1 − x01)2 + (x2 − x02)2

)
= 2(x1 − x01) + 2(x2 − x02) (12.11)

∇
(
(Ax− b)⊤ · (Ax− b)

)
= 2(Ax− b)⊤ ·A. (12.12)

The minimum of (x1−x01)2+(x2−x02)2 occurs at x∗1 = x01 and x∗2 = x02, and indeed, the gradient vanishes at x∗. The minimum
of ||Ax− b||2 = (Ax− b)⊤ · (Ax− b) satisfies A⊤ ·Ax∗ = A⊤b, and direct substitution into the corresponding gradient shows that
it vanishes as well. While this is not a proof, it gives you a hint that the gradient vanishing at a local minimum may be true.

3From Calculus, in this case, the exact formula is ∇f(x) = [ 2(x1 − x01) 2(x2 − x02) ]
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(a) (b)

Figure 12.4: Contour Plots plus Gradients. (a) shows a very simple cost function, ||x− [1; 2]||2, where the contours of constant cost
are circles. (b) shows a more typical situation, where the contours are squeezed in one direction. In both cases, the gradients, plotted
in green arrows, are pointing in the direction of maximum increase of the function. Hence, the negative of the gradient is the direction
of maximum decrease.

12.3 Gradient Descent
Gradient Descent

Equations (12.11) and (12.12) along with Fig. 12.4 tell us some really important things:

• the gradient vanishes at local minima;

• the gradient points in the direction of fastest growth of the cost function, and the negative of the gradient points in the
direction of fastest decrease;

• hence, if you are at a point xk, defining the next value as

xk+1 = xk − s [∇f(xk)]⊤ , (12.13)

where s > 0 is called the step size, moves you in the direction of a local minimum (of course, if s > 0 is too large, you
can overshoot the local minimum);

• because the gradient is zero at a local minimum, we can use the value of the norm of the gradient as a stopping criterion
for the algorithm in (12.13); and

• the gradient also vanishes at local maxima, and hence if you start the algorithm in (12.13) at a local maxima, you will
be stuck there.

Before doing examples, we’ll also show we can derive (12.13) from the linear approximation of f : Rm → R near a point xk, namely,

f(x) ≈ f(xk) +∇f(xk) (x− xk) , (12.14)

where ∇f(xk) is the gradient of f at xk and is a 1 × m row vector. We seek to define xk+1 so that f(xk+1) < f(xk), that is,
f(xk+1)− f(xk) < 0. We define ∆xk := xk+1 − xk and note that (12.14) gives

f(xk+1)− f(xk) ≈ ∇f(xk)∆xk. (12.15)

If we believe in the approximation (which is fine as long as xk+1 is “near” xk), then we can replace the approximation sign with an
equals sign so that

f(xk+1)− f(xk) < 0 ⇐⇒ ∇f(xk)∆xk < 0. (12.16)

We see that if ∇f(xk) = 0, there is no choice of ∆xk that yields ∇f(xk)∆xk0 < 0, which is why the gradient vanishing is our
stopping criterion for a local extremum. We assume therefore∇f(xk) ̸= 0, in which case selecting

∆xk = −s [∇f(xk)]⊤ =⇒ ∇f(xk)∆xk = −s|| [∇f(xk)]⊤ ||2 < 0 for all s > 0.

267



Our update law is then
xk+1 = xk +∆xk = xk − s [∇f(xk)]⊤ ,

which agrees with (12.13).

Remark: There are easy variations of the Gradient Descent Algorithm, Plestan-2020. Let’s note that our key condition is

∇f(xk)∆xk < 0.

If we define the i-th component of ∆xk by

(∆xk)i :=

{
0 ∂f(xk)

∂xi
= 0

−s sign
(

∂f(xk)
∂xi

)
otherwise

,

then it is still true that∇f(xk)∆xk < 0 ⇐⇒ ∇f(xk) ̸= 01×m, and thus we are moving in a descent direction.

Example 12.2 We’ll re-visit the least squares problem from Chapter 8.3, and use gradient descent as given in (12.13) to solve

x∗ = argmin
x∈Rm

||Ax− b||2

and compare it to the closed-form solution
(
A⊤A

)
x∗ = A⊤b, for

A =



1.0000 0.0000 0.0000
1.0000 0.2500 0.0625
1.0000 0.5000 0.2500
1.0000 0.7500 0.5625
1.0000 1.0000 1.0000
1.0000 1.2500 1.5625
1.0000 1.5000 2.2500
1.0000 1.7500 3.0625
1.0000 2.0000 4.0000


and b =



1.0000
1.0000
1.5000
2.0000
3.0000
4.2500
5.5000
7.0000
10.0000


.

Solution: We apply gradient descent as given in (12.13) to the optimization problem,

x∗ = argmin
x∈R3

(Ax− b)⊤ (Ax− b) .

We use symmetric differences to compute the gradient of

f(x) := (Ax− b)⊤ (Ax− b) ,

set the step size to s = 0.01, and the tolerance to ||∇f(xk)|| < 10−5. After 2,673 iterations, we obtain

xapprox =

 1.065144e+ 00
−6.257368e− 01
2.454536e+ 00

 . (12.17)

For comparison purposes, we recall that the true answer is

x∗ =

 1.065152e+ 00
−6.257576e− 01
2.454545e+ 00

 . (12.18)

■
The true power of optimization becomes clear when we use it to solve problems that do NOT have closed-form solutions. Check out
the next section!
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12.4 Extrinsic Calibration Using Gradient Descent
Extrinsic calibration is the problem of finding a rotation matrix and a translation vector that allows one to transform the 3D-(x, y, z)
points measured by a LiDAR so as to align them with the data captured by a camera. The problem is interesting because it is easy to
show visually what one wants to accomplish, but yet, how to formulate the objective mathematically is not clear at first glance, and
for sure, there is no obvious “equation” to solve in order to compute a solution.
Here, we’ll go into enough detail that we can formulate an optimization problem for “aligning” the scenes observed by the LiDAR
and the camera. We’ll first address the optimization problem using gradient descent and later, we’ll use a more efficient technique
that uses “higher-order” information about the cost function. The difference in the rates of convergence is mind blowing.

12.4.1 Introduction
Currently, basic cameras provide many more data points (pixels) for a given surface size at a given distance than even high-end
LiDARs. However, cameras rely on the consistency of the ambient lighting and provide less accurate depth estimation. On the other
hand, LiDARs give accurate distance measurement, and rapidly changing ambient lighting will not affect measurements of a LiDAR.
Due to these different inherent properties of LiDARs and cameras, it is necessary to “fuse” the LiDAR and the camera on Cassie’s
torso, as shown in Fig. 12.7. By fusing, we mean overlaying a point cloud from a LiDAR to an image from a camera. The process
of fusing two or more different types of data from different sensors is called an “extrinsic calibration”. The problem requires high
accuracy and precision; a little error in the process leads to an unusable result, as shown in Fig. 12.5b.

(a) (b)

Figure 12.5: a shows good alignment of a LiDAR point cloud projected onto a camera image. b shows that a calibration result is not
usable if it has a few degrees of rotation error and a few percent of translation error.

(a) (b)

Figure 12.6: a shows a normal image and b illustrates the result of edge detection applied on a.
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When we calibrate sensors, we need to find corresponding “features” captured from different sensors. Features are some specific
structures in an environment, such as points, edges or corners, etc. Figure 12.6 considers edges as features and extracts them out from
an image. Once we find “enough” corresponding features, we want to estimate a “rigid-body transformation” between each sensor
that we want to calibrate. A rigid-body transformation H consists of a rotation matrix R and a translation vector t and is defined as

H :=

[
R t
0 1

]
. (12.19)

When calibrating two sensors, it is good practice to indicate how the transformation is defined, by specifying that is a transformation
from which sensor to which other sensor! We will use the notationR to sensor2

from sensor1 and t to sensor2
from sensor1 to represent the rotation and translation

from the sensor 1 to sensor 2.

In the following, we will illustrate how to perform an extrinsic calibration between a LiDAR and a camera. We will walk you
through the calibration process and provide some insight on how we try to take advantage of their relative strengths and avoid their
weaknesses. All the images and data are collected from the torso of Cassie Blue, as shown in Fig. 12.5a.

Figure 12.7: This figure shows the torso of Cassie Blue. We use it in practice to do our autonomy adventures!

12.4.2 Problem Setup and Initial Solution
In this problem, we take corners as our features, as shown in Fig. 12.8. In particular, we want to align the LiDAR vertices (green dots)
with the camera corners (red dots) in Fig. 12.8b. Additionally, we assume all corresponding corners from the two sensors are already
given4, and the process of feature extraction is uploaded to our YouTube Channel! Let X and Y be the features from a LiDAR and a
camera, respectively. When overlaying the two sets of features, we want the their respective coordinates in the camera frame to be as
close as possible. Therefore, the problem can be formulated as(

RC
L

∗
, tCL

∗)
:= argmin

R,t
f(R, t,X, Y )

:= argmin
R,t

4n∑
i=1

∥Π(Xi;R, t)− CYi∥22,
(12.20)

where RC
L and tCL are the rotation and translation from the LiDAR frame to the camera frame, f is the cost function, and Π is a

projection map, which we will not dive into in here, but is provided in Appendix C.8. For now, you can consider it as a black box that
takes points in 3D space and maps them to their corresponding points on the 2D image-plane of the camera. We apply the gradient
descent algorithm to solve (12.20) and the update function is:

Hk+1 = Hk − s[∇f(Hk, X, Y )]T. (12.21)

4To understand how to obtain corresponding corners, we encourage the readers to read “Improvements to Target-Based 3D LiDAR to Camera Calibration,” by
Jiunn-Kai Huang and Jessy W. Grizzle.
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After 5745 iterations with a step size of 1e-8, the cost drops from 49750 to 12.12, and the result is shown in Fig. 12.9. Later, we will
introduce a second-order method, the “Hessian,” to solve this problem and you will be amazed when the Hessian-based algorithm
converges in 14 iterations! Knowledge is power!

Remark: If you look into the implementation, you will find out that we do not represent the rotation matrix with nine elements even
through it is a 3× 3 matrix,

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (12.22)

Instead, we use a fact you would learn in an upper level math course or a mechanics course, which says that any rotation matrix can
be represented as the “matrix exponential” of a 3× 3 skew symmetric matrix of the form

Ω :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
Hence, a rotation matrix depends on only three parameters, (ω1, ω2, ω3). (It’s hard to learn too much Linear Algebra; there is always
one more useful fact!). Knowledge is power. Keep digging, and you will keep having fun.

(a)

(b) (c)

Figure 12.8: a shows the LiDAR returns on the targets in black and estimated vertices in red. b illustrates the initial state of the
optimization in (12.20). Our goal is to move the green dots onto the red dots, or you can also imagine moving the yellow box to
the magenta box. c demonstrates the result of calibration: the LiDAR vertices (green dots) are successfully projected onto a camera
corners (red dots).
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Figure 12.9: This figure demonstrates the calibration result of the gradient descent algorithm. It looks pretty good; there is still some
misalignment. The main drawback of the algorithm would that a very small step size if often required to make it work.
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12.5 Optimization as a Root Finding Problem: the Hessian
Gradient descent is a powerful method to solve optimization problems and we’ve seen it in two contexts so far: finding a (local) min-
imum of a cost function that depends on a scalar variable x in (12.2), and finding a (local) minimum of a cost function that depends
on a vector variable x = (x1, x2, . . . , xm) in (12.13). Our stopping criterion was |df(xk)

dx | “sufficiently small” for scalar problems
and || [∇f(xk)]⊤ || “sufficiently small” for vector problems. In other words, a (locally) optimal solution x∗ satisfies df(x∗)/dx = 0
for scalar problems and ∇f(x∗) = 0 for vector problems. Said yet another way, our locally minimizing solutions are roots of the
derivative of the cost function.

Relation to Root Finding
Suppose we seek a point x∗ ∈ R achieving a local minimum (or maximum) of a function f : R → R. We know that a
necessary condition is the derivative of f vanishes at x∗, that is,

df(x)

dx

∣∣∣∣
x=x∗

= 0.

We note that the first derivative is just another real-valued function, namely,

df(x)

dx
: R→ R.

Hence, we can say that for x∗ to achieve a minimum (or maximum) of the function f : R → R, it must be a root of
df(x)
dx : R → R. If we apply Newton’s Method to the function g(x) := df(x)

dx to find its roots, we’ll need to find the first
derivative of g(x), which will lead us to the second derivative of the original function f(x). This may sound overwhelming
or intimidating, but shortly we will disabuse you of such concerns!

Next, suppose we seek a vector x∗ ∈ Rm that achieves a local minimum (or maximum) of a function f : Rm → R. We know
that a necessary condition is the gradient of f vanishes at x∗, that is,

∇f(x∗) = 01×m.

We note that the transpose of the gradient is just another vector-valued function, namely,

∇f(x)⊤ : Rm → Rm;

we use the transpose to turn a row vector into a column vector. Because the gradient must vanish at a local min (or max),
we can say that for x∗ to be a local minimum (or maximum) of the function f : Rm → R, it must be a root of ∇f(x)⊤ :

Rm → Rm. If we apply the Newton-Raphson Method to the function g(x) := ∇f(x)⊤ to find its roots, we’ll need to find
the Jacobian of g(x), which will lead us to a vector-version of the second derivative of the original function f(x). This may
sound overwhelming or intimidating, but shortly, we will once again disabuse you of such concerns! The Jacobian of the
gradient has a cool name, the Hessian.

In Chapter 11, we learned a lot about finding roots of nonlinear equations. We will now apply that knowledge to optimization and
thereby arrive at a more powerful optimization algorithm that uses information about the second derivative of the cost function! That
sounds pretty wild and scary, but you’ll see that it’s very do-able.

12.5.1 Second Derivatives
Calculus has developed some good notation over the past 300 plus years and we will use it. The second derivative of a function
f : R→ R is the first derivative of the function’s first derivative, and is written like this,

d2f(x)

dx2
:=

d

dx

df(x)

dx
. (12.23)

Let’s write down the derivative of the derivative using the symmetric difference approximation to the derivative. We first recall that

df(x)

dx
≈ f(x+ h)− f(x− h)

2h
, (12.24)
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where h > 0 is a small number. Let’s use δ > 0 instead of h for a small positive change in x when writing down the second derivative
as a symmetric difference

d2f(x)

dx2
≈

df(x+δ)
dx − df(x−δ)

dx

2δ
. (12.25)

We now substitute (12.24) into (12.25) to obtain

d2f(x)

dx2
≈

[
f(x+δ+h)−f(x+δ−h)

2h

]
−
[
f(x−δ+h)−f(x−δ−h)

2h

]
2δ

=
[f(x+ δ + h)− f(x+ δ − h)]− [f(x− δ + h)− f(x− δ − h)]

4hδ

=
f(x+ δ + h)− f(x+ δ − h)− f(x− δ + h) + f(x− δ − h)

4hδ
.

(12.26)

Equation (12.26) is a perfectly fine expression for the second derivative. At least for your author, keeping δ and h separate made it
easier to evaluate the individual terms and see how they appeared in the equation. Your experience may vary! It’s more traditional to
take δ = h, which we now do so as to arrive at our final expression,

d2f(x)

dx2
≈ f(x+ 2h)− 2f(x) + f(x− 2h)

4h2
. (12.27)

In terms of coding, computing a numerical approximation to the second derivative is not much different than approximating the first
derivative. Comparing (12.27) to (11.7), we see there is one more term to compute and instead of dividing by 2h, we divide by 4h2.

Note that if you took h > 0 to be something relatively “small”, such as 10−3, then h2 is now really small, such as 10−6. Be careful
that you do not approach “machine epsilon” when doing your approximate derivatives!

12.5.2 The Hessian is the Jacobian of the Transpose of the Gradient
As the title of this section suggests, we define the Hessian of a function f : Rm → R as the Jacobian of the transpose of the gradient
of the function. Using notation that comes to us from Calculus, we have that

∇2f(x) :=
∂

∂x
[∇f(x)]⊤ , (12.28)

where∇2f(x) is the notation for the Hessian of f at the point x. We underline that here, the function f depends on a vector x ∈ Rm

and that f(x) ∈ R is a scalar. If f(x) ∈ Rn, for n > 1, then the above formula makes no sense...it is just a bunch of meaningless
symbols.

Equation (12.28) is a lot of notation packed into one tiny formula! Let’s unpack it so as to understand it bit by bit. For a function
f : Rm → R, the transpose of its gradient is

[∇f(x)]⊤ :=



∂f(x)
∂x1

...
∂f(x)
∂xk

...
∂f(x)
∂xm


. (12.29)

Moreover, we can approximate the indicated partial derivatives using symmetric differences,

∂f(x)

∂xk
=
f(x+ hek)− f(x− hek)

2h
, (12.30)

where {e1, . . . , ek, . . . , em} is the natural basis vectors for Rm. For a function g : Rm → Rm, we recall that its Jacobian is

∂g(x)

∂x
:=
[

∂g(x)
∂x1

· · · ∂g(x)
∂xj

· · · ∂g(x)
∂xm

]
. (12.31)

Moreover, we know how to numerically approximate the partial derivatives in (12.31) using symmetric differences and selecting
δ > 0 by

∂g(x)

∂xj
=
g(x+ δej)− g(x− δej)

2δ
. (12.32)
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To put all of this together, we take

g(x) := [∇f(x)]⊤

and apply (12.32) to obtain a first numerical approximation for the Hessian, namely

∇2f(x) ≈ 1

2δ

[ (
∇f(x+ δe1)−∇f(x− δe1)

)⊤ · · ·
(
∇f(x+ δek)−∇f(x− δek)

)⊤ · · ·
(
∇f(x+ δem)−∇f(x− δem)

)⊤ ]
.

(12.33)
Going one step further, if we let

[
∇2f(x)

]
ij

be the ij-entry of the Hessian matrix (that is, the entry for its i-th row and j-th column),
using (12.30), we have that

[
∇2f(x)

]
ij

≈ 1

4hδ

(
f(x+ hei + δej)− f(x+ hei − δej)− f(x− hei + δej) + f(x− hei − δej)

)
. (12.34)

In this case, setting δ = h does not really simplify the expression. In Julia, we suspect that you will find (12.33) the easiest to
implement.

Remark: In Calculus, we also use the notation

∂2f(x)

∂xi∂xj
:=
[
∇2f(x)

]
ij
.

In (12.34), when you take h = δ, you can see that [
∇2f(x)

]
ji
=
[
∇2f(x)

]
ij

and therefore the Hessian is a symmetric matrix.

12.5.3 Use of the Second Derivative and Hessian in Optimization

The most accessible forms of second-order optimization methods are based on applying Newton’s method to the first derivative of a
cost function that depends on a scalar variable x ∈ R or the Newton-Raphson Algorithm to the (transpose of the) gradient of a cost
function that depends on a vector variable x ∈ Rm.

Optimization as a Form of Root Finding: Scalar Decision Variable
For f : R→ R, the iterative process

xk+1 = xk −
(
d2f(xk)

dx2

)−1
df(xk)

dx
(12.35)

will converge to a local extremum of f if the initial value x0 is “well chosen”. Because the algorithm is looking for roots
of the first derivative, it is indifferent to whether the root is a local minimum or a local maximum. In Calculus, you will
learn that if the second derivative is positive at a point where the first derivative vanishes, then you have found a local
minimum. Similarly, a negative second derivative implies a local maximum.

The damped version of the algorithm

xk+1 = xk − s
(
d2f(xk)

dx2

)−1
df(xk)

dx
, (12.36)

where 0 < s < 1, typically performs better in practice. We note that the second derivative, d2f(x)
dx2 , can be approximated as

in (12.27).

All of the remarks made in Chapter 11 about the validity of Newton’s Algorithm apply here was well.
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Optimization as a Form of Root Finding: Vector Decision Variables
For f : Rm → R, the iterative process

∇2f(xk) ∆xk = − [∇f(xk)]⊤ (solve for ∆xk) (12.37)
xk+1 = xk +∆xk (use ∆xk to update our estimate of the optimal value) (12.38)

will converge to a local extremum of f if the initial value x0 is “well chosen”. Because the algorithm is looking for roots of
the gradient, it is indifferent to whether the root is a local minimum, a local maximum, or what is called a “saddle point”.
In Calculus, you will learn that if the Hessian is positive definite at a point where the gradient vanishes, then you
have found a local minimum. Similarly, a negative definite Hessian implies a local maximum. A discussion of these nice
properties is beyond the scope of ROB 101.

While for toy problems, we can use the matrix inverse to solve (12.37) for ∆xk, for larger problems, we recommend using an
LU Factorization or a QR Factorization. Once (12.37) has been solved, xk+1 is updated in (12.38) and the process repeats.
In practice, the damped version of the algorithm often works better, where one replaces (12.38) with

xk+1 = xk + s∆xk, (12.39)

for some 0 < s < 1. We note that the Hessian,∇2f(x), can be approximated with either (12.33) or (12.34).

All of the remarks made in Chapter 11 about the validity of the Newton-Raphson Algorithm apply here was well.

Don’t be Intimidated by the Notation!

While the equation
∇2f(xk) ∆xk = − [∇f(xk)]⊤

may look intimidating, it is just another linear equation Ax = b where A↔ ∇2f(xk), a square matrix, x↔ ∆xk, a column
vector of unknowns, and b ↔ − [∇f(xk)]⊤ is a column vector on the right-hand side of the equation. Hence, computing
∆xk is cake for you by now.

We re-do several of the previous examples.

Example 12.3 Based on Example 12.1, but this time, we implement (12.35) and (12.36) in Julia to find local extrema of f : R→ R,

f(x) = (x− 2)2 + 5(sin(x− 2))2 + 0.03(x+ 1)3 + 4.

Solution: We run the algorithm from the same initial conditions as in Example 12.1 and for two values of the step size, s ∈
{0.25, 1.0}. The reader should note that we got somewhat lucky, and each time the algorithm converged to a root of the first deriva-
tive! We’ve highlighted in blue where the algorithm actually converged to a local maximum instead of a local minimum. How could
we tell? The second derivative being positive implies a local minimum while it being negative implies a local maximum.

We note that the rate of convergence is much faster than for gradient descent (here, faster means fewer iterations of the algorithm).
Finally, we note that the point to which the algorithm converges does depend on the initial condition. In fact, for s = 0.25 and
s = 1.0, the algorithm sometimes converges to different roots of the first derivative, even when initialized at the same point.

If you can design a cost function so that it has a single extrema and it is your desired minimum, then you can avoid many of these
problems. We talk a little about this in the section on “Local vs Global”.
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N0. Iterations s x0 x∗ f(x∗) df(x∗)
dx

d2f(x∗)
dx2

2.2000e+ 01 1.0000e+ 00 −1.0000e+ 00 3.1369e+ 00 3.3002e+ 00 −4.5648e− 09 9.2092e+ 00
4.0000e+ 00 1.0000e+ 00 0.0000e+ 00 6.7838e− 01 1.1926e+ 00 −5.9785e− 07 1.1085e+ 01
2.0000e+ 00 1.0000e+ 00 6.8000e− 01 6.7838e− 01 1.1926e+ 00 6.9886e− 10 1.1085e+ 01

2.0000e+ 00 1.0000e+ 00 2.1000e+ 00 2.1099e+ 00 4.8543e+ 00 −1.6541e− 08 −7.1982e+ 00
2.0000e+ 00 1.0000e+ 00 2.1500e+ 00 2.1099e+ 00 4.8543e+ 00 5.2104e− 07 −7.1982e+ 00
2.0000e+ 00 1.0000e+ 00 3.1400e+ 00 3.1369e+ 00 3.3002e+ 00 −2.8692e− 09 9.2092e+ 00
5.0000e+ 00 1.0000e+ 00 4.0000e+ 00 3.1369e+ 00 3.3002e+ 00 −2.6010e− 09 9.2092e+ 00
2.3000e+ 01 1.0000e+ 00 5.0000e+ 00 −2.4271e+ 01 3.1198e+ 02 1.2562e− 09 4.3032e+ 00

(12.40)

N0. Iterations s x0 x∗ f(x∗) df(x∗)
dx

d2f(x∗)
dx2

1.2500e+ 02 2.5000e− 01 −1.0000e+ 00 −2.4271e+ 01 3.1198e+ 02 −9.2124e− 06 4.3033e+ 00
4.7000e+ 01 2.5000e− 01 0.0000e+ 00 6.7838e− 01 1.1926e+ 00 −9.7541e− 06 1.1085e+ 01
2.7000e+ 01 2.5000e− 01 6.8000e− 01 6.7838e− 01 1.1926e+ 00 7.6022e− 06 1.1085e+ 01

3.1000e+ 01 2.5000e− 01 2.1000e+ 00 2.1099e+ 00 4.8543e+ 00 9.5934e− 06 −7.1982e+ 00
3.6000e+ 01 2.5000e− 01 2.1500e+ 00 2.1099e+ 00 4.8543e+ 00 −8.9863e− 06 −7.1982e+ 00
2.8000e+ 01 2.5000e− 01 3.1400e+ 00 3.1369e+ 00 3.3002e+ 00 9.0254e− 06 9.2093e+ 00
4.8000e+ 01 2.5000e− 01 4.0000e+ 00 3.1369e+ 00 3.3002e+ 00 9.9328e− 06 9.2093e+ 00

6.8000e+ 01 2.5000e− 01 5.0000e+ 00 2.1099e+ 00 4.8543e+ 00 9.0945e− 06 −7.1982e+ 00
(12.41)

(a) (b) (c)

Figure 12.10: A cost function along with its first and second derivatives. We note that the extrema (both minima and maxima) in (a)
correspond to the zero crossings (aka roots) of the first derivative in (b). Moreover, the sign of the second derivative at roots of the
first derivative (aka, extrema) provides information on whether we have a local min, max, or neither.

An instantiation in Julia is given below.
■

1 #Data for Optimization, with the second derivative
2 #
3 # cost function
4 cost(x)=(x.-2).^2 .+ 1 .- 5*(sin.(x.-2)).^2 .+ 3 .+ 0.03*(x.+1).^3
5 yzero(x)=0.0*cost(x)
6 # x-perturbation for derivatives
7 delta=0.01
8 xmin=-1.0;xmax=5.0
9 # first derivative of cost

10 dcost(x)=(cost(x+delta)-cost(x-delta))/(2*delta)
11 # second derivative of cost
12 ddcost(x)=(dcost(x+delta)-dcost(x-delta))/(2*delta)
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13

14 # Plotting Commands for Figures
15 titre ="First Derivative Less Simple Example"
16 p2=plot(dcost,xmin,xmax,legend=false, title=titre, linewidth=3, color=:red )
17 plot!(yzero,xmin,xmax, linewidth=2, color=:blue)
18 xlabel!("x")
19 ylabel!("dcost(x)/dx")
20 titre ="Second Derivative Less Simple Example"
21 p3=plot(ddcost,xmin,xmax,legend=false, title=titre, linewidth=3, color=:red )
22 plot!(yzero,xmin,xmax, linewidth=2, color=:blue)
23 xlabel!("x")
24 ylabel!("d^2cost(x)/dx^2")
25

26 display(p2)
27 display(p3)
28

29 png(p2, "DerivativeLessSimpleCost")
30 png(p3, "SecondDerivativeLessSimpleCost")

1 # Second Order Optimization
2

3 s=0.25 # step size
4 x0=[-1;0;0.68;2.1;2.15;3.14;4;5] # Vector of initial conditions to show that different
5 # initial values lead to different local extrema
6 y0=cost(x0)
7 IntermediateValues=Array{Float64}(undef,0,7)
8 for j =1:length(x0)
9 xk=x0[j]

10 dcostdxk = dcost(xk)
11 ddcostdxk = ddcost(xk)
12 fk=cost(xk)
13 k=0
14 while (abs(dcostdxk)>1e-5)&(k < 1e3)
15 k=k+1
16 xk=xk-s*dcostdxk/ddcostdxk
17 fk=cost(xk)
18 dcostdxk = dcost(xk)
19 ddcostdxk = ddcost(xk)
20 end
21 IntermediateValues=[IntermediateValues; k s x0[j] xk fk dcostdxk ddcostdxk]
22 end
23 display(IntermediateValues)

Example 12.4 We re-visit the least squares problem from Example 12.2, which, in turn, came from Chapter 8.3. This time we use
the Hessian and second order methods given in (12.37) through (12.39) to solve

x∗ = argmin
x∈Rm

||Ax− b||2,
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where

A =



1.0000 0.0000 0.0000
1.0000 0.2500 0.0625
1.0000 0.5000 0.2500
1.0000 0.7500 0.5625
1.0000 1.0000 1.0000
1.0000 1.2500 1.5625
1.0000 1.5000 2.2500
1.0000 1.7500 3.0625
1.0000 2.0000 4.0000


and b =



1.0000
1.0000
1.5000
2.0000
3.0000
4.2500
5.5000
7.0000
10.0000


.

Solution: We apply Newton-Raphson to the gradient of the cost function

f(x) := (Ax− b)⊤ (Ax− b) ,

set the step size s ∈ {0.25, 1.0}, and the tolerance to ||∇f(xk)|| < 10−5. All derivatives are computed using symmetric differences
with h = 0.001. For comparison purposes, we recall that the true answer is

x∗ =

 1.065152e+ 00
−6.257576e− 01
2.454545e+ 00

 . (12.42)

For a step size of s = 1.0, and starting from the randomly generated initial condition

x0 :=

 1.923764e+ 00
5.579350e+ 00
3.273492e− 01

 , (12.43)

the algorithm converges in one step to

x∗ ≈

 1.065152e+ 00
−6.257576e− 01
2.454545e+ 00

 . (12.44)

Starting from the same initial condition and using a step size of s = 0.25, the algorithm converges in 58 iterations to

x∗ ≈

 1.065152e+ 00
−6.25757e− 01
2.454545e+ 00

 . (12.45)

Julia code associated with the above is given below. ■

1 # Hessian on least sqaures
2 dataSet2=[
3 1 0 1.0
4 2 0.25 1.0
5 3 0.5 1.5
6 4 0.75 2.0
7 5 1.0 3.0
8 6 1.25 4.25
9 7 1.5 5.5

10 8 1.75 7.0
11 9 2.0 10.0]
12 X=dataSet2[:,2]
13 Y=dataSet2[:,3]
14 Phi=[ones(9,1) X X.^2]
15 alphaStar=(Phi’*Phi)\(Phi’*Y)
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16 @show alphaStar # known optimal solution
17 #
18 F(x) = ( (Phi*[x[1];x[2];x[3]]-Y)’*(Phi*[x[1];x[2];x[3]]-Y) )

Output

alphaStar = [1.065151515151514, -0.6257575757575752, 2.4545454545454546]

F (generic function with 1 method)

1 function gradHess(f, x0, h=1e-3, delta=1e-3)
2 n=length(x0)
3 m=length(f(x0))
4 if m>1
5 return 0 # f does not map into R
6 end
7 H=zeros(n,n)
8 myGgrad=zeros(1,n)
9 Id=zeros(n,n)+I

10 for i=1:n
11 ei = Id[:,i]
12 myGgrad[i]=(f(x0+ h*ei) - f(x0 - h*ei))[1]/(2*h)
13 for j=1:n
14 ej = Id[:,j]
15 H[i,j]=(f(x0+h*ei+delta*ej)-f(x0+h*ei-delta*ej)-f(x0-h*ei+delta*ej)+f(x0-h*ei-delta*ej))

[1]/(4*h*delta)
16 end
17 end
18 return myGgrad, H
19 end

Output

gradHess (generic function with 3 methods)

1 xk = [1.9237640987871218; 5.579349855694035; 0.32734915035269596]
2 myGrad_xk, Hess_xk = gradHess(F,xk)
3

4 s=.25; #step size for Hessian search
5 k=0
6 while (k<1e3)&(norm(myGrad_xk)>1e-5)
7 Dxk=Hess_xk\(-myGrad_xk’)
8 #Dxk=inv(Hess_xk)*(myGrad_xk’) # Less desirable alternative
9 xk = xk + s*Dxk

10 myGrad_xk, Hess_xk = gradHess(F,xk)
11 k = k + 1
12 end
13

14 display([k F(xk) norm(myGrad_xk) det(Hess_xk)])
15 xk

Output

1x4 Matrix{Float64}:
58.0 0.450379 9.69047e-6 324.844

3x1 Matrix{Float64}:
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1.0651515638315818
-0.6257572239523093
2.454545333941787

Example 12.5 We revisit the extrinsic calibration problem of Chapter 12.4.1, but this time we use the Hessian. The update equation
in (12.21) is replaced with [

∇2f(Hk, X, Y )
]
∆Hk = −∇f(Hk, X, Y )⊤

Hk+1 = Hk + s∆Hk.
(12.46)

After 14 iterations (compared to 5745 iterations when using the gradient descent method) with a step size of 1.5, the problem
converges, and the cost drops to 12.113. The result is shown in Fig. 12.11. Compared to the first-order (gradient descent) method,
the second-order method (using the Hessian) is much faster!

Figure 12.11: This figure demonstrates the calibration result of the Hessian method. The results look similar to the gradient descent
algorithm in Fig 12.9 but the convergence speed when using the Hessian is 400 times faster than when using gradient descent.

The code to generate the results and figures for this problem is available on GitHub5 in MATLAB; how to do it in Julia is left as a
homework problem. Given the hints already provided in this Chapter, we expect you will have no trouble with it.

Example 12.6 Fitting with Radial Basis Functions, rbf(x) := ae−(x−xc)
2/(2s2), where a is a weight, xc is called a center, and s is

the width. We re-visit an example that was included in Project 2. We are given noisy measurements of the function

f(x) := cos(2πx)e−1, (12.47)

as shown in Fig. 12.12. From Project 2, we have a fit with three radial basis functions,

f̂(x) = 0.260− 0.409e
(x−2.39)2

2(0.25)2 − 0.464e
(x−1.59)2

2(0.25)2 + 0.137e
(x−2.06)2

2(0.25)2 ,

where the width parameter set to s = 0.25 for each function and the three centers were fixed as xc := [2.39, 1.59, 2.06]. Here,
we’ll optimize the width parameters, centers, and weights. The data is as follows:

5A platform we use to share our code. Just like you share your photos on Instagram!
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[xmeasured ymeasured] =



2.390 −0.104
1.870 0.112
2.130 0.074
1.470 −0.240
1.000 0.381
2.090 0.088
1.020 0.334
2.160 0.069
2.040 0.132
1.440 −0.204
2.030 0.128
2.170 0.017
1.290 −0.020
1.720 −0.032
1.260 −0.004
1.160 0.172
2.400 −0.085
1.850 0.068
1.990 0.137
1.340 −0.162
1.700 −0.068
1.590 −0.194
2.240 −0.006
2.110 0.109
2.440 −0.081
2.270 0.004
1.170 0.185
1.600 −0.134
1.760 −0.024
1.900 0.137
1.920 0.145
2.000 0.142
2.250 −0.007
1.680 −0.074
1.660 −0.147
2.480 −0.051
2.450 −0.049
1.250 0.022
2.420 −0.099
1.740 −0.027
1.620 −0.128
1.300 −0.051
1.280 −0.052
2.060 0.115



(12.48)

Solution: We will fit a function

fα(x) := a0 + a1e
−(x−xc,1)

2/(2s21) + a2e
−(x−xc,2)

2/(2s22) + a3e
−(x−xc,3)

2/(2s23), (12.49)
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Figure 12.12: The orange dots are the measured data. The green line is a fit via regression from Project 2.

where α, the vector of unknowns is

α =



s1
s2
s3
xc,1
xc,2
xc,3
a0
a1
a2
a3


. (12.50)

We define Y = ymeasured and

Ŷα :=


a0 + a1e

−(x1−xc,1)
2/(2s21) + a2e

−(x1−xc,2)
2/(2s22) + a3e

−(x1−xc,3)
2/(2s23)

a0 + a1e
−(x2−xc,1)

2/(2s21) + a2e
−(x2−xc,2)

2/(2s22) + a3e
−(x2−xc,3)

2/(2s23)

...

a0 + a1e
−(xN−xc,1)

2/(2s21) + a2e
−(xN−xc,2)

2/(2s22) + a3e
−(xN−xc,3)

2/(2s23)

 , (12.51)

where x1, x2, . . . , xN are values from xmeasured. We these definitions, the function to be minimized is

g(α) := (Y − Ŷα)⊤(Y − Ŷα). (12.52)

We apply the Hessian to find a minimizing set of parameters for g, namely

∇2g(αk) ∆αk = − [∇g(αk)]
⊤

(solve for ∆αk) (12.53)
αk+1 = αk + η∆αk (use ∆αk to update our estimate of the optimal value) (12.54)

with η = 0.2. The result is

α∗ =



0.330
0.270
0.167
2.421
1.485
1.724
0.522
−0.597
−0.735
0.000


(12.55)
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with a fitting error (minimum value of g) equal to 0.0165. Because a3 = 0, the fit only uses two of the RBFs.

Figure 12.13: The orange dots are the measured data. The green line is a fit via regression from Project 2, and the violet line is our fit
obtained with nonlinear optimization. All fits are given the freedom to use three RBFs.

■

Remark 4 In the code below, the function g : R10 → R is called myFunErrorSquared.

1 ThreeRBFs(x,weights,s_vec,centers) = weights[1] + weights[2]*rbf(x, centers[1], s_vec[1]) +
2 weights[3]*rbf(x, centers[2], s_vec[2]) + weights[4]*rbf(x, centers[3], s_vec[3])
3

4 function myFunErrorSquared(alpha,x=x_measured,y=y_measured)
5 Y=y_measured
6 N = length(Y)
7 Y_fit = zeros(N,1)
8 #
9 s_vec = alpha[1:3]

10 centers=alpha[4:6]
11 weights=alpha[7:10]
12 #
13 for i = 1:N
14 Y_fit[i] = ThreeRBFs(x[i], weights,s_vec,centers)
15 end
16 #
17 y_error = Y-Y_fit
18 errorSquared = y_error’ * y_error
19 return errorSquared[1]
20 end

Output

myFunErrorSquared (generic function with 3 methods)

1 h = .2
2 aTol = 1e-5
3 alphak=[.25*ones(3,1); centers; a_star]
4 errorSquared = myFunErrorSquared(alphak)
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5 println(" Initial fitting error is $errorSquared")
6 k=0
7 errorSquared = myFunErrorSquared(alphak)
8 myGgrad, H = gradHess(myFunErrorSquared,alphak)
9 while (k<1e3)&(norm(myGgrad)>aTol)

10 myGgrad, H = gradHess(myFunErrorSquared,alphak)
11 Delta_alphak = -H\(myGgrad’)
12 alphak = alphak + s * Delta_alphak
13 k = k + 1
14 end
15 errorSquared = myFunErrorSquared(alphak)
16 println("Final fitting error is $errorSquared")
17

18 @show k
19 @show norm(myGgrad);

Output

Initial fitting error is 0.1389839670139185
Final fitting error is 0.01651529922971189
k = 50
norm(myGgrad) = 7.899062216538802e-6

1 s_vec = alphak[1:3]
2 centers=alphak[4:6]
3 weights=alphak[7:10]
4

5 myRBFfit(x)=ThreeRBFs(x,weights,s_vec,centers)
6 xMin = minimum(x_measured)
7 xMax = maximum(x_measured)
8

9 p1=plot!(myRBFfit,xMin,xMax, label="NL Optim via Hessian",ylims=(-.25,0.45))
10 png(p1, "OptimizationViaHessian")
11 display(p1)

Output See Fig. 12.13.

12.6 Local vs Global
Consider a function f : R→ R. Let’s recall that the graph of the function is the collection of points

graph of f := {(x, f(x)) | x ∈ R}.

Alternatively, you may be more comfortable thinking of it as

graph of f := {(x, y) | x ∈ R, y = f(x)}.

We revisit the functions used in Fig. 12.1, where this time, in Fig. 12.14, we have also indicated line segments (in black) that connect
various points on the graphs of the two functions (shown in red). The lines are given by

y = f(x1) +
f(x2)− f(x1)

x2 − x1
(x− x1), (12.56)

for x1 ̸= x2 in the domain of definition of the function.

If we can choose x1 and x2 such that the graph of the function is ever strictly above the corresponding line, as in Fig. 12.14b, then
the function is not convex and you can have local minima. If, on the other hand, the graph of the function always lies below or just
touches the line, for all x1 ̸= x2, as in Fig. 12.14a, then the function is convex and there are no local minima, only global minima!
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(a) (b)

Figure 12.14: (a) This is a graph of our “simple” cost function with a global minimum at x∗ = 2., while (b) a graph of our “less
simple” cost function, where there are two local minima, one at x∗ ≈ 0.68 and one at x∗ ≈ 3.14, as well as a local maximum at
≈ 2.1. In each case, we have overlaid line segments that are used to check for the mathematical property called convexity. A convex
function only always has global minima. It does not have any local minima.

Figure 12.15: This is a plot of a convex function where there are many points achieving the global minimum of zero. In fact, the
function is identically zero for x ∈ [−0.5, 0.5].

Now, the value of x achieving the global minimum may not be unique. This happens when the “bottom bowl” of the function is a
line with zero slope, as shown in Fig. 12.15.

Convex Functions

A function f : Rm → R is convex if for all 0 ≤ α ≤ 1, and for all x, y ∈ Rm, the function satisfies

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (12.57)

In practice, checking this property is relatively hard at the present time, even for the case that n = 1, and is beyond the scope
of our introduction. However, as you advance in your mathematical education, if ever a lecture is offered on convex sets or
convex functions, you should pay attention! You might learn some cool and very useful stuff!

Convex optimization is not a typical subject for undergraduates in the present day and age, but maybe you guys will change
that! It is becoming super important in engineering practice. Our purpose here is to let you know that such a subject as convex
optimization exits so that you can be on the lookout for a course on the topic!
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12.7 Maximization as Minimizing the Negative of a Function
The two main facts are summarized in the following equations.

argmax
x∈Rm

f(x) = argmin
x∈Rm

−f(x) (12.58)

max
x∈Rm

f(x) = − min
x∈Rm

−f(x) (12.59)

You should be able to convince yourself they are true by studying Fig. 12.16.

(a) (b)

Figure 12.16: Maximization and minimization are almost the same thing! (a) Shows a function that we wish to maximize while (b)
shows the negative of the function. From these plots, you can convince yourself that (12.58) and (12.59) hold!

12.8 (Optional Read): Quadratic Programs: Our first Encounter with Constraints
A Quadratic Program is a special kind of optimization problem with constraints. The cost to be minimized is supposed to be
quadratic, meaning that f : Rm → R has the form

f(x) =
1

2
x⊤Qx+ qx, (12.60)

whereQ is anm×m symmetric matrix, meaning thatQ⊤ = Q, and where q is a 1×m row vector. Moreover, instead of optimizing
over all of Rm as in our previous problems, we are allowed to seek solutions that lie in a subset of Rm defined by linear inequality
and linear equality constraints that are typically written in the form

Ainx ⪯ bin (12.61)
Aeqx = beq. (12.62)

The symbol ⪯ is a way to define “less than or equal to” for vectors; it means that each component of the vector on the left hand side
is less than or equal to the corresponding component of the vector on the right hand side. As an example32

4

 ⪯
43
4

 ,
though 32

4

 ̸⪯
13
4

 ;

and [
3 1
2 4

] [
x1
x2

]
⪯
[
0
9

]
,
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means that x1 and x2 must satisfy
3x1 + x2 ≤ 0

2x1 + 4x2 ≤ 9.

What if you really wanted 2x1 + 4x2 ≥ 9? Then you need to remember that when you multiply both sides by a minus sign, the
inequality sign flips. Hence,

3x1 + x2 ≤ 0

2x1 + 4x2 ≥ 9
⇐⇒

3x1 + x2 ≤ 0

−2x1 − 4x2 ≤ −9
⇐⇒

[
3 1
−2 −4

] [
x1
x2

]
⪯
[

0
−9

]
.

In addition, most QP solvers allow one to specify lower and upper bounds on x of the form

lb ⪯ x ⪯ ub. (12.63)

While such constraints could always be rewritten in the form of (12.61), using (12.63) is more convenient, intuitive, and less error
prone. The inclusion of constraints allows for very interesting and practical optimization problems to be posed.

Useful Fact about QPs

We consider the QP

x∗ = argmin
x ∈ Rm

Ainx ⪯ bin
Aeqx = beq

lb ⪯ x ⪯ ub

1

2
x⊤Qx+ qx (12.64)

and assume that Q is symmetric (Q⊤ = Q) and positive definitea (x ̸= 0 =⇒ x⊤Qx > 0), and that the subset of Rm

defined by the constraints is non empty, that is

C := {x ∈ Rm | Ainx ⪯ bin, Aeqx = beq, lb ⪯ x ⪯ ub} ≠ ∅. (12.65)

Then x∗ exists and is unique.

aPositive definite matrices are treated in Chapter A.3.

Example 12.7 The very first optimization problem we came across in ROB 101 was least-squared-error solutions to systems of linear
equations, Ax = b, back in Chapter 8.2, namely

x∗ = argmin
x∈Rm

||Ax− b||2. (12.66)

We used this formulation to solve regression problems in Chapter 8.3. Show that (12.66) is equivalent to the QP

x∗ = argmin
x∈Rm

1

2
x⊤Qx+ qx, (12.67)

where
Q := A⊤ ·A
q := −b⊤ ·Ax.

(12.68)

In particular, it is a very simple QP, with no inequality constraints and no equality constraints.

Solution: We first note that ||Ax − b||2 = (Ax − b)⊤ · (Ax − b), where we have used the fact that the norm squared of a vector
v ∈ Rn is equal6 to v⊤ · v. Hence, multiplying out the terms, we have that

||Ax− b||2 = (Ax− b)⊤ · (Ax− b)
=
(
x⊤A⊤ − b⊤

)
· (Ax− b)

= x⊤A⊤ ·Ax− b⊤ ·Ax− x⊤A⊤ · b+ b⊤ · b
= x⊤A⊤ ·Ax− 2b⊤ ·Ax+ b⊤ · b,

(12.69)

6In our case, v = (Ax− b).
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where we have used the fact that
x⊤A⊤ · b = b⊤ ·Ax

because each side is a scalar and the transpose of a scalar is itself. Next, we note that

x∗ = argmin
x∈Rm

||Ax− b||2

= argmin
x∈Rm

1

2
||Ax− b||2

= argmin
x∈Rm

(
1

2
x⊤A⊤ ·Ax− b⊤ ·Ax+

1

2
b⊤ · b

)
= argmin

x∈Rm

(
1

2
x⊤A⊤ ·Ax− b⊤ ·Ax

)
because

• scaling the function to be minimized by a positive constant does not change where the minimum occurs, and hence does not
change the value of argmin,

• and shifting the function to be minimized up or down by a constant does not change where the minimum occurs, and hence
does not change the value of argmin!

■

Example 12.8 The second optimization problem we came across in ROB 101 was for underdetermined systems of linear equations,
Ax = b, back in Chapter 9.9, namely

x∗ = argmin
Ax=b

||x||2 = argmin
Ax=b

x⊤x. (12.70)

This too is a rather simple QP, with Q = Im, the m×m identity matrix, q = 01×m, and no inequality constraints.

■

Figure 12.17: The plot shows in red the rectangle function rect(x, a, b), for the values a = 0.5 and b = 1.75. The function takes
on the value 1.0 for a ≤ x < b and equals 0.0 elsewhere. The dotted blue line is the monomial x2, which is being applied over the
interval [−1, 2]. In black is the monomial x2 multiplied by rect(x, a, b), for the same values of a and b. The function x2 ·rect(x, a, b)
takes on the value x2 for all a ≤ x < b and 0.0 elsewhere. In other words, the action of the function is now localized to the set
[a, b) ⊂ R. This is the basic notion of a spline, being able to localize the action of a function to a subset of x values instead of having
the function extend over the entire set of x values, as with the standard monomial x2. Splines typically give you more control in the
fitting process than using high-order monomials.
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Example 12.9 We’ll now put the first two examples together, while introducing you to a new way to choose “basis functions” for
regression, called splines; see Fig 12.17.

You are given the noisy data shown in Fig. 12.18. The objective is to fit a function to the data, much as we did in Chapter 8.3. We’ll
add a new twist by introducing a type of function called a “spline”, where even though we are using our familiar monomials, they
will be localized to disjoint regions of the data. The solution will provide the details!

Figure 12.18: The true function (which you should pretend not to know) and a set of imperfect measurements from which you are to
estimate the function.

Solution: We introduce a new function, called rectangle,

rect(x, a, b) =

{
1 a ≤ x < b

0 otherwise,

that can be used to limit the action of a function to an interval of the form [a, b). In Fig. 12.17, we plot the rectangle function itself
and the monomial x2 multiplied by the rectangle function.

We will use the rectangle function to divide the set [−1, 3] into three subsets and fit low-degree polynomials on each subset. To do
this, we define xmin := 1.0, xmax := 2.0, and further define

∆x :=
xmin + xmax

3
ak := xmin + (k − 1)δx, k ∈ 1, 2, 3, 4

so that
a = [−1.0, 1

3
,
5

3
, 3.0].

The components of a are called knot points; see https://en.wikipedia.org/wiki/Spline_(mathematics) for more
information. We note that [−1, 13 ) ∪ [ 13 ,

5
3 ) ∪ [ 53 , 3) = [−1, 3), so technically, we have left the point x = 3 out of consideration. If

you wish to include it, just replace the last knot point with something like 3.001.
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Inspired by Fig. 12.17, we define a regressor matrix which uses the standard monomials up to degree three on each set [ai, ai+1),

Φ(x, a) :=
[
1 x · rect(x, a1, a2) . . . x3 · rect(x, a1, a2) . . . x · rect(x, a3, a4) . . . x3 · rect(x, a3, a4)

]
, (12.71)

where, x is a (column) vector of (measurement) points and a is the set of knot points.

Figure 12.19 shows the resulting fit, which is a standard least squares problem

α∗ = argmin
α∈R10

||Y − Φα||2,

where Y is the vector of measured function values. We note right away the “jumps” in the fit at the two interior knot points, a2 = 1/3
and a2 = 5/3. The discontinuities arise from jumps in the rectangle function at the spline boundaries, as was seen in Fig. 12.17. We
next show how to impose continuity at the boundaries of the splines.

Figure 12.19: The resulting fit of a polynomial spline of degree three. A discontinuity is clear at the two interior knot points, a2 = 1/3
and a2 = 5/3. We next show how to achieve continuity.

To impose continuity at the interior knot points, we will use a linear constraint on the regression coefficients, α. Let ϵ = 10−3 and
define

A1 := Φ(a2 − ϵ, a)− Φ(a2 + ϵ, a)

A2 := Φ(a3 − ϵ, a)− Φ(a3 + ϵ, a)

Aeq :=

[
A1

A2

]
.

(12.72)

It follows that Aeqα = 02×1 forces the splines to match up at the boundary points. Indeed, if we denote ŷ(x) := Φ(x, a)α for an
arbitrary x ∈ R, then

Aeqα = 02×1 ⇐⇒ ŷ(ai − ϵ) = ŷ(ai − ϵ), i ∈ {2, 3},

which is what continuity is all about.

We then solve the least squares problem with a linear constraint, namely

α∗ = argmin
α ∈ R10

Aeqα = 0

||Y − Φα||2. (12.73)
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Figure 12.20: The plot shows a spline fit with continuity imposed at the interior knot points. For comparison purposes, a polynomial
with the same number of free parameters is shown.

Equation 12.73 is a quadratic program; indeed, one has Q := 1
2Φ

⊤Φ, q := −Y ⊤Φ, Beq = 02×1, and Aeq as above. Figure 12.20
shows the resulting fit. We note that indeed, we have removed the discontinuities in the regressed function.

■

Example 12.10 (A Graphical Example) We provide a graphical QP example to understand the relationship between the cost func-
tion and the constraints. Consider the cost function J(x1, x2) = (x1 − 2)2 + (x2 − 1)2 and the following constraints:

x1 + 2x2 ≤ 12

3x1 + 3x2 ≤ 25

x1 ≤ 7

x2 ≤ 5

x1 ≥ 0

x2 ≥ 0.

Write the problem in the standard form of (12.64), In addition, provide a contour plot of the cost function with an overlay of the
constraints.

Solution: We expand the cost function as

J(x1, x2) = (x1 − 2)2 + (x2 − 1)2 = x21 + x22 − 4x1 − 2x2 + 5.

The constant term, 5, has no effect on the optimal solution of this problem, and therefore, it is common to drop it.

Remark: Some software packages for solving QPs might not include a constant term. Remember to take it into account in the end if
the actual value of the cost function at the optimal solution is required. In this particular example, because we can visualize the cost
function and the constraints, we will keep it.
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Figure 12.21: The contour plot of the cost function and constraints. The feasible region is visible in the left bottom corner of the
figure.

We can now rearrange everything in the form of (12.64):

min
x∈Rm

1

2

[
x1 x2

] [2 0
0 2

] [
x1
x2

]
subject to

[
1 2
3 3

] [
x1
x2

]
⪯
[
12
25

]
[
0
0

]
⪯
[
x1
x2

]
⪯
[
7
5

]
.

At this point, we are almost done. Find your favorite QP solver (such as the one in Chap. 12.9), enter your problem according to the
requested format and press run! Next, enjoy the results!
Because we only have two variables here, we can visualize the cost and constraints. A similar graphical approach would not be viable
for large-scale problem where we might have thousands of variables. Figure 12.21 shows a contour plot of the cost function and our
constraints. The region where all constraints are satisfied is called the feasible region. The optimal value of our problem must lie

within the feasible region. Applying the QP solver in Chap. 12.9, we obtain
[
x1
x2

]
=

[
2
1

]
. You can check that it does not violate the

constraints. ■

12.9 (Optional Read): QP Solver in Julia
We’ve had success with the QP solver at https://osqp.org, called OSQP. The standard form used by OSQP is a bit different
than (12.64), though it is every bit as general,

x∗ = argmin
x ∈ Rm

lb ⪯Ax ⪯ ub

1

2
x⊤Qx+ q⊤x, (12.74)
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where x ∈ Rm is the optimization variable. The objective function is defined by a positive semidefinite m×m matrix Q and vector
q ∈ Rm. The linear inequality and equality constraints as well as upper and lower bounds are grouped together and defined by a single
n×m matrix A and two n× 1 vectors lb and ub, where each component of lbi ∈ R∪{−∞} and ubi ∈ R∪{+∞}, i ∈ {1, . . . , n}.
To impose equality constraints, one sets the corresponding entries of ℓ and u to be equal to one another. We provide a script and an
illustration below to transform a problem in the form of (12.64) to that of (12.74).

1 using Pkg
2 pkg.add("OSQP")
3 Pkg.add("Compat")
4 using OSQP
5 using SparseArrays
6

7 # Define problem data
8 P = sparse([4. 1.; 1. 2.])
9 q = [1.; 1.]

10 A = sparse([1. 1.; 1. 0.; 0. 1.])
11 l = [1.; 0.; 0.]
12 u = [1.; 0.7; 0.7]
13

14 # Create OSQP object
15 prob = OSQP.Model()
16

17 # Setup workspace and change alpha parameter
18 OSQP.setup!(prob; P=P, q=q, A=A, l=l, u=u)
19

20 # Solve problem
21 results = OSQP.solve!(prob)

Here is a function that takes QPs formulated as in (12.64).

1 using LinearAlgebra
2 using OSQP
3 using SparseArrays
4

5 function quadProg(Q,q,Ain,bin,Aeq,beq,lb,ub,tol=1e-6)
6 # Begin wrapper to make QP solover in OSQP similar to quadprog in Matlab
7 # Need to ensure that matrices are sparse and any n x 1 "matrices" are turned into

vectors
8 dimX = length(q)
9 myI = sparse(zeros(dimX,dimX)+I)

10 tolEq = tol
11 # Define problem data
12 P = sparse(Q)
13 q = q[:]
14 A = sparse(Ain) #
15 u = bin[:] #how to force objects to be vectors
16 l = bin[:] .-Inf
17 if (length(lb)>0)||(length(ub)>0)
18 A = [A;myI]
19 end
20 if (length(ub)>0)&(length(lb)>0)
21 u=[u;ub[:]]
22 l=[l;lb[:]]
23 elseif (length(ub)>0)&(length(lb)==0)
24 u=[u;ub[:]]
25 l=[l;ub[:].-Inf]
26 elseif (length(ub)==0)&(length(lb)>0)
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27 l=[l;lb[:]]
28 u=[u;lb[:].+Inf]
29 end
30 (nreq,nceq)=size(Aeq)
31 if nreq > 0
32 A=[A;sparse(Aeq)]
33 l=[l;beq[:].-tolEq]
34 u=[u;beq[:].+tolEq]
35 end
36 # End wrapper
37

38 # Create OSQP object
39 prob = OSQP.Model()
40

41 # Setup workspace and change alpha parameter
42 OSQP.setup!(prob; P=P, q=q, A=A, l=l, u=u, verbose=false)
43

44 # Solve problem
45 results = OSQP.solve!(prob)
46 return results.x
47 end

1

2 # Example problem data (same as above)
3 P = sparse([2. 0.; 0. 2.])
4 q = [-4.; -2.]
5 A = sparse([1. 2.; 3. 3.; 1. 0.; 0. 1.])
6 l = [0.; 0.; 0.; 0.]
7 u = [12.; 25.; 7.; 5.]
8

9 dimX=length(q)
10 Aeq = Array{SparseMatrixCSC,2}(undef,0,dimX)
11 Beq = Vector{Float64}(undef,0)
12 lb = Vector{Float64}(undef,dimX).-Inf
13 ub = Vector{Float64}(undef,dimX).+Inf
14

15 xStar = quadProg(P,q,[A;-A],[u;-l],Aeq,Beq,lb,ub)

Output

2-element Vector{Float64}:
1.9999978269253138
0.9999972171335297

12.10 (Optional Read): Optimization Packages: The Sky is the Limit

Once you’ve coded up a few optimization algorithms, it’s time to move over and let the pros handle the programming while you focus
on problem formulation. Currently, the best source for optimization packages in Julia is https://jump.dev/. From the JuMP
homepage we learn that “JuMP is a modeling language and supporting packages for mathematical optimization in Julia. JuMP
makes it easy to formulate and solve linear programming, semidefinite programming, integer programming, convex optimization,
constrained nonlinear optimization, and related classes of optimization problems. You can use it to route school buses, schedule
trains, plan power grid expansion, or even optimize milk output.”

What are you waiting for? There is a lot of knowledge out there. Slowly but surely, you can master it!
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12.11 Looking Ahead
The next Chapter is designed to prepare you for CS courses at the University of Michigan that require Linear Algebra, specifically,
Machine Learning, EECS 445, and Computer Vision, EECS 442.
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Chapter 13

Background for Classification and Machine
Learning

Learning Objectives
• Introduce material that is assumed in UofM Computer Science courses that have Math 214 as a prerequisite.

• Provide a resource for use after you leave ROB 101.

Outcomes
• Learn how to separate Rn into two halves via hyperplanes

• What is the “signed” distance from a point to a hyperplane and how to compute it

• An example of a max-margin classifier, a common tool in Machine Learning

• Learn the Orthogonal Projection Theorem, which is “the geometric tool” that underlies most least squares problems
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13.1 Separating Hyperplanes
We continue with a geometric development that is a natural accompaniment to Chapter 9: linear structures than can be used to divide
Rn into two pieces. The notes are based on lectures by Prof. Maani Ghaffari. This material is used in EECS 445, the undergraduate
Machine Learning course, where one seeks to separate observations of a process into two categories, such as spam versus regular
email, images of cats versus dogs, or a smooth walking surface versus one that undulates. The observations are typically given in the
form of n-vectors and are called object features. Once you can handle the task of separating two categories, you are on the road to
handling multiple categories, as in Fig. 13.1.

Figure 13.1: This awesome figure shows multiple (hyper)planes dividing R3 into disjoint regions, where each region could contain
features describing a different object. In this book, we will content ourselves with a single hyperplane and do it in general for Rn.
Image courtesy of Kilom691 https://commons.wikimedia.org/w/index.php?curid=37508909.

We will develop the notion of a “hyperplane” as a linear object that is big enough to divide Rn into two halves, easy to manipulate,
and can take on “any orientation or position.” In R2, any line can divide the space into two half spaces. In R3, a line is not “big
enough” to divide the space into two parts, though the the classical notion of a plane does the job perfectly well. In Rn, the appropriate
generalization is called a hyperplane!

Before we dig into the details, we firm up concepts in R2. While we skip the case of the real line, R, it does provide some insight
because a single point xc ∈ R can be used to divide the real line into two halves, H− := {x ∈ R |x < xc} and H+ := {x ∈ R |x >
xc}. Moreover, the object being used to divide the vector space R into two halves has dimension zero, which is one less than the
dimension of R! Hold this thought.

13.1.1 Lines in R2 as Separating Hyperplanes
While we are very used to describing lines as things that satisfy formulas of the form x2 = mx1 + b, let’s note that this description
leaves out the x2-axis, which is a perfectly fine line in R2. It also leaves out all lines parallel to the x2-axis. Why is the x2-axis not
covered by this description? Because it’s slope would be infinity, which is not allowed! A better way to describe a line is actually as
a special kind of subset of R2, such as

Line := {(x1, x2) ∈ R2 | a0 + a1x1 + a2x2 = 0},

where at least one of a1 and a2 is non-zero. Indeed, with this formulation,

x2-axis = {(x1, x2) ∈ R2 | 0 + x1 + 0x2 = 0}.

Claim 1: Every line in R2 can be written as the zero set of y(x1, x2) = a0+a1x1+a2x2, where at least one of a1 and a2 is non-zero.
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(a) (b)

Figure 13.2: We know that subspaces must contain the origin. Lines in R2 can be viewed as translations of subspaces (loosely
speaking, this means you slide them up, down, or sideways, without rotating them). In both figures, the lines corresponding to
subspaces are in red while their translations are in green and blue. The blue and green lies are parallel to the red line, but are offset
or translated. In (a), the lines correspond to 0 = a0 + 1.0x1 − 2.0x2, where a0 = 0.0 (red), a0 = 3.0 (blue), and a0 = −2.0 (green)
(b) The lines correspond to 0 = a0 + 1.0x1 + 0.0x2, where a0 = 0.0 (red), a0 = 2.0 (blue) , and a0 = −3.0 (green)

Proof: If the line is given by x2 = mx1 + b, then it is the zero set of y(x1, x2) = b + mx1 − x2, that is, a0 = b, a1 = m and
a2 = −1. If the line is parallel to the x2-axis, as in {(x1, x2) | x1 = a0 = a constant, x2 ∈ R}, then we can take y = a0 − x1 + 0x2,
that is, a1 = −1 and a2 = 0. ■

While it may not be apparent that writing a line as the zero set of a function has any value, we next note that the function

y(x1, x2) = a0 + a1x1 + a2x2

can also be used to divide R2 into two halves. Indeed, we define

H+ := {(x1, x2) ∈ R2 | y(x1, x2) = a0 + a1x1 + a2x2 > 0}
H− := {(x1, x2) ∈ R2 | y(x1, x2) = a0 + a1x1 + a2x2 < 0}.

This is illustrated in Fig 13.3, where the line in red is the set where y(x1, x2) = a0+a1x1+a2x2 = 0, showing the utility of thinking
of a line as a zero set of a function.

H+ and H− are Called Half Spaces

H+ and H− are called Half Spaces because they divide R2 into two halves. Is that really possible? In Fig 13.3, the red lines
are the sets where y(x1, x2) = a0 + a1x1 + a2x2 = 0. We indicated H+ and H− as being on opposite sides of the red lines.
Does it have to be this way? Can these sets be mixed up, meaning parts of H+ and H− can be on the same side of the red
line? The answer is a DEFINITIVE NO! One side of the red line will be H+ and the other will necessarily be H−. To
determine which is which, just sample one point on one of the sides and check if y at that point is positive or negative. It’s
that simple.

Following this box, we give the optional proof.

(Optional) Proof that Half Spaces Work as we Claim: Here is why the line y(x1, x2) = 0 separates R2 into two half spaces, H+

and H−.

Suppose that (x+1 , x
+
2 ) ∈ R2 is such that y+ := y(x+1 , x

+
2 ) > 0 and similarly, (x−1 , x

−
2 ) ∈ R2 is such that y− := y(x−1 , x

−
2 ) < 0. Let

α ∈ R and define a new point (x1(α), x2(α) ∈ R2 by[
x1(α)
x2(α)

]
:= (1− α)

[
x+1
x+2

]
+ α

[
x−1
x−2

]
.
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We note that varying α ∈ R traces out a line in R2 that passes through (x+1 , x
+
2 ) when α = 0 and through (x−1 , x

−
2 ) when α = 1.

We next note that we can write y(x1, x2) as

y(x1, x2) = a0 + a1x1 + a2x2 = a0 + [a1 a1]

[
x1
x2

]
and therefore,

y(x1(α), x2(α)) = a0 + [a1 a1]

[
x1(α)
x2(α)

]
= (1− α)a0 + (1− α) [a1 a1]

[
x+1
x+2

]
+ αa0 + α [a1 a1]

[
x−1
x−2

]
= (1− α)y(x+1 , x

+
2 ) + αy(x−1 , x

−
2 )

= (1− α)y+ + αy−.

Solving for α∗ to set y(x1(α∗), x2(α
∗)) = 0 yields

α∗ =
y+

y+ − y−
=

y+

y+ + |y−|
,

where we have used the fact that y− < 0 =⇒ −y− = |y−|. Because |y−| > 0 it follows that 0 < α∗ < 1. Hence, there is a unique
point (x1(α), x2(α)) strictly between (x+1 , x

+
2 ) and (x−1 , x

−
2 ) where y(x1(α), x2(α)) = 0. All points where y(x1, x2) vanishes lie

on a red line. Hence, the point (x1(α∗), x2(α
∗)) lies on a red line. The only way this can happen is if (x+1 , x

+
2 ) and (x−1 , x

−
2 ) lie on

opposite sides of a red line. ■

In the next subsection, we want to extend these ideas to Rn for n > 2. While we could stick with formulas of the form

y(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn, (13.1)

a more insightful analysis comes about from working directly with subspaces, which was hinted at in Fig. 13.1 and 13.2.

(a) (b)

Figure 13.3: Two examples of half spaces corresponding to (a) y = −1.0 − 2.0x1 + x2 (b) y = −1.0 − 1.0x1 + 0.0x2. The line
y = a0 + a1x1 + a2x2 = 0 is shown in red, while in blue is plotted the set where y > 0 and in brown and the set where y < 0. The
x1-axis and x2-axis are in black.

13.1.2 Hyper Subspaces
Consider the vector space Rn and let A be a 1× n matrix (you can also call it a row vector). We assume that A is non-zero, meaning
that at least one of its components is non-zero. Viewing A as a matrix, we know that its null space

N := null(A) = {x ∈ Rn | Ax = 0}
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is a subspace of Rn. By the Rank-Nullity Theorem, the dimension of N is equal to n− 1, one less than the dimension of Rn. Why,
because rank(A) = 1 due to our assumption that at least one of its columns1 is nonzero and

dim(N) = nullity(A) = dim(Rn)− rank(A) = n− 1.

A subspace with dimension one less than the ambient space in which it lives, which in our case is Rn, is called a co-dimension one
subspace. Though less common, you can also call it a hyper-subspace!

We’ve just seen that the null space of a rank one matrix gives rise to a co-dimension one subspace. Are all co-dimension one subspaces
the null space of some matrix? The answer is yes and the easiest way to show it is by using the dot product and the Gram-Schmidt
process! What? You did not see that coming?

We write A =: a⊤ where

a :=


a1
a2
...
an

 ∈ Rn.

We do this because

x ∈ null(A) ⇐⇒ Ax = 0 ⇐⇒ a⊤x = 0 ⇐⇒ a • x = 0 ⇐⇒ x • a = 0 ⇐⇒ x ⊥ a.

Hence, our question of whether every co-dimension one subspace can be expressed as the null space of a rank one matrix can be
rephrased as “is every co-dimension one subspace equal to the set of all vectors that are orthogonal to a non-zero vector a ∈ Rn?” To
answer this question, we can invoke Gram-Schmidt.

We let N ⊂ Rn be a co-dimension one subspace, meaning dim(N) = n− 1. We let {u1, . . . , un−1} be a basis for N . Because N is
not all of Rn, there must exist a non-zero vector un ∈ Rn such hat un ̸∈ N . We skip the details, but you can then show that

{u1, . . . , un−1, un}

is a linearly independent set. We apply Gram-Schmidt to produce an orthogonal basis {v1, . . . , vn−1, vn}. By (9.17), we have that

N = span{u1, . . . , un−1} = span{v1, . . . , vn−1}.

Moreover,
x ∈ N ⇐⇒ x = α1v1 + · · ·αn−1vn−1 ⇐⇒ x ⊥ vn ⇐⇒ vn • x = 0

Hyper Subspaces and Dot Products

The following are equivalent for a subspace N ⊂ Rn:

• dim(N) = n− 1, that is, N is a co-dimension one subspace;

• there exists a ∈ Rn not equal to zero such that x ∈ N ⇐⇒ x ⊥ a; and

• there exists a 1× n matrix A such that A ̸= 01×n and N = null(A).

We note that the matrix A and the vector a are related by A = a⊤.

Example 13.1 Consider a matrix B =

 1 −1
−1 2
0 1

 and let N := col span{B}. It is clear that N ⊂ R3 and dim(N) = 2. Find a

vector a ∈ R3 such that
N = {x ∈ R3 | a • x = 0}.

1For a 1× n matrix, elements and columns are the same thing!
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Solution: We define u1 =

 1
−1
0

, u2 =

 −1−2
1

, and note that u3 =

 1
1
0

 is linearly independent of {u1, u2}. Applying Gram

Schmidt with normalization to {u1, u2, u3} yields

[
v1 v2 v3

]
=

 0.707107 0.408248 0.57735
−0.707107 0.408248 0.57735
0.000000 0.816497 −0.57735

 .

Hence, we can take a =

 1
1
−1

. It is easily checked that a • u1 = 0 and a • u2 = 0, and thus N = {x ∈ R3 | a • x = 0}. ■

(a) (b)

Figure 13.4: Let S ⊂ R2 be the star-shaped object in (a) and let xc be the vector [2; 3]. Then xc + S is the star-shaped object in (b),
where each and every point of the object has been shifted by xc. If you can handle this, then you should have no trouble handling the
translation of a line or a plane! Image courtesy of Tribhi Kathuria.

13.1.3 Translations of Sets, Hyper Subspaces, and Hyperplanes

Definition Let S ⊂ Rn be a subset and and let xc ∈ Rn be a vector. We define the translation of S by xc as

xc + S := {xc + x | x ∈ S}.

Note that, because S consists of vectors in Rn, the addition in the above formula makes sense. Figure 13.4 provides an illustration.

Claim: Let N = {x ∈ Rn | a • x = 0} ⊂ Rn be a hyper subspace (means that a ̸= 0n×1) and let xc ∈ Rn be a vector. Then their
sum has a simple description as

xc +N = {x ∈ Rn | a • (x− xc) = 0} = {x ∈ Rn | a ⊥ (x− xc)}. (13.2)

The proof is not important, but we give it for those who are interested. N consists of everything in Rn that is orthogonal to a. Hence,
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if (x− xc) ⊥ a, then (x− xc) ∈ N . Adding xc to both sides, we have that x ∈ xc +N . The other direction is similar. ■

Hyperplanes are Translations of Hyper Subspaces

Let N = {x ∈ Rn | a • x = 0} ⊂ Rn be a hyper subspace (means that a ̸= 0n×1) and let xc ∈ Rn be a vector. Then

H := xc +N (13.3)

is called a hyperplane. Moreover, by (13.2), the real-valued function y : Rn → R defined by

y(x) := a • (x− xc) (13.4)

vanishes on H = xc +N (because H = {x ∈ Rn | y(x) = a • (x− xc) = 0}). It follows that y(x) can be used to divide Rn

into two halves
H+ := {x ∈ Rn | y(x) > 0}
H− := {x ∈ Rn | y(x) < 0}.

(13.5)

A fanciful illustration is given in Fig. 13.5.

We note that H+ is the set of all vectors x ∈ Rn such that the dot product < a, x − xc >= a • (x − xc) > 0, while H− is
the set of all vectors x ∈ Rn such that < a, x− xc >= a • (x− xc) < 0.

Remarks:

• Without loss of generality, it is always possible to take xc = αa, for α ∈ R. Indeed, one can go back and forth between (13.4)
and (13.1) by

a0 = −a • xc and xc = −a0
a

||a||2
(13.6)

• Vectors such that < a, x − xc >= a • (x − xc) > 0 form an acute angle (less than 90o) with respect to the vector a, while
vectors such that < a, x − xc >= a • (x − xc) < 0 form an oblique angle (greater than 90o) with respect to the vector a.
Vectors such that < a, x− xc >= a • (x− xc) = 0 form a right angle (exactly ±90o) with respect to the vector a, and hence
are on the hyperplane itself.

Figure 13.5: A separating hyperplane where the features are smiles versus frowns. In Example 13.6, we show how to design the
parameters of the hyperplane, that is, a ∈ Rn and xc ∈ Rn, so as to achieve separation for given data on the features.
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13.2 Signed Distance to a Hyperplane
The function y(x) = a • (x − x0) has another amazing feature: its absolute value is proportional to the distance of a point x from
the hyperplane H0 defined by H0 := {x ∈ Rn | y(x) = 0}. Moreover, y(x) gives rise to the notion of the signed distance of
x to H0 because, depending on which of the half-planes x lies, the sign of y(x) will be either +1 or −1. To make sense of this,
we must first define the distance of a point to a subspace, and then we will specialize to the case that the subspace is a hyper-subspace.

From Norms to Distances

Let V ⊂ Rn be a subspace and let x0 ∈ Rn, y0 ∈ Rn, vc ∈ Rn be points. Then

• Definition d(x0, y0) := ||x0 − y0|| is called the distance from x0 to y0.

• Definition d(x0, V ) := min
v∈V
||x0 − v|| is called the distance from x0 to V .

The translation of a subspace by vector is called a linear variety. Let W := vc + V . Then one can also define

• Definition d(x0,W ) := min
w∈W

||x0 − w|| is called the distance from x0 to W .

Fact: If W = vc + V , then d(x0,W ) = d(x0 − vc, V ).

The somewhat amazing fact is that when V is a hyperplane, the minimization problem defining the distance of a point to the hyper-
plane has a very simple solution! This only works for hyperplanes, that is, linear varieties that are translates of hyper subspaces.

Signed Distance to a Hyperplane

Suppose that y : Rn → R is given by (13.1) or (13.4) and that a ̸= 0n×1 (recall that one can go back and forth between the
two representations by (13.6)). Let H0 := {x ∈ Rn | y(x) = 0} be the hyperplane defined by y. Then, for all x0 ∈ Rn,

|y(x0)| = ||a|| d(x0, H0),

that is,

d(x0, H
0) =

|y(x0)|
||a||

For this reason,
y(x)

||a||
(13.7)

is called the signed distance from x to H0.

Example 13.2 Compute the signed distance for a hyperplane defined by

P := {(x1, x2) ∈ R2 | 1.5x1 − 2.0x2 = −4.0}.

Solution We have the hyperplane is defined by y : R2 → R, where

y(x1, x2) = 1.5x1 − 2.0x2 + 4.0.

Hence, a = [1.5;−2.0] and
1

||a||
y(x1, x2) =

1.5x1 − 2.0x2 + 4.0√
6.25

is the signed distance from x =

[
x1
x2

]
to the hyperplane P .

■

Example 13.3 Compute the signed distance for a hyperplane defined by

P := xc + {x ∈ Rn | x ⊥ a}.
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Solution We know that the hyperplane is defined by y : Rn → R, where

y(x) = a • (x− xc).

Hence, y(x) = a
||a|| • (x− xc) gives the signed distance. ■

Example 13.4 For a d-dimensional hyperplane that passes through the origin and is defined by the normal vector [a1; a2; . . . , ad],
compute the signed distance function.

Solution We know that the hyperplane is defined by y : Rd → R, where

y(x) = a • x

Hence, y(x) = a•x
||a|| is the signed distance function. ■

Example 13.5 Prove the signed distance formula, namely,

|y(x0)| = ||a|| d(x0, H0) (13.8)

Solution The proof uses a few ideas we have not covered in ROB 101, so will only sketch it. So that the hyperplane is well defined,
we assume that a ∈ Rn is not the zero vector and that

H0 := {x ∈ Rn | a • (x− xc) = 0} = xc +N, where N := {x ∈ Rn | a • x = 0}. (13.9)

Because a ̸= 0n×1 and N is the set of all vectors (points) orthogonal to a, it follows that every vector in Rn can be written as a
multiple of a and a vector in N . In particular, we have that

xc =αa+ x for some α ∈ R and x ∈ N
and for all x ∈ Rn

x =βa+ x for some β ∈ R and x ∈ N.

Using the above relations, we first evaluate

|y(x)| = |a • (x− xc)|
= |a • (αa+ x− βa− x)|
= |α− β| ||a||2

where we used two facts: (i) a • x = 0 and a • x = 0 because x, x ∈ N and (ii) a • a = ||a||2 for the Euclidean norm.

Next, we observe that

d2(x,H0) = min
x̃∈H0

||x− x̃||2

= min
x̃∈N
||x− (x̃+ xc)||2

= min
x̃∈N
||(βa+ x)− (x̃+ αa+ x)||2

= min
x̃∈N
||(β − α)a+ (x− x̃− x)||2

= min
x̃∈N

[
||(β − α)a||2 + ||x− x̃− x||2

]
= |β − α|2| ||a||2 +min

x̃∈N
||x− x̃− x||2

= |β − α|2| ||a||2,

where we used the Pythagorean Theorem to arrive at

||(β − α)a+ (x− x̃− x)||2 = ||(β − α)a||2 + ||x− x̃− x||2 =

and we noted that
min
x̃∈N
||x− x̃− x||2 = 0,
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because x− x ∈ N . Hence, taking square roots,

d(x,H0) = |β − α| ||a||.

Comparing the formulas for d(x,H0) and |y(x)| we arrive at

|y(x)| = ||a|| d(x,H0).

■

Figure 13.6: Raw data for a maximum margin classifier The blue data will be Class 1, labeled with a +1, and the red data will be
Class 2, labeled with a −1.

13.3 Max-margin Classifier
This material is from lectures in ROB 101 given by Prof. Maani Ghaffari.

In the next example, we will formulate a (linear) classifier to separate points that belong to two different categories called class
labels. For example, you can think of this as a model that predicts whether an email is spam or not. Our model is linear and sepa-
rates the space into two half-spaces, as described in Chap. 13.1. As shown in Chap. 13.1.1, in the 2D plane, a line divides the space
into two half-spaces. In general, we will be designing a separating hyperplane, that is, a translation of a co-dimension one subspace.

Definition: Consider a labeled data set D = {(xi, ℓi)}ni=1, where xi ∈ Rm and ℓi = ±1, and suppose that H := {x ∈ Rm | y(x) =
0} ⊂ Rm is a hyperplane. Then H separates the data, if for each 1 ≤ i ≤ n, (i) y(xi) ̸= 0 (no data points lie on the hyperplane)
and (ii) sign y(xi) = ℓi (the sign of the label ℓi determines on which side of the hyperplane the data point xi lies). Then the margin
is defined to be

margin := min
xi,ℓi=+1

d(xi, H) + min
xj ,ℓj=−1

d(xj , H) (13.10)

■
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Remark 5 Intuitively, the larger the margin, the more robust the separation (aka classification) of the data. We can evaluate
the distances used to define the margin by |y(xi)|/||a||. Hence,

margin := min
xi,ℓi=+1

|y(xi)|
||a||

+ min
xj ,ℓj=−1

|y(xj)|
||a||

=
1

||a||

(
min

xi,ℓi=+1
|y(xi)|+ min

xj ,ℓj=−1
|y(xj)|

)
. (13.11)

We note that if |y(xi)| ≥ 1 for all 1 ≤ i ≤ n, then

margin ≥ 2

||a||
.

And if there is at least one point in each class such that |y(xi)| = 1, then the margin is exactly equal to 2
||a|| . In that case, maximizing

the margin is the same as minimizing ||a||. Vectors such that |y(xi)| = ||a|| d(xi, H) are called support vectors.

Example 13.6 (Maximum Margin Classifier) Given a labeled data setD = {(xi, ℓi)}ni=1, find, if possible, a separating hyperplane
that maximizes the margin. This problem appears in machine learning and is called the max-margin classifier. The goal is to build a
linear model y(x) = a • x+ a0 that can separate the two classes of data with the maximum margin possible.

Solution:
Figure 13.6 shows a synthetic data set (means we generated it in a computer) with red circles and blue crosses. To generate the data,
we defined the line x2 = 1.5x1 + 0.4 as our ground truth and randomly generated vectors in R2: if they landed above the line,
we labeled them with red circles; and if they fell below the line, we labeled them with blue circles. Synthetic data generated in this
manner is how one tests a problem formulation and solution in practice!

Problems such as this one are called toy examples. They are simple enough that we can visualize and track the solution to ensure our
software works as expected. The green line in Fig. 13.7 is the hyperline x2 = 1.493x1 + 0.398 we computed to separate the two
classes of data. We let you know this ahead of time so that you will read on and see how we did it!

Our dataset consists of 2D vectors (called inputs), xi ∈ R2, and class labels (called target or output), ℓi ∈ {−1,+1}. If we have n
data points, we write the dataset as

D = {(xi, ℓi)}ni=1.

From Chap. 13.1, the line (hyperplane) that separates the data can be written as

y(x) = a⊤x+ a0 = 0,

for a0 ∈ R and a ∈ R2. We can also combine the normal vector, a, and the bias, a0, into

w :=

[
a
a0

]⊤
∈ R3,

and append a one to the inputs as x̄i :=
[
xi; 1

]
. Then the side of the line (hyperplane in general) on which each data point lies can be

written as
w⊤x̄i ≥ 1 if ℓi = 1,

w⊤x̄i ≤ −1 if ℓi = −1;
(13.12)

moreover, with this assignment, |y(xi)| ≥ 1 for all 1 ≤ i ≤ n, and therefore,

d(H,xi) ≥
1

||a||

by (13.7). Hence, the margin is maximimized by minimizing ||a||, or equivalently, minimizing ||a||2 = a⊤a.

The inequality constraints (13.12) state that the data points for each class must lie on the correct side of the hyperplane for it to be a
separating hyperplane! We can combine the two constraints into

ℓi(w
⊤x̄i) ≥ 1, 1 ≤ i ≤ n. (13.13)

Finally, the problem can be formulated as the following QP:

min
1

2
∥a∥2

w =

[
a
a0

]
∈ R3

subject to ℓi(w⊤x̄i) ≥ 1, i = 1, . . . , n
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Figure 13.7: The two classes are now separated by a hyperplane that provides the maximum margin, that is, the gap between the
data points and the hyperplane. The code given below provides the optimal parameters w∗ = [−12.88, 8.42,−2.76], and thus
a∗ = [−12.88, 8.42], a∗0 = −2.76, and the margin is 2/||a∗ = 0.31. Moreover, any vectors that lie on either of the two dotted lines
are the support vectors. There must be at least one vector in each class that lies on the lines, for if not, the line can be moved to
increase the margin.

After solving the problem, suppose w∗ = [a∗; a∗0] is the optimal solution. We can predict the class label of a new input (called a
query point), xdata, by simply checking which side of the hyperplane it lies on

class label is

{
(+1) blue circles a∗ • xdata + a∗0 > 0

(-1) red circles a∗ • xdata + a∗0 < 0
.

The results are shown in Fig. 13.7.
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■

Highlights of the Max Margin Classifier for Two Classes

• The process starts with a labeled data set D = {(xi, ℓi)}ni=1. Here we assume that ℓi ∈ {−1,+1} and xi ∈ Rm.

• The separating hyperplane is parameterized by y(x) = a⊤x + a0 = 0, for a0 ∈ R and a ∈ Rm. The hyperplane is
H := {x ∈ Rm | y(x) = 0}

• We write the constraints representing a point xi belonging to one of the two classes {−1,+1} by

w⊤x̄i ≥ 1 if ℓi = 1,

w⊤x̄i ≤ −1 if ℓi = −1,
⇐⇒ ℓiw

⊤x̄i ≥ 1, 1 ≤ i ≤ n,

where

w =

[
a
a0

]
.

• With the constraints written as above, the margin is greater than or equal to 2
||a|| , where a ∈ Rm is the normal vector

defining the hyperplane. If there is a point in the data set such that |y(xi)| = 1, then d(H,xi) = 1/||a||, and thus our
estimate for the margin is tight. The bias term a0 ∈ R provides the offset of the hyperplane so that it does not have to
pass through the origin. Hence, to maximize the margin, we minimize ||a||, subject to the classification constraints.

• Putting all of this together leads to a Quadratic Program or QP as presented in Chapter 12.8:

min
1

2
a⊤a

ℓ1 x̄
⊤
1
...

ℓn x̄
⊤
n


 a
a0

≥1n×1

• Given a new data point xnew ∈ Rm, how do we determine its class? We evaluate y(xnew) = a∗ • x+ a0 and check its
sign! If y(xnew) > 0, it is in Class 1 and if y(xnew) < 0, it is in Class 2.

1 # # New Packages for solving QPs
2 # using Pkg
3 # Pkg.add("OSQP")
4 # Pkg.add("Compat")
5 using OSQP
6 using SparseArrays
7

8 # Standard Packages for ROB 101
9 using LinearAlgebra

10 using Random
11 Random.seed!(123456);
12

13 # generate a dataset
14 N = 200
15 k1 = 0; # number of 1
16 k2 = 0; # number of -1
17 X = zeros(2*N,2) # input matrix
18 ell = zeros(2*N,1) # target values
19 i = 1;
20 marginDes = .3
21 while minimum([k1 k2]) < N
22 x = rand(1,2) * 5. .+ .05;
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23 # separating line is x2 = 1.5 x1 + 0.4
24 y = (x[2] - 1.5 * x[1] - 0.4)/norm([-1.5 1]); # norm of a = 1
25 # generate target values
26 if (y > marginDes/2.) && k1 < N
27 ell[i] = 1;
28 X[i,:] = x;
29 k1 += 1;
30 i += 1;
31 elseif (y < -marginDes/2.) && k2 < N
32 ell[i] = -1;
33 X[i,:] = x;
34 k2 += 1;
35 i += 1;
36 end
37 end
38

39 # Class +1 IDs
40 class1_id = ell.== 1;
41

42 using Plots
43 gr() # Set the backend to GR
44

45 plot(X[class1_id[:],1], X[class1_id[:],2], seriestype = :scatter,
46 aspectratio=:equal, legend=false)
47 plot!(X[.!class1_id[:],1], X[.!class1_id[:],2], seriestype = :scatter, xlims = (0,6), ylims = (0,6))
48 xlabel!("x1")
49 ylabel!("x2")
50 plot!(fmt = :png)

Output See Fig. 13.6.

1 # Data for Max Margin in R^2
2

3 # Define problem data
4 Q = (zeros(3,3) + I); Q[3,3]=0
5 q = zeros(3,1);
6 Ain = -([ell ell ell] .* [X ones(size(X,1),1)]);
7 bin = -ones(size(X,1),1);
8 dimX=length(q)
9 Aeq = Array{SparseMatrixCSC,2}(undef,0,dimX) # Empty Matrix

10 beq = Vector{Float64}(undef,0) # Empty Matrix
11 lb = Vector{Float64}(undef,dimX).-Inf # - infinity means no hard lower bound
12 ub = Vector{Float64}(undef,dimX).+Inf # + infinity means no hard upper bound
13

14 wStar = quadProg(Q,q,Ain,bin,Aeq,beq,lb,ub)
15 @show wStar
16 @show margin = 2.0/norm(wStar[1:2])
17 aStar = wStar/norm(wStar[1:2])

Output

wStar = [-5.3085002098319585, 3.5545545440849087, -1.4143558513794734]
margin = 2.0 / norm(wStar[1:2]) = 0.31305447944860626

1 # Our lines have to be plotted as y = mx + b and not
2 # as a[1]*x + a[2] * y + a[3];
3 # Hence, we must solve for x2
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4

5 x_line = collect(0:0.1:3.1)
6 y_line = -(aStar[1] * x_line .+ aStar[3])/aStar[2]
7

8

9 pMMC = plot!(x_line, y_line, lw = 3)
10

11

12 y_marginPlus = -(aStar[1] * x_line .+ aStar[3] .+ margin/2)/aStar[2]
13 y_marginMinus = -(aStar[1] * x_line .+ aStar[3] .- margin/2)/aStar[2]
14 plot!(x_line, y_marginPlus, lw=2, ls=:dot, color=:black)
15 plot!(x_line, y_marginMinus, lw=2, ls=:dot, color=:black)
16 plot!(fmt = :png)
17

18 display(pMMC)

Output See Fig. 13.7.

Now that you are warmed up ...

There are excellent tutorial videos available for many aspects of Machine Learning (ML). Here are a few related to SVMs:

• https://youtu.be/-Z4aojJ-pdg (Under the hood of SVM)

• https://youtu.be/vMmG_7JcfIc (Intro to the Kernel Trick)

• https://youtu.be/OKFMZQyDROI (More advanced view of the Kernel Trick)

• https://youtu.be/bM4_AstaBZo (Math behind SVM)

• https://youtu.be/kb4apnc2imA (Multi-class SVM)

13.4 Remarks on Soft Margin Classifiers
This material is from lectures in ROB 101 given by Prof. Maani Ghaffari.

In real life, the data are rarely so nicely separated. There is almost always some overlaps, perhaps due to random errors and outliers,
or perhaps because some valid emails look a lot like spam!
In such cases, the best one can do is to seek a hyperplane that roughly minimizes the number of data points that are misclassified.
This is done with a “soft margin classifier”, where the hard constraint in (13.13) is replaced with

ℓi(w
⊤x̄i)− ξi ≥ 1, 1 ≤ i ≤ n, (13.14)

where for ξi > 1, a data point is allowed to be in the wrong class. To make sure this is the exception rather than the rule, we try to
make the vector ξ have small norm. This gives rise to the QP

min
ξ,w

1

2
ξ⊤ξ +

λ

2
a⊤a ℓ1 x̄

⊤
1
...

ℓn x̄
⊤
n

[ a
a0

]
≥

 1− ξ1
...

1− ξn

 , (13.15)

where λ > 0 trades off the separation property versus the soft margin.

1 # generate a dataset
2 N = 100 # Desired number of data points in each class
3 n = 2*N # Total number of points
4 k1 = 0; # number of 1
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5 k2 = 0; # number of -1
6 X = zeros(n,2); # input matrix
7 ell = zeros(n,1); # target values
8 i = 1;
9 while minimum([k1 k2]) < N

10 x = rand(1,2) * 10.;
11 # separating line is x2 = 1.5 x1 + 0.4
12 y = (x[2] - 1.5 * x[1] - 0.4)
13 # generate target values
14 if (y > -3.5) && k1 < N
15 ell[i] = 1;
16 X[i,:] = x;
17 k1 += 1;
18 i += 1;
19 elseif (y < 3.5) && k2 < N
20 ell[i] = -1;
21 X[i,:] = x;
22 k2 += 1;
23 i += 1;
24 end
25 end
26

27 # Class +1 IDs
28 class1_id = ell.== 1;
29

Figure 13.8: Raw data where there is some overlap between the two classes. This is quite typical in practice.
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30 using Plots
31 gr() # Set the backend to GR
32

33 plot(X[class1_id[:],1], X[class1_id[:],2], seriestype = :scatter, legend = false)
34 plot!(X[.!class1_id[:],1], X[.!class1_id[:],2], seriestype = :scatter)
35 xlabel!("x1")
36 ylabel!("x2")

Output See Fig. 13.8.

1 # Define problem data using the native Julia form for the QP solver
2 m = 3;
3 lambda = 1; # tunable parameter (called hyperparameter because it’s not like w the

parameter of our model)
4 P = sparse([lambda*(zeros(m,m) + I) zeros(m,n); zeros(n,m) (zeros(n,n) + I)]);
5 q = zeros(n+m,1);
6 A = [-sparse([ell ell ell] .* [X ones(n,1)]) -(zeros(n,n) + I); zeros(n,m) (zeros(n,n) + I)]
7 l = [zeros(n,1) .- Inf; zeros(n,1)];
8 u = [-ones(n,1); zeros(n,1) .+ Inf];
9

10 # Crate OSQP object
11 prob = OSQP.Model()
12

13 # Setup workspace and change alpha parameter
14 OSQP.setup!(prob; P=P, q=q[:], A=A, l=l[:], u=u[:])

Figure 13.9: A “separating” hyperplane that allows a few missclassifications.
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15

16 # Solve problem
17 results = OSQP.solve!(prob);
18

19 w_line = -results.x ./ results.x[2];
20

21 x_line = collect(0:0.1:10)
22 y_line = w_line[1] * x_line .+ w_line[3]
23 plot!(x_line, y_line, lw=3)

Output See Fig. 13.9.

1 zeta = results.x[4:end]
2 @show maximum(zeta)
3 @show minimum(zeta)
4 println(" ")
5 println("These are misclassified data points or they are outliers in your data set.")
6 indicesBigZeta=findall(x->x>1,zeta) # These are misclassified

Output

maximum(zeta) = 3.2141869873099136
minimum(zeta) = 2.3479433444366696e-8

These are misclassified data points or they are outliers in your data set.
13-element Vector{Int64}:
18
43
56
66
87
94

131
144
150
194
195
196
198

We next look at a problem where it seems impossible to separate the data with a hyperplane, such as shown in Fig. 13.10. The trick
is to add more features to the data by adding nonlinear terms. For example, instead of working in R2 with [x1 x2] as features, we
could work in R5 with the feature vector being 

x1
x2
1

(x1)
2

x1x2
(x2)

2

 .

This gives more possibilities for the data to be separated. The above choice is motivated by the blue data seemingly belonging to a
disc. We are not obliged, however, to use monomials. In Project 2, we learned about radial basis functions, or RBFs for short. As
shown in Fig. 13.11, this provides a lot of flexibility for separating the data into two classes.

1 # generate a dataset
2 N = 100 # Desired number of data points in each class
3 n = 2*N # Total number of points
4 k1 = 0; # number of 1
5 k2 = 0; # number of -1
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6 X = zeros(n,2); # input matrix
7 ell = zeros(n,1); # target values
8 i = 1;
9 while minimum([k1 k2]) < N

10 x = rand(1,2) * 10.;
11 y = (x[1]-5)^2 + (x[2]-5)^2;
12 # generate target values
13 if (y < 5.5) && k1 < N
14 ell[i] = 1;
15 X[i,:] = x;
16 k1 += 1;
17 i += 1;
18 elseif (y > 4) && k2 < N
19 ell[i] = -1;
20 X[i,:] = x;
21 k2 += 1;
22 i += 1;
23 end
24 end
25

26 # Class +1 IDs
27 class1_id = ell .== 1;
28

29 using Plots
30 gr() # Set the backend to GR

Figure 13.10: Raw data where it seems impossible to separate the data with a hyperplane.
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31

32 plot(X[class1_id[:],1], X[class1_id[:],2], seriestype = :scatter, legend=false)
33 plot!(X[.!class1_id[:],1], X[.!class1_id[:],2], seriestype = :scatter)
34 plot!(aspectratio=:equal)

Output See Fig. 13.10.

1 # Functions from Project 2
2

3 # Radial basis function
4 s = 1;
5 rbf(x, z, s) = exp.(-norm(x-z)^2 / (2*s^2));
6

7 function calc_phi_row(x, z, s)
8 NumBasisElements = size(z,1) + 2
9 # plus two above because we also include a x1 and x2

10 phi_row = zeros(1,NumBasisElements)
11 phi_row[1:2] = [x[1] x[2]]
12 for i in 3:NumBasisElements
13 phi_row[i] = rbf(x, z[i-2,:], s)
14 end
15 return phi_row
16 end

Figure 13.11: A Gaussian soft-margin classifier, where radial basis functions have been used to lift the data to Rn+2, where n is the
number of data points. When we evaluate the sign of the classifier on our data in R2, we obtain an approximation of a circle. In R202,
there is a separating hyperplane.
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17

18 function regressor_matrix(X, centers, s)
19 ### BEGIN SOLUTION
20 N = size(X,1)
21 M = size(centers,1)
22 Phi = Array{Float64, 2}(undef, N, M+2)
23 for i = 1:N
24 Phi[i, :] = calc_phi_row(X[i,:], centers, s)
25 end
26 return Phi
27 ### END SOLUTION
28 end

1 # Define problem data
2 m = n+2;
3 lambda = 0.01; # tunable parameter (called hyperparameter because it’s not like w the

parameter of our model)
4 P = sparse([lambda*(zeros(m,m) + I) zeros(m,n); zeros(n,m) (zeros(n,n) + I)]);
5 q = zeros(n+m,1);
6 Phi = regressor_matrix(X,X,s);
7 A = sparse([-\ell.*Phi -(zeros(n,n) + I); zeros(n,m) (zeros(n,n) + I)])
8 l = [zeros(n,1) .- Inf; zeros(n,1)];
9 u = [-ones(n,1); zeros(n,1) .+ Inf];

10

11 # Create OSQP object
12 prob = OSQP.Model()
13

14 # Setup workspace and change alpha parameter
15 OSQP.setup!(prob; P=P, q=q[:], A=A, l=l[:], u=u[:])
16

17 # Solve problem
18 results = OSQP.solve!(prob);

1 # create test data
2 x1 = 0:0.1:10;
3 x2 = 0:0.1:10;
4 X1 = zeros(length(x2),length(x1));
5 X2 = zeros(length(x2),length(x1));
6 for j=1:length(x1)
7 for i=1:length(x2)
8 X1[i,j]= x1[j]
9 X2[i,j]= x2[i]

10 end
11 end
12 X_test = [X1[:] X2[:]];
13 # get model weights
14 alpha = results.x[1:m,:]
15 # query
16 Phi_test = regressor_matrix(X_test,X,s);
17 Y_test = Phi_test * alpha;
18

19 plot(X[class1_id[:],1], X[class1_id[:],2], seriestype = :scatter)
20 plot!(X[.!class1_id[:],1], X[.!class1_id[:],2], seriestype = :scatter)
21

22 Z = sign.(reshape(Y_test, (length(x2), length(x1)))); # +1 or -1
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23 # plot the margins
24 contour!(x1, x2, Z, lw=3, color=:red, legend=false) # The contour line separates class -1 from

class +1
25 plot!(aspectratio=:equal)

Output See Fig. 13.11.

Remark 6 What is the classifier for the data? It is

α = results.x[1 : m, :]

Classifier(x) = (calc_phi_row(x,X, s) ∗ α)[1]

The data from R2 have been lifted to Rn+2 = R202 via

Classifier(x) = Classifier(x1, x2) =
[
x1 x2 e−

||x−z1||2
2 · · · e−

||x−zn||2
2

]

α∗
a

α∗
b

α∗
1
...
α∗
n

 ,

where z1, z2, . . . , zn are the two-dimensional data points in Fig. 13.10. The code block below shows that there are no misclassified
points!

1 alpha = results.x[1:m,:]
2 Classifier (x) = (calc_phi_row(x, X, s)*alpha)[1]
3

4 for i in 1:n
5 test = Classifier(X[i,:])
6 if sign(test) != ell[i]
7 @show [i ell[i] test] # misclassified data points
8 end
9 end

Output Nothing! There are no misclassified data points!

13.5 Orthogonal Projection

We extend the importance of the dot product (aka, inner product) by showing its fundamental role in least squares problems.
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Figure 13.12: A vector (in red) is orthogonally projected (in black) onto a subspace (in cyan). The error vector (in solid orange) is
orthogonal to the plane. This characterizes the orthogonal projection process. The vector in dashed orange is the error vector drawn
to highlight that the error forms a right angle with the projection of the vector.

13.5.1 Orthogonal Projection for Subspaces

Review
Consider the vector space Rn, which we view as the set of all n × 1 column vectors of real numbers. Let v, w ∈ Rn and let
V ⊂ Rn be a subspace.

• v • w := v⊤w.

• w • v = v • w.

• v ⊥ w ⇐⇒ v • w = 0.

• v ⊥ w =⇒ ||v + w||2 = ||v||2 + ||w||2 (Pythagorean Theorem).

• Let {u1, u2, . . . , um} be a basis for V . Then Gram-Schmidt produces an orthogonal basis that also satisfies, for all
1 ≤ k ≤ m,

span{u1, u2, . . . , uk} = span{v1, v2, . . . , vk}.

Moreover, by the simple step of adding normalization to Gram-Schmidt, we can assume that {v1, v2, . . . , vm} is an
orthonormal basis for V .
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Projection Theorem: The Super Tool that Solves all Least Squares Problems

Let V be a subspace of Rn and let x0 be an arbitrary point in Rn. Then there exists a unique vector x∗ ∈ V such that

||x0 − x∗|| = min
x∈V
||x0 − x||;

as before, we denote this vector by x∗ = argmin
x∈V

||x0 − x|| or by x∗ = argmin
x∈V

||x0 − x||2. Moreover, the solution to the

least squared error problem is uniquely characterised by

x∗ = argmin
x∈V

||x0 − x||2 ⇐⇒ (x0 − x∗) ⊥ V and x∗ ∈ V. (13.16)

The vector x0 − x∗ is called the error vector. The vector x∗ is called the orthogonal projection of x0 onto V precisely
because the error vector is orthogonal to V . Recalling the Pythagorean Theorem, we have that

||x0 − x∗||2 + ||x∗||2 = ||x0||2;

once again emphasizing that x∗, x0 − x∗, and x0 form a “generalized right triangle”.

You already know one way to compute x∗ from the Projection Theorem! Really? Yes, Gram Schmidt. If x0 ∈ V , the solution to
the problem is trivial, namely x∗ = x0, because then the error is zero, which is as small as it gets. Hence, suppose x0 ̸∈ V and let
{u1, u2, . . . , um} be a basis for V . Then we leave it to you to show that

x0 ̸∈ V ⇐⇒ x0 ̸∈ span{u1, u2, . . . , um} ⇐⇒ {u1, u2, . . . , um, x0} is linearly independent.

We apply Gram-Schmidt2 to the set {u1, u2, . . . , um, x0}. The last step gives that

vm+1 = x0 −
m∑

k=1

x0 • vk
vk • vk

vk,

and moreover, we know that
vm+1 ⊥ span{v1, v2, . . . , vm} = V.

Hence, by the Projection Theorem,

x∗ =

m∑
k=1

x0 • vk
vk • vk

vk, (13.17)

because x0 − x∗ = vm+1 and vm+1 ⊥ V .

Remark: Once we know that (13.17) is true, we can simply apply Gram-Schmidt to any basis of V to produce an orthogonal basis
and then apply (13.17). If we produce an orthonormal basis, then we know that vk • vk = 1 and the formula simplifies to

x∗ =

m∑
k=1

(x0 • vk) vk =

m∑
k=1

⟨x0, vk⟩ vk, (13.18)

where we have recalled our alternative notation for an inner product.

A second way to compute the solution follows from (13.16) and leads to the Normal Equations. Once again, let {u1, u2, . . . , um}
be any basis for V . Because we know that x∗ ∈ V , we can pose

x∗ = α1u1 + α2u2 + · · ·+ αmum (13.19)

as a linear combination of basis vectors for V and seek the conditions on the coefficients α1, α2, . . . , αm so that

x0 − x∗ ⊥ V.
2We do not assume normalization, but you can also do that.
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You can quickly convince yourself that

x0 − x∗ ⊥ V ⇐⇒ x0 − x∗ ⊥ uk, 1 ≤ k ≤ m.

The above constitutes m-equations, one for each k, and leads to the famous Normal Equations,


u1 • u1 u1 • u2 · · · u1 • um
u2 • u1 u2 • u2 · · · u2 • um

...
...

. . .
...

um • u1 um • u2 · · · um • um


︸ ︷︷ ︸

G


α1

α2

...
αm


︸ ︷︷ ︸

α

=


u1 • x0
u2 • x0

...
um • x0


︸ ︷︷ ︸

β

. (13.20)

The matrix G is called the Gram matrix and is invertible if, and only if, the set {u1, u2, . . . , um} is linearly independent. We note
the the ij-entry of it is

Gij = ui • uj = u⊤i uj .

We’ll let you work out that if you take a basis for V that is orthogonal, then G is a diagonal matrix, and if you take an orthonormal
basis for V , then G is the identity matrix!

We summarize the various solutions in the following:

Computing the Solution Given by the Projection Theorem

Let V a subspace of Rn and x0 ∈ Rn be given. Then x∗ = argmin
x∈V

||x0 − x||2, the orthogonal projection of x0 onto V , can

be computed by

• x∗ =
∑m

k=1 (x0 • vk) vk if {v1, · · · , vm} is an orthonormal basis for V ;

• x∗ =
∑m

k=1
x0•vk
vk•vk vk if {v1, · · · , vm} is an orthogonal basis for V ;

• x∗ = α1u1 + α2u2 + · · ·αmum, where Gα = β are the Normal Equations given in (13.20), if {u1, · · · , um} is any
basis for V .

You instructors use all of these forms of the solution at various times when solving problems.

Example 13.7 We’ll warm up on a simple example. Consider a subspace given by V = span{u1, u2}, where

u1 =

 1.0
1.0
0.0

 , u2 =

 2.5
0.0
1.0

 .

Compute the orthogonal projection of x0 =

 4.0
4.0
4.0

 onto V . Moreover, compute

x∗ = argmin
x∈V

||x0 − x||2

in at least two different ways.
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Solution A: We apply the normal equations

G =

[
u⊤1 u1 u⊤1 u2
u⊤2 u1 u⊤2 u2

]
=

[
2.00 2.50
2.50 7.25

]

β =

[
u⊤1 x0
u⊤2 x0

]
=

[
8.00

14.00

]

Gα = β =⇒ α =

[
2.79
0.97

]

x∗ = α1u1 + α2u2 =

 5.21
2.79
0.97

 .
The results are illustrated in Fig. 13.12.

Solution B: We find an orthonormal basis for V and apply (13.18). We use Gram-Schmidt with normalization and find that V =
span{v1, v2}, for

v1 =

 0.707
0.707
0.000

 and v2 =

 0.615
−0.615
0.492

 .
Hence,

x∗ =
(
v⊤1 x0

)
v1 +

(
v⊤2 x0

)
v2 = 5.657v1 + 1.969v2 =

 5.212
2.788
0.970

 .
Solution C: Finally, we use an orthogonal basis for V and apply (13.17). For our orthogonal basis, we apply Gram-Schmidt without
normalization and obtain V = span{v1, v2}, for

v1 =

 1.0
1.0
0.0

 and v2 =

 1.25
−1.25
1.00

 .
Hence,

x∗ =
v⊤1 x0
v⊤1 v1

v1 +
v⊤2 x0
v⊤2 v2

v2 = 4.0v1 + 0.970v2 =

 5.212
2.788
0.970

 .
■.

In this next example, we apply the Normal Equations to our very first least squares problem in (8.8)! The example is essentially a
proof showing how to derive our original result from the Projection Theorem. Trigger Warning: This is not for the faint of heart. Your
instructors did not learn this as undergraduates, much less, first-year undergraduates! If you skip the example, we highly recommend
the summary that follows it.

Example 13.8 Consider a system of linear equations Ax = b, where A is n×m and its columns are linearly independent. Define

V := col span{A}.

Relate the following two least squares problems

• x∗ = argmin
x∈Rm

||Ax− b||2

• v∗ = argmin
v∈V

||b− v||2,

where we renamed the solution of the second optimization problem as v∗ to avoid confusion later on. (Yikes! It must not be easy.)
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Solution The first least squares problem is well known to us from (8.8), which we repeat here for clarity

x∗ = argmin
x∈Rm

||Ax− b||2 ⇐⇒ A⊤Ax∗ = A⊤b,

which we’ve always interpreted as the least squared error solution to over determined equations. Moreover, this provided the basis
for our work on regression, which was, we recall, pretty awesome.

The second least squares problem is still kind of a mystery to us. If we believe what we were were told about its solution, then v∗ is
the orthogonal projection of b onto the column span of the matrix A. What could that possibly mean? Well, let’s find out!

We write A out in terms of its columns, A =
[
A1 A2 . . . Am

]
, so that

col span{A} = span{A1, A2, . . . , Am}.

When we compute the Gram matrix, we recall that Gij = Ai •Aj = A⊤
i Aj , which is precisely the ij-entry of A⊤A, and thus

G = A⊤A,

an amazing coincidence! We’ll let you work out a few examples to see that this is true or we’ll let you work out a proof! Moreover,
when we compute the i-th entry of β we obtain βi = Ai • b = A⊤

i b, so that

β = A⊤b,

another amazing coincidence! (Or, perhaps not!). Finally, we note (aka, “let you work out”) that

m∑
k=1

αkAk = Aα,

which should either be setting off alarms in your head because this many coincidences should never happen.....except for a reason!
The two least squares problems are really one and the same problem.

To see this, we summarize what we have

• v∗ = argmin
v∈col span{A}

||b− v||2 ⇐⇒
(
A⊤Aα = A⊤b and v∗ = Aα

)
.

• x∗ = argmin
x∈Rm

||Ax− b||2 ⇐⇒ A⊤Ax∗ = A⊤b.

• Hence, α = x∗, and v∗ = Ax∗ is the orthogonal projection of b onto the column span of A.

• By projecting b onto the column span of A, we have that

v∗ ∈ span{A1, A2, . . . , Am},

and hence Ax = v∗ has a solution. Kind of clever, isn’t it!

• The fact that all of that is being accomplished by the simple equation A⊤Ax∗ = A⊤b is one of the Wonders of Linear
Algebra. It’s a really beautiful subject and we hope you will want to learn more about it. There is so much more to it than
what we have covered in the main parts of this book.

■
Remark: This is a heavy result, so it will take you some time to wrap your head around it. The main message is that the Projection
Theorem and the Normal Equations are your main tools when you approach new least squares problems. They have extensions to
settings that you cannot even imagine right now. But they are always there, providing theoretical and computational support for
solving least squares problems of so many kinds.

It is clear why we did not broach this result in our main treatment of least squares problems. We would have sent you running
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and screaming for any course but ROB 101!

Summary of the Previous Example

Suppose that {u1, u2, . . . , um} is a basis for a subspace V ⊂ Rn and x0 ∈ Rn. Form a matrix U with the basis vectors as its
columns, that is,

U =
[
u1 u2 . . . um

]
.

Then the solution to x∗ = argmin
x∈V

||x0 − x||2 is given by

U⊤Uα∗ = U⊤x0, x
∗ = Uα∗.

13.5.2 Orthogonal Projection onto Linear Varieties (translations of subspaces)
Let V ⊂ Rn be a subspace (of any dimension) and vc ∈ Rn be a point. We define the linear variety, W := vc + V , as the translation
of the subspace V by the vector vc. Though it is not very common, one can consider the orthogonal projection of a vector x0 ∈ Rn

onto the linear variety W . The key idea is to once again pose a best approximation problem and to consider the properties that define
its solution, by properly interpreting the Projection Theorem.

Small Extension of the Projection Theorem

Consider a linear variety W := vc+V , where V ⊂ Rn is a subspace (of any dimension) and vc ∈ Rn is a point. For x0 ∈ Rn

arbitrary, the following are equivalent:

(a) w∗ = argmin
w∈W

||x0 − w||2.

(b) w∗ = v∗ + vc, where v∗ = argmin
v∈V

||(x0 − vc)− v||2.

(c) w∗ = v∗ + vc, where v∗ ∈ V and
(
(x0 − vc)− v∗

)
⊥ V

(d) w∗ ∈W and
(
(x0 − vc)− (w∗ − vc)

)
⊥ V .

(e) w∗ ∈W and (x0 − w∗) ⊥ V .

The last condition, (e), emphasizes that the error term, x0 −w∗, is orthogonal to V . The second condition, (b), shows how to
compute w∗: orthogonally project x0 − vc onto V , and then add vc to the answer.

We gave (a) through (e) in the order we would use them in a proof, were we to give it! The order we chose should help you
to see how each fact is a small variation of the previous one, while going straight from (a) to (e) would be rather daunting.

Example 13.9 Compute the orthogonal projection of x0 =

 4.0
4.0
4.0

 onto W := vc + V , where V = span{u1, u2},

u1 =

 1.0
1.0
0.0

 , u2 =

 2.5
0.0
1.0


and vc =

 1.0
2.0
3.0

. Moreover, compute the norm of the error term, x0−w∗, which we now know is the distance of x0 from the linear

variety W .

Solution: Our strategy is we form x0 := x0 − vc =

 3.0
2.0
1.0

 and compute v∗, its orthogonal projection onto V . We then have

w∗ = v∗ + vc is the orthogonal projection of x0 onto W = V + vc.
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Using our work from Example 13.7, Solution B, we have that V = span{v1, v2}, for

v1 =

 0.707
0.707
0.000

 and v2 =

 0.615
−0.615
0.492

 .
Hence,

v∗ =
(
v⊤1 x0

)
v1 +

(
v⊤2 x0

)
v2 = −1.5v1 − 0.182v2 =

 −1.727−1.273
−0.182

 .
Hence,

w∗ = v∗ + vc =

 −0.7270.727
2.818

 .
We next compute

d(x0,W ) := min
w∈W

||x0 − w|| = ||x0 − w∗|| = 2.08893

■

Example 13.10 As a natural continuation of Example 13.9, we note that W ⊂ R3 is a hyperplane. Compute the signed distance of
x0 from W .

Solution: We need to write the hyperplane as the zero set of a function y : R3 → R, where

y(x) = a • (x− vc),

and a ∈ R3 has norm one. Once again, appealing to Gram-Schmidt, we have that

a =

 −0.3480.348
0.870

 .
Doing the required computation yields that the signed distance is

y(x0) = −2.08893.

Comparing to our result in Example 13.9, we see that

y(x0) = −d(x0,W ),

in other words, the terminology “signed distance” is justified! ■
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Appendix A

To Learn on Your Own (if you want to): Cool and
Important Things We Omitted From our Linear
Algebra Introduction

Learning Objectives
• Introduce material that is commonly included in a second or third year Linear Algebra Course

• Provide a resource for use after you leave ROB 101.

Outcomes
• Complex numbers obey the same rules of arithmetic as the real numbers, if you really understand the real numbers!

• Eigenvalues and eigenvectors of square matrices

• Symmetric matrices have real eigenvalues and admit orthonormal eigenvectors

• Positive definite matrices allow one to generalize the Euclidean norm

• The Singular Value Decomposition (SVD) allows one to quantify the degree to which vectors are linearly independent. This is
super useful in engineering practice.

• Matrices are good for other things than representing systems of equations: they also allow one to transform vectors in interesting
ways, giving rise to the concept of linear transformations.

• Many more facts about basis vectors.
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A.1 Complex Numbers and Complex Vectors
Here are some video resources that you may enjoy consulting:

• https://youtu.be/T647CGsuOVU

• https://youtu.be/2HrSG0fdxLY

• https://youtu.be/N9QOLrfcKNc

• https://youtu.be/DThAoT3q2V4

• https://youtu.be/65wYmy8Pf-Y

The story of complex numbers begins with the quadratic equation x2+1 = 0, which has no real solutions! After much soul searching,
the mathematics community finally embraced the notion of an imaginary quantity i defined by

(i)2 := −1. (A.1)

More commonly, we write this as
i =
√
−1. (A.2)

The set of complex numbers is then defined as

C := {x+ i y |x ∈ R, y ∈ R} . (A.3)

If z = x+ i y ∈ C, then we define
x := real(z) the real part of z
y := imag(z) the imaginary part of z.

(A.4)

We note that both x and y are real numbers. Complex numbers of the form 0 + i y are called imaginary numbers. We view a real
number x ∈ R as being a complex number of the form x+ i 0. In other words, we view R ⊂ C. In addition, we define the complex
conjugate of z = x+ i y to be

z∗ := x− i y, (A.5)

that is, imag(z∗) = −imag(z), while real(z∗) = real(z).

Figure A.1: The complex plane has x-axis given by the real part of a complex number and y-axis given by the imaginary part of a
complex number. Here, we plot z1, z2, z3 from Example A.1 and their complex conjugates.
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Example A.1 For the following are complex numbers, compute their real and imaginary parts as well as their complex conjugates.
Also, plot them in the complex plane.

z1 = 2 + i 3

z2 = −6 + i
√
2

z3 = π − i
√
17.

Solution

real(z1) = 2 imag(z1) = 3 z∗1 = 2− i 3
real(z2) = −6 imag(z2) =

√
2 z∗2 = −6− i

√
2

real(z3) = 2π imag(z3) = −
√
17 z∗2 = π + i

√
17.

All of these values are plotted in Fig. A.1.
■

A.1.1 Arithmetic of Complex Numbers: Enough to Get You By
We’ll define all of the major arithmetic operations. Just like operations with vectors and matrices, however, it’s much more fun to do
the calculations in Julia than by hand!

The addition of two complex numbers is defined by adding their respective real and imaginary parts,

(x1 + i y1) + (x2 + i y2) := (x1 + x2) + i (y1 + y2) . (A.6)

This is very similar to how we add two vectors [
x1
y1

]
+

[
x2
y2

]
:=

[
x1 + x2
y1 + y2

]
by adding their respective components.

The multiplication of two complex numbers is defined by

(x1 + i y1) · (x2 + i y2) := (x1x2 − y1y2) + i (x1y2 + y1x2) . (A.7)

This formula comes from applying basic algebra to the “symbolic expression”

(a1 + b1)(a2 + b2) = a1a2 + b1b2 + a1b2 + b1a2

and then substituting in

a1 := x1

a2 := x2

b1 := i y1
b2 := i y2.

The term b1b2 = (i y1) · (i y2) = (i)2y1y2 = (−1)y1y2, which explains how the minus sign appears!

Let’s note that if we multiply a complex number by its complex conjugate, then we obtain a real number. Indeed,

z · z∗ = (x+ i y) · (x− i y) = ((x)(x)− (y)(−y)) + i ((x)(−y) + (y)(x)) = x2 + y2. (A.8)

The magnitude of a complex number z = x+ i y is denoted by |z| and is defined by

|z| :=
√
x2 + y2, (A.9)

or equivalently, by
|z| :=

√
z · z∗. (A.10)
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Both definitions are common and we note that the square root makes sense1 because the magnitude is a non-negative real number.

Using the complex conjugate, the division of one complex number by another can be defined, and subsequently, understood. We
define

x1 + i y1
x2 + i y2

:=
(x1x2 + y1y2) + i (y1x2 − x1y2)

(x2)2 + (y2)2
, (A.11)

and note that the denominator is real, and thus the indicated division can be treated as multiplication by one over the denominator.
It follows that when |z2| ≠ 0, z1/z2 is a well-defined complex number. The formula (A.11) is best understood from an alternative
definition of complex division

z1
z2

:=
z1 · z∗2
z2 · z∗2

=
z1 · z∗2
|z2|2

. (A.12)

Personally, we try to avoid using either one of these formulas and do the computations in Julia! Multiplication and division of com-
plex numbers by hand is very error prone. For probably a century, engineering faculty have been torturing students by making them
do such calculations by hand; at some point, it has to stop!

Example A.2 For the following complex numbers, compute their sum, product, division, and magnitudes,

z1 = 2 + i 3

z2 = −6 + i
√
2

Solution

z1 + z2 = −4.0000 + i4.4142

z1 · z2 = −16.2426− i15.1716
z1
z2

= −0.2041− i0.5481

|z1| = 3.6056

|z2| = 6.1644

■

A.1.2 Angles of Complex Numbers and Euler’s Formula: More Advanced Aspects

Figure A.2: It is often helpful to understand complex numbers as having a magnitude and an angle. This is similar to using polar
coordinates in R2. Here, the angle of z is denoted by ∠z instead of θ. Both conventions are common.

1Julia will recognize real(z)2 + imag(z)2 as being a real number. It does not recognize z · z∗ as a real number. In Julia, the command is abs(z), just as with a
real number.
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For a pair of real numbers (x, y), we were taught in High School how to express them in polar coordinates (ρ, θ), where

ρ :=
√
x2 + y2

θ :=


arctan(y/x) x > 0

π − arctan(y/|x|) x < 0

sign(y) π
2 x = 0, y ̸= 0

undefined x = 0, y = 0.

(A.13)

From polar coordinates (ρ, θ), we computed the Cartesian Coordinates (x, y) as

x = ρ cos(θ)

y = ρ sin(θ).
(A.14)

Moving beyond High School, we can also express the above in terms of the canonical basis vectors {e1, e2} for R2 as[
x
y

]
= ρ cos(θ)e1 + ρ sin(θ)e2. (A.15)

In fact, any (non-zero) vector v ∈ R2 can be expressed as

v = ||v|| cos(θ)e1 + ||v|| sin(θ)e2. (A.16)

Equation (A.16) hints at a natural way of expressing complex numbers.

Polar Coordinates Meet Complex Numbers and their Multiplication

For a non-zero complex number z = x+ i y, we define its angle as in (A.13). Doing so allows us to express every (non-zero)
z ∈ C as

z = |z| cos(θ) + i |z| sin(θ). (A.17)

The real and imaginary parts of z are playing the role of the basis vectors {e1, e2}. One can also think of {1.0, i} as being
a basis for C, though this is beyond our scope. Equation (A.17) leads to a very nice way to understand the multiplication of
two complex numbers.

Fact: Suppose z1 = |z1| cos(θ1) + i |z1| sin(θ1) and z2 = |z2| cos(θ2) + i |z2| sin(θ2) are non-zero complex numbers. Then,

z1 · z2 = |z1||z2| cos(θ1 + θ2) + i |z1||z2| sin(θ1 + θ2)

z1
z2

=
|z1|
|z2|

cos(θ1 − θ2) + i
|z1|
|z2|

sin(θ1 − θ2).
(A.18)

When expressed in “polar form”, multiplying two complex numbers is equivalent to multiplying their magnitudes and adding
their angles (or phases), while dividing two complex numbers is equivalent to dividing their magnitudes and subtracting their
angles (or phases). Proving (A.18) involves some trigonometric identities. You may want to give it a go. We’ll provide a
simpler way to understand it in a few more lines!

Remark: A positive real number has angle zero, while a negative real number has angle π (or, equivalently, −π). The angle
of i is π/2 and the angle of −i is −π/2 (or, equivalently, 3π/2).

The exponential function of a real number x is defined by the infinite series

ex :=

∞∑
n=0

xn

k!

= 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

= 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + · · · ,

(A.19)

331



where n! := 1 · 2 · 3 · · · (n− 1) · n, the product of all integers from 1 to n.

Euler’s Formula

A very famous result due to the Swiss Mathematician Leonhard Euler (https://en.wikipedia.org/wiki/
Leonhard_Euler), asserts that for a given real number θ,

ei θ = cos(θ) + i sin(θ) Euler’s Formula. (A.20)

Hence, every complex number can be written as
z = |z|ei θ, (A.21)

which leads to

Fact: Suppose z1 = |z1|ei θ1 and z2 = |z2|ei θ2 are non-zero complex numbers. Then,

z1 · z2 = |z1||z2|ei (θ1+θ2)

z1
z2

=
|z1|
|z2|

ei (θ1−θ2).

(A.22)

Deriving this result for multiplication and division is much easier than (A.18), but Euler’s Formula (A.20) assures us they are
the same.

Remark: Deriving Euler’s formula is not that hard. When you substitute i θ into (A.19), you must first note that (i)2n = (−1)n and
(i)2n+1 = (−1)n i. If you then separate the power series into its real and imaginary parts, you will recognize the power series for
cos(θ) and sin(θ).

A.1.3 Iterating with Complex Numbers: Background for Eigenvalues

Consider the equation

zk+1 = azk, (A.23)

with a ∈ C and z0 ∈ C. Equation (A.23) is technically called a scalar linear difference equation, but for us, it looks not so different
than iterating with the bisection method or Newton’s Algorithm. We compute a few steps until the general pattern of its solution
becomes clear:

z1 = az0

z2 = az1 = a2z0

z3 = az2 = a3z0

...

zk = akz0.

(A.24)
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(a) a = 1/2 + i 2/3 = 0.83ei 0.93 (b) a = 3/4 + i = 1.25ei 0.93 (c) a = 3/5 + i 4/5 = 1.0ei 0.93

(d) a = 3/5 + i 4/5 = 1.0∠53.1 degrees (e) a = 3/4 + i = 1.25∠53.1 degrees (f) a = 3/5 + i 4/5 = 1.0∠53.1 degrees

Figure A.3: The solid dots illustrate the evolution of zk in (A.23) and (A.24) when a has magnitude less than one, greater than one,
and equal to one, respectively. In each case, z0 = 1.0 + i 0.0 and the angle of a was selected to be 53.1 degrees; therefore the dots
rotate counterclockwise. The red dashes are present to guide the eye in connecting the dots. In (f), the points lie on a circle of radius
one.

Scalar Linear Difference Equation

The general solution to zk+1 = azk, z0 ∈ C is zk = akz0. We write a = |a|ei θ, where θ = ∠a, the angle of a as computed
in (A.13). Then from (A.22), we conclude that

zk = |a|kei k∠az0. (A.25)

Below, we analyze three cases and show the following for z0 ̸= 0

• |a| < 1 =⇒ |zk| −→
k→∞

0

• |a| > 1 =⇒ |zk| −→
k→∞

∞

• |a| = 1 =⇒ |zk| = |z0|, k ≥ 0.

See also Fig. A.3.

The following analysis supports the illustrations in Fig. A.3.

Case 1: |a|<1 We note that log(|a|k) = k log(|a|), and that |a| < 1 =⇒ log(|a|) < 0. Hence,

lim
k→∞

|a|k = lim
k→∞

ek log(|a|) = 0.

Case 2: |a|>1 We note that log(|a|k) = k log(|a|), and that |a| > 1 =⇒ log(|a|) > 0. Hence,

lim
k→∞

|a|k = lim
k→∞

ek log(|a|) =∞.
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Case 3: |a|=1 We note that when |a| = 1, then |a|k = 1 for all k ≥ 1, and thus this case is clear.

A.1.4 Cn, the Space of Complex Vectors
Cn sounds harder than it is. It’s exactly Rn where the scalars are complex numbers instead of real numbers. All the definitions of
vector addition, linear combinations, spans, and linear independence are the same. We’ll cover just a few of the basic ideas so that
you get the idea.

Recall that we started by defining Rn as n-tuples of real numbers and then we identified it with column vectors of length n. We do
that same here.

Cn := {(α1, α2, . . . , αn) | αi ∈ C, 1 ≤ i ≤ n} ⇐⇒



α1

α2

...
αn


∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ n

 =: Cn (A.26)

Consider two vectors v1 ∈ Cn and v2 ∈ Cn. We define their vector sum by

v1 + v2 =


α1

α2

...
αn

+


β1
β2
...
βn

 :=


α1 + β1
α2 + β2

...
αn + βn

 ,
that is, we sum their respective components or entries. Let γ be a complex number. Then we define

γv :=


γα1

γα2

...
γαn

 ,
that is, to multiply a complex vector by a complex number, we multiply each of the components of the vector by the number, just
as we do for real vectors.

Let {v1, v2, . . . , vk} be a collection of vectors in Cn. Then we define their span as

span{v1, v2, . . . , vk} := {α1v1 + α2v2 + · · ·+ αkvk | αi ∈ C, 1 ≤ i ≤ k}.

The set of vectors {v1, v2, . . . , vk} is linearly independent in the vector space Cn if the only solution to

α1v1 + α2v2 + · · ·+ αkvk = 0

is α1 = 0 + i 0, α2 = 0 + i 0, . . . , αk = 0 + i 0.

The norm of a complex vector

v =


α1

α2

...
αn


is

||v|| :=

√√√√ n∑
k=1

|αk|2,

where, to be extra clear, |αk|2 = αk · α∗
k. Moreover, if one defines the complex conjugate of a vector by taking the complex

conjugate of each of its components, then
||v||2 = (v∗)

⊤ · v,
and yes, the transpose simply takes the column vector to a row vector.
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A.1.5 Iterating with Matrices: The Case for Eigenvalues and Eigenvectors
We now attempt to analyze the matrix versions of (A.23) and (A.24). Recall that you saw matrix difference equations in Project 3.
Our real goal is to understand

xk+1 = Axk, (A.27)

with A an n× n real matrix and x0 ∈ Rn. But we’ll see that allowing the entries of A to be complex and x0 ∈ Cn does not change
anything.

With this in mind, we rewrite (A.27) first as
x[k + 1] = Ax[k],

with the time index denoted in square brackets, Julia style! This will allow us to use a subscript for the components of x. Next, we
replace x[k] with z[k] to emphasize that the we allow z[k] to be a complex vector. We compute a few steps of z[k+ 1] = Az[k] until
the general pattern of its solution becomes clear:

z[1] = Az[0]

z[2] = Az[1] = A2z[0]

z[3] = Az[2] = A3z[0]

...

z[k] = Akz[0].

(A.28)

So far so good! Now, our challenges are:

• give conditions on A so that || z[k] || contracts, blows up, or stays bounded as k tends to infinity;

• even better, for a given initial condition z[0], describe in detail the evolution of z[k] for k > 0.

We’ll start with a diagonal n× n matrix A, and for reasons that will become clear in the next section, we’ll denote the entries on the
diagonal by λ,

A =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn

 . (A.29)

We leave it as an exercise to compute that

A2 =


(λ1)

2
0 0 0

0 (λ2)
2

0 0

0 0
. . . 0

0 0 0 (λn)
2

 , (A.30)

and once you have established (A.30), you will have no trouble believing that

Ak =


(λ1)

k
0 0 0

0 (λ2)
k

0 0

0 0
. . . 0

0 0 0 (λn)
k

 . (A.31)

One thing we can do is observe that 
z1[k]
z2[k]
...

zn[k]

 =


(λ1)

k
0 0 0

0 (λ2)
k

0 0

0 0
. . . 0

0 0 0 (λn)
k



z1[0]
z2[0]
...

zn[0]

 (A.32)
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results in n scalar equations of the form (A.23), namely,

zj [k] = (λj)
kzj [0], 1 ≤ j ≤ n. (A.33)

Linear Difference Equation with a Diagonal Matrix

The general solution to z[k + 1] = Az[k], z[0] ∈ Cn is z[k] = Akz[0]. When A is diagonal, the solution is given in (A.32)
and (A.33). Based on these results and Chapter A.1.3, we analyze three cases for zj [0] ̸= 0,

• |λj | < 1 =⇒ |zj [k]| −→
k→∞

0

• |λj | > 1 =⇒ |zj [k]| −→
k→∞

∞

• |λj | = 1 =⇒ |zj [k]| = |zj [0]|, k ≥ 0.

Being a ROB 101 student, having “real” matrices replaced by diagonal matrices must be a bit disconcerting! You’ll be glad to know
that it is really just a step to something kind of magical: most matrices can be factored as A =MΛM−1, where det(M) ̸= 0 and Λ
is diagonal, as in (A.29). But we get ahead of ourselves!

Key features of a Diagonal Matrix: One way that Eigenvalues and Eigenvectors come about

Let vj = ej , where ej are the canonical basis vectors for either Rn or Cn (aka, columns of the n × n identity matrix). We
have noted before that Aej = acolj . In our case, acolj = λjej . Hence, substituting in vj = ej , we arrive at the equation

Avj = λjvj , 1 ≤ j ≤ n. (A.34)

Equation (A.34) is the defining relation for eigenvalues (denoted here by λj) and eigenvectors (denoted here by vj). We
further note that the set of vectors {v1, v2, . . . , vn} is linearly independent and spans both Rn and Cn. Having a set of
eigenvectors that forms a basis turns out to be a defining characteristic of matrices that are related to a diagonal matrix Λ by
a transformation of the form A =MΛM−1.

Remark: If v ∈ Cn is an eigenvector, meaning v ̸= 0 and there exists a λ ∈ C such that (A.34) holds, then we have that

Av = λv

A2v = A(λv) = λAv = (λ)2v

...

Akv = (λ)kv

and hence we can analyze convergence for the difference equation z[k + 1] = Az[k], z[0] = v, even when A is not diagonal.

Remark: Suppose thatA is real and that λ ∈ C and v ∈ Cn, satisfyAv = λv and v ̸= 0. Even though the eigenvalue and eigenvector
are complex, their real and imaginary parts are very relevant to computations in Rn. Decompose λ and v into their real and imaginary
parts, viz

λ =: λRe + i λIm
v =: vRe + i vIm.

(A.35)

Then
AvRe = real(Av) = λRe · vRe − λIm · vIm
AvIm = imag(Av) = λIm · vRe + λRe · vIm.

(A.36)

Hence, [
AvRe

AvIm

]
=

[
λReIn −λImIn
λImIn λReIn

] [
vRe

vIm

]
. (A.37)
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If we write λ = |λ|ei θ = |λ| cos(θ) + i |λ| sin(θ), then (A.37) can be rewritten as[
AvRe

AvIm

]
= |λ|

[
cos(θ)In − sin(θ)In
sin(θ)In cos(θ)In

]
︸ ︷︷ ︸

R(θ)

[
vRe

vIm

]
, (A.38)

where R(θ)⊤ · R(θ) = R(θ) · R(θ)⊤ = I2n, and hence R(θ) is an orthogonal matrix. This shows how the complex aspect of the
eigenvalue and eigenvector manifests itself as a “kind of rotation” of vectors in the two dimensional subspace

span{vRe, vIm}

by R(θ), in addition to the scaling by |λ|. A second benefit of the latter expression is that we then have[
AkvRe

AkvIm

]
= |λ|k

[
cos(kθ)In − sin(kθ)In
sin(kθ)In cos(kθ)In

]
︸ ︷︷ ︸

R(kθ)

[
vRe

vIm

]
. (A.39)

Figure A.4 illustrates a case where λ = 0.9803± i 0.0965 = 0.985∠5.6 degrees. The rotating and decaying nature of the solution is
clearly seen in the figure. The reader should compare Figs. A.3-(a) and -(d) with Fig. A.4.

Figure A.4: The eigenvalues of a real 3×3 matrix are computed to be 0.9803± i 0.0965 and 1.100. The initial condition in green was
chosen to be a linear combination of the real and imaginary parts of an eigenvector corresponding to the complex pair of eigenvalues.
The resulting solution of (A.28) evolves in the plane defined by span{vRe, vIm} as indicated by (A.37) through (A.39). This is very
analogous to how complex numbers, when iterated, evolve in the Complex Plane.

A.2 Eigenvalues and Eigenvectors
The study of eigenvalues and eigenvectors is very traditional in Linear Algebra courses. We skipped very important aspects of them
in the main portion of the book for a few reasons: (1) time is limited; (2) they get complicated really fast; and (3) their most important
applications are the evolution of linear difference equations and the Singular Value Decomposition (SVD), neither of which were
covered in the main portion of the text. The usual illustrative application of eigenvalues and eigenvectors is to “diagonalize” a matrix,
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which we treated indirectly in Chapter 10.17. In the context of Chapter A.1.5 and your Segway Project, it does make sense.

Just in case you are starting here and skipped Appendix A.1 entirely, we start from the beginning.

A.2.1 General Square Matrices

Temporary Def. Let A be an n × n matrix with real coefficients. A scalar λ ∈ R is an eigenvalue (e-value) of A, if there exists a
non-zero vector v ∈ Rn such that A · v = λv. Any such vector v is called an eigenvector (e-vector) associated with λ.

We note that if v is an e-vector, then so is αv for any α ̸= 0, and therefore, e-vectors are not unique. To find eigenvalues, we need to
have conditions under which there exists v ∈ Rn, v ̸= 0, such that A · v = λv. Here they are,

A · v = λv ⇐⇒ (λI −A) · v = 0
v ̸=0⇐⇒ det(λI −A) = 0.

Example A.3 Let A be the 2× 2 real matrix A =

[
0 1
−1 0

]
. Determine, if any, its e-values and e-vectors.

Solution: To find e-values, we need to solve

det(λI −A) =
∣∣∣∣ λ −1
1 λ

∣∣∣∣ = λ2 + 1 = 0.

We compute the discriminant of this quadratic equation and we find

b2 − 4ac = −4 < 0,

and therefore there are no real solutions. Hence, by our temporary definition, this 2 × 2 real matrix does not have any e-values, and
hence, neither does it have any e-vectors.

If we were to allow e-values to be complex numbers, then we’d have two e-values corresponding to the two complex solutions of the
quadratic equation λ2 + 1 = 0, namely, λ1 = i and λ2 = −i.

We’ll see shortly that we’ll also need to allow the e-vectors to have complex entries. Hence, we need to generalize our temporary
definition. ■

Permanent Definition of Eigenvalues and Eigenvectors

Let A be an n× n matrix with real or complex coefficients. A scalar λ ∈ C is an eigenvalue (e-value) of A, if there exists a
non-zero vector v ∈ Cn such that Av = λv. Any such vector v is called an eigenvector (e-vector) associated with λ.

Eigenvectors are not unique.

• To find e-values, we solve det(λI −A) = 0 because

A · v = λv ⇐⇒ (λI −A) · v = 0
v ̸=0⇐⇒ det(λI −A) = 0. (A.40)

• To find e-vectors, we find any non-zero v ∈ Cn such that

(λI −A) · v = 0. (A.41)

Of course, if you prefer, you can solve (A− λI)v = 0 when seeking e-vectors.
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Fundamental Theorem of Algebra (and a bit More)

Let A be an n× n matrix with real or complex coefficients. Then the following statements are true

• det(λI −A) = λn + αn−1λ
n−1 + · · ·α1λ+ α0, and if A is real, so are the coefficients αn−1, . . . , α0.

• The degree n polynomial λn + αn−1λ
n−1 + · · ·α1λ+ α0 has n roots λ1, . . . , λn ∈ C such that

det(λI −A) = (λ− λ1)(λ− λ2) · · · (λ− λn).

Each of the roots λi, 1 ≤ i ≤ n, is an e-value of A.

• The e-values {λ1, . . . , λn} are said to be distinct if λi ̸= λk for all i ̸= k.

• If λi = λk for some i ̸= k, then λi is a repeated e-value. The e-values can then be grouped into 1 ≤ p ≤ n sets of
distinct roots {λ1, . . . , λp} such that

det(λI −A) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λp)mp .

The integer mi is called the algebraic multiplicity of λi and their sum satisfies m1 +m2 + · · ·+mp = n.

• An e-vector associated with λi is computed by finding non-zero solutions to (A.41).

• If the matrix A is real, then the e-values occur in complex conjugate pairs, that is, if λi is an e-value then so is λ∗i .

• If the matrix A is real and the e-value λi is real, then the e-vector vi can always be chosen to be real, that is, vi ∈ Rn

instead of vi ∈ Cn.

• There will always be at least one non-zero solution to (A.41), and because any non-zero multiple of a solution is also a
solution, there will always be an infinite number of solutions to (A.41).

• If λi is a repeated e-value with algebraic multiplicity mi, then the number of linearly independent e-vectors associated
with λi is upper bounded by mi. Another way to say this is, 1 ≤ dim (Null(A− λiI)) ≤ mi.

• In Julia, after using LinearAlgebra, the commands are Λ = eigvals(A) and V = eigvecs(A)

Example A.4 Let A be the 2× 2 real matrix that we treated in Example A.3, namely, A =

[
0 1
−1 0

]
. Determine its e-values and

e-vectors in the sense of our “permanent” definition.

Solution: As in Example A.3, to find e-values, we solve

det(λI −A) =
∣∣∣∣ λ −1
1 λ

∣∣∣∣ = λ2 + 1 = 0.

We apply the quadratic equation and determine λ1 = i and λ2 = −i. To find the eigenvectors, we solve

(A− λiI)vi = 0.

The eigenvectors are

v1 =

[
1
i

]
, v2 =

[
1
−i

]
.

Note that the eigenvalues and eigenvectors each form complex conjugate pairs. Indeed,

λ2 = λ∗1 and v2 = v∗1 .

■

Example A.5 Let A be the n× n identity matrix. Determine its e-values and e-vectors.
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Solution: det(λI − I) = det((λ − 1)I=0 ⇐⇒ λ = 1. Alternatively, you can compute that det(λI − I) = (λ − 1)n. Hence, the
e-value λ = 1 is repeated n times, that is, m1 = n. What are the e-vectors? We seek to solve

(A− λI) · v = 0 ⇐⇒ (I − 1 · I) · v = 0 ⇐⇒ 0n · v = 0,

where 0n is the n× n matrix of all zeros! Hence, any non-zero vector v ∈ Rn is an e-vector. Moreover, if {v1, . . . , vn} is a basis for
Rn, then {v1, . . . , vn} is a set of n linearly independent e-vectors associated with λ1 = 1. ■

Example A.6 Let a ∈ R be a constant and let A be the 4× 4 matrix below. Determine its e-values and e-vectors.

A =


a 1 0 0
0 a 1 0
0 0 a 1
0 0 0 a

 .
Solution: To find the e-values, we solve

det(λI −A) = det




(λ− a) −1 0 0
0 (λ− a) −1 0
0 0 (λ− a) −1
0 0 0 (λ− a)


 = (λ− a)4 = 0,

and hence there is one distinct e-value λ1 = a. To solve for e-vector(s) we consider

0 = (A− aI) · v =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 · v
and we find that the only solutions are multiples of

v =


1
0
0
0

 .
■

We’ve seen the extremes! A matrix with a single distinct e-value and a complete set of e-vectors (there were n linearly
independent e-vectors associated with the e-value), and another matrix with a single distinct e-value, but only one linearly
independent e-vector associated with it.

When the e-values are Distinct, the e-vectors form a Basis

Let A be an n × n matrix with coefficients in R or C. If the e-values {λ1, . . . , λn} are distinct, that is, λi ̸= λj for all
1 ≤ i ̸= j ≤ n, then the e-vectors {v1, . . . , vn} are linearly independent in (Cn,C).

Restatement of the result: If {λ1, . . . , λn} are distinct, then {v1, . . . , vn} is a basis for (Cn,C). If A is real and its e-values
are real, then the e-vectors can be chosen to be real and they form a basis for Rn.

A.2.2 Real Symmetric Matrices

We recall that a real n × n matrix A is symmetric if A⊤ = A. E-values and e-vectors of symmetric matrices have nicer properties
than those of general matrices.

340



E-values and E-vectors of Symmetric Matrices

• The e-values of a symmetric matrix are real. Because the e-values are real and the matrix is real, we can always chose
the e-vectors to be real. Moreover, we can always normalize the e-vectors to have norm one.

• Just as with general matrices, the e-values of a symmetric matrix may be distinct or repeated. However, even when an
e-value λi is repeated mi times, there are always mi linearly independent e-vectors associated with it. By applying
Gram-Schmidt, we can always chose these e-vectors to be orthonormal.

• E-vectors associated with distinct e-values are automatically orthogonal. To be clear,(
A⊤ = A, Avi = λivi, Avk = λkvk, and λi ̸= λk

)
=⇒ vi ⊥ vk.

Since we can assume they have length one, we have that the e-vectors are orthonormal.

• In summary, when A is symmetric, there is always an orthonormal basis {v1, v2, . . . , vn} for Rn consisting of e-
vectors of A. In other words, for all 1 ≤ i ≤ n, Avi = λivi, ||vi|| = 1, and for k ̸= i, vk ⊥ vi.

Factoring a Symmetric Matrix

For every real n × n symmetric matrix A, there exists an n × n diagonal matrix Λ and an n × n orthogonal matrix Q such
that

A = Q · Λ ·Q⊤. (A.42)

Moreover,

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn

 and Q =
[
v1 v2 . . . vn

]

are constructed from the e-values of A and a corresponding set of orthonormal e-vectors.

Remark 01: From (A.42), det(A) = det(Q) · det(Λ) · det(Q⊤) = det(Λ) = λ1 ·λ2 · · ·λn. Hence, a symmetric real matrix
A is invertible if, and only if, all of its e-values are non-zero. Moreover, in this case

A−1 = Q · Λ−1 ·Q⊤.

While a similar result holds for general square matrices, it requires inverting the matrix formed by stacking the e-vectors
as columns, and hence is not numerically attractive. For symmetric matrices, the corresponding inverse is computed via a
matrix transpose.

Remark 02: Using the fact that matrix multiplication can be realized by summing over the product of columns times rows,
(A.42) can be rewritten as

A =

n∑
i=1

λi
(
vi · v⊤i

)
. (A.43)

Equations (A.42) and (A.43) parallel results we will develop for the Singular Value Decomposition or (SVD). Equation (A.42)
factors A into a product of three terms consisting of two orthogonal matrices and a diagonal matrix, while (A.43) is an
expansion of A into “rank one” matrices.
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A.3 Positive Definite Matrices

Some Definitions and Facts

Def. Let P be an n× n real matrix and x ∈ Rn. Then x⊤Px is called a quadratic form.

Def. An n× n matrix S is skew symmetric if S⊤ = −S.

Fact If S is skew symmetric, then x⊤Sx = 0 for all x ∈ Rn.

Fact Let P an n× n real matrix and write

P =
1

2

(
P + P⊤)+ 1

2

(
P − P⊤) .

Then
(
P + P⊤) is symmetric,

(
P − P⊤) is skew symmetric, and we see that every (real) square matrix can be written

as the sum of a symmetric matrix and a skew symmetric matrix.

Fact Let P an n× n real matrix. Then, for all x ∈ Rn

x⊤Px =
1

2
x⊤
(
P + P⊤)x.

Hence, a quadratic form only depends on the symmetric part of a matrix.

Consequence: When working with a quadratic form, x⊤Px, one ALWAYS assumes that the matrix P is symmetric.
Allowing the matrix to be non-symmetric does not increase the generality of the notion of a quadratic form. This is
because x⊤Px = 1

2x
⊤ (P + P⊤)x implies that one can always replace P with its symmetric part!

Fact For an n× n symmetric real matrix P with e-values λ1, . . . , λn, let λmax := max1≤i≤n λi and λmin := min1≤i≤n λi
be the max and min, respectively over the e-values. Then, for all x ∈ Rn,

λmin x
⊤x ≤ x⊤Px ≤ λmax x

⊤x. (A.44)

Because x⊤x = ||x||2, the above expression is also commonly written as

λmin ||x||2 ≤ x⊤Px ≤ λmax ||x||2.

Both are useful.

Equation (A.44) is established by choosing an orthonormal set of e-vectors for P , {v1, . . . , vn}, which we know forms a basis for
Rn. Hence, for all x ∈ Rn, there exist coefficients α1, . . . , αn such that x = α1v1 + · · ·+ αnvn. Then, using the two facts we have
at our disposal, namely (a) {v1, . . . , vn} is orthonormal and (b), Avi = λivi, we compute

x⊤x =α2
1 + · · ·+ α2

n

x⊤Px =λ1α
2
1 + · · ·+ λnα

2
n.

It follows that

λminx
⊤x = λminα

2
1 + · · ·+ λminα

2
n ≤ λ1α2

1 + · · ·+ λnα
2
n ≤ λmaxα

2
1 + · · ·+ λmaxα

2
n = λmaxx

⊤x,
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showing that (A.44) holds.

Positive Definite and Semidefinite Matrices

Def. A real symmetric matrix P is positive definite, if for all x ∈ Rn, x ̸= 0 =⇒ x⊤Px > 0. The common notation for
such matrices is P > 0.

Def. A real symmetric matrix P is positive semidefinite, if for all x ∈ Rn =⇒ x⊤Px ≥ 0. The common notation for such
matrices is P ≥ 0.

From (A.44), we arrive at the following facts.

Fact A symmetric matrix P is positive definite if, and only if, all of its eigenvalues are greater than 0.

Fact A symmetric matrix P is positive semidefinite if, and only if, all of its eigenvalues are greater than or equal to 0.

Example A.7 Determine, which, if any, of the following matrices are positive definite or positive semidefinite.

P1 =

[
2 −1
−1 2

]
, P2 =

[
1 2
2 1

]
, P3 =

[
4 2
2 1

]
, P4 =

[
4 1
3 4

]

Solution: Because P4 is not symmetric, it cannot be positive definite or positive semidefinite! Using Julia, we compute the e-values
of P1, P2, and P3

P1 =⇒ λ1 = 1, λ2 = 3 =⇒ P > 0

P2 =⇒ λ1 = −1, λ2 = 3 =⇒ P ̸≥ 0 (neither positive semidefinite nor positive definite)
P3 =⇒ λ1 = 0, λ2 = 5 =⇒ P ≥ 0.

We note that P being positive definite does NOT mean that all of its entries have to be positive! P can have entries with negative
values and still be positive definite. We note that all of the entries of P being positive does NOT imply that P is even positive
semidefinite. ■.

Computing e-values is a terrible way to determine if a matrix is positive definite or not. The following facts imply that LDLT
Factorization can be applied to positive definite and positive semidefinite matrices.

More on Positive Definite and Semidefinite Matrices

Fact A symmetric n×nmatrix P is positive semidefinite if, and only if, there exists a k×nmatrixN such thatN⊤ ·N = P.

Fact A symmetric n×nmatrix P is positive definite if, and only if, there exists an n×nmatrixN with linearly independent
columns such that N⊤ ·N = P.

Turning these ideas into algorithmic form gives the following:
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LDLT or LU Factorization to Check P > 0

Here are two better ways to test whether a matrix is positive definite, positive semidefinite, or neither:

• From Chapter 7.6, we can do the LDLT factorization of P , namely

Q · P ·Q⊤ = L ·D · L⊤,

where we have used Q to denote the row permutation matrix because P is being used for a symmetric matrix. Then
P > 0 ⇐⇒ D > 0, where D is diagonal.

• Straight up LU with no permutations at all: The key fact is that, if an n× n matrix P is symmetric and invertible, then
it can be written as

P = L · U ;

you can do the factorization without permuting any of the rows of P. Moreover, there is always a diagonal matrix
D such that

U = D · L⊤.

Determining D from U is trivial: you just normalize by the diagonal of U . Then, P = L ·D · L⊤ and

P > 0 ⇐⇒ L ·D · L⊤ > 0 ⇐⇒ D > 0, that is, all of the entries on the diagonal of D are positive.

• If the LU Factorization without permutations fails, then P is not positive definite, but could be positive semidefinite. To
rule out the latter, you need to run the full LDLT algorithm and check that the diagonal of D has at least one negative
entry or not.

Example A.8 Using the LU Factorization without row permutations, determine if the randomly generated symmetric matrix P is
positive definite or not.

P =


8.241e− 01 1.171e+ 00 1.117e+ 00 1.706e+ 00 1.021e+ 00
1.171e+ 00 1.574e+ 00 8.547e− 01 1.102e+ 00 2.871e− 01
1.117e+ 00 8.547e− 01 1.238e+ 00 7.506e− 01 1.291e+ 00
1.706e+ 00 1.102e+ 00 7.506e− 01 2.943e− 01 9.570e− 01
1.021e+ 00 2.871e− 01 1.291e+ 00 9.570e− 01 1.448e+ 00

 .

Solution: We do the LU Factorization without permutations and obtain

L =


1.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00
1.421e+ 00 1.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00
1.356e+ 00 8.151e+ 00 1.000e+ 00 0.000e+ 00 0.000e+ 00
2.070e+ 00 1.469e+ 01 1.616e+ 00 1.000e+ 00 0.000e+ 00
1.239e+ 00 1.294e+ 01 1.649e+ 00 5.893e− 01 1.000e+ 00



U =


8.241e− 01 1.171e+ 00 1.117e+ 00 1.706e+ 00 1.021e+ 00
0.000e+ 00 −8.990e− 02 −7.328e− 01 −1.321e+ 00 −1.164e+ 00
0.000e+ 00 0.000e+ 00 5.696e+ 00 9.203e+ 00 9.393e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 1.296e+ 00 7.636e− 01
0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00 −6.909e− 01


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We extract the diagonal of U and we form D · L⊤

D =


8.241e− 01 0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 −8.990e− 02 0.000e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 5.696e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 1.296e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00 −6.909e− 01



D · L⊤ =


8.241e− 01 1.171e+ 00 1.117e+ 00 1.706e+ 00 1.021e+ 00
0.000e+ 00 −8.990e− 02 −7.328e− 01 −1.321e+ 00 −1.164e+ 00
0.000e+ 00 0.000e+ 00 5.696e+ 00 9.203e+ 00 9.393e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 1.296e+ 00 7.636e− 01
0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00 −6.909e− 01


and we recognize, that indeed, U = D · L⊤.

Back to the question of determining whether P is positive definite? We see that D has non-positive entries and therefore P is not
positive definite. We only formed D · L⊤ to illustrate that P = L ·D · L⊤. ■

The following results are primarily of use for “hand calculations” or proving results about positive definite matrices. We include
them for completeness.

Schur Complement Theorem: A way to Decompose the Test for Being Positive Definite

Suppose that A is n× n, symmetric, and invertible, B is n×m, C is m×m, symmetric, and invertible, and

M :=

[
A B
B⊤ C

]
,

which is then (n+m)× (n+m) and symmetric. Under these conditions, the following three statements are equivalent:

(a) M > 0.

(b) A > 0, and C −B⊤ ·A−1 ·B > 0.

(c) C > 0, and A−B · C−1 ·B⊤ > 0.

Remarks:

• C −B⊤ ·A−1 ·B is called the Schur Complement of A in M .

• A−B · C−1 ·B⊤ is called the Schur Complement of C in M .

A.4 Singular Value Decomposition or SVD
The material here is inspired by a handout prepared by Prof. James Freudenberg, EECS, University of Michigan.

A.4.1 Motivation
In abstract linear algebra, a set of vectors is either linearly independent or not. There is nothing in between. For example, the set of
vectors {

v1 =

[
1
1

]
, v2 =

[
0.999
1

]}
is linearly independent. In this case, one looks at the set of vectors and says, yes, BUT, the vectors are “almost” dependent because
when one computes the determinant

det

[
1 0.999
1 1

]
= 0.001,

the result is pretty small, so it should be fine to call them dependent.
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Well, what about the set

{
v1 =

[
1
0

]
, v2 =

[
104

1

]}
?

When you form the matrix and check the determinant, you get

det

[
1 104

0 1

]
= 1,

which seems pretty far from zero. So are these vectors “adequately” linearly independent?

Maybe not! Let’s note that

[
1 104

0 1

]
+

[
0 0
10−4 0

]
=

[
1 104

10−4 1

]
,

and its determinant is zero! Hence, it’s possible to add a very small perturbation to one of the vectors and make the set linearly
dependent! This cannot be good.

A.4.2 Definition and Main Theorem

Rectangular Diagonal Matrix

An n×m matrix Σ is a Rectangular Diagonal Matrix if

Σij = 0 for i ̸= j.

Alternative and equivalent way to define Rectangular Diagonal is

(a) (tall matrix) n > m Σ =

[
Σd

0

]
, where Σd is an m×m diagonal matrix.

(b) (wide matrix) n < m Σ =
[
Σd 0

]
, where Σd is an n× n diagonal matrix.

The diagonal of Σ is defined to be the diagonal of Σd.
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Singular Value Decomposition (Main Theorem)

Every n×m real matrix A can be factored as
A = U · Σ · V ⊤,

where U is an n × n orthogonal matrix, V is an m ×m orthogonal matrix, Σ is an n ×m rectangular diagonal matrix, and
the diagonal of Σ,

diag(Σ) = [σ1, σ2, · · · , σp] ,

satisfies σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, for p := min(n,m).

Moreover, the columns of U are eigenvectors of A ·A⊤, the columns of V are eigenvectors of A⊤ ·A, and {σ2
1 , σ

2
2 , . . . , σ

2
p}

are eigenvalues of both A⊤ ·A and A ·A⊤.

The Singular Values of A are the elements {σ1, . . . , σp} from the diagonal of Σ.

Another way to write the SVD of A is

A = σ1u1 · v⊤1 + σ2u2 · v⊤2 + · · ·+ σpup · v⊤p ,

where ui and vi are columns of U and V respectively.

U =
[
u1 u2 · · · un

]
and V =

[
v1 v2 · · · vm

]
. (A.45)

This formula follows from our matrix multiplication formulation through the sum over columns times rows, where we note
that the columns of V are the rows of V ⊤.

Rank and Nullity of a Matrix

The rank of an n ×m matrix A is the dimension of its column span and the nullity of A is the dimension of its null space.
Let r be the number of non-zero singular values of A. Then

Fact rank(A) := dim col span{A} = r.

Fact nullity(A) := dimnull(A) = m− r.

Example A.9 Determine the SVD of A as well as its rank and nullity,

A =

[
1 104

0 1

]
.

Solution: Using the LinearAlgebra package in Julia, we find

U =

[
1.000e+ 00 −1.000e− 04
1.000e− 04 1.000e+ 00

]
Σ =

[
1.000e+ 04 0.000e+ 00
0.000e+ 00 1.000e− 04

]
V =

[
1.000e− 04 −1.000e+ 00
1.000e+ 00 1.000e− 04

]
There are two non-zero singular values, and thus r = 2. It follows that rank(A) = 2 and nullity(A) = 0.

Information about the “near” linear dependence of the columns of A is in the diagonal matrix Σ. There are two singular values,
σ1 = 104 and σ2 = 10−4. Their ratio is 108, which is an indicator that these vectors are “nearly linearly dependent”. “Numerically”,
one would say that r = 1 and hence rank(A) = r = 1 and nullity(A) = 2− r = 1. ■
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A.4.3 Numerical Linear Independence

Illustration: 5× 5 matrix. For

A =


−32.57514 −3.89996 −6.30185 −5.67305 −26.21851
−36.21632 −11.13521 −38.80726 −16.86330 −1.42786
−5.07732 −21.86599 −38.27045 −36.61390 −33.95078
−36.51955 −38.28404 −19.40680 −31.67486 −37.34390
−25.28365 −38.57919 −31.99765 −38.36343 −27.13790

 ,

and the Julia commands

1 using LinearAlgebra
2

3 A=[-32.57514 -3.89996 -6.30185 -5.67305 -26.21851;
4 -36.21632 -11.13521 -38.80726 -16.86330 -1.42786;
5 -5.07732 -21.86599 -38.27045 -36.61390 -33.95078;
6 -36.51955 -38.28404 -19.40680 -31.67486 -37.34390;
7 -25.28365 -38.57919 -31.99765 -38.36343 -27.13790 ]
8

9 (U ,Sigma, V) = svd(A)

one obtains

U =


−2.475e− 01 −5.600e− 01 4.131e− 01 5.759e− 01 3.504e− 01
−3.542e− 01 −5.207e− 01 −7.577e− 01 −1.106e− 02 −1.707e− 01
−4.641e− 01 6.013e− 01 −1.679e− 01 6.063e− 01 −1.652e− 01
−5.475e− 01 −1.183e− 01 4.755e− 01 −3.314e− 01 −5.919e− 01
−5.460e− 01 1.992e− 01 −2.983e− 02 −4.369e− 01 6.859e− 01



Σ =


1.325e+ 02 0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 3.771e+ 01 0.000e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 3.342e+ 01 0.000e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 1.934e+ 01 0.000e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00 7.916e− 01



V =


4.307e− 01 8.839e− 01 −5.303e− 02 8.843e− 02 −1.503e− 01
4.309e− 01 −2.207e− 01 −1.961e− 01 7.322e− 01 4.370e− 01
4.617e− 01 −8.902e− 02 7.467e− 01 −3.098e− 01 3.539e− 01
4.730e− 01 −3.701e− 01 7.976e− 02 1.023e− 01 −7.890e− 01
4.380e− 01 −1.585e− 01 −6.283e− 01 −5.913e− 01 1.968e− 01


Because the smallest singular value σ5 = 0.7916 is less than 1% of the largest singular value σ1 = 132.5, in many cases, one
would say that the numerical rank of A was 4 instead of 5.

This notion of numerical rank can be formalized by asking the following question: Suppose rank(A) = r. How far away is A
from a matrix of rank strictly less than r?

The numerical rank of a matrix is based on the expansion in (A.4.2), which is repeated here for convenience,

A = U · Σ · V ⊤ =

p∑
i=1

σiui · v⊤i = σ1u1 · v⊤1 + σ2u2 · v⊤2 + · · ·+ σpup · v⊤p ,

where p = min{m,n}, and once again, the singular values are ordered such that σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Each term ui · v⊤i is a
rank-one matrix. The following will help you understand the expansion.
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Exercises or Facts:

• A ·A⊤ = U · Σ · Σ⊤ · U⊤ =
∑p

i=1(σi)
2 ui · u⊤i

• A⊤ ·A = V · Σ⊤ · Σ · V ⊤ =
∑p

i=1(σi)
2 vi · v⊤i

•
(
ui · v⊤i

)
· vj =

{
ui j = i

0 j ̸= i
and hence rank(ui · v⊤i ) = 1 and nullity(ui · v⊤i ) = m− 1

•
(
ui · u⊤i

)
· uj =

{
ui j = i

0 j ̸= i
and hence rank(ui · u⊤i ) = 1 and nullity(ui · u⊤i ) = n− 1

•
(
vi · v⊤i

)
· vj =

{
vi j = i

0 j ̸= i
and hence rank(vi · v⊤i ) = 1 and nullity(vi · v⊤i ) = m− 1

• vi · v⊤i , and ui · u⊤i have e-values λ1 = 1 distinct and λ2 = 0 repeated m− 1 and n− 1 times, respectively.

• Hint:
(
ui · v⊤i

)
· vj = ui ·

(
v⊤i · vj

)
=

{
ui j = i

0 j ̸= i
because the {v1, v2, . . . , vm} are orthonormal.

So far, we have only defined the norm of a vector. However, it is also useful to measure the “length” of matrices.

Def. (Induced Matrix Norm) Given an n×m real matrix A, the matrix norm induced by the Euclidean vector norm is given by:

||A|| := max
x⊤x=1

||Ax|| =
√
λmax(A⊤A)

where λmax(A
⊤A) denotes the largest eigenvalue of the matrix A⊤A. (Recall that the matrices of the form A⊤A are at least

positive semidefinite and hence their e-values are real and non-negative.) Therefore, the square root exists.

Numerical Rank

Facts: Suppose that rank(A) = r, so that σr is the smallest non-zero singular value of A.

(i) If an n×m matrix E satisfies ||E|| < σr, then rank(A+ E) ≥ r.

(ii) There exists an n×m matrix E with ||E|| = σr and rank(A+ E) < r.

(iii) In fact, for E = −σrurv⊤r , rank(A+ E) = r − 1.

(iv) Moreover, for E = −σrurv⊤r − σr−1ur−1v
⊤
r−1, rank(A+ E) = r − 2.

Corollary: Suppose A is square and invertible. Then σr measures the distance from A to the nearest singular matrix.

Illustration Continued

1 u5=U[:,5]; v5=V[:,5]; sig5=Sigma[5]
2 E=-sig5*u5*v5’
3 # Induced Norm
4 M=E’*E
5 SquareRootEigs=(abs.(eigvals(E’*E))).^0.5
6 #
7 (U ,Sigma2, V) = svd(A+E)
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E =


4.169e− 02 −1.212e− 01 −9.818e− 02 2.189e− 01 −5.458e− 02
−2.031e− 02 5.906e− 02 4.784e− 02 −1.066e− 01 2.659e− 02
−1.966e− 02 5.716e− 02 4.629e− 02 −1.032e− 01 2.574e− 02
−7.041e− 02 2.048e− 01 1.658e− 01 −3.697e− 01 9.220e− 02
8.160e− 02 −2.373e− 01 −1.922e− 01 4.284e− 01 −1.068e− 01


√
λi(E⊤ · E) =


7.376e− 09
2.406e− 09
1.977e− 09
4.163e− 09
7.916e− 01



Σ2 =


1.325e+ 02 0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 3.771e+ 01 0.000e+ 00 0.000e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 3.342e+ 01 0.000e+ 00 0.000e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 1.934e+ 01 0.000e+ 00
0.000e+ 00 0.000e+ 00 0.000e+ 00 0.000e+ 00 1.775e− 15


We added a matrix with norm 0.7916 and made the (exact) rank drop from 4 to 5! How cool is that? This example shows that SVD
can exactly measure how close a matrix is to being singular. We also see that E⊤ ·E has rank one: there is one non-zero e-value and
the rest are (essentially) zero as the theory promised.

Other Interesting and Useful Facts

(a) Null space: null(A) := {x ∈ Rm | Ax = 0}

(b) Range: range(A) := {y ∈ Rn | such that y = Ax for some x ∈ Rm}

(c) Fact: Suppose A = U · Σ · V ⊤. Then the columns of U corresponding to non-zero singular values are a basis for
range(A) and the columns of V corresponding to zero singular values are a basis for null(A), viz

range(A) := span{u1, ..., ur}, and
null(A) := span{vr+1, ..., vm}.

(d) The SVD can also be used to compute an “effective” range and an “effective” null space of a matrix.

(e) Fact: Suppose that σ1 ≥ ... ≥ σr > δ ≥ σr+1 ≥ ...σp ≥ 0, so that r is the “effective” or “numerical rank” of A.
(Note the δ inserted between σr and σr+1 to denote the break point.)

(f) Fact: Let rangeeff(A) and nulleff(A) denote the effective range and effective null space of A, respectively. Then we
can calculate bases for these subspaces by choosing appropriate singular vectors:

rangeeff(A) := span{u1, ..., ur}, and
nulleff(A) := span{vr+1, ..., vm}.

A.5 Linear Transformations and Matrix Representations
Def. A function L : Rm → Rn is a linear transformation if for all x, z ∈ Rm, α, β ∈ R,

L(αx+ βz) = αL(x) + βL(z). (A.46)

Just as with checking the subspace property, one can break the condition (A.46) into two separate properties,

L(x+ z) = L(x) + L(z)

L(αx) = αL(x).
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You already know at least one linear transformation from Rm to Rn, namely, let A be an n ×m real matrix and for x ∈ Rm, define
L : Rm → Rn by

L(x) = Ax. (A.47)

It is straightforward to show that (A.46) holds and thus we leave that to you. If you are trying to think of a clever linear transformation
that is not built from a matrix, but you cannot come up with one, well, there is a reason for that: there are none!

Linear Transformations from Rm to Rn are Kind of Boring

Fact: Let L : Rm → Rn be a linear transformation. Then there exists an n×m real matrix A such that, for every x ∈ Rm

L(x) = Ax.

The matrixA has a name: it is called the matrix representation ofL. It’s computation is relatively easy. Let {e1, e2, . . . , em}
be the natural basis vectors for Rm. Define

acolj := L(ei) and A :=
[
acol1 acol2 · · · acolm

]
=
[
L(e1) L(e2) · · · L(em)

]
.

Then acolj ∈ Rn because L(x) ∈ Rn for all x ∈ Rm. Now, because {e1, e2, . . . , em} is a basis, we have

x ∈ Rm ⇐⇒ x = x1e1 + x2e2 + · · ·+ xmem.

Because L is a linear transformation,

L(x) = L(x1e1 + x2e2 + · · ·+ xmem)

= x1L(e1) + x2L(e2) + · · ·+ xmL(em)

= x1a
col
1 + x2a

col
2 + · · ·+ xma

col
m

= Ax.

We will give you just a hint that there are interesting linear transformations, but to do that, we need to build an interesting vector
space, the set of polynomials of degree less than or equal to n, namely

Pn(t) := {a0 + a1t+ a2t
2 + · · ·+ ant

n |ai ∈ R, 0 ≤ i ≤ n}.

We note that everything in Pn(t) appears to be a linear combination of the set of monomials, {1, t, t2, . . . , tn}. Indeed, if you take
a bit more Linear Algebra, such as Math 217, you can make sense of the monomials as being vectors, and not just any vectors, but
basis vectors for Pn(t). Hence,

Pn(t) = span{1, t, t2, . . . , tn}.

It is clear that if you add any two polynomials of degree less than or equal to n, you get another polynomial of degree less than or
equal to n. If you multiply a polynomial of degree less than or equal to n by a real number, you get another polynomial of degree
less than or equal to n. This tells you that Pn(t) satisfies all the properties of being a vector space: it is closed under linear combi-
nations! And yes, in abstract Linear Algebra, we call the elements of Pn(t) vectors.

We define L : Pn(t)→ Pn(t) by L(p(t)) := dp(t)
dt , the first derivative of the polynomial p(t), that is, for those of you who have taken

Calculus I,
L(a0 + a1t+ a2t

2 + · · ·+ ant
n) := a1 + 2a2t+ 3a3t

2 + · · ·+ nant
n−1. (A.48)

The rules of differentiation imply that L satisfies (A.46), that is, the rules of being a linear transformation. We note that L defined in
(A.48) does not look like it comes from a matrix.

Remark: Bummer! Since L does not appear to come from a matrix, does that mean that we cannot apply to it any of the com-
putational tools that we have developed in ROB 101? The emphatic answer is: we absolutely can apply them! How? We’ll show
below that there is a matrix hiding inside of L! While this is quite a bit beyond the scope of ROB 101, we feel that it might provide
additional motivation for you to take a more advanced Linear Algebra course!
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Definition: Let {v} := {v1, v2, . . . , vk} be a basis for a (real) vector space V . We know that for any vector x ∈ V , there exist2 real
coefficients α1, α2, . . . , αk such that

x = α1v1 + α2v2 + · · ·+ αkvk. (A.49)

The column vector built by expressing x as a linear combination of the basis vectors in {v},
α1

α2

...
αk

 ∈ Rk, (A.50)

is called the representation of x with respect to the basis {v1, v2, . . . , vk}. A nice notation for it is

[x]{v} :=


α1

α2

...
αk

 ∈ Rk. (A.51)

The representation of x in V is a vector in Rk.

Let’s apply this idea to the vector space V := Pn(t) and its very nice basis

{v} = {1, t, t2, . . . , tn}.

We noted earlier that any vector in “x ∈ V ” (that is, p(t) ∈ Pn(t)) can be written as

x = p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n,

and hence,

[x]{v} :=


a0
a1
a2
...
an

 ∈ Rn+1. (A.52)

It’s kind of obvious, we add two polynomials of the same degree by adding their coefficients, and (A.52) is simply enticing us to do
just that. [In other words, do not overthink it!]

Hence, if polynomials of degree less than or equal to n can be represented by columns of numbers, can differentiation be represented
by a matrix? The answer is yes. As in (A.48), we define L : V → V by if x = a0 + a1t+ a2t

2 + · · ·+ ant
n ∈ V ,

L(x) := a1 + 2a2t+ 3a3t
2 + · · ·+ nant

n−1. (A.53)

We now break this up and apply L to each of the basis elements

{v} := {v1 = 1, v2 = t, v3 = t2, . . . , vn+1 = tn},

yielding
L(v1) = 0, L(v2) = v1, L(v3) = 2v2, . . . , L(vn+1) = nvn, (A.54)

and note that

[L(v1)]{v} =



0
0
...
0
0
0


, [L(v2)]{v} =



1
0
...
0
0
0


, [L(v3)]{v} =



0
2
...
0
0
0


, . . . , [L(vn)]{v} =



0
0
...

n− 1
0
0


, [L(vn+1)]{v} =



0
0
...
0
n
0


.

(A.55)
2The coefficients are actually unique. You should you prove that if you have two such sets of coefficients that they have to be equal. It follows form the definition

of linear Independence!
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We use the above vectors as the columns of a matrix A, where acolj := [L(vj)]{v},

A =



0 1 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · n− 1 0
0 0 0 · · · 0 n
0 0 0 · · · 0 0


. (A.56)

We next note that for x = a0 + a1t+ · · ·+ an−2t
n−2 + an−1t

n−1 + ant
n ∈ V , its representation is given in (A.52) and that

0 1 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · n− 1 0
0 0 0 · · · 0 n
0 0 0 · · · 0 0





a0
a1
...

an−2

an−1

an


=



a1
2a2
...

(n− 1)an−1

nan
0


; (A.57)

moreover, the right hand side of the equation is the representation of

d

dt

(
a0 + a1t+ · · ·+ an−2t

n−2 + an−1t
n−1 + ant

n
)
= a1 + 2a2t+ · · ·+ (n− 1)an−1t

n−2 + nant
n−1

with respect to the monomials. In other symbols,
A [x]{v} = [L(x)]{v}. (A.58)

A is called the matrix representation of L with respect to the basis {v}. In Robotics, we often need to differentiate signals in
real-time on our robots. We do it using versions of (A.57) and (A.58), which transform differentiation into matrix multiplication!

A.6 Affine Transformations
All functions f : Rm → Rn that fail (A.46) are nonlinear! That does not seem very discerning. There are a few more classes of
functions called out, and one in particular is very important in Linear Algebra is Definition: A function f : Rm → Rn is affine if
there exists a constant vector b ∈ Rn and an n×m real matrix A such that

f(x) = Ax+ b. (A.59)

A bit more abstract definition is f : Rm → Rn is affine if there exists a constant vector b ∈ Rn such that the function L : Rm → Rm

by
L(x) := f(x)− b

is linear. When dealing with Rn and Rm, the two definitions are equivalent, while the more abstract definition extends to more general
settings.
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Appendix B

What is an Ordinary Differential Equation?

Learning Objectives
• Provide motivation for considering equations with derivatives.

• Provide a numerical means to approximate a solution to a differential equation.

• Prepare you a bit for Math 216.

Outcomes
• See F = ma in a new light

• Define an ordinary differential equation, aka an ODE

• Learn how to pass from a differential equation to a difference equation

• Relate the process of iterating a difference equation to the process of solving an ODE
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Equations with a derivative in them are called differential equations. In Robotics, we use differential equations to understand the
motion of robots, such as Cassie Blue, or in the case of Project #3, a Segway. The topic of differential equations is typically delayed
until a fourth-semester Calculus course. Moreover, such courses focus almost exclusively on closed-form solutions to differential
equations. As you can imagine, we’re not a big fan of that. Here, you will see that tools we have developed so far in ROB 101 allow
us to develop elementary numerical tools for analyzing the solutions of interesting differential equations.

B.1 Preliminaries: Expanding our Concept of an Equation

Equations in a scalar variable x ∈ R probably seem pretty trivial to you by now. Examples we have seen include:

• Linear equation: ax = b;

• Quadratic equation: ax2 + bx+ c = 0;

• Cubic equation: ax3 + bx2 + cx+ d = 0; or

• Trigonometric equation: A cos(x) +B sin(x) + C = 0.

One obvious way to increase the generality of our analysis tools for equations is to include several variables, x ∈ Rn, n > 1, and
we’ve done a bunch of that in ROB 101 as well, where we studied how to find solutions to

• System of linear equations: Ax = b; and

• System of nonlinear equations: F (x) = 0.

In the case of linear systems, we explored map building and linear regression (easy version of Machine Learning) as cool application
problems. For nonlinear systems, we looked at the position of a robot gripper in R2 and sought values for the angles of its joints so
that the gripper could be placed in a desired position.

Another way to increase the generality of our analysis tools is to expand our concept of equations to include time as a variable!
This is a big conceptual step: instead of the values in our equation depending on constants or other powers of our variable x,
as in the examples we listed above, we will have the value of our variable x at time t depend on x at some other time, say
t− δt, for some δt > 0.

B.2 Time in a Digital Computer is Discrete

To get our heads around functions that depend on time, we’ll start with “time” as it is treated in a digital computer, namely, time is a
sequential variable, such as

k = 1, 2, 3, . . . . (B.1)

Digital time is similar to our human notion of time in that it is strictly increasing, but whereas our human notion of time is continuous
(it can be divided into ever smaller increments as long as we ignore the rules of Quantum Mechanics), digital time is fundamentally
discrete in that it increases by non-zero increments.

Suppose we denote the value of our variable x at time k by x[k], and we define an equation for x at the next time, k + 1, by

x[k + 1] =
1

2
x[k] + 1. (B.2)

Equation (B.2) says that if we know the value of our variable x at time k, we can find the value of x at time k+1 by multiplying x[k]
by one-half and adding one to it. That seems easy enough. OK, then, what is the value of x at time k = 4?

To compute x[4], we need to know x[3]. To compute x[3], we need to know x[2]. To compute x[2], we need to know x[1]. If we
suppose that time starts at k = 1, then we cannot go back any further and we realize that somehow x[1] must be given to us!
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Figure B.1: Plot of the function x : [1, 2, . . . , 20] →
R at discrete instances of time.

Figure B.2: Plot of the function x : [1, 2, . . . , 20] →
R, with the “dots” connected, giving us the impres-
sion that time is almost continuous.

Equation (B.2) is called a difference equation and x[1] is called its initial value. If we are given that x[1] = 4, we’d then compute
that

x[1] =
1

2
x[0] + 1 = 3

x[2] =
1

2
x[1] + 1 =

7

2

x[3] =
1

2
x[2] + 1 =

11

4

x[4] =
1

2
x[3] + 1 =

19

8
... =

...

x[k + 1] =
1

2
x[k] + 1

In Fig. B.1, we plot the function x for k = 1 : 20. We observe that it seems to converge to 2.0, which is intriguing. In Fig. B.2, we
have “cheated” and made time look quasi-continuous by “connecting the dots”. The Julia code for generating x and the plots is given
in Sec. B.6.1.

It would seem that if we could put the “dots closer together”, the effect in Fig. B.2 would be even better. Let’s try!

B.3 Digital Time may be Discrete, but We Can Make the Time Increment δt Quite
Small

In our previous model and plot, we implicitly took δt = 1 “unit” of time, where “unit” could have been seconds, milliseconds,
months, or fortnights. We just plotted the index k and had no idea how it was directly related to a physical notion of “time”. This
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Figure B.3: Plot of the function x : [0, 10] → R that solves (B.3) when its initial condition is x[1] = 4. The discrete interval of
time δt = 0.01 is small enough that it looks continuous, and in fact, if one connects the dots, our function versus time looks like a
continuous curve.

time we’ll define δt = 0.01 seconds, that is, 10 milliseconds, and we’ll think of x[k] as representing x(kδt). To be super explicit,

x[1] := x(t)|t=δt = x(0.01)

x[2] := x(t)|t=2δt = x(0.02)

x[3] := x(t)|t=3δt = x(0.03)

...

x[99] := x(t)|t=99δt = x(0.99)

...

x[301] := x(t)|t=301δt = x(3.01)

etc.

We introduce δt into the model in a particular manner that will become clear in Sec. B.4,

x[k + 1] = x[k]− δt · (x[k] + 2). (B.3)

Fig B.3 shows two plots side by side. One shows the function x plotted against the index k, while the second plot shows x plotted
against time, for t = kδt. The Julia code for computing the function and making the plots is given in Sec. B.6.2.

358



B.4 Equations with Derivatives in them are called Differential Equations

All of us hear about “F = ma” in High School, one of Newton’s laws for how a body of mass m accelerates under the action of
applied forces F . We might also learn that “acceleration”, a, is the rate of change of “velocity”, v, with respect to time, t.

The notation d
dt

In Calculus, the rate of change of one quantity, say v, with respect to another quantity, say t, is denoted

dv(t)

dt
.

Hence, in the language of Calculus, acceleration is related to velocity by

a(t) :=
dv(t)

dt
,

which, once again, is just shorthand for “acceleration is the rate of change of velocity with respect to time”. This course does
not assume knowledge of Calculus, so please don’t sweat the introduction of this notation. For us, it is just a shorthand way
of saying “rate of change with respect to time”.

Using this shorthand notation, we can express Newton’s Law as

m
dv(t)

dt
= F (t). (B.4)

If we suppose that the body is falling in air, we might model the total force F (t) acting on the body as being due to gravity and air
friction,

F (t) = −mg − kdv(t).

Doing so leads us to the equation

m
dv(t)

dt
= −kdv(t)− g . (B.5)

This equation says that the rate of change of the velocity as a function of time is given by a sum of two terms, one of which corre-
sponds to gravity and the other to air resistance. Equation (B.5) is called a differential equation, that is, an equation that depends on
“derivatives.”

In (B.5), let’s now replace the shorthand Calculus symbol for rate of change, dv(t)
dt , with the same kind of numerical approximation

we used in our studies of root finding and optimization, namely

dv(t)

dt
≈ v(t+ δt)− v(t)

δt
. (B.6)

Substituting (B.6) into (B.5) and assuming the approximation is “good enough” (that we can change ≈ into =) give

dv(t)

dt
=

1

m
(−kdv(t)− g)

⇕
v(t+ δt)− v(t)

δt
=

1

m
(−kdv(t)− g)

⇕

v(t+ δt)− v(t) = δt
1

m
(−kdv(t)− g)

⇕

v(t+ δt) = v(t) + δt
1

m
(−kdv(t)− g) .

(B.7)
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If we then define t = k · δt and v[k] := v(k · δt), the equation looks just like our difference equations in Sec. B.3. Indeed, we have
v(t+ δt) = v(k · δt+ δt) = v((k + 1) · δt) = v[k + 1], and (B.7) becomes

v[k + 1] = v[k]− δtkd
m
v[k]− δt g

m
, (B.8)

which is very much like (B.3) and hence, we now know one way to (approximately) solve the differential equation (B.5): we set an
initial condition and iterate based on (B.8).

In fact, if the mass of our falling body is m = 2
g and its drag is kd = m, then (B.8) is exactly the same as (B.3). Moreover, we can

physically interpret the solution of the differential equation (B.5), which is plotted in Fig. B.3, as a package is tossed out of plane.
Our model tracks its evolution from the moment the parachute deploys, greatly increasing its drag, thereby slowing its velocity from
an initial value of −4 to −2 units of distance per second (we never specified the units).

B.5 Discretization of ODEs of Higher Dimension

ODE

ODE is short for Ordinary Differential Equation. The word “ordinary” is used because there are other kinds of differential
equations, which apparently, are less “ordinary”. Everyone in the know uses the terminology ODE, hence you will too!

ODEs can be vector valued too. A linear ODE may look like this,

dx(t)

dt
= Ax(t) + b.

Just as before, we select δt > 0 and define x[k] := x(k · δt), and re-write the differential equation as a difference equation

dx(t)

dt
≈ x(t+ δt)− x(t)

δt
⇓

x(t+ δt)− x(t)
δt

≈ Ax(t) + b

⇓
x(t+ δt) = x(t) + δt (Ax(t) + b)

⇓
x[k + 1] = x[k] + δtAx[k] + δtb

A two-dimensional example is[
x1[k + 1]
x2[k + 1]

]
︸ ︷︷ ︸

x[k+1]

=

[
x1[k]
x2[k]

]
︸ ︷︷ ︸

x[k]

+ δt ·
[

0.0 1.0
−2.0 −1.0

]
︸ ︷︷ ︸

A

[
x1[k]
x2[k]

]
︸ ︷︷ ︸

x[k]

+ δt ·
[

0.0
1.0

]
︸ ︷︷ ︸

b

. (B.9)

This time, our x[1] is a 2× 1 vector. We’ll arbitrarily specify it as x[1] = [2 0]⊤. The plots of x as a function of index k and of time
t = k · δt are given in Fig. B.5. The associated Julia code is given in Sec. B.6.4.

Finally, not only can the function x of time can be vector valued, it can have nonlinear terms. Here is a common example from
physics: a pendulum of mass m and length ℓ swinging from a frictionless pivot satisfies the equation

dx1(t)

dt
= x2(t)

dx2(t)

dt
= −g

ℓ
sin(x1(t)),

(B.10)

where x1 is the angle of the pendulum and x2 is its angular velocity. We’ll rewrite the model in vector form by defining

x :=

[
x1
x2

]
, (B.11)
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Figure B.4: Plot of the function x : [0, 10] → R that solves (B.3) when its initial condition is x[1] = 4. The discrete interval of
time δt = 0.01 is small enough that it looks continuous, and in fact, if one connects the dots, our function versus time looks like a
continuous curve.

so that
dx(t)

dt
=

[
dx1(t)

dt
dx2(t)

dt

]
:=

[
x2(t)

− g
ℓ sin(x1(t))

]
︸ ︷︷ ︸

f(x(t))

=: f(x(t)) (B.12)

To find a solution, we discretize the model with δt > 0. To show the flexibility we have in approximating the derivative, we’ll use a
symmetric difference approximation this time, namely

dx(t)

dt
≈ x(t+ δt)− x(t− δt)

2δt
and

dx(t)

dt
= f(x(t))

⇕
x(t+ δt) = x(t− δt) + 2δtf(x(t)) and t = k · δt

⇕
x[k + 1] = x[k − 1] + δtf(x[k])

(B.13)

We use the last line of (B.13) to iterate and compute a solution to the pendulum ODE (B.10). The solution is plotted in Fig. B.6. The
associated Julia code is given in Sec. B.6.5.

Our transformation of ODEs into difference equations are examples of numerical integration methods. When we use the
approximation

dx(t)

dt
≈ x(t+ δt)− x(t)

δt

we end up with what is called a first-order forward Euler integration method. In general, it’s a pretty bad way to solve ODEs,
but for a first introduction, it is great! We can do a lot with it.
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Figure B.5: Plot of the vector valued function x : [0, 10]→ R2 solving the ODE dx(t)
dt = Ax+ b, with the solution approximated in

(B.9). The discrete interval of time is small enough that it looks continuous!

Figure B.6: Plot of a vector valued function x : [0, 10]→ R2 that oscillates back and forth because it corresponds to the solution the
pendulum ODE given in (B.10). The blue lines are the angle of the pendulum and the brown(ish) lines are its angular velocity.
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B.6 Julia Code for Generating the Figures
We provide code in Julia 1.41 for the figures appearing in this Appendix.

B.6.1 For Figures B.1 and B.2

1

2 # Model
3 dt=0.01
4 T=10
5 N=floor(Int,T/dt);
6 K=1:N
7 time = K*dt
8 x=zeros(N,1)
9 x[1]=-4

10 for k=1:(N-1)
11 x[k+1]=(1-dt)*x[k]-2*dt
12 end
13 # Plotting
14 plot1=scatter(K,x,xlabel="k (discrete time instances)", ylabel="x[k]", leg=false)
15 plot2=plot(time,x,xlabel="t = k * dt", ylabel="x(t), where x(k*dt):=x[k]", leg=false)
16 plot(plot1, plot2, layout = (1, 2), legend = false)
17 #Turn the plot into an image that one can copy
18 plot!(fmt = :png)

B.6.2 Code for Figure B.3

1 using Plots
2 gr()
3 # Model
4 N=20
5 time=1:N
6 x=zeros(N,1)
7 x[1]=4
8 for k=1:(N-1)
9 x[k+1]=0.5*x[k]+1

10 end
11 # Plotting
12 scatter(time,x)
13 #plot!(xlabel="k (discrete time instances)", ylabel="x[k]",
14 #title="Plot of as a function of time: Discrete-time Model", leg=false)
15 plot!(xlabel="k (discrete time instances)", ylabel="x[k]", leg=false)
16 #Turn the plot into an image that one can copy
17 plot!(fmt = :png)
18 #
19 # Second plot
20 #
21 plot(time,x)
22 #plot!(xlabel="k (discrete time instances)", ylabel="x[k]",
23 #title="Plot of as a function of time: Discrete-time Model", leg=false)
24 plot!(xlabel="k (discrete time instances)", ylabel="x[k]", leg=false)
25 scatter!(time,x)
26 #Turn the plot into an image that one can copy
27 plot!(fmt = :png)
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B.6.3 Code for Figure B.4

1 # Model
2 dt=0.01
3 T=10
4 N=floor(Int,T/dt);
5 K=1:N
6 time = K*dt
7 x=zeros(N,1)
8 x[1]=4
9 for k=1:(N-1)

10 x[k+1]=(1-dt)*x[k]+2*dt
11 end
12 # Plotting
13 plot1=scatter(K,x,xlabel="k (discrete time instances)", ylabel="x[k]", leg=false)
14 plot2=plot(time,x,xlabel="t = k * dt", ylabel="x(t), where x(k*dt):=x[k]", leg=false)
15 plot(plot1, plot2, layout = (1, 2), legend = false)
16 #Turn the plot into an image that one can copy
17 plot!(fmt = :png)

B.6.4 Code for Figure B.5

1 # Model
2 dt=0.01
3 T=10
4 N=floor(Int,T/dt);
5 K=1:N
6 time = K*dt
7 A=[0 1; -2 -1]
8 b=[0;1]
9 x=zeros(N,2)

10 x[1, :]=[2 0]
11 for k=1:(N-1)
12 x[k+1,:]=x[k,:]+ dt*A*x[k,:] + dt*b
13 end
14 # Plotting
15 plot1=scatter(K,x,xlabel="k (discrete time instances)", ylabel="x[k]", leg=false)
16 plot2=plot(time,x,xlabel="t = k * dt", ylabel="x(t), where x(k*dt):=x[k]", leg=false)
17 plot(plot1, plot2, layout = (1, 2), legend = false)
18 #Turn the plot into an image that one can copy
19 plot!(fmt = :png)

B.6.5 Code for Figure B.6

1 # Model
2 dt=.01
3 T=50
4 N=floor(Int,T/dt);
5 K=1:N
6 time = K*dt
7 g=9.81 #m/s^2
8 l=4 # m
9 x=zeros(N,2)
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10 #Pendulum equations
11 f(x1,x2)=[x2;-(g/l)*sin(x1)]
12 #Initial conditions
13 x[1, :]=[pi/4 0]
14 x[2, :]=x[1,:] + dt*f(x[1,1],x[1,2])
15 #Euler integration based on Symmetric Difference for dx/dt
16 for k=2:(N-1)
17 x[k+1,:]=x[k-1,:] +2*dt*f(x[k,1],x[k,2])
18 end
19 # Plotting
20 plot1=scatter(K,x,xlabel="k (discrete time instances)", ylabel="x[k]", leg=false)
21 plot2=plot(time,x,xlabel="t = k * dt", ylabel="x(t), where x(k*dt):=x[k]", leg=false)
22 plot(plot1, plot2, layout = (1, 2), legend = false)
23 #Turn the plot into an image that one can copy
24 plot!(fmt = :png)
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From here on, the book is a work in progress.
Please pardon our mess during construction!
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Appendix C

Camera and LiDAR Models for Students of
Robotics

Learning Objectives
• [JWG: ???].

Outcomes
• [JWG: ???]
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[JWG: Jessy to write an Intro. Bruce to add background on LiDAR sensors]

C.1 Pinhole Camera Model

Camera calibration is the process of finding the quantities internal to the camera that affect the imaging process. Today’s cheap
camera lenses or camera production errors may introduce a lot of distortion to images. Precise camera calibration is important when
we need to deal with 3D interpretation of images, reconstruction of world models, and robot interaction with the real world. We will
apply what we have learnt so far to discover the charm of camera calibration and its usage in our project.

C.2 Preliminaries: Geometrical Transformations

C.2.1 Homogeneous Coordinates

Homogeneous coordinates are widely used in computer vision and graphics. They are a nice extension of standard 3D vectors and
allow us to simplify and compute various vector operations, such as translation, rotation, scaling and perspective projection. The
sequence of such operations can be multiplied out into a single matrix with simple and efficient processing.Besides, homogeneous
coordinates also allow to represent infinity. The Euclidean coordinate system denotes the location of an object by a triplet of numbers.
However, we can’t treat infinity as a regular number. Homogeneous coordinates allows by denoting infinity by [x, y, z, 0] = [x,y,z]

0
in 3D.

How to transfer between Cartesian Coordinates and Homogeneous Coordinates?

• Cartesian coordinates→ Homogeneous coordinates : Multiply the coordinates by a non-zero scalar and add an extra
coordinate equal to that scalar. For example, [x, y]→ [x · z, y · z, z], z ̸= 0. We usually multiply the coordinates by 1.

• Homogeneous coordinates→ Cartesian coordinates: Divide the Cartesian coordinates by the last coordinate and elim-
inate it. For example, [x, y, z], z ̸= 0→ [x/z, y/z].

C.2.2 2D Translation

Figure C.1: Example of 2D Translation

If point P’(x′, y′) is obtained by translating P by t(tx, ty), then the relation between P’ and P could be written as:

P’ =
[
x+ tx
y + ty

]
=

[
1 0
0 1

] [
x
y

]
+

[
tx
ty

]
= I · P + t

If we use homogeneous coordinates, P = (x, y, 1), and t = (tx, ty, 1). The the relation between P ′ and P becomes:

P’ =

 x+ tx
y + ty

1

 =

 1 0 tx
0 1 ty
0 0 1

 x
y
1

 =

[
I t
0 1

]
· P = T · P

368



C.2.3 2D Scaling

Figure C.2: Example of 2D Scaling

If point P’(x′, y′) is obtained by scaling P by s(sx, sy), then the relation between P’ and P could be written as:

P’ =
[
sxx
syy

]
=

[
sx 0
0 sy

] [
x
y

]
= S’ · P

Similar before, the relation between P’ and P could be expressed in homogeneous coordinates:

P’ =

 sxx
syy
1

 =

 sx 0 0
0 sy 0
0 0 1

 x
y
1

 =

[
S’ 0
0 1

]
P = S · P

C.2.4 2D Rotation

Figure C.3: Example of 2D Rotation

If point P’(x′, y′) is obtained by rotating P counterclockwise by θ degree, then the relation between P’ and P could be written as:

P’ =
[

cosθ −sinθ
sinθ cosθ

] [
x
y

]
= R’ · P

The relation between P’ and P could be expressed in homogeneous coordinates:

P’ =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 x
y
1

 =

[
R’ 0
0 1

]
P = R · P

R is an orthogonal matrix and it satisfies the following properties:

• R ·R⊤ = R⊤ ·R = I

• det(R) = 1
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C.2.5 Other 2D Geometrical Transformations in Homogeneous Coordinates

• Shear in x:

 1 kx 0
0 1 0
0 0 1



• Shear in y:

 1 0 0
ky 1 0
0 0 1



• Reflect about y:

 1 0 0
ky 1 0
0 0 1



• General Affine Transformation:

 a b c
d e f
0 0 1


If there are more than one type of geometric transformation, one can multiply the corresponding transformation matrix to get
the final transformation matrix.
For example, if we want to find the transformation matrix after scaling P by s firstly, then rotating counterclockwise by θ
degree, and finally translate by t. The position of P’ could be compute by:

P ′ = T · R · S · P =

 1 0 tx
0 1 ty
0 0 1

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 sx 0 0
0 sy 0
0 0 1

 x
y
1


=

 cosθ −sinθ tx
sinθ cosθ ty
0 0 1

 sx 0 0
0 sy 0
0 0 1

 x
y
1


=

[
R′ t
0 1

] [
S 0
0 1

] x
y
1


=

[
R′S t
0 1

] x
y
1



C.3 Pinhole Model
Last section we mainly discussed the affine transformation, which preserves the parallel lines, ratio of areas, ratio of lengths on
colinear lines and a few others. However, the affine transformation is not a valid assumption in general for images, nor is it valid
around the image edges. The mapping from 3D object to 2D image is a perspective projection as shown in the following image:

Figure C.4: Perspective schematic diagram
Figure C.5: Real-life perspective example: parallel
rails
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The pinhole camera model describes the mathematical relationship between the coordinates of a point in 3D space and its projection
onto the image plane of an ideal pinhole camera. The following diagram illustrates the pinhole model and defines some intrinsic
parameters of pinhole camera:

Figure C.6: Pinhole camera model

There are some key assumptions of the pinhole model:

• Aperture, i.e. the pinhole, is described as a point (point C in the image)

• No lenses are used to focus light, therefore no geometric distortions (radial distortion)

• Does not take into account that most practical cameras have only discrete image coordinates

• This model can only be used as a first order approximation of the mapping from 3D scene to 2D image. This is a perspective
projection

• Ideal model that we use has identity matrix for the perspective portion of the projection matrix (projection matrix = [Perspective|0]
= [I3×3|0]3×4 which assumes no perspective since the surface is close to the camera)

If P (X,Y, Z) is a 3D scene point, and it is projected into the 2D image by pinhole. P’ (x, y is the projective point of P on the 2D
virtual image plane. We could find the following equations derived using similar triangles.
Remark: f is the focal length of the camera.

Figure C.7: Pinhole model

f

Z
=

y

Y
=

x

X
=⇒

{
x = fX

Z

y = fY
Z

(C.1)

The image plane is usually read as n×m pixel matrix in computer. Points in the image is then represented by pixel coordinates.
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Figure C.8: Relation of image plane and pixel matrix

The following picture is an example of image plane, which indicates the relation between camera coordinate origin and image
coordinate origin

Figure C.9: Pixel coordinates plane

By expanding equation C.1, the relation between positions on the image scene (u, v) and positions in the real world (X,Y, Z) could
be written as:

u = fsxx
c + u0 = α

X

Z
+ u0

v = fsyy
c + v0 = β

Y

Z
+ v0

We assume the world frame and camera frame is aligned. sx, sy are the scale in x and y direction to transfer the units from metric to
pixel. xc, yc are projective points of 3D objects in camera coordinates.

However, there are other considerations:

• Optical axis is not centered on sensor

• Pixel coordinate system orgin is in the corner of the sensor

• Pixels aren’t square

• Pixel size is unknown

Therefore, we need to find a transformation matrix to consider all the possible situations to transform the camera frame to the image

plane. Review 2D geometric transformations in previous section and recall the general affine transformation

 a b c
d e f
0 0 1

. We will

explore more about it in the next section.
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C.4 Geometric and Mathematical Relations
We would like to represent image plane coordinates in terms of real world coordinates. This is exactly the same problem as finding
the conversion of 3D world coordinates to image coordinates and then inverting this transformation. In this section, we will examine
the three components of this transformation.

C.4.1 Intrinsic Matrix K
Intrinsic matrix is the affine transformation matrix we mentioned before to represent the linear properties of the pinhole camera
model (focal length to visual image, scale, shear, translation, and so on). The intrinsic matrix can be used to transform 2D camera
coordinates (xc, yc) into image plane coordinates (u, v): u

v
1

 = K

 xc

yc

1

 =

 fsx ksy u0
0 fsy v0
0 0 1

 xc

yc

1

 =

 α s u0
0 β v0
0 0 1

 xc

yc

1


Where sx is the scale in x, sy is the scale in y, f is the focal length, k is the ration of shear in the y direction to that in x, and (u0, v0)
is the distance from the image center to the image plane coordinate system origin.

C.4.2 Projection Matrix
This matrix transforms the coordinates from 3D to 2D. The perspective portion of this matrix (left) is equal to the identity because
we make the assumption that all captured positions are close.

 xc

yc

1

 =
1

Zc
[Pperspective 0]


Xc

Y c

Zc

1

 =
1

Zc
[I3×3 0]3×4


Xc

Y c

Zc

1


The positions are now shown in lower case and lie now on a 2D plane.

C.4.3 Extrinsic Matrix
This matrix belongs in SE(3) and it represents the transformation of position coordinates from the real world frame to the camera
coordinate frame. 

Xc

Y c

Zc

1

 = [R t]


X
Y
Z
1


C.4.4 Full Projection Matrix Workspace to Camera
Grouping everything together we get a final full projection matrix, P, such that

 u
v
1

 = P


X
Y
Z
1


P = K[I 0][R t]

=

 α s u0
0 β v0
0 0 1

 [I 0][R t]

Or with the general affine transformation as the intrinsic matrix

P =

 a b c
d e f
0 0 1

 [I 0][R t]
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C.5 Intrinsic Matrix Calibration

Solve the simpler problem of only finding the intrinsic matrix if the extrinsic is known. If you are already given the 2D camera
coordinates (post extrinsic and projective transformation, then you can select at least 3 known points in the real world and image
plane (which do not all lie within the same plane). Remember the general form u

v
1

 =

 a b c
d e f
0 0 1

 xc

yc

1


For example, let’s say that we know two different points then u1

v1
1

 =

 a b c
d e f
0 0 1

 xc1
yc1
1

 ,
 u2
v2
1

 =

 a b c
d e f
0 0 1

 xc2
yc2
1


The system of equations become

ax1 + by1 + c = u1

dx1 + ey1 + f = v1

ax2 + by2 + c = u2

dx2 + ey2 + f = v2

Rearranging into the form Ax = b 
x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
...

...
...

...
...

...




a
b
c
d
e
f

 =


u1
v1
u2
v2
...


A quick and less rigorous derivation of the solution: We want to approximate b with the subspace of A. This means through the
projection theorem that b−Ax is perpendicular to Ax

b−Ax ⊥ Ax
(b−Ax) · (Ax) = 0

(Ax) · (Ax) = (Ax) · b
xTATAx = xTAT b

x = (ATA)−1AT b

Then plug the corresponding values into the complete intrinsic matrix.

C.6 Nonlinear Phenomena in Calibration

In real life, because of the imperfect lens or inaccurate placement of the lens, the image would be distorted. We can use nonlinear
root finding methods like Newton-Raphson to account for nonlinear phenomena. (xdistorted = xlinear + g(x)

• Radial Distortion
This phenomenon occurs when light rays bend more near the edges of a lens than they do at this optical center. Smaller lens
can lead to greater distortion.
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Figure C.10: Types of radial distortion

• Tangential Distortion This phenomenon occurs when the lens and the image plane are not parallel

Figure C.11: Tangential distortion

C.7 Projection Map from LiDAR to Camera

C.8 Projection Map
The projection map is a mapping between a 3D and a 2D world, and is used to project a LiDAR point cloud (3D) into an image (2D).
Let X be the LiDAR points and Y be the projected points on the image-plane of a camera. The standard relations are 1

u′v′
w′

 =

fx s cx
0 fy cy
0 0 1


︸ ︷︷ ︸
intrinsic parameters

[
13×3

01×3

]T [
RC

L tCL
01×3 1

]
︸ ︷︷ ︸

extrinsic parameters


xi
yi
zi
1


︸ ︷︷ ︸

LiDAR points

(C.2)

= K

[
13×3

01×3

]T
HC

L


xi
yi
zi
1

 (C.3)

Yi =
[
u v 1

]T
=
[
u′

w′
v′

w′ 1
]T
, (C.4)

where (C.2) includes the camera’s intrinsic parameters (K) and the extrinsic parameters (RC
L , T

C
L ).

1More information about the projection map, we refer the readers to “ Multiple view geometry in computer vision second edition,” by Hartley Richard and
Zisserman Andrew, and “Computer vision: a modern approach,” by Forsyth David A and Ponce Jean.
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For later use, we combine (C.2) and (C.4) to define
Π(Xi;R, t) := Yi, (C.5)

the projection map from LiDAR coordinates to image coordinates. Note that it is a function of both the extrinsic variables and the
LiDAR vertices.
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