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Abstract— Position regulation of a magnetic levitation

device is achieved through a control Lyapunov function

(CLF) feedback design. It is shown mathematically and

experimentally that by selecting the CLF based on the

solution to an algebraic Riccati equation it is possible to

tune the performance of the controller using intuition from

classical LQR control. The CLF is used with Sontag’s

universal stabilizing feedback to enhance the region of

attraction and improve the performance with respect to

a linear controller. While the controller is designed for and

implemented on an electromagnetic valve actuator for use

in automotive engines, the control methodology presented

here can be applied to generic magnetic levitation.

I. INTRODUCTION

Electromagnetic levitation is a classic control problem

for which numerous solutions have been proposed. Many

of the proposed solutions have focused on the use of

feedback linearization [1], [3], [8]–[10], [15] due to

the nonlinear characteristics of the magnetic and elec-

tric subsystems. Unfortunately, feedback linearization

requires a very accurate model which may be unrealistic

near the electromagnet due to magnetic saturation and

eddy current effects, thereby limiting the range of motion

achievable in the closed-loop system. Sliding mode [1],

[2], [12] and
���

[14], [20] control have been used to
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account for the changing local dynamics and to provide

robustness against unmodeled nonlinearities present in

the system. Linearization and switching can be avoided

through the application of nonlinear control based on

backstepping [5], [6] and passivity [18].

The control design investigated here is based on

control Lyapunov functions (CLF) and Sontag’s uni-

versal stabilizing feedback [16]. The control Lyapunov

function is selected based on a solution to an algebraic

Riccati equation to allow us to “tune” the controller

for performance. Neither current control nor a static

relationship between current, voltage, and the magnetic

force is assumed, as done by Velasco-Villa [18] and

Green [6]. Instead, the dynamics of the current/flux

are compensated for through the use of a full-state

feedback/observer structure. Implementation is achieved

using position and current sensors, a nonlinear observer

to estimate velocity, a novel method to estimate the

magnetic flux, and voltage control. To demonstrate the

effectiveness of the controller, it is experimentally eval-

uated on an electromagnetic valve actuator designed for

use in the actuation of automotive engine valves.

II. ELECTROMAGNETIC VALVE ACTUATOR

The electromagnetic valve actuator (EVA), shown in

Fig. 1, has recently received attention due to its potential
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to improve the performance of the standard internal

combustion engine. Currently, valve motion in most

automotive engines is controlled via a camshaft, which

mechanically links the valve motion to the motion of

the crankshaft. By de-coupling the valve motion from

the crankshaft, the EVA allows for more flexibility in

optimizing fuel economy, torque, and emissions [7]. In

addition to providing variable valve timing (VVT), the

EVA is capable of achieving variable valve lift (VVL)

through magnetic levitation. With the exception of our

previous work [11], research on the control of the EVA

has primarily focused on the elimination of large impacts

that occur between the armature and lower and upper

magnetic coils. In this paper we expand on our previous

work [11], which only briefly touched on the subject of

magnetic levitation.
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Fig. 1. Electromagnetic valve actuator and experimental setup.

The electromagnetic valve actuator governs the valve

motion in the following manner. The armature is initially

held against the upper magnetic coil, causing the valve

to seal off the engine cylinder. In this position, the upper

spring is more compressed than the lower spring creating

a force imbalance as the upper and lower springs are

identical. When the valve open command is issued, the

current in the upper magnetic coil is reduced to zero and

the potential energy stored in the upper spring drives the

armature downward, causing the valve to open. Depend-

ing on the command to the actuator, two outcomes are

possible. In the case of full valve opening, the lower

magnetic coil is used to bring the armature in contact

with the lower electromagnet, and held there. From the

view point of stability, this is the trivial case as the

armature can be held against the lower magnetic coil by

applying a sufficiently large constant voltage command.

In the case of partial valve lift, the electromagnets are

used to hover the armature. As the electromagnets can

only apply attractive forces, the upper magnetic coil is

used to hover the armature above the mid-position and

the lower magnetic coil is used to hover the armature

below the mid-position. When the valve closed command

is issued, the upper magnetic coil and any potential

energy stored in the lower spring are used to return the

armature/valve to the closed position.

Hovering the armature is slightly different than the

classic control problem of magnetic levitation due to the

presence of the springs. When both electromagnets are

de-energized, the armature sits at rest equidistant from

either electromagnet. As shown by Tai [17], any equilib-

rium position that is greater than ����� the full lift away

from either electromagnet is open-loop exponentially

stable. However, the presence of the springs does not

necessarily make the control problem appreciably easier.

As the springs are extremely stiff, the bandwidth of the

mechanical subsystem is on the order of the bandwidth

of the electrical subsystem. Therefore, it is not practical

to assume current control as will be shown in Sec. VI. In

addition, the region of attraction of the open-loop stable

equilibria are small. It was found experimentally that
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the armature had to start at rest equidistant from both

electromagnets to achieve stable open-loop hovering for

equilibrium positions greater than ����� the full lift away

from either electromagnet. If the armature starts at rest

against the upper magnetic coil, application of the open-

loop equilibrium voltage results in the armature being

brought into contact with the activated electromagnet.

As the latter initial condition is the one experienced

during operation, it is necessary to design a closed-

loop controller to enlarge the region of attraction so

that hovering is achieved for both open-loop stable and

unstable equilibrium positions.

III. MODELING THE ELECTROMAGNETIC VALVE

ACTUATOR

As derived by Wang [19] the dynamics of the EVA

are given by������ � ��� �
	��� ���� � �
 ������������ ������������� "!$#%� �'& �)( �'*�'+ ���� � ,.- � �0/ + � !1��2"� �'&� � 3 � �
	 ��4�'+ ���� � ,.- � �5/ + � !$��26��78#.� �'&� � 3 � �9	 �84
where

�
(mm) is the distance from the lower coil, �

(m/s) is the velocity of the armature,
+ � (mVs) is the

magnetic flux in the lower coil,
+ � (mVs) is the magnetic

flux in the upper coil, 
 (kg) is the combined mass of

the armature and valve,
� ������ (N) is the magnetic force

generated by the lower coil,
� ����:� (N) is the magnetic

force generated by the upper coil, �  (N/mm) is the

spring constant, # (mm) is half the total armature travel,( (kg/s) is the damping coefficient, - � (V) is the voltage

applied to the lower coil, - � (V) is the voltage applied

to the upper coil, and / ( ; ) is the combined resistance

of the wiring and magnetic coil. Numerical values for

all constants are found in Tab. I. Finally, the magnetic

force generated by either coil is given by

� ����� � +=<7�� � 4 (1)

As explained in Sec. II, only one electromagnet is

used to hover the armature. Therefore, without loss of

generality we assume that the lower coil is used and

neglect the dynamics of the upper coil. To simplify

the controller design, new inputs and coordinates are

introduced per

>%? � � � �A@CB> < � � � � @CB> � � + � � +.@CBD � - � � - @CB8E
where

� @CB
, � @FB , + @CB , and - @CB are the equilibrium position,

velocity, flux, and voltage respectively. The equilibrium

point is now located at the origin, and the system

dynamics are represented in the form� >��� � G ! > & �)HI! > & D (2)

where

G ! > & � JKKKL
> < � �9	 �?�NM �5O
PQ<SR:T �)�� > ? �)( > <9U �VO QXWZY�[R:T �� M O Q:\ R:]_^a` Y$[ ^ OAb_cedR T �fOAb WZY$[ dR T U � �9	 �

gihhhj
H�! > & � k 	l	 �9	 �nm8o 4
A frequent assumption in the control of electromag-

netic actuators is that the dynamics of the current/flux are

significantly faster than the dynamics of the mechanical

components of the system. This assumption reduces
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the complexity of the control problem as most of the

nonlinearities are present in the dynamics of current/flux.

Unfortunately, this assumption is not valid for our sys-

tem. The bandwidth of position is approximately equal

to the bandwidth of current/flux due to the presence of

stiff springs. To illustrate this phenomenon a comparison

of the frequency response of flux and position is included

in Fig. 2 for
�A@FB � 7 mm and a unity DC gain.

The three different frequency response plots for position

correspond to the nominal spring stiffness, the spring

stiffness reduced by a factor of 10, and the spring

stiffness reduced by a factor of 100. For the nominal

spring stiffness, the bandwidth of both position and

flux are approximately equal. As the spring stiffness is

decreased, the bandwidth of flux remains approximately

constant while the bandwidth of position is equal to the

natural frequency of the mechanical subsystem,

��� � � �� 
 4 (3)

Clearly, without the springs the bandwidth of the elec-

trical/magnetic subsystem is significantly greater than

the bandwidth of the mechanical subsystem. As no such

bandwidth separation occurs in the nominal system, the

controller design must therefore take the flux dynamics

into account.

IV. EXPERIMENTAL SETUP

The experimental results which follow are conducted

on the setup shown schematically in Fig. 1 and pictori-

ally in Fig. 3. The position of the armature is determined

from the eddy current sensor that detects changes in a

self-generated magnetic field caused by the motion of

the sensor target. The current in each coil is measured

by built-in sensors in the PWM drivers. Based on these

signals, the dSpace 1103 processor specifies the duty

10
1

10
2

10
3

10
4

 -80

 -60

 -40

 -20

0

F
lu
x

10
1

10
2

10
3

10
4

 -80

 -60

 -40

 -20 

0

Frequency [rad/s]

P
o
si
tio

n

k
s
          

0.1�  k
s
 

0.01�  k
s

Fig. 2. Frequency response from Voltage to flux and position for

different spring constants.

cycle to each PWM driver to control the motion of

the armature. We assume that the PWM drivers are

sufficiently fast that the applied voltage is equivalent

to the commanded duty cycle multiplied by the supply

voltage of 180 V.

Valve

EVA

To PWM Drivers

Eddy Current

Sensor

Sensor Target

Fig. 3. Experimental Setup.

In the results that follow in Figs. 4, 5, 6, 7, 8, 10,

and 11; the upper magnetic coil is located at
� ��� mm,

the lower magnetic coil is located at
� � 	 mm, the

signal shown is the unfiltered position based on the
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eddy current sensor mounted on the rear of the actuator,

and the armature is released from rest against the upper

magnetic coil at the beginning of the experiment unless

otherwise specified.

V. OPEN LOOP CONTROL

As stated in Sec. II, Tai [17] has previously shown that

the EVA is unstable for all equilibrium positions less

than 78# ��� mm away from either electromagnet. Based

on how we have defined position, the system is open-

loop exponentially stable in the range 7 4 � mm � � @CB �
� 4 � mm. Despite being stable, it is difficult to achieve

hovering in this range with open-loop control as the

region of attraction is small. If the armature starts at

rest against the upper magnetic coil (which is the normal

mode of operation), application of the open-loop voltage

for z=2.6 mm causes the armature to collide and remain

in contact with the lower coil; see Fig. 4. To achieve

stable open-loop hovering at z=2.6 mm the armature

must start at rest equidistant from either magnetic coil

(
� ��� mm); see Fig. 4. As the latter condition is

never experienced in operation, a closed-loop controller

is needed to not only stabilize the unstable equilibria,

but to also extend the region of attraction of the stable

equilibria.

VI. CONTROLLER DESIGN

The proposed controller consists of two components, a

stabilizing controller to achieve hovering and a damping

controller that retards the initial motion of the armature

during release. The stabilizing controller is based on

Sontag’s universal stabilizing feedback [16]. Two dif-

ferent control Lyapunov functions (CLF) for use with

Sontag’s feedback are given. While the first CLF is

valid, the resulting performance achieved by it is poor.

This motivates the selection of a new CLF based on the
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Fig. 4. Results of applying open-loop voltage for an equilibrium point

2.6 mm away from the lower coil.

solution to an algebraic Riccati equation. A mathematical

proof and experimental results are given to show that

selecting the CLF in this manner enables the designer

to tune for performance. Since the electromagnet can

only apply attractive forces, the upper coil is used to

slow the release of the armature to reduce overshoot

near the lower coil. The effects of actuator saturation

are discussed later on in Sec. IX.

A. Stabilizing Controller

As the flux dynamics are non-negligible, see Sec. III,

we have used Sontag’s feedback [16] to stabilize the

three state system. Given a Lyapunov function, V, such

that

-�� 	 � >	��
 � (4)-f� 	 iff > � 	 E (5)

it is said to be a Control Lyapunov function (CLF) if it

satisfies the additional constraint

� � -f� 	 
 ��� - � 	 (6)
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for all >��� 	 such that ��� > ��� ��� , where
� � - and

� � -
are the Lie derivatives of the CLF, defined as

� � - � � -� > G ! > & (7)

� � - � � -� > HI! > & 4 (8)

If the conditions given in Eqns. (4), (5), and (6) are

satisfied, then Sontag’s feedback given as

D � �	 
 ����
�� ^�� ��
�� P ^ \ ������������� c P� � � for
� � - �� 		 for
� � -f� 	

renders the origin asymptotically stable.

To implement Sontag’s feedback, we propose the

Lyapunov function

-f� k > ? > < m�� � � k > ? > < m8o ��� > <� (9)

as a candidate CLF, where � is constant and positive and

the matrix � � � satisfies the Lyapunov equation

� o� � � � � � � � � � � � �� � � � 	 E (10)

where

� � � � JL 	 �
	 ����� � 
 ��( � 
 gj and

 � � � JL"! <? 		 ! <<
gj 4

Since
� � � is Hurwitz and  � � is positive definite, the

matrix � � � is positive definite. Solving for
� � -

� � - � k$# �# OAb # �# O P # �# O Q m k 	l	 �9	 � m o (11)

� � - � 7 � �
	 � � > � (12)

Therefore

� � -f� 	 iff > � � 	 . (13)

When > � � 	 , � � - is given as

� � - � , k # OAb#&% # O P#&% m�� � � k > ? > < m o� k >%? > < m � � � k # O b#&% # O P#&% m o 3
� � - � , k > ? > < m � o� � � � � k > ? > < m o� k >%? > < m'� � � � � � k >%? > < m o 3
� � - � � k >%? > < m  � � k > ? > < m o E

showing that Eqn. (9) is a Control Lyapunov function.

Formulating Sontag’s feedback based on Eqn. (9) and

implementing it on the experimental setup described in

Sec. IV, we are able to achieve stable hovering as shown

in Fig. 5. However, the performance is quite oscillatory.

By adjusting ! ? , ! < , and � , it is possible to affect the

performance, but it is not obvious how they should

be manipulated to achieve the desired results. For this

reason, a better candidate CLF is sought.
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Fig. 5. Stable hovering achieved with the CLF given in Eqn. (9) on

the experimental setup described in Sec. IV.
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Let us instead select the CLF to be

-f� > o � > E (14)

where the matrix � satisfies the algebraic Riccati equa-

tion

� � � � o � �� 5� ����� o � � 	 (15)

for

� � � G ! > &� > ���� O�� � (16)

� � H ! > & � O�� � 4 (17)

For convenience, the CLF given in Eqn. (14) will hence-

forth be referred to as the LQ-CLF. The motivation in

selecting the CLF in this manner is that we can hopefully

influence the performance of the system by manipulating

the LQR cost function

� � � �� � > o  > � D < * ��� (18)

subject to the dynamics� >��� � � > � � D E (19)

in order to select P. Note that even though we have

chosen a quadratic Lyapunov function based on the

linearized system model, the full nonlinear model is

used when formulating Sontag’s feedback. Selecting the

CLF based on this method is not a new idea, and has

previously been employed by Fontaine [4], although he

does not use Sontag’s feedback in conjunction with it.

Sepulchre [13] has shown that Sontag’s feedback is

optimal with respect to a given cost function. However

for most systems the cost function is too complicated to

give insight into the performance. Instead, let us restrict

our view to what happens locally about equilibrium.

Near equilibrium, the Lie derivatives are approximated

by

��� - 	 7 > o � � > � > o � � � � � o � * > (20)

� � - 	 7 > o ��� E (21)

and thus Sontag’s feedback is given as

D � � > o � � � � � o � * >7 > o ���� 
 ! > o ! � � � � o � & > & < � ! � > o ����� o � > & <7 > o ��� 4
From the Riccati inequality> o ����� o � >
��> o � � � � � o � * > E (22)

therefore if > is sufficiently small

� � > o ����� o � > * ��� > o � � � � � o � * > (23)

such that we can assume

D 	 � > o � � � � � o � * > � � > o ����� o � >7 > o ��� (24)D 	 � � > o ����� o � >7 > o ��� (25)D 	 ��7 � o � > 4 (26)

Thus locally about the origin Sontag’s feedback is ap-

proximately twice the LQR optimal feedback. Therefore

we expect that the familiar process of tuning the LQR

should be applicable for tuning Sontag’s feedback. The

effect of tuning the matrix  from Eqn. (18) is seen

in Fig. 6. The hovering point has been set to the mid-

position and the matrix  listed in Table II for
��@CB � �

is used. The !$7 E 7 & element of  is varied according to

the value given in each subplot. Manipulating the penalty

on velocity significantly increases the effective closed-

loop damping. It should be noted that the oscillations are
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not caused by the controller, but rather the closed-loop

response approaches the free response of the system as

the !�7 E 7 & element of  is reduced.
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Fig. 6. Effects of tuning the matrix Q determined experimentally on

the setup described in Sec. IV.

Based on this procedure, we can select an appropriate

LQ-CLF and compare the results with those of Fig. 5;

see Fig. 7. In Fig. 7,
� @CB � 7 and the matrix Q is given

in Table II. Using the LQ-CLF, we are able to dampen

the response of the system and reduce the number of

oscillations. Examining Fig. 7, the obvious question is:

why wasn’t the controller able to eliminate or at least

reduce the initial overshoot? The answer is that the

controller is unable to eliminate the initial overshoot due

to the physical limitations of the actuator. When released

from rest against the upper coil, the armature swings to

within 0.5 mm of the lower coil due to the potential

energy stored in the springs. As the electromagnet is

only capable of applying attractive forces, the controller

is unable to effect the initial overshoot. In Sec. VI-B, we

explore how the releasing coil can be used to solve this

problem.

Despite this problem, the LQ-CLF has several advan-

tages that should not be overlooked. First, it is signif-
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Fig. 7. Stable hovering achieved with the LQ-CLF on the experimental

setup described in Sec. IV.

icantly easier to derive a CLF based on the algebraic

Riccati equation then the one given in Eqn. (9). While

the matrix � � � is derived from a Lyapunov equation,

structuring the Lyapunov function in the form given

in Eqn. (9) requires insight into the dynamics of the

system. In contrast, the LQ-CLF is formulated by simply

linearizing the nonlinear system. Second, the LQ-CLF

achieves better performance and the methodology for

tuning is the same as the LQR, which is familiar to

most control engineers. While it was somewhat possible

to tune the performance with the original CLF, there is

no clear methodology and it primarily involves trail.

B. Damping the Release

To remove the excess potential energy stored in the

upper spring, and thus dampen the armature motion, the

upper coil must be utilized as the electromagnets are

only capable of applying attractive forces. One solution

would be to select a multi-input CLF so that the feedback

can utilize both magnetic coils. Unfortunately, it is not

practical to select a multi-input CLF using the method

explained in Sec. VI-A due to the dynamics of the EVA.
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For equilibria below the mid-position, the effect of the

upper coil on the motion of the armature is lost in the

linearization. This is a result of the fact that the magnetic

force is proportional to the square of the flux and the

equilibrium flux in the upper coil is zero. Therefore the

effect of the upper coil on the motion of the armature

will not be utilized to minimize the penalty on position

and velocity in Eqn. (18).

When hovering, the following methodology is used to

dampen the release of the armature:

1) For both hovering above and below the mid-

position, the voltage across the upper coil is set

to -30 V until the armature has moved 0.1 mm

away from the upper coil.

2) If the equilibrium position is at or above the mid-

position, the closed-loop controller is activated

after the armature has moved 0.1 mm away from

the upper coil.

3) If the equilibrium position is below the mid-

position, the voltage across the upper coil is set to

180 V until the armature is greater than 2 mm away

from the upper coil. After this point, the voltage

across the upper coil is set to zero and the closed-

loop controller is activated. Once the estimated

velocity reaches zero, the flux in the upper coil

is driven to zero with the proportional controller

- � � � � + �
since the armature has begun to move away from

the lower coil and thus the upper coil can no longer

effect the overshoot.

The effectiveness of this releasing methodology is shown

in Fig. 8. As with Fig. 7,
� @CB � 7 mm and the matrix Q

is given in Table II.
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Fig. 8. Stable hovering achieved with the LQ-CLF and dampened

release on the experimental setup described in Sec. IV.

VII. NONLINEAR OBSERVER

As the actuator is intended for use in an automotive

engine it is impractical to measure every state. The

available measurements are the position of the armature

and the current in each coil. Current is chosen over flux

as current sensors are standard in most power electronic

devices and the compact design of the actuator prevents

the mounting of hall effect sensors.

First, the magnetic flux is determined using a map of

the magnetic force as a function of current and position

developed by Wang [19], denoted as
� ����� !�� E �'& . Given

the position and current, the magnetic flux is determined

by + � 
 7�� � � ���:� !�� E ��& E (27)

based on Eqn (1). Second, the armature velocity is

estimated by the nonlinear observer������� � � � ��� ? ! � E � ��&��� ���� � �
 !$�  !�#%� ���& �)( � � & ��� < !�� � E � � E � E ���& E
October 4, 2004 DRAFT
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where

� ? ! � E � ��& � H ? ! � � ���&
� < !�� � E � � E � E � ��& � ���������! � � E �'& � ���������!�� � E �'& � H < ! � � ���& 4
Computing the error dynamics, � � JL � � ��� � �� gj , results

in� ���� � JL 	 �9	�	�	���� � 
 ��( � 
 gj
� ��� �

�	�

� � JL H ?H < gj k � 	 m
� �
� �

� �

�

where the pair ! � d E
� d & is observable. Values for the

output injection gains H ? and H < are given in Table. I.

Convergence of the estimated velocity is shown in Fig. 9.
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Fig. 9. Comparison of the actual vs. estimated velocity.

In its final form, the controller is implemented using

the measured position, the estimated velocity from the

observer, and the approximated flux using Eqn. (27)

based on the measured position and current.

VIII. EXPERIMENTAL RESULTS

The overall performance of the controller is presented

in Figs. 10 and 11, which show the armature hovering at

several different equilibrium positions. The  matrices

used in conjunction with Eqn. (18) to select the CLFs for

each equilibrium point are given in Table. II. Recall from

Sec. V that all equilibrium points less � � � the total lift

(approximately 2.6 mm) away from either electromagnet

are open-loop unstable. As shown in Fig. 10, we are

able to hover the armature approximately 1 mm away

from either electromagnet. In addition to stabilizing the

unstable equilibrium points, the region of attraction of

the stable equilibrium points ( 7 4 � mm � � � � 4 � mm)

has been improved such that stable hovering is achieved

when the armature is released from rest against the

upper magnetic coil. Recall from Sec. V that this was

problematic with open-loop control.
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Fig. 10. Armature hovering at 1 mm, 3 mm, and 6 mm away from the

lower coil achieved on the experimental setup described in Sec. IV.

IX. LINEAR VS. NONLINEAR CONTROL

Having shown in Sec. VI-A that locally Sontag’s

feedback approximates the Linear Quadratic Regulator,

is there an advantage to using Sontag’s feedback instead

of its linear approximation? To answer this question let

us examine the nonlinear terms lost during linearization.

October 4, 2004 DRAFT



11

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

8

Time [ms]

P
o

s
it
io
n

 [
m

m
]

z
eq
=7

z
eq
=5

z
eq
=2

Fig. 11. Armature hovering at 2 mm, 5 mm, and 7 mm away from the

lower coil achieved on the experimental setup described in Sec. IV.

The state space representation given in Eqn. (2) can be

expressed as � >��� � � > ��� G ! > & � � D
where the matrices A and B are given by

� � JKKKL 	 � 	� R��� � 2� � WZY�[<SR:T �� d WZY�[<�R:T 	 � d \ R:]_^a` Y$[ c<�R:T
gihhhj E

� � k 	 	 � m o E
and

� G ! > & � k 	 � O
PQ<SR T � � O Q O b dR T � �
	 � m8o 4 (28)

Therefore the difference between the nonlinear and linear

model, and thus to some extent Sontag’s feedback and its

linear approximation, given in Eqn. (26), are the terms

contained in � G ! > & . The term

� > � >%? /� � � �9	 � (29)

which affects the dynamics of > � , is stabilizing if > ? �	 , which occurs for
� � � @CB

. As the inequality
� �� @CB

is valid for the majority of the armature travel, the

loss of the nonlinear term of Eqn. (29) should not have

a detrimental impact on the performance of the linear

approximation of Sontag’s feedback. The effect of the7 � # term

� > <�7�� � 
 (30)

is not as benign. Due to the loss of this term, the linear

model (and thus the linear approximation) underesti-

mates the attractive force generated by the magnetic coil.

Thus we expect the linear approximation to experience

more overshoot than Sontag’s feedback as the magnitude

of the nonlinear term in Eqn. (30) increases. Minimizing

overshoot is an important consideration since excessive

overshoot may lead to impacts between the armature and

electromagnets.

Through simulation of both Sontag’s feedback and its

linear approximation, see Eqn. (26), a better understand-

ing of the difference can be gained in the absence of

noise and other variations that occur from one experi-

ment to the next. Comparisons of the simulated response

of Sontag’s feedback and its linear approximation are

given in Figs. 12, 13, 14, and 15 for several different

equilibria. The controller used to dampen the release of

the armature has been turned off to avoid obscuring the

results.

As stated previously, we expect to observe more over-

shoot in the linear approximation of Sontag’s feedback

as the nonlinear term in Eqn. (30) increases. Recall that

> � � + � � + @CB 4
Since

+ @CB
increases as

� @CB
decreases, the effect should

be more prevalent for equilibrium positions near the
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electromagnet. In addition, the effects should be more

noticeable at the beginning of the transition as
+ � is

initially zero and thus > � is large. These trends can

both be observed in Figs. 12 and 13, which show that

the linear approximation of Sontag’s feedback experi-

ences more overshoot. In the case of hovering 0.5 mm

away from the electromagnet, Fig. 13, this results in an

impact between the armature and the magnetic coil at

approximately 5 ms into the transition. The increase in

the overshoot observed in Figs. 12, and 13 is caused by

the application of larger voltages during the initial part

of the transition. As mentioned before, this is expected

as > � takes on its largest value at the beginning of the

transition when
+ � � 	 . Later in the transition the voltage

specified by the linear approximation tends to dip below

Sontag’s feedback in an attempt to compensate for the

increased overshoot.
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Fig. 12. Simulated response of the armature hovering 1 mm away

from the magnetic coil.

For equilibrium positions further away from the lower

magnetic coil, the performance of both Sontag’s feed-

back and its linear approximation appear to be more

similar; see Figs. 14 and 15. Upon closer examination,

the applied voltage determined by each controller is very
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Fig. 13. Simulated response of the armature hovering 0.5 mm away

from the magnetic coil.

different despite that the position trace is quite similar.

To understanding why this difference arises let us take

a brief aside to discuss actuator saturation.

As mentioned in Sec. IV, the power supply can

provide a maximum voltage of 180 V. Since the PWM

drivers can reverse the polarity of the applied voltage,

the controller can therefore potentially apply voltages in

the range of -180 V to 180 V. However this creates a

potential problem. If the controller is allowed to apply

negative voltages, it may attempt to “push” on the

armature by generating negative flux in the magnetic

coil. Since the magnetic force is proportional to the

square of the magnetic flux, Eqn. (1), the application

of negative magnetic flux generates an attractive force,

thus creating a potentially unstable feedback loop.

To avoid this, the following saturation logic is used;

- � �
�������	
������


� � 	 if - � 2� � � � 	- � 2� if 	 � - � 2� � � � 	- � 2� if � � � 	 � - � 2� � 	 and
+ � � �	 if - � 2� � 	 and

+ � � � (31)

where - � 2� is the voltage specified by the feedback.
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Fig. 14. Simulated response of the armature hovering 2 mm away

from the magnetic coil.
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Fig. 15. Simulated response of the armature hovering 2.5 mm away

from the magnetic coil.

This allows the controller to apply negative voltages in

order to reduce the flux if need be, but not to generate

negative flux. The effects of removing this logic is shown

in Figs. 16 and 17. In the case of hovering 2 mm

away from the lower coil, the linear approximation of

Sontag’s feedback initially applies a negative voltage

in an attempt to “push” on the armature. In the case

of hovering 2.5 mm away from the lower coil, both

Sontag’s feedback and the linear approximation apply a

negative voltage during the initial part of the transition,

however the linear approximation generates larger values

of negative magnetic flux. Again, the linear approxima-

tion tends to attempt to “push” on the armature more

frequently due to the loss of the nonlinear term given

in Eqn. (30). Despite that this is avoided by using the

saturation logic given in Eqn. (31), the use of Sontag’s

feedback is advantageous as it is more likely to apply

a meaningful control input as shown in Figs. 14 and 15

by the fact that it becomes non-zero sooner.
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Fig. 16. Simulated response of the armature hovering 2 mm away

from the magnetic coil without the saturation logic given in Eqn. (31).

X. CONCLUSION

Stable hovering is achieved for a wide range of lift

conditions for an electromagnetic valve actuator using

Sontag’s feedback. It was shown mathematically and

experimentally that by selecting the CLF based on the

solution to the algebraic Riccati equation, it is possible to

tune the performance of the controller using the familiar

LQR procedure. Future work will explore augmenting

the controller with an integrator to eliminate the steady

state tracking errors seen in Figs. 10 and 11 of Sec. VIII.
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Fig. 17. Simulated response of the armature hovering 2.5 mm away

from the magnetic coil without the saturation logic given in Eqn. (31).

TABLE I

NUMERICAL VALUES OF CONSTANTS.

Parameter Numerical value Parameter Numerical value

� 0.27
���

0.04

���
158 ���� 700

	
4.0 � �� 500



7.53 � ��
����

� 6.0 � � 3560

���
29.92 � � 4820
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