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AN OBSERVATION ON THE PARAMETERIZATION
OF CAUSAL STABILIZING CONTROLLERS
FOR LIFTED SYSTEMS®

J. S. FREUDENBERG'* AND J. W. GRIZZLE'*

Abstract. It is shown that the special structure needed to ensure the causality of a
controller designed for a lifted periodic/multi-rate finite dimensional discrete-time linear
system can be incorporated into a parameterization of the set of stabilizing compensators.
A decentralized control problem is also considered.
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1. Introduction

A lot of attention has been focused recently on the analysis and design of periodic
digital systems, of periodic controllers for time-invariant systems, and/or systems with
multiple sampling rates (see for example, Buescher, 1988; Francis and Georgiou, 1988;
Haigawara and Araki, 1988; Khargonekar et al., 1985, and the references therein). One of
the main tools used in the above references is the so-called lifted system which is
essentially a means of constructing a time-invariant representation of a periodic discrete-
time system by block processing the inputs and outputs of the system over lengths of time
equal to a period of the system (or a multiple thereof). Consider an m-periodic system,

x(k+1) = A(R)x(k) + B(k)u(k)]
, (1.1)

y(k) = C(R)x(k) + E(k)u(k)

defined for k=0, where x(k)ER", u(k)ERY, and y(k)ER’. Then defining
L(k)=x(mk), #u(k)=[u(mk); --;u(m(k+1)—1)], and F(k)=[y(mk);---;y(m(k+1)
—1)], where the semicolon indicates a new row, results in the time-invariant, lifted
system,

E(k+1) = AE(k) + Ea(k)}
, (1.2)

y(k) = CE(k) + Eu(k)

where the matrices in (1.2) are easily calculated from those of (1.1). For example, when
m=2, A=A(1)A(0), B=[A(1)B(0), B(1)], C=[C(0); C(1)A(0)] and E =[E(0), 0;
C(1)B(0), E(1)], where once again the semicolon indicates a new row.

When the periodic system arises from multiple sampling rates, or from periodic but
non-uniform sampling, a state space representation such as (1.1) is always possible (Berg
et al., 1988), but may not be convenient (Buescher, 1988). To fix the ideas, consider the
following (conceptual) feedback system.
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Suppose that we have an analog plant whose output is sampled every 1/3 second and
fed into a zero order hold (ZOH). The output of the ZOH is then placed in a unity feedback
loop around the plant and subtracted from a continuous reference input to form an error
signal. The error signal is then sampled every 1/5 second and fed into a ZOH to form the
control input signal to the plant. This feedback configuration can be viewed as a periodic
system if one inserts samplers at 1/15 [sec.] in front of all the inputs and after all the
outputs, and associates states to the zero-order holds. Representing the system first in
the form (1.1) and then computing the lifted system would yield a time-invariant system
with 15 inputs and 15 outputs. However, one can directly construct a time-invariant model
with 5 inputs and 3 outputs (Buescher, 1988). This is mentioned to motivate the slightly
more general picture to be used in the next section, which facilitates the application of the
main result.

In any case, it is known that these lifting procedures preserve important system
properties such as controllability, stabilizability and detectability, and consequently, one
can lift the analysis process from the time-varying periodic representation to the
time-invariant representation where more tools (CAD or otherwise) are available
(Buescher, 1988; Francis and Georgiou, 1988; Haigawara and Araki, 1988; Khargonekar
et al., 1985). In principle, one can also lift the controller design process as long as one
keeps in mind certain constraints imposed by causality (Khargonekar et al., 1985): since
u(k,) cannot be allowed to depend upon y(k,) for k,>k,, this means that various
components of #(%;) cannot be allowed to depend upon certain components of 3(%;), but
there are no constraints on how 7%(%,), may depend upon (k) for k,<Fk,. However, as
long as a controller designed on the basis of the lifted system satisfies such causality
constraints, it can be directly implemented on the underlying system (1.1) because the
operations of forming ¥ from y and obtaining # from #% are just the operations of
demultiplexing and multiplexing respectively; in other words, just a question of data
handling.

While this note was in preparation, the authors received a preprint from Meyer (1988)
which treats the problem addressed in this note through a generalized notion of shift
invariance. The present approach allows one to consider any sampling scheme which leads
to a time-invariant system after appropriate block processing of the inputs and outputs.

2. Main Result

Suppose that the system (1.2) is a time-invariant (lifted) representation of a causal
periodic system with period T seconds (T need not be the least period of the system). It is
convenient to abuse notation and confuse ¥(k) with ¥(kT) and similarly #%(k) with % (kT)
so that time is now explicit. Then, each component of % can be written as
uj(kT)=uy;)(kT+ a;) for a least 0=a,;<T, and some I(j) in the integer set {1,---,q}
and similarly y,(kT) =yh(i)(kT+ﬁ,-) for a least 0=p;<T, and some %(7) in the integer set
{1,---,p}. Then, for a controller K(z) to be causal, 1t is necessary and sufficient that it
satisfies Kj;(0)=0, whenever fB;>a;; that is the (j, 7)-component must be a strictly
proper transfer function (it is assumed here that computation time, if non-negligible, has
been taken into account through the addition of delays in the original model). Note that the
condition that the plant (1.2) is causal can be stated as P;j(«)=0 whenever §;<a;, where
. P is its transfer function, assumed to be Fx 7.

To fix the notation, assume that p=¢=2 and that #(kT)=[u;(kT); wu,(kT);
u1(kRT+T/2); uy(kT+T/2)]. Then, I(1)=0(3)=1, I(2)=1l(4)=2, a;=a,=0 and
a3=a,=T/2. Suppose further that y(kT)=[y, (kT); y,(kT); y,(kT+T/2); y (kT+2T/
3)]. Then, h(1)=h(4)=1, h(2)=h(3)=2, $;=P,=0, B3=T/2 and B,=2T/3. Hence, a
controller K(z) will be causal, if and only if, K;3()=K4(®)=K,3(®)=K,4()
=K34(0)=K44()=0.

The main observation is that such a constraint on the class of controllers can be
incorporated into a parameterization of the set of all stabilizing controllers analogous to
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those found in Desoer et al. (1980), Kucera (1979), Vidyasagar (1985) and Youla et al.
(1976). Such parameterizations describe the set of stabilizing controllers in terms of a free
parameter which may be a polynomial matrix (Kucera, 1979; Youla, et al., 1976) or a
stable transfer function (Desoer et al., 1980; Vidyasagar, 1985) depending on the context.
(The free parameter is sometimes termed the YJBK parameter after the authors of Youla
et al. (1976) and Kucera (1979).) We shall show that this procedure may be extended to
incorporate the constraint of causality. Our construction will utilize the elements of a
doubly coprime factorization of the plant P(z) with state description (1.2).

For brevity, we merely present the formulas devised by Nett et al. (1984) (see also
Vidyasagar, 1985, p. 83) for constructing such a factorization; the reader is referred to
these sources for definitions and further explanation.

Lemma (Nett et al., 1984). _Consider the transfer function P(2) with realization (1.2),
and suppose that (A4, B) and (A, C) are, respectively, stabilizable and detectable. Choose
constant matrices G and F such that A,AA—BG and A;4A—FC have stable eigenval-
ues’. Then, P=N,D;'=D;'N, and

Y] [p == A e e S8 o
o | L T L = el ]

where

N;y=C(z2I-A) (B-FE) + E,
D, =1- C(z2I-A)'F,

N,= (C-EG)(zI-A,)'B + E,
D,=1- G(zI-A,)'B,

X, = G(zI-A)'F,

Y,=1+ G(zI-A) ' (B-FE),

X, = G(zI-A,)'F,

Y,=1+ (C-EG)(zI-A,)'F.

Theorem. Suppose that the plant (1.2) is causal, stabilizable and detectable. Let (N,,
D,), (N,, D)), X,, Y,, X,;and Y, be as defined in the preceding Lemma. Then, the set of
all causal linear time invariant finite dimensional stabilizing compensators is characterized
in terms of a free parameter @ as the set,

{(Y,—QN)'(X,+QD)): @ € M(z), |Y,—QN,|+#0}, (2.1)

where M(z) is the set of all stable §X p matrices of rational functions such that @;;(«)=0
whenever f3;>a;.

Proof. From Vidyasagar (1985), it is known that K(z)A(Y,—QN,) ' (X,+QD),)(2),
Q EM(z), yields a stabilizing compensator, so it remains to show that K is causal in the
sense discussed earlier. By the Lemma, one has that N,(e)=P(®), D;(0)=pxp
identity matrix, X,()=0 and Y,()=g X7 identity matrix. Then, it is a straightforward
matter to evaluate K(z) at infinity and see that it satisfies the condition for causality. For
example, consider the transfer function @ N,(z), which maps inputs into inputs. To see
that it is causal, define a causality relation R,, from inputs to outputs by the jth output is

" For the present purpose, it suffices to take the region of stability as the open unit disk in the
z-plane, although more general stability regions may also be treated in this framework (Nett et al.,
1984).
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related to the :th input, if and only if 8;— ;=0, if and only if Pj,-(oo) may be nonzero;
similarly define a causality relation R, from outputs to inputs by the kth input is related to
the jth output, if and only if a,—;=0, if and only if @,;() may be nonzero. Consider
now the composite relation R;,=R,, R ,,. From Ross and Wright (1985, p. 279 and p. 290),
the kth input component is related to the sth input component, if and only if there exists 7’
such that a,—f;;=0 and B; —a;=0; but this is equivalent to a,=a;, which establishes
causality. The rest of the sufficiency is similar and is left to the reader; the fact that every
causal stabilizing compensator is given by (2.1) follows as in Vidyasagar (1985, p. 108).

Continuing with the example considered earlier in the Section, we have that any 4 x 4
rational matrix Q(z) with Q3(°)=Q4(°)=Q23(®)=Q4(°)=Q34(®)=Q4()=0
will yield a causal compensator K(z). If, in addition, Q(z) is stable, then K(z) will be a
causal stabilizing compensator.

Remark:  The above result allows the interesting design technique of Boyd et al. (1988)
to be immediately applied to periodic/multi-rate systems, since the constraints on the
YJBK parameter are linear. The linearity of the constraints may also make it possible to
modify the results of Dahleh and Pearson (1987) to allow the treatment of periodic/multi-
rate systems.

3. Comments

There are other examples of special structure that can be incorporated into the YJBK
parameterization. Consider a decentralized linear discrete-time system of the form,

P
x(k+1) = Ax(k) + [;B,ui(k).

2 ) 3.1)

y(k) = Gx(k) + Ejuj(k), 1=<j=<p
and suppose that one is allowing a one-step delay sharing information pattern (Hsu and
Marcus, 1982); that is, at time k, the ith controller has available y.(k) and the entire
measurement vector y(/) for /<k. For simplicity of notation, let u; and ¥, be scalar valued.
Then, the transfer function P(z) has the property that P;(c)= 0 for i#;j and an
admissible controller must satisfy the same constraint. It is straightforward to check that
(2.1), with M(z) being the set of stable pXp matrices with rational entries such that
Q € M(z) implies that Q;;()=0 whenever i#j, parameterizes the set of all admissible
causal linear finite-dimensional stabilizing compensators.
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