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Abstract
A key challenge in robotic bipedal locomotion is the design of feedback controllers that function well in the presence
of uncertainty, in both the robot and its environment. This paper addresses the design of feedback controllers and
periodic gaits that function well in the presence of modest terrain variation, without over reliance on perception and
a priori knowledge of the environment. Model-based design methods are introduced and subsequently validated
in simulation and experiment on MARLO, an underactuated three-dimensional bipedal robot that is roughly human
size and is equipped with an IMU and joint encoders. Innovations include an optimization method that accounts for
multiple types of disturbances and a feedback control design that enables continuous velocity-based posture regulation
via nonholonomic virtual constraints. Using a single continuously-defined controller taken directly from optimization,
MARLO traverses sloped sidewalks and parking lots, terrain covered with randomly thrown boards, and grass fields, all
while maintaining average walking speeds between 0.9-0.98 m/s and setting a new precedent for walking efficiency in
realistic environments.
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1 Introduction

Humans and animals can walk over a variety of terrains
without directly observing the ground. To be practical,
bipedal robots must be able to do the same. In Buss
et al. (2014, 2016), we achieved three-dimensional (3D)
walking on flat-ground using holonomic virtual constraints
and manually-designed walking gaits. In this paper, we
extend our previous work by designing feedback controllers
that allow a 3D bipedal robot to walk outdoors over
sloped sidewalks, parking lots, and lawns and indoors over
randomly placed planks, all without a priori knowledge of
the environment or external sensing. Model-based design
methods are introduced and subsequently validated in
simulation and experiment on MARLO, a 3D bipedal robot
with six actuators and thirteen DOF shown in Figure 1. The
current results over uneven terrain are a consequence of using
nonholonomic virtual constraints, which enable MARLO to
adapt posture with velocity, and a walking gait optimization
that accounts for uneven terrain and other disturbances.
Using a controller taken directly from optimization, MARLO
is able to traverse a variety of outdoor environments
while maintaining a mechanical cost of transport (MCOT)
between 0.67-0.69 and average walking speeds between
0.9-0.98 m/s. Videos of outdoor experiments are available
at Dynamic Legged Locomotion Lab (2016).

1.1 Walking Gait Optimization

In this paper, the gait design problem is formulated in
terms of parameter optimization, which uses a cost function
that accounts for periodicity and efficiency under nominal
walking conditions and additional terms that specifically

account for trajectory and control-effort deviations arising
from a finite set of disturbances.

Numerous methodologies are being considered to quantify
and improve the capacity of a bipedal robot to walk over
uneven terrain. The terrain variations can be deterministic
or random, and the control policy can involve switching or
not. The gait sensitivity norm from Hobbelen and Wisse
(2007, 2008b); Wisse et al. (2005) has been used to measure
deviations in state trajectories arising from unknown step
decreases in ground height. Swing-leg retraction, employed
by bipedal animals, has been observed in Seyfarth et al.
(2003) to be helpful in accommodating this class of
disturbances. The mean-time to falling has been used in
Byl and Tedrake (2009) to assess walking performance in
the presence of stochastic ground height variations. For
low-dimensional dynamical systems, such as the rimless
wheel and the compass-gait bipedal walker, numerical
dynamic programming has been used to maximize the mean
time to falling. The simultaneous design of a periodic
walking gait and a linear time-varying controller that
minimizes deviations induced by ground height changes is
addressed in Dai and Tedrake (2012, 2013). The results are
illustrated through simulation on the compass-gait biped and
on Rabbit, a five-link biped with knees. A time-invariant
linear controller that is robust to modest terrain variations
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Figure 1. MARLO, an ATRIAS 2.1 robot designed by the Dynamic Robotics Laboratory at Oregon State University, is able to
traverse man-made (top) and natural (bottom) terrain using a single continuously-defined controller based on the mathematical
model of the robot. The mobile gantry does not provide any stabilization or support during walking.

is developed in Manchester et al. (2011), using transverse
linearization and a receding-horizon control framework;
experiments are performed on a compass-gait walker. An
event-based controller is given in Kolathaya and Ames
(2012) that updates parameters in a fixed controller in order
to achieve a dead-beat control response, in the sense that
after a terrain disturbance, it steers the robot’s state back to
its value at the end of the nominal periodic gait. A control
architecture that switches among a finite-set of controllers
when dealing with terrain variation is studied in Yang et al.
(2009); Park et al. (2013); Manchester and Umenberger
(2014); Saglam and Byl (2014b).

In this paper, we seek a single (non-switching) controller
and nominal periodic gait that are insensitive to a
predetermined and finite set of terrain and velocity
variations. The choice of a single controller is motivated
in part by ease of implementation, but even in the context
of a switching controller, it seems desirable that one of the
controllers be insensitive to a pre-determined range of terrain
and velocity variations.

Motivated by the approach of Dai and Tedrake (2012,
2013), we seek a periodic walking gait that can accommodate
a finite set of perturbations in ground height. Additionally,

we introduce a finite set of perturbations to velocity,
which is shown to improve performance for repeated
disturbances. Trajectory and control deviations induced by
the perturbations are defined with respect to a nominal
periodic orbit via a gait phasing variable. As in Westervelt
et al. (2007), a parameterized family of nonlinear controllers
is assumed to be known, and constrained parameter
optimization is used to select a periodic solution of the
closed-loop system that satisfies limits on torque, ground
reaction forces, and other physical quantities. Motivated
by Dai and Tedrake (2012, 2013), the cost function is
augmented with terms that penalize deviations in the state
and control trajectories arising from perturbations. The gait
phasing variable is used to penalize more heavily deviations
that persist “late” into the gait, which is shown in Griffin
and Grizzle (2015b) to improve the ability of a planar
robot to handle terrain deviations, both in simulation and in
experiments.

1.2 Nonholonomic Outputs
Virtual holonomic constraints are functional relations among
the configuration variables of a robot that are dynamically
imposed through feedback control. Their purpose is to
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Figure 2. Velocity-based swing foot placement has been
designed on the basis of the linear inverted pendulum model in
Pratt and Tedrake (2006). Using nonholonomic outputs, it is
possible to implement velocity-based posture regulation that
accounts for the full dynamics of the biped, as well as a range of
terrain variation.

synchronize the evolution of the various links to an internal
gait phasing or gait timing variable, such as the position of
the robot’s hip with respect to the stance leg end. The gait
timing variable is selected to be monotonically increasing
along a walking motion so that it can replace time as a means
to parameterize command “trajectories.” From a theoretical
perspective, virtual constraints turn the Isidori-Byrnes theory
of nonlinear zero dynamics from Isidori (1995) into a formal
gait and feedback design tool, while the experiments reported
in Westervelt et al. (2004); Park et al. (2013); Buss et al.
(2014); Zhao et al. (2014); Martin et al. (2014a); Gregg et al.
(2014a) attest to the applicability of the approach to realize
dynamic locomotion that meets a range of design objectives,
from speed of locomotion, to limits on actuator torque, and
available friction cone, to name only a few.

This paper introduces a more general class of nonholo-
nomic outputs that depend on velocity. The motivation for
this extension comes from the work of Pratt and Tedrake
(2006), which plans the desired placement of a biped’s swing
foot as a function of the center of mass velocity in the
horizontal direction. Their control law for foot placement
is based on the linear inverted pendulum model (aka LIP)
proposed in Kajita et al. (1992), which approximates the
robot’s dynamics as an inverted pendulum with constant
vertical height and massless legs, as shown in Figure 2. Due
to the assumptions of constant vertical height and massless
legs, the pendulum’s dynamic model is linear, the reset map
associated with leg impact is linear and energy conserving,
and the overall hybrid model can be solved in closed form.
From the closed-form solution of the LIP model, Pratt and
Tedrake (2006); Koolen et al. (2012) propose a foot place-
ment policy to regulate forward walking speed, and have
illustrated it on complex robots, such as a simulation model
of the M2V2 biped undergoing impulses of up to 15 Ns in
Pratt et al. (2012). Similar adjustments are made heuristically
to step length and torso pitch in Post and Schmiedeler (2014)
to improve velocity stabilization of the planar biped ERNIE.

In this paper, a continuous velocity-dependent posture-
regulating strategy is designed and implemented without
relying on an inverted pendulum approximation of the robot.

In particular, the distributed mass, multi-link nature of the
robot can be fully taken into account, including energy
losses at impact. The control law is implemented through
a set of virtual constraints that depend on velocity through
generalized conjugate momenta, in addition to the robot’s
configuration variables. A set of parameterized splines
appearing in the virtual constraints are designed through the
parameter optimization process introduced in Section 1.1.
The robustness of the resulting control solutions to terrain
and velocity perturbations are evaluated through simulation
and experiments. Control solutions based on nonholonomic
constraints accommodate a wider range of perturbations than
those based on holonomic constraints.

1.3 Contributions and Organization
This paper is the culmination of work initiated for planar
walking studies in the conference papers Griffin and Grizzle
(2015a,b).

With respect to prior work on accommodating unknown
terrain variations, the primary contributions include: allow-
ing a family of nonlinear controllers to be optimized with
respect to disturbance attenuation; introducing a finite set
of perturbations to velocity during control optimization and
demonstrating efficacy; synchronizing the calculation of tra-
jectory and control deviations of a biped’s gait via a gait
phasing variable; and penalizing more heavily trajectory
deviations that persist late into a step, when ground contact
is likely to occur.

With respect to prior work with virtual constraints, the
primary contributions include: introducing a new class
of virtual constraints that include velocity, but maintain
control outputs that are relative degree two for ease
of implementation; and demonstrating superior ability to
attenuate terrain and velocity perturbations.

With respect to prior work on feedback control of
bipedal robots, the primary contributions are: introducing
a model-based design framework that is able to achieve
dynamic three-dimensional walking without hand-tuning of
the optimized walking gait; demonstrating robustness by
traversing sloped sidewalks and parking lots, terrain covered
with randomly thrown boards, and grass fields without a
priori knowledge of the environment or external sensing (the
robot uses only an IMU and joint encoders); and setting a
new precedent by evaluating walking efficiency for a variety
of realistic terrains.

The remainder of this paper is organized as follows.
Section 2 describes the hybrid model of walking used in this
paper. Section 3 presents a parameter-optimization-based
control design method for accommodation of unknown
disturbances, and Section 4 presents the notion of relative
degree two nonholonomic outputs. Section 5 details a
specific implementation of the general concepts introduced
in this paper. To demonstrate the efficacy of new concepts
and establish best practices, Section 6 compares simulation
results for many different control solutions. Each control
solution results from a unique design configuration selected
explicitly for this purpose. Section 7 gives the results of robot
experiments using control solutions designed for outdoor
environments, with corresponding discussion given at the
end of the section. Finally, Section 8 provides concluding
remarks.
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2 Walking Model and Solutions

2.1 Hybrid Model
The walking model assumes alternating phases of single
support (one foot on the ground) and double support (both
feet in contact with the ground). The single support phase
assumes the stance foot is not slipping and evolves as a
passive pivot. The standard robot equations apply and give
a second order model that is expressed in state variable form

ẋ = f(x) + g(x)u, (1)

where x ∈ X is the state of the system and u ∈ Rm are
the control inputs. For later use, a parameterized family of
continuous-time feedbacks is assumed to be given

u = Γ(x, β), (2)

where β ∈ B are control parameters from an admissible set.
The resulting closed-loop system is

ẋ = f cl(x, β) := f(x) + g(x)Γ(x, β). (3)

The closed-loop system is assumed to be continuously
differentiable in x and β, thereby guaranteeing local
existence and uniqueness of solutions.

With the stance foot taken as the origin, let p2 be the
Cartesian position of the swing foot on the second leg, and
denote by pv2 its vertical component. The double support
phase occurs when the swing foot strikes the ground which
is modeled as

pv2(x)− d = 0, (4)

for d ∈ D, a finite collection of ground heights used to
account for varying terrain. It will be assumed at impact that
the transversality condition ṗv2(x) < 0 is met. Physically, it
corresponds to the impact occurring at a point in the gait
where the swing foot is moving down toward the ground,
as opposed to the impact occurring early in the gait which
would lead to tripping Park et al. (2013). The impact is
modeled as a collision of rigid bodies using the model of
Hürmüzlü and Marghitu (1994). Consequently, the impact is
instantaneous and gives rise to a continuously-differentiable
reset map

x+ = ∆(x−), (5)

that does not depend on the ground height since the vector of
pre-impact states, x−, provides foot height at impact. Here,
x+ is the vector of the post-impact states. So that only one
continuous-phase mechanical model is needed, the impact
map is assumed to include leg swapping, as in (Westervelt
et al. 2007, pp. 57). Moreover, for reasons that will become
clear in Section 5.2, the impact map is allowed to depend on
β.

The overall hybrid model is written as

Σ :

{
ẋ = f cl(x, β) x− /∈ Sd

x+ = ∆(x−, β) x− ∈ Sd
, (6)

where
d ∈ D := {d0, d1, · · · , dNd

} (7)

is the set of ground height variations and

Sd := {x ∈ X | pv2(x)− d = 0, ṗv2(x) < 0} (8)

is the hypersurface in the state space where the swing leg
impact occurs at ground height d ∈ D.
Remark: The reference (Westervelt et al. 2007, pp. 109)
shows how to augment the state variables with control
parameters in order to accommodate event-based control,
as used in Kolathaya and Ames (2012). This extension is
employed later in (64).

2.2 Model Solutions
For a given value of β ∈ B, a solution of the hybrid model
(6) is defined by piecing together solutions of the differential
equation (3) and the reset map (5); see (Westervelt et al.
2007, pp. 56); Hürmüzlü and Marghitu (1994). We are
interested in periodic orbits and their perturbations and
exclude Zeno and other complex behavior from our notion
of a solution.

In the following, for compactness of notation, explicit
dependence on β is dropped. A step of the robot starts at
time t0 with x0 ∈ S d̄0 for a given value of d̄0 ∈ D. The reset
map is applied, giving an initial condition ∆(x0) for the ODE
(3), with solution ϕ(t, t0,∆(x0)). The step is completed
if the solution of the ODE can be continued until a (first)
time t1 > t0 when x1 = ϕ(t1, t0,∆(x0)) ∈ S d̄1 for a given
value of d̄1 ∈ D. Not all steps can be completed, but when
one is completed, the next step begins by solving the ODE
with initial condition ∆(x1) at time t1, etc. The solution (or
step) is periodic if ϕ(t1, t0,∆(x0)) = x0, and T = t1 − t0
is the period. Because the model is time invariant, wherever
convenient, the initial time is taken as t0 = 0 and the solution
denoted as ϕ(t,∆(x0)).

3 Optimization for the Accommodation of
Unknown Disturbances

3.1 Terrain Disturbances
Let d0 ∈ D represent the nominal change in ground height
step to step. We seek β ∈ B and x0 ∈ X giving rise to a
periodic solution of the closed-loop system (6); that is, for
which there exists T0 > 0 such that

x0 = ϕ(T0,∆(x0)). (9)

Moreover, for the same value of β ∈ B, we desire that
the periodic orbit ensures the existence of the following
additional solutions of the closed-loop system: ∀ 1 ≤ i ≤
Nd, di ∈ D, 1 ≤ j ≤ Ns, ∃ 0 < ti < ∞ and 0 < Tij < ∞
such that

xi1 = ϕ(ti,∆(x0)) ∈ Sdi (10)

xi(j+1) = ϕ(Tij ,∆(xij)) ∈ Sd0 . (11)

In plain words, there exist steps that begin on the periodic
orbit, end at ground height di, and continue for at least
Ns more steps at nominal ground height d0, as shown in
Figure 3.

In the following, we set up a parameter optimization
problem in (β, x0) for finding a periodic solution that meets
these conditions. Moreover, we will pose a cost function
on the steps following the change in ground height that
favors solutions that “return closely” to the nominal periodic
solution, that is, the closed-loop system attenuates the effects
of the set of ground height variations.
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Figure 3. Terrain (top) and velocity (bottom) disturbances for
optimization. Data are collected for Ns steps following a
perturbation caused by di or vi. x̃ij represents the perturbed
state trajectory of the jth step following disturbance i.

3.2 Velocity Disturbances
The method of Section 3.1 can accommodate a variety of
disturbances. Here, velocity disturbances are addressed. Let
xv0 ∈ X represent the values of the state in the periodic orbit
when the position of the center of mass is directly above
the stance foot in the sagittal plane. Given a set of Cartesian
velocity variations for the center of mass,

v ∈ V := {v1, v2, · · · , vNv
}, (12)

where v ∈ R3, define the ith velocity perturbation as

xvi := xv0 + δxvi , (13)

such that pcm(xvi) = pcm(xv0) and

vi =
∂pcm(xv0)

∂x
δxvi , (14)

where pcm(x) gives the Cartesian position of the center of
mass corresponding to x.

For the purpose of attenuating the effects of velocity
variations, we desire that the periodic orbit ensures the
existence of the following additional solutions of the closed
loop system: ∀ 1 ≤ i ≤ Nv , vi ∈ V , 1 ≤ j ≤ Ns, ∃ 0 < ti <
∞ and 0 < Tij < ∞ such that

xi1 = ϕ(ti, xvi) ∈ Sd0 (15)

and xi(j+1) = ϕ(Tij ,∆(xij)) ∈ Sd0 , as in (11). In plain
words, there exist steps that begin on the periodic orbit, end
at nominal ground height d0 after a velocity disturbance vi is
applied mid-step, and continue for at least Ns more steps at
nominal ground height d0, as shown in Figure 3.
Remarks: (a) When applying multiple disturbance types, the
index i in (11) must be offset for each type of disturbance
for calculations in Section 3.3. (b) We found that applying
a velocity perturbation in the middle of a step is beneficial
for finding solutions that satisfy the conditions in (15), while
allowing time for the controller to make adjustments before
the end of the step. It is possible, however, to apply a velocity
disturbance at any point along the periodic orbit.

3.3 Gait Phase and Trajectory Deviations
Compared to time-based methods, phase-based synchroniza-
tion of walking trajectories is shown to be more natural
to humans in Gregg et al. (2014b) and advantageous for
control in Kong et al. (2015). For this optimization method,
we have found that computing deviations of the perturbed
solutions from the nominal periodic solution does not work
well when the trajectories are parameterized by time. This is
because terrain disturbances cause varying initial conditions,
which cause perturbed trajectories to be unsynchronized with
respect to time. We use instead a gait phasing variable,
τ̄ : X → R, that is strictly increasing along walking steps.
Examples include the angle of the line connecting the hip
and the ground contact point of the stance leg, the horizontal
position of the center of mass, or the horizontal position of
the hips, which will be used in Section 5. The gait phase can
be thought of as a measure of progress through each step. We
further assume that the units are normalized on the periodic
orbit so that it takes values in [0, 1], namely

τ̄(∆(x0)) = 0 (16)
τ̄(x0) = 1, (17)

and that Lg τ̄(x) :=
∂τ̄
∂x (x)g(x) = 0.

Let τ̄ij(t) := τ̄(ϕ(t,∆(xij)), for 0 ≤ t ≤ Tij , and as in
Dai and Tedrake (2012), denote by τ+ij and τ−ij the initial
and final values of τ̄ along the trajectory. Due to the
assumption that τ̄ij is strictly increasing, the inverse map
τ̄−1
ij : [τ+ij , τ

−
ij ] → [0, Tij ] exists. Define

x̃ij(τ) := ϕ(τ̄−1
ij (τ),∆(xij)) (18)

ũij(τ) := Γ(ϕ(τ̄−1
ij (τ),∆(xij)), β). (19)

For 1 ≤ i ≤ (Nd +Nv) and 1 ≤ j ≤ Ns, deviations in
the state and control trajectories are defined as

δxij(τ) :=


x̃ij(τ)− x̃0(0) if τ < 0

x̃ij(τ)− x̃0(τ) if τ ∈ [0, 1]

x̃ij(τ)− x̃0,ext(τ) if τ > 1

(20)

δuij(τ) :=


ũij(τ)− ũ0(0) if τ < 0

ũij(τ)− ũ0(τ) if τ ∈ [0, 1]

ũij(τ)− ũ0,ext(τ) if τ > 1

(21)

for τ+ij ≤ τ ≤ τ−ij , where x̃0,ext(τ) and ũ0,ext(τ) are forward
extensions of the nominal periodic trajectories.1

Using (20) and (21), the weighted square error is defined
as

||δxij(τ)||2 := < Qδxij(τ), δxij(τ) > (22)

||δuij(τ)||2 := < Rδuij(τ), δuij(τ) > (23)

for Q and R positive semi-definite (constant) matrices.

3.4 Robust Control Cost Function
The problem of defining a cost function J0 and appropriate
equality and inequality constraints for determining a nominal
periodic solution of (3) has been addressed in (Westervelt
et al. 2007, pp. 151-155); Westervelt et al. (2004); Sreenath
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et al. (2011) using parameter optimization. Here, we define
additional terms that penalize deviations induced by the
terrain-height disturbances in D and velocity disturbances in
V .

For 1 ≤ i ≤ (Nd +Nv) and 1 ≤ j ≤ Ns, we define

Jij :=

1

(τ−ij − τ+ij )
2

∫ τ−
ij

τ+
ij

(τ − τ+ij )
(
||δxij(τ)||2 + ||δuij(τ)||2)dτ.

(24)

The term
(τ−τ+

ij)

(τ−
ij−τ+

ij)
scales the errors so that initial deviations

from the nominal periodic trajectory are discounted with
respect to errors toward the end of the step. The rationale
for this is that if the closed-loop system were to rejoin
the nominal periodic orbit by the end of the step, the
disturbance would have been rejected and a next step would
be guaranteed. The scale factor allows the optimization
to focus on approximately achieving this objective. The
benefit of the scale factor introduced in (24) is demonstrated
in Griffin and Grizzle (2015b) by comparing optimization
solutions that include the scale factor against those that do
not. The additional term outside the integral, 1

(τ−
ij−τ+

ij)
, is

included so that perturbed step costs are normalized w.r.t.
the varying ranges of τij that result from disturbances (e.g.,
higher and lower terrain).

The overall cost function is

J = J0 +

Nd+Nv∑
i=1

Ns∑
j=1

wijJij , (25)

where wij determines the relative weight of each step.
Parameter optimization problem: Find (β;x0) that
(locally) minimize J subject to the existence of a periodic
solution of (6) that respects ground contact conditions,
torque limits, and other relevant physical properties, as
illustrated in Section 5.3.

4 Relative Degree Two Nonholonomic
Outputs

Assume an n-degree of freedom mechanical model

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (26)

with m actuators and Lagrangian

L(q, q̇) := 1

2
q̇>D(q)q̇ − V (q). (27)

Assume moreover that the configuration variables
q = (qu, qa)

′ have been selected such that
qu = (q1, · · · , q(n−m))

′ are unactuated and qa =
(q(n−m+1), · · · , qn)′ are actuated, so that, by Lagrange’s
equation,

d

dt

∂L
∂q̇u

− ∂L
∂qu

= 0. (28)

The quantity

σ :=
∂L
∂q̇u

(q, q̇) (29)

is the momenta conjugate to qu, and for 1 ≤ i ≤ (n−m), is
equal to

σi = Di(q)q̇, (30)

where Di(q) is the i-th row of the mass-inertia matrix. From
(28) and (29),

d

dt
σ =

∂L
∂qu

(q, q̇), (31)

and thus if σ has a relative degree, it is two or greater. Indeed,
differentiating σ a second time gives terms that depend on
acceleration, which, via (26), may in turn depend on the input
torque.

Functional relations involving momenta are classic
examples of nonholonomic constraints Bloch (2003).
Consider now a nonholonomic output function of the form

y = h(q, σ) (32)

=: h̃(q, q̇). (33)

Then from the chain rule, its derivative along trajectories of
the model is

ẏ =
∂h(q, σ)

∂q
q̇ +

∂h(q, σ)

∂σ
σ̇

=
∂h(q, σ)

∂q
q̇ +

∂h(q, σ)

∂σ

∂L
∂qu

(q, q̇) (34)

and thus the relative degree cannot be less than two.
Remark: Equation (34) holds for one or more degrees of
underactuation. Thus, it can be applied to both planar and 3D
biped models, as well as models with or without compliant
elements.

5 Control Design
This section provides an example implementation of the gait
optimization method from Section 3 and the nonholonomic
outputs from Section 4. Section 5.1 describes the bipedal
robot and corresponding model. Section 5.2 defines the
feedback control used for walking. Section 5.3 describes
the optimization configuration for finding walking control
solutions.

𝑞𝑥𝑇
𝑞1𝑅

𝑞2𝑅

𝑞𝑧𝑇

𝑞𝑦𝑇

𝑞 =

𝑞𝑧𝑇
𝑞𝑦𝑇
𝑞𝑥𝑇
𝑞1𝑅
𝑞2𝑅
𝑞3𝑅
𝑞1𝐿
𝑞2𝐿
𝑞3𝐿

𝑞3𝑅 𝑞3𝐿

𝑧

𝑦𝑥

𝑧

Figure 4. Rigid model of MARLO for control design and
simulation. L and R designate left and right legs. qzT , qyT , and
qxT are the respective torso yaw, roll, and pitch Euler angles
w.r.t. the world frame.
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Figure 5. Two-contact-point feet (left) and prosthetic feet (right).

5.1 Bipedal Robot Model
The robot MARLO, shown in Figure 1, is the Michigan copy
of the ATRIAS-series of robots built by Jonathan Hurst and
is described in detail in Grimes and Hurst (2012); Ramezani
et al. (2014). The robot’s mass is approximately 55 kg and
its legs are one meter long. Furthermore, while the robot
has series elastic actuators, the springs used in this study are
sufficiently stiff that they are ignored. Excluding the global
Cartesian position, the resulting rigid model has nine DOF
in single support and six actuators. Four sagittal-plane leg
motors use harmonic drives with a 50:1 gear ratio, and two
hip-abduction motors use a belt transmission with a 26.7:1
gear ratio. The power amplifiers for the leg and hip motors
generate up to 5 Nm and 3 Nm of torque respectively.

The configuration variables q = (qu, qa)
′ are shown in

Figure 4. Specifically, the unactuated components are

qu = [qzT , qyT , qxT ]
′, (35)

and the actuated components are

qa = [q1R, q2R, q3R, q1L, q2L, q3L]
′. (36)

With this choice of configuration variables, σ has three
components corresponding to the angular momenta about
the stance foot end in the yz-, xz-, and xy-planes (i.e., the
sagittal, frontal, and transverse planes respectively). Because
the model is 3D, the σ components can also be defined using
x-, y-, and z-axes.

The complete hybrid model of the robot, including the
dynamic model for the single support phase and the reset
map at leg impact, is derived as in Ramezani et al. (2014),
except yaw damping friction about the stance foot has been
removed. Thus, the resulting walking gait is not dependent
on yaw damping, which is beneficial for handling uncertain
physical ground contact conditions during experiments with
MARLO. Using the natural state variables x = (q, q̇)′, the
Lagrange model (26) is expressed in state variable form as
in (1), with x ∈ X an open subset of R18 and u ∈ R6 for
three degrees of underactuation during single support. Full
details of the impact surface (8) and the reset map (5) are in
Westervelt et al. (2007).

The robot model is assumed to be symmetric as in Hamed
and Grizzle (2014). Hence, the control definition assumes
right stance. During left stance, a coordinate transform on x
maps the state of the robot to “right stance,” and the resulting
“right-stance” control inputs are then mapped back to the
actual left-stance control inputs.

𝑧

𝑦

𝑞𝐾𝐴,𝑆𝑊

𝑝𝐻𝐼𝑃,𝑦

𝑞𝐿𝐴,𝑆𝑊
𝑞𝐻𝐴,𝑆𝑇

𝑞𝐻𝐴,𝑆𝑊,𝐴𝐵𝑆

𝑥

𝑧

𝑞𝑦𝑇

Figure 6. Controlled outputs and gait phasing variable. Control
trajectories are synchronized with the motion of pHIP,y .

For control calculation, the y-axis is attached to the
forward direction of the torso; thus, despite yaw motion
about the stance foot in simulation and experiments,
control is yaw independent.2 During experiments with
MARLO, yaw motion is reduced by yaw friction from
the two-contact-point feet shown in Figure 5. With these
feet, MARLO pivots freely in the roll and pitch directions,
which is consistent with the robot model. Some outdoor
experiments use the prosthetic feet shown in Figure 5.
Although prosthetic feet do not pivot as easily for roll and
pitch, they provide a larger surface area for walking on
compliant terrain, such as un-mowed grass.

5.2 Family of Feedback Controllers
The feedback controller is designed using the method of
virtual constraints and hybrid zero dynamics as in Grizzle
et al. (2001); Westervelt et al. (2003). For MARLO,
six virtual constraints are defined, one for each available
actuator.

The output vector y is defined in terms of the configuration
variables, q, angular momentum, σ, and a set of parameters
κ and β,

y = h(q, σ, κ, β), (37)

in such a way that the output has vector relative degree 2
(Isidori 1995, pp. 220) on a subset of interest, X ×K ×
B. The parameters κ are used to achieve invariance of
the zero dynamics manifold induced by (37), as shown in
Appendix A, while the parameters β will be tuned through
optimization to achieve a desirable periodic orbit.

The feedback controller is based on input-output
linearization, namely

uff (q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1
L2
fh(q, q̇, κ, β),

(38)

ufb(q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1(
Kpy +Kdẏ

)
,

(39)

with3

u = Γ(q, q̇, κ, β) := uff (q, q̇, κ, β) + ufb(q, q̇, κ, β). (40)

Along solutions of the closed-loop system,

ÿ +Kdẏ +Kpy ≡ 0. (41)
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Figure 7. Nonholonomic virtual constraint control schematic.

An explicit choice of h(q, σ, κ, β) is now made,

h(q, σ, κ, β) = h0(q, β)− hd(τ(q), σ, κ, β), (42)

where hd(τ(q), σ, κ, β) specifies the desired evolution of the
controlled outputs h0(q, β), which are chosen as

h0(q, β) =


qLA,ST

qLA,SW

qKA,ST

qKA,SW

qyT − ξ(β)qHA,ST

qHA,SW,ABS

 , (43)

where LA, KA, and HA are abbreviations of leg angle, knee
angle, and hip angle respectively, and ST and SW designate
the stance and swing legs, as shown in Figure 6. For the
lateral controller, a combination of torso roll, qyT , and stance
hip, qHA,ST , are used.4 As in Akbari Hamed et al. (2015),
the scalar ξ(β) is a free optimization parameter that changes
the output configuration. Finally, qHA,SW,ABS represents the
absolute swing-hip angle w.r.t. the global vertical axis. The
complete output control schematic is shown in Figure 7.

The desired evolution of the controlled outputs is chosen
as

hd(τ(q), σ, κ, β) = hd,τ (τ(q), κ, β) + hd,σ(σ, β), (44)

where hd,τ (τ(q), κ, β) and hd,σ(σ, β) specify holonomic
and nonholonomic virtual constraints respectively.

The function hd,τ (τ(q), κ, β) ∈ R6 is a vector of splines
that specifies the desired evolution of defined h0(q, β)−
hd,σ(σ, β) in terms of the gait phasing variable τ(q). Here,
the splines are Bézier polynomials, with the ith polynomial
given by

hd,τ,i(τ, κ, β) :=

M∑
k=0

αi,k
M !

k !(M − k) !
τk(1− τ)M−k, (45)

where, as in (Westervelt et al. 2007, pp. 138), the
six degree-(M + 1) Bézier polynomials are defined by
α(κ, β) ∈ R6×(M+1), which is derived in Appendix B. The
gait phasing variable, τ(q), is selected to be an affine function
of the y position of the center of the hips, pHIP,y , and is
normalized on the periodic orbit to take values in [0, 1].
If τ(q) > 1 outside of the periodic orbit, extended Bézier
polynomials defined in Appendix C are used in (45).

Figure 8. Typical posture changes in response to velocity
perturbations from pushes in the sagittal (top) and frontal
(bottom) planes. Changes in swing foot placement adapt the
gravity moment between the stance foot and the center of mass
during the following step.

The nonholonomic virtual constraints are chosen as

hd,σ(σ, β) =


0

kσ(k1(β), σyz)
0
0
0

kσ(k2(β), σ̄xz)

 , (46)

where σyz and σ̄xz are angular momentum in the sagittal and
frontal planes and the nonholonomic function is defined as

kσ(ki, σj) := ki,1σj + ki,2σ
2
j + ki,3σ

3
j , (47)

where ki ∈ R3 is a set of scalars for the cubic polynomial.
The complete output equation using (37) and (42)-(46) is

y =


qLA,ST

qLA,SW

qKA,ST

qKA,SW

qyT − ξqHA,ST

qHA,SW,ABS

−


0

kσ(k1, σyz)
0
0
0

kσ(k2, σ̄xz)

− hd,τ (τ). (48)

The inclusion of angular momentum in the second and sixth
components of hd,σ allows step length and width to vary
with velocity. In the optimization phase, values for k1(β)
and k2(β) will be chosen such that a perturbation in velocity,
and attendant deviation of σ, results in a corrective change
in swing foot placement, as shown in Figure 8. With respect
to the sagittal plane, these changes adjust the amount of time
the center of mass spends behind, versus in front of the stance
foot. With respect to frontal plane, these changes adjust the
magnitude of the lateral gravity moment proportional to the
width between the stance foot and the center of mass. Adding
these corrective changes after velocity perturbations results
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in quicker convergence to the periodic orbit. Additionally,
lateral stabilization through step width adjustments is shown
to be more efficient than direct actuation in Kuo (1999).
For more details, see Kajita et al. (1992); Pratt and Tedrake
(2006); Koolen et al. (2012); (Griffin 2016b, pp. 148).
Remarks on hd,σ: In practice, we have included additional
responses to velocity perturbations (e.g., changing stance
and swing knee angles to regulate lateral velocity through
modified ground reaction forces and step duration). To
make the introduction of nonholonomic virtual constraints
straightforward, the current choice of hd,σ is limited to swing
foot placement. A thorough comparison of nonholonomic
virtual constraints and LIP-based swing foot placement is
provided in Griffin and Grizzle (2015a).
Remarks on σ̄xz: During a nominal step, the robot rotates
laterally both toward and away from the stance foot; hence,
σxz is negative and positive within the same step. In practice,
we found it beneficial to use only the portion of σxz

associated with rolling away from the stance leg during the
later part of each step. To keep control inputs (40) continuous
and smooth, we define σ̄xz as

σ̄xz :=

{
0 if σxz < 0

σxze
(−30

σ2
xz

)
if σxz ≥ 0

, (49)

which uses e
(−30

σ2
xz

)
to smoothly transition to non-zero values

of σxz . See Figure 28 in Appendix D for a visual comparison
of σxz and σ̄xz .

5.3 Robust Control Optimization Configuration
and Control Solutions

The cost function for the nominal periodic orbit is based on
energetic efficiency and is defined as

J0 :=
1

step length

∫ T0

0

6∑
i=1

|uiq̇m,i| dt, (50)

where step length is the distance between the stance and
swing feet at impact,5 T0 is the period, u is the 6-vector of
motor torques, and q̇m is the corresponding 6-vector of motor
angular velocities, which is obtained from the link velocities
and gear ratios as in Ramezani et al. (2014). The product of
ui and q̇m,i is the instantaneous mechanical power from each
motor.

The nominal periodic orbit was computed for walking on
level ground (i.e., d0 = 0) by optimizing (25), with nominal
cost (50), subject to the hybrid dynamic model (65) given in
Appendix A and the following constraints: leg and hip motor
torques saturate at 4 Nm and 2 Nm respectively, minimum
vertical ground reaction forces of 250 N and maximum
required friction coefficient of 0.5, minimum knee bend of
20o to avoid hyperextension, maximum combined hip angles
of 190o to avoid leg collision, maximum link velocities of
200 deg/s for (q1, q2) and 60 deg/s for q3, average walking
speed between 0.5-1 m/s, minimum swing foot clearance of
0.1 m over stance foot, and backward swing-foot velocity
at impact. Constraints based on ground reaction forces and
physical limitations of MARLO also apply to perturbed
steps.

The weight matrix Q in (22) is selected such that torso
roll and pitch squared errors are multiplied by 4, hip squared

errors are multiplied by 2, and velocity squared errors are
divided by four. The weight matrix R in (23) is selected such
that it has one fifth the base weighting of Q. The variables Ns

and wij from (25) are selected such that costs are generated
for two steps following a disturbance (i.e., Ns = 2), and the
second perturbed step is multiplied by 3 (i.e., wi2 = 3). The
rationale for this is to enable the optimizer to choose actions
that may deviate more from the nominal trajectory directly
following a disturbance, but result in quicker convergence to
nominal conditions in subsequent steps.

The control solutions are found offline with fmincon
in MATLAB, using the nonholonomic-virtual-constraints
(NHVC) given in Section 5.2. For comparison purposes,
a nominal control solution, NHVC0, is defined for
terrain-height disturbances D = {±2 cm,±4 cm} and
center of mass velocity disturbances in the x and
y directions Vx = {±7.5 cm/s,±15 cm/s} and Vy =
{±15 cm/s,±30 cm/s} for a total of twelve disturbances.

To test the efficacy of new concepts and establish best
practices for selecting optimization disturbances, additional
control solutions are found using different optimization
configurations. Configurations consist of the choice of
nonholonomic function and optimization disturbance profile.
The control solutions are optimized using the parameter
values of NHVC0 as initial values and using the disturbance
profiles indicated in Table 1. First, to investigate the utility of
using nonholonomic outputs, a holonomic control solution,
HVC, is optimized with k1, k2 = 0 in (46), using the same
disturbance profile as NHVC0. In order to find a stable
solution for HVC, it is necessary to include optimization
costs associated with the highest eigenvalue of the linearized
Poincaré map, as done in Chevallereau et al. (2009).
Additionally, different nonholonoic functions are tested by
using a linear (Deg.1) or quadratic (Deg.2) polynomial
in place of (47). Finally, the remaining control solutions
evaluate the effect of different disturbance configurations,
such as incorporating a decreased (−) or increased (+)
range of disturbances or only terrain (D) or velocity (V )
disturbances. In the next section, these control solutions
are evaluated in simulation. Additional control solutions for
experiments are introduced in Section 7.1. Source code for
control design and simulation is available at Griffin (2016a).

6 Simulation Results
Control solutions are compared in simulation to evaluate
concepts introduced in this paper and to test the relative
benefit of various disturbances for the robust control
optimization. The gait designs of Table 1 are simulated
under the influence of external forces and over terrain with
varying height. Section 6.1 provides an evaluation of periodic
flat-ground walking behavior and Section 6.2 provides
an evaluation of walking with disturbances. Section 6.2.1
evaluates the performance under persistent, repeated
disturbances, which is a means to assess “steady-state”
behavior under disturbances, whereas Section 6.2.2 focuses
on transient aspects by giving results for recovery after
a single disturbance. Discussion and interpretation of the
simulation results are given in Section 6.3. A video
illustrating the results is available at Dynamic Legged
Locomotion Lab (2016).
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Table 1. Periodic-walking behavior of control solutions that result from different optimization configurations.
∑

wijJij/J0 is the
ratio of disturbance- to efficiency-based optimization costs in (25). MCOT, Forward Walking Speed, and Maximum Eigenvalue of
Linearized Poincaré Map are detailed in Section 6.1.

Optimization Ratio of Forward Maximum
Disturbance Profile

∑
wijJij Impact Walking Eigenvalue of

D Vx Vy / J0 MCOT Losses Speed Linearized ξ(β)
Control (cm) (cm/s) (cm/s) in (25) (51) (J) (m/s) Poincaré Map (43)

Nominal Control Solution
NHVC0 ±2,±4 ±7.5,±15 ±15,±30 2.1 0.240 6.7 0.736 0.61 0.276

Varied Nonholonomic Function (47)
HVC ±2,±4 ±7.5,±15 ±15,±30 7.9 0.231 7.5 0.780 0.92 0.284

NHVCDeg.1 ±2,±4 ±7.5,±15 ±15,±30 2.8 0.239 7.5 0.770 0.74 0.299
NHVCDeg.2 ±2,±4 ±7.5,±15 ±15,±30 1.8 0.239 7.1 0.729 0.69 0.239

Decreased (−) or Increased (+) Terrain and Velocity Disturbances (DV )
NHVCDV − ±1,±2 ±3.75,±7.5 ±7.5,±15 1.0 0.242 7.0 0.764 0.69 0.246
NHVCDV + ±4,±8 ±15,±30 ±25,±50 7.2 0.254 7.3 0.778 0.70 0.341

Terrain Disturbances Only (D)
NHVCD− ±1,±2 Ø Ø 0.5 0.241 6.9 0.765 0.72 0.287
NHVCD ±2,±4 Ø Ø 0.7 0.237 7.1 0.744 0.67 0.266
NHVCD+ ±4,±8 Ø Ø 1.1 0.246 7.0 0.769 0.79 0.345

Velocity Disturbances Only (V )
NHVCV − Ø ±3.75,±7.5 ±7.5,±15 0.4 0.237 6.9 0.749 0.72 0.314
NHVCV Ø ±7.5,±15 ±15,±30 1.3 0.235 7.2 0.741 0.75 0.291
NHVCV + Ø ±15,±30 ±25,±50 4.9 0.248 7.2 0.788 0.70 0.291

6.1 Walking on Flat Ground without External
Disturbances

Each of the controllers in Table 1 is initially simulated over
flat ground with no external perturbations. To evaluate the
energetic efficiency of a control solution, the mechanical cost
of transport (MCOT) is calculated as

MCOT :=
1

Mgdy

∫ T0

0

6∑
i=1

max(uiq̇m,i, 0)dt, (51)

where M is the total mass of the biped, g is the acceleration
due to gravity, dy is the forward travel distance, and only
the positive work of each actuator is considered. While J0

(50) is suitable for generating a robot-specific efficiency cost
during optimization, the dimensionless MCOT normalizes
efficiency by a robot’s weight, which enables a fair efficiency
comparison between different robot platforms. The reader is
referred to Table 8 in Appendix E and Collins et al. (2005)
for a review of MCOT for various legged robots.

The forward walking speed is calculated for each step
using the forward change in the center of mass position and
step time. The lateral velocity is calculated for each step
using the lateral change in the center of mass position and
step time. The lateral velocity direction generally alternates
with the left and right stance phases.

To evaluate the stability of a control solution’s fixed
point (i.e., periodic orbit), the eigenvalues of the linearized
Poincaré map are computed, with the maximum magnitude
of the eigenvalues given in Table 1. For the current control
implementation, yaw is not regulated. Consequently, the
eigenvalue associated with yaw is 1, as proved in (Shih
et al. 2012, Propositions 3 and 4), and is not included in the
comparison.

Figure 9. Sagittal view of NHVC0 control solution walking
downhill with repeated -10 cm changes in terrain height.

6.2 Walking with Disturbances

Terrain and push disturbances are used to evaluate each
control solution. For terrain disturbances, changes in terrain
height consist of a vertical displacement of d (cm) per
step. Figure 3 shows an example of a single vertical
displacement, di, and Figure 9 shows walking with repeated
-10 cm displacements in simulation. For push disturbances,
horizontal forces of F (N) are applied to the center of
mass over the duration of an entire step. This induces a
velocity perturbation to the robot without the complication
of terrain variation. Assuming left-right symmetry of a
robot, push direction (forward or backward) in the sagittal
plane determines the control response. In the frontal plane,
however, whether a push is away from or toward the stance
leg affects the appropriate control response, as illustrated in
Figure 8.
Remark: During optimization, velocity disturbances are
applied as step changes to the center of mass velocity in
(14). For evaluation in Section 6.2, velocity perturbations
are induced by applying external forces to the center of
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Table 2. Disturbance limits of control solutions. Bold text indicates best and worst result for each column.

Step Sagittal-Plane Frontal-Plane
Disturbance (cm) Force (N) Force (N)

Control Min. Max. Range Min. Max. Range Min. Max. Range
NHVC0 -11.35 7.40 18.75 -22.2 17.1 39.3 -20.2 20.2 40.4

HVC -1.25 1.35 2.60 -8.4 13.0 21.4 -2.4 2.4 4.8
NHVCDeg.1 -1.15 7.45 8.60 -11.6 8.0 19.6 -29.5 29.5 59.0
NHVCDeg.2 -11.70 7.20 18.90 -21.1 22.0 43.1 -19.7 19.6 39.3
NHVCDV − -7.00 7.25 14.25 -22.3 12.6 34.9 -16.1 16.1 32.2
NHVCDV + -10.75 7.60 18.35 -21.8 17.4 39.2 -18.5 18.5 37.0
NHVCD− -6.10 7.25 13.35 -27.5 13.9 41.4 -12.8 12.8 25.6
NHVCD -10.90 7.35 18.25 -20.2 15.4 35.6 -18.8 18.8 37.6
NHVCD+ -9.95 8.50 18.45 -22.6 13.4 36.0 -8.5 8.5 17.0
NHVCV − -10.65 7.45 18.10 -21.5 16.2 37.7 -15.8 15.8 31.6
NHVCV -12.00 7.30 19.30 -24.2 18.0 42.2 -18.5 18.5 37.0
NHVCV + -10.10 6.80 16.90 -22.4 18.4 40.8 -20.4 20.4 40.8
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Figure 10. Walking speed vs. sustained terrain disturbances.
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Figure 11. Walking speed vs. sustained sagittal-plane force.

mass over an entire step, which maintains continuous single
support dynamics.

6.2.1 Repeated Disturbance Limits Here, control solu-
tions are compared under the action of a persistent distur-
bance whose magnitude is gradually increased each step until
the robot falls. A fall occurs when requiring a friction coef-
ficient greater than 0.6 or losing momentum and tumbling
sideways or backward. For disturbance limits with changes
in terrain height, each control solution is initialized on the
periodic orbit, and then terrain height increases each step as
dk+1 = dk + 0.5 mm, where k is the step number. Once a
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Figure 12. Lateral velocity vs. sustained frontal-plane force.
The lateral velocity alternates with each stance leg because
forces are applied in one direction. Hence, there are separate
curves for the left and right stance phases of each control
solution.

fall occurs, the simulation is reset from the periodic orbit,
and a decrease of 0.5 mm is applied to dk until failure. The
same procedure is applied through sagittal and frontal plane
forces with 0.1 N increments. The results of repeated distur-
bance simulations for all control solutions are summarized in
Tables 2 and 3, and, for sets of control solutions that exhibit
the range of observed behaviors, the perturbed velocities for
each step are plotted in Figures 10-12. Because the robot
model is symmetric, frontal-plane forces only need to be
evaluated in one direction.

6.2.2 Transient Response to Perturbations Additional
simulations are performed to evaluate the transient response
of each control solution to individual terrain and push
disturbances. The HVC control solution is unable to recover
from the disturbances used here, as shown in Figure 13, and
is not included in the remaining analysis. Velocity deviations
after terrain disturbances of ±2 cm, ±4 cm, and ±8 cm are
shown in Figure 14.

For push disturbances, 50 N forces are applied over the
length of an entire step in either the sagittal or frontal
planes. Sagittal-plane pushes are applied in the forward
and backward directions, as shown in Figure 15. For 3D
walking, the sagittal and frontal plane dynamics are coupled,
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Table 3. Disturbance-limit averages of control solutions, which are grouped by optimization configuration. Bold text indicates
greatest range for each category. HVC, NHVCDeg.1, and NHVCDeg.2 are not included in the group averages.

Optimization Step Sagittal-Plane Frontal-Plane
Configuration Disturbance (cm) Force (N) Force (N)

Group Min. Max. Range Min. Max. Range Min. Max. Range
Disturbance Type

Terrain and Velocity Disturbances -9.7 7.4 17.1 -22.1 15.7 37.8 -18.3 18.3 36.5
Terrain Disturbances Only (D) -9.0 7.7 16.7 -23.4 14.2 37.7 -13.4 13.4 26.7
Velocity Disturbances Only (V ) -10.9 7.2 18.1 -22.7 17.5 40.2 -18.2 18.2 36.5

Disturbance Magnitude
Moderate Disturbances -11.4 7.4 18.8 -22.2 16.8 39.0 -19.2 19.2 38.3

Decreased Disturbances (−) -7.9 7.3 15.2 -23.8 14.2 38.0 -14.9 14.9 29.8
Increased Disturbances (+) -10.3 7.6 17.9 -22.3 16.4 38.7 -15.8 15.8 31.6
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Figure 13. Sagittal-plane angular momentum stabilization after pushes in sagittal plane. Forward and backward 50 N pushes
occur over the entire third and nineteenth steps respectively. Whereas the nonholonomic control solution (NHVC0) is able to
recover from the disturbances, the holonomic control solution (HVC) does not return to its nominal periodic orbit following the
forward push then slows down and falls laterally after the backward push. During each step, angular momentum decreases when
the center of mass is behind the stance foot then increases once the center of mass is in front of the stance foot. Step decreases in
angular momentum occur at step transition due to impact losses. Step times vary between the two control solutions.
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Figure 14. Sagittal-plane velocity deviations after ±2 cm (left), ±4 cm (center), and ±8 cm (right) terrain disturbances. Step-up
and step-down disturbances occur on the first and seventeenth steps respectively. When converging back to the periodic orbit,
sagittal-plane velocity is not necessarily monotonic due to the coupled dynamics of the sagittal and frontal planes. Following step-up
disturbances outside of the ±2 cm range used for optimization, NHVCD− is more destabilized than the other control solutions.

as demonstrated by the simultaneous frontal-plane velocity
deviations occurring with sagittal-plane pushes shown in
Figure 16. Lateral perturbations caused by changes in
forward walking speed are just one example of coupled
dynamics. A loss in forward walking speed results in more
time spent on a single stance leg, which subsequently causes

a longer lateral gravity moment and increased lateral velocity
by the end of the step. Likewise, a gain in forward walking
speed results in less time spent on a single stance leg and
a decreased lateral velocity. These coupled behaviors are
evident in Figures 15 and 16. The role of synchronization
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Figure 15. Sagittal-plane velocity deviations after pushes in
sagittal plane. Forward and backward 50 N pushes occur over
the entire first and seventeenth steps respectively. Figure 16
shows the simultaneous frontal-plane velocity deviations.
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Figure 16. Frontal-plane velocity deviations after pushes in
sagittal plane.
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Figure 17. Frontal-plane velocity deviations after pushes in
frontal plane. Lateral 50 N pushes away from and toward the
stance leg occur over the entire fourth and twenty-fifth steps
respectively.

Table 4. Single-step pushes and corresponding impulses for
NHVC0.

Force Step Impulse
(N) Time (Ns)

Push Disturbance x y (s) x y
None, Periodic Orbit 0 0 0.412 0 0

Forward 0 50 0.347 0 17.4
Backward 0 -50 0.609 0 -30.4

Away from Stance 50 0 0.410 20.5 0
Toward Stance 50 0 0.422 21.1 0

of pendular motion in the sagittal and frontal planes to gait
stability is studied in Razavi et al. (2015).

Frontal-plane pushes are applied in a single direction,
as shown in Figure 17, but are timed such that the first
lateral push is away from the stance leg and the second
push is toward the stance leg. Both lateral-push behaviors
are depicted in Figure 8 (bottom) for clarification.

Impulses corresponding to single-step pushes for the
NHVC0 control solution are provided in Table 4. A
backward push results in the longest step time and greatest
corresponding impulse.

6.3 Discussion of Simulation Results
Each of the control solutions in Table 1 have similar nominal
periodic orbits with respect to forward walking speed, step
length, and foot clearance at mid-step; nevertheless, as
documented above, their responses to disturbances vary
greatly. Sections 6.3.1-6.3.3 examine these performance
differences and discuss the benefits of different optimization
configurations. Section 6.3.4 introduces an evaluation of
walking efficiency over a variety of terrain conditions.
Finally, Section 6.3.5 closes with a brief general discussion.

6.3.1 Choice of Holonomic and Nonholonomic Outputs
The control solutions using nonholonomic outputs (NHVC)
outperform the holonomic control solution (HVC). First,
HVC is the only control solution that cannot recover
from the disturbances used in Section 6.2.2. Second,
as shown in Table 2, HVC has the smallest range of
admissible repeated disturbances. HVC can handle greater
forward forces than NHVCDeg.1, but it performs the worst
for all other tested disturbances. Third, HVC exhibits
the greatest deviations in velocity within its operating
range, as shown in Figures 10-12. Finally, as shown in
Table 1, the NHVC solutions have a smaller spectral
radius (i.e., maximum magnitude of the Poincaré map
eigenvalues) than HVC, suggesting quicker convergence to
the periodic orbit after a (small) disturbance. Compared
with HVC in Figure 13, NHVC0 demonstrates this quicker
convergence and improved disturbance attenuation. The
improved performance of the NHVC solutions is attributed to
their added ability to regulate walking posture with velocity
(e.g., adjusting sagittal step distance with forward walking
speed, as shown in Figure 18).

Many of the NHVC solutions have a similar recovery
from velocity perturbations, as shown in Figures 15 and
16. This is, in part, due to using local optimization
with repeated initial values. Consistent solutions for
k1(β) and k2(β) in the nonholonomic function, (46),
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determine how posture adapts with velocity. There is more
variability when changing the underlying nonholonomic
function (i.e., HVC, NHVCDeg.1, and NHVCDeg.2) than when
changing optimization disturbances, as shown in Figure 18.
Implementing nonholonomic functions other than simple
polynomials would likely enable additional variability.

6.3.2 Choice of Optimization Disturbance Type A
comparison of NHVC solutions reveals that there are clear
benefits to including velocity disturbances in the robust
control optimization. First, NHVCV , which incorporates
only velocity disturbances during optimization, handles
a wider range of repeated terrain disturbances than
the other NHVC solutions (see Table 2). In contrast,
NHVCD+ and NHVCD− , which incorporate only terrain
disturbances during optimization, handle the smallest ranges
of frontal-plane forces and have the slowest recoveries
following lateral pushes (see Figure 17). Finally, with
respect to repeated disturbances, solutions incorporating
only terrain disturbances perform worse than solutions
incorporating velocity disturbances (see Table 3). This
difference in performance likely occurs because applying
individual terrain disturbances during the robust control
optimization does not perturb velocity to the same extent as
repeated terrain disturbances. We propose that by including
velocity disturbances in the robust control optimization,
nonholonomic outputs are obliged to make constructive
posture adjustments over a wider range of walking speeds,
including speed changes that occur when walking uphill or
downhill. Our analysis has considered only two types of
disturbances. Investigating additional classes of disturbances
to be included in the control design process should be a
worthwhile endeavor.

6.3.3 Choice of Optimization Disturbance Magnitude
The size of disturbances used for the robust control opti-
mization is also significant. NHVCD− , which incorporates
smaller disturbances during optimization than NHVCD or
NHVCD+ , exhibits greater deviations in velocity following
the terrain disturbances illustrated in Figure 14. As the
size of terrain disturbances incorporated during optimization
increases, control solutions handle steeper uphill terrain (see
Table 2) and require a lower friction coefficient for the
majority of the repeated terrain disturbances illustrated in
Figure 19. Incorporating larger disturbances for the robust
control optimization does not, however, indiscriminately
improve performance. As shown in Table 3, solutions incor-
porating only moderate disturbances handle the widest range
of repeated terrain and force disturbances. For the current
control implementation, we propose that incorporating larger
disturbances during optimization results in the adherence to
performance criteria (e.g., required friction coefficient) for a
broader range of disturbances; however, this generalization
comes at a cost in other aspects (e.g., handling a more lim-
ited range of repeated disturbances). This tradeoff could be
avoided with a control implementation that enables tailoring
for specific conditions (e.g., switching among a library of
control solutions).

6.3.4 Walking Efficiency for Various Terrain Conditions
Walking efficiency should be evaluated for a variety of
terrain conditions and, as emphasized by Saglam and Byl
(2014a), within the context of robustness. Each of the control
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Figure 18. Sagittal step distance vs. forward walking speed.
Details on how sagittal step distance regulates sagittal velocity
are available in Griffin and Grizzle (2015a).
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Figure 20. MCOT vs. sustained terrain disturbances.

solutions in Table 1 exhibits a similar periodic MCOT. HVC
has the lowest periodic MCOT, but when considering the
limited range of traversable terrain for this control solution
(see Table 2), the flat-ground walking efficiency is less
relevant. Additionally, just as Martin et al. (2014b); Xi et al.
(2015) consider gait efficiency for a range of velocities, for
practical walking applications, we propose that efficiency
should be evaluated for a variety of terrain conditions.
MCOT is plotted for a range of repeated terrain disturbances
in Figure 20. For the NHVC solutions, MCOT increases
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Table 5. Simulation-based periodic-walking behavior of control solutions used on the robot.

Optimization Ratio of Forward Maximum
Disturbance Profile

∑
wijJij Impact Walking Eigenvalue of

D Vx Vy / J0 MCOT Losses Speed Linearized ξ(β)
Control (cm) (cm/s) (cm/s) in (25) (51) (J) (m/s) Poincaré Map (43)

Optimized Prior to Robot Experiments
NHVC0 ±2,±4 ±7.5,±15 ±15,±30 2.1 0.240 6.7 0.736 0.61 0.276

NHVCPoincaré
0 ±2,±4 ±7.5,±15 ±15,±30 1.8 0.234 7.3 0.732 0.58 0.273

NHVC1 ±3,±6 ±15,±30 ±20,±40 4.7 0.219 8.0 0.751 0.75 0.258
NHVC2 ±3,±6 ±20 ±30 2.4 0.217 7.5 0.732 0.66 0.232

Optimized After Initiating Robot Experiments
NHVC3 ±3,±6 ±30 ±30 3.0 0.267 7.3 0.811 0.74 0.246

with uphill terrain because of the additional work required
to raise the center of mass. For downhill terrain, MCOT
decreases with moderate declines, but increases with more
severe declines. This eventual increase arises from the larger
impact losses associated with downhill walking. The effects
of impact losses on MCOT are well illustrated by HVC,
because it makes no velocity-dependent posture adjustments.
Uphill walking decreases HVC’s impact losses and MCOT,
whereas downhill walking increases HVC’s impact losses
and MCOT.

6.3.5 General Discussion The control solutions using
nonholonomic outputs are able to handle a wide range of
disturbances and terrain conditions. NHVC0 recovers from
backward impulses of -30.4 Ns, handles about a 40 N range
of sustained forces in the sagittal and frontal planes, and
handles an 18.8 cm range of repeated terrain disturbances.
Such robustness is desirable because it allows the robot to
handle disturbances and difficulties associated with the robot
hardware.

7 Experimental Results
Experiments are conducted on MARLO both indoors and
outdoors. Section 7.1 introduces the control solutions
implemented on the robot. Section 7.2 describes the setup
for the experiments. Section 7.3 presents the results of the
experiments, with discussion given in Section 7.4. Videos
of indoor and outdoor experiments are available at Dynamic
Legged Locomotion Lab (2016).

7.1 Control Solutions
The control solutions used on the robot are designed
for outdoor terrain. Optimization terrain disturbances (D)
are based on outdoor measurements and previous planar
experiments with uneven terrain in Griffin and Grizzle
(2015b). Optimization velocity disturbances (V ) are based
on forward walking speed and velocity changes attendant
with repeated terrain disturbances. The nominal control
solution based on nonholonomic virtual constraints, NHVC0,
is carried forward to the experiments. Prior to beginning the
experimental phase of the work, additional controller designs
similar to NHVC0 are performed, as indicated in Table 5.
The NHVCPoincaré

0 control solution has the same disturbance
profile as NHVC0 with an additional penalty included on the
spectral radius of the linearized Poincaré map (i.e., on the
peak magnitude of the eigenvalues).

One additional control solution is optimized after
initiating the experiments. After the first day of outdoor
walking, laterally-sloped terrain is identified as a significant
perturbation to the gait of the robot. To account for this,
an additional controller, NHVC3, is designed with equal
emphasis on velocity disturbances in the frontal and sagittal
planes.
Remark: Holonomic control solutions are not implemented
on the robot for a few reasons. First, the holonomic control
solution HVC is thoroughly evaluated against nonholonomic
control solutions in Section 6 and exhibits the worst
performance. Second, we have tested holonomic control
solutions on MARLO in Buss et al. (2014, 2016), and
they were only able to handle relatively flat ground in
3D. Furthermore, these holonomic controllers required an
event-based, hand-tuned method of initialization, which is
not well-suited for the current experimental setup.

7.2 Experimental Setup
Virtual constraints resulting from the optimization process
are implemented on the robot without modification. The
feedback controller (40) is simplified as follows. In place
of uff , constant 0.5 Nm torques are added to the stance leg
and hips to provide some friction and gravity compensation.
In place of the decoupling matrix LgLfh(q, q̇, κ, β), a
constant matrix is used to relate y to ufb. Constant
decoupling matrices are also used in Buss et al. (2014, 2016).
Additionally, commanded motor torque, u, is bounded at
5 Nm for the legs and 3 Nm for the hips. These bounds
are greater than those used in optimization to compensate
for unmodeled friction and other drivetrain inefficiencies on
the actual robot.

Impact is detected by a rapid deflection in the springs
when the swing foot contacts the ground. After swapping
stance legs, α0 from Appendix B updates such that y =
0. On the robot, there are no instantaneous jumps in the
post-impact velocities, so, in place of updating α1 such that
ẏ = 0, α1 updates to maintain its nominal difference with
respect to α0 on the periodic orbit. After control updates,
torque bounds are initialized at 0 Nm and linearly scaled
back to nominal values while 0 < τ < 0.1, which limits any
counterproductive control inputs during the brief period of
double support.

Joint angular velocities are estimated from encoder
readings through numerical differentiation. It is a standard
problem that such estimates appear “quite noisy” in
comparison to the clean signals available in simulation. On
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MARLO, a low-pass Butterworth filter based on Butterworth
(1930) attenuates only high-frequency “noise”, because the
cutoff frequency is necessarily high to limit phase delay
in the feedback controller. Angular velocity estimates are
particularly “noisy” following impacts and on the hip
joint angles, which are measured on the motor side of a
belt transmission. Consequently, the derivative term of the
controller at the hip-angle only considers the h0 component
of (42) when calculating ẏ.

The gait phasing variable, τ , determines the progression of
control trajectories, and angular momentum, σ, determines
the velocity-based changes of control trajectories. Both τ
and σ are critical for implementing nonholonomic virtual
constraints. First-order filters for their estimation from
measured quantities are specifically designed. Section 7.2.1
defines the phase estimator for τ , and Section 7.2.2 defines
a reduced-order Luenberger observer for σ. Comparisons of
original signals and their estimated counterparts are provided
in Appendix D.

Finally, in the walking experiments, the robot is initialized
from a standing position. The use of nonholonomic virtual
constraints makes initialization straightforward, because the
controller automatically adjusts step length with forward
velocity. Under the evaluated controllers, initializing the
robot from a static pose and hand-guiding it forward through
a few steps is sufficient to enter the basin of attraction.
The initialization process is illustrated in Dynamic Legged
Locomotion Lab (2016).

7.2.1 Phase Estimator An estimator is used in place of
direct measurement of the gait phasing variable. This is
done because when τ̇ is determined through numerical
differentiation, it presents unacceptable oscillations after
impacts, which transfer to the torque signals determined by
the controller.

The phase estimator is defined as

˙̂τ :=
1

T
+ L(τ̂)(τ − τ̂), (52)

where τ̂ is the estimated gait phasing variable, T is the
duration of the previous step, and L(τ̂) is the observer gain.
The term 1

T is interpreted as a model for the evolution of
the normalized phase variable τ , and L(τ̂)(τ − τ̂) is the
correction term based on observation of τ . Hence, L(τ̂)
determines the relative dependence of the estimated phase
on the time-based model and the measured gait-phasing
variable. Because the numerical estimates of joint velocities
appear to be most inaccurate immediately following an
impact, L(τ̂) is chosen such that (52) emphasizes the
time-based model immediately following impact and then
smoothly returns to accurately tracking τ by the end of the
step. Specifically, L(τ̂) is defined as

L(τ̂) :=

{
20τ̂ if τ̂ < 1

20 if τ̂ ≥ 1
. (53)

Remarks: (a) During the first step of an experiment,
previous step duration, T , is undefined. Therefore, (52) is
modified such that 1

T = 0 and L(τ̂) = 20. (b) In simulation,
the estimated phase variable, τ̂ , tracks well with τ and
provides a reliable estimate of τ̇ , as shown in Figure 27 in
Appendix D. (c) 1

T is a suitable model for the evolution of

𝑧

𝑦

𝑧

𝑥

Figure 21. Simplified model for the reduced-order Luenberger
observer. Two separate observers estimate σ for the frontal
(left) and sagittal (right) planes.

the gait phasing variable τ(q) (77) because the y velocity of
the center of the hips is relatively constant within each step.
Alternative models can be used in (52) for other choices of
gait phasing variable.

7.2.2 Estimating Angular Momentum When σi is esti-
mated on the robot through

σ̂i = Di(q)̂̇q,
where ̂̇q is estimated from encoder readings through numeri-
cal differentiation, the resulting signal presents non-physical
behavior as detailed in Appendix D. Consequently, reduced-
order Luenberger observers based on Luenberger (1966) are
developed to estimate angular momentum in the frontal and
sagittal planes.

Here, the reduced-order observer is derived for angular
momentum in the frontal plane. We use a process similar
to Grizzle et al. (2007), which was inspired by Menini
and Tornambe (2002). A novel aspect here is that the
reduced-order design is not carried out on the complete
model of the robot, but instead on a simplified inverted
pendulum model. The simplified model is based on the
center of mass position of the full model, as shown in
Figure 21, but does not include “flywheel-like” dynamics
from individual-link velocities and momenta.

To start our reduced-order observer derivation, the dummy
state ηxz and its derivative are defined as

ηxz := θ̇xz − Lxzθxz (54)

η̇xz = θ̈xz − Lxz θ̇xz, (55)

where Lxz > 0 is a scalar to be chosen. From the inverted
pendulum model, θ̈xz in (55) is calculated as

θ̈xz =
g

`xz
sin(θxz), (56)

while (54) provides a substitution for θ̇xz in (55). Thus,

η̇xz =
g

`xz
sin(θxz)− Lxz(ηxz + Lxzθxz). (57)

Using (57), the reduced-order observer for ηxz is defined as

˙̂ηxz :=
g

`xz
sin(θxz)− Lxz(η̂xz + Lxzθxz). (58)
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Table 6. Indoor walking results from the first day of robot experiments. Terrain-disturbance profiles are created using the plywood
boards shown in Figure 22. All results presented are first attempts. A “Success” indicates a successful crossing, and a blank space
indicates that the control solution was not tested with that terrain profile.

Terrain Disturbance Control Solution
Profile (cm) NHVC0 NHVCPoincaré

0 NHVC1 NHVC2

Flat Ground Success Lateral Fall Success Success
0 1.2 0 Success Success
0 1.2 2.6 1.2 0 Success Success
0 2.6 2.6 0 Success Success Success
0 3.8 3.8 0 Success Success
0 5.0 5.0 0 Success Foot Slip
0 1.2 2.6 3.8 6.7 7.9 Success

At each impact, η̂xz is updated to account for impact
losses, which are calculated using the simplified model and
(Westervelt et al. 2007, Eqn. (3.35)). Using (54) with (58), a
subsequent observer for θ̇xz is defined as

ˆ̇
θxz := η̂xz + Lxzθxz. (59)

Using (59) and the simplified model, σxz and its
derivatives are estimated as

σxz,L = M`xz
ˆ̇
θxz (60)

σ̇xz,L = Mg`xz sin(θxz) = σ̇xz (61)

σ̈xz,L = Mg`xz
ˆ̇
θxz cos(θxz), (62)

where σxz,L is the Luenberger-observer estimate of σxz , and
an equivalent process yields σyz,L to estimate σyz .

Remarks: (a) Because σ̇xz is only dependent on the center
of mass position and gravity, σ̇xz,L = σ̇xz in (61). (b) As
with σ̄xz , σ̄xz,L for the robot implementation is found using
(49). (c) In simulation, there is little difference between the
Luenberger-observer angular momentum, σL, and the actual
angular momentum, σ, as shown in Figure 28 in Appendix D.

7.3 Experiments
7.3.1 Indoor Experiments The first set of experiments
with MARLO were performed indoors. As an initial
robustness test of each control solution, terrain disturbances
were created by either stacking sections of plywood boards in
an organized fashion, as shown in Figure 22, or by throwing
the boards randomly on the floor of the laboratory, as shown
in Figure 23. Organized stacks of boards are immobile,
quantifiable, and easily reproducible for each experiment.
Randomly thrown boards, on the other hand, present the
additional challenge of shifting under applied weight.

On the first attempt, MARLO traversed the length of the
lab using the NHVC0 control solution, and, subsequently,
walked across various terrain obstacle courses. From the
point where MARLO was started to the opposite wall is
approximately 11 m. Each of the control solutions listed
in Table 6 was tested in turn on the same day. With the
exception of NHVCPoincaré

0 , each of them resulted in MARLO
traversing the lab. Videos of experiments listed in Table 6 and
random board experiments are available at Dynamic Legged
Locomotion Lab (2016).

Figure 22. Sections of 61 cm-wide plywood boards are stacked
to construct variable-height terrain disturbances.

Figure 23. MARLO walks over randomly thrown boards.

7.3.2 Outdoor Experiments For experiments outdoors, a
mobile gantry was used to transport MARLO to locations
within a 1 km radius of the laboratory and to catch MARLO
in case of a fall or when experiments were terminated. As
shown in Figure 24, the gantry does not provide external
support of the robot during walking experiments. Power was
supplied by a set of batteries carried by the gantry, which
enabled MARLO to execute multiple experiments without
returning to the lab for recharging. An Ethernet cable was
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Table 7. Outdoor walking results for various terrains.

COT
Forward Liberal Conservative
Walking Estimate Estimate Pbase
Speed MCOT COTregen COTabs. Component

Control Terrain Description (m/s) (51) (90) (89) of COT
Concrete street, fairly flat with a slight lateral

NHVC0 slope and some potholes. 0.92 0.65 0.64 1.13 0.23
NHVC3 Parking lot, fairly flat with a slight lateral slope. 0.90 0.67 0.62 1.19 0.24
NHVC3 Grass field, fairly flat. 0.95 0.68 0.65 1.16 0.22
NHVC3 Grass field using prosthetic feet, varying slope. 0.78 0.67 0.73 1.15 0.27

Gradual downhill with some lateral slope in
NHVC3 parking lot. 0.98 0.68 0.57 1.22 0.22

Gradual uphill with consistent lateral slope
NHVC3 on sidewalk. 0.91 0.69 0.69 1.16 0.23

Figure 24. MARLO walks gradually uphill with a MCOT of 0.69
and an average walking speed of 0.91 m/s.

sometimes used to download data after experiments; it is
partially visible in the same figure.

MARLO under the control laws developed in this paper
was able to traverse sloped sidewalks, parking lots, and
grass fields. Outdoors, experiments were no longer limited
by the 11 m indoor lab space. Table 7 examines results for
a few of the outdoor experiments. Forward walking speed
and MCOT (51) are calculated for each step, as detailed
in Section 6.1, with averages provided in Table 7. Data for
walking over a grass area were collected from 50 consecutive
steps, whereas data for all other experiments were collected
from 100 consecutive steps. Grass-field experiments lasted
until the gantry was obstructed by outdoor terrain. Other
experiments were manually shut down prior to MARLO

encountering an obstacle, with the exception of the downhill
experiment, which ended due to an electrical-hardware
malfunction. Figure 25 shows the the step-to-step behavior of
the robot induced by walking over naturally varying outdoor
terrain. Videos of the outdoor experiments listed in Table 7
are available at Dynamic Legged Locomotion Lab (2016).

The cost of transport (COT) is an alternative metric to
MCOT when evaluating locomotion efficiency. The methods
used in the literature to estimate COT vary with hardware
configuration of the robot being studied. In the strictest sense,
COT should be assessed on the basis of the energy required
to recharge batteries after traveling a known distance. When
performing outdoor experiments with MARLO, the battery
pack on the mobile-gantry was not configured to measure
the supplied power. However, based on experiments in
the lab with supply-power measurements, conservative and
liberal estimates for COT, COTabs. and COTregen respectively,
can be calculated using data that are also available during
outdoor experiments. Both of these quantities are derived in
Appendix E and included in Table 7. The Pbase components
of COTabs. and COTregen account for power used for
MARLO’s on-board sensing and computation.

7.4 Discussion of Experimental Results
The robot successfully traversed the lab, both with and
without obstacles, using the same control algorithms tested
in simulation and applied directly out of the optimization
procedure described in Section 5.3. With the exception
of NHVCPoincaré

0 , each of the control solutions yielded
successful robot walking without any hand tuning. It is
important to note that the actual robot differs significantly
from the idealized control model. For example, the robot
has estimated velocity signals for feedback control; varying
levels of stiction and friction in each of the harmonic drives;
series elastic actuators (springs in series with the motors in
the sagittal plane and a timing belt in series with the motors
in the frontal plane); a combination of manufactured and
fatigued differences in individual physical components; and,
due to on-going changes in hardware, an asymmetric mass
distribution of 63 kg compared with the symmetric 55 kg
simulation model. Despite these differences, the control
solutions are sufficiently robust to handle the disturbances
listed in Table 6 and randomly thrown piles of boards, as
shown in Figure 23. On its first attempt, NHVC0 traversed
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Figure 25. Step-to-step forward walking speed (top) and MCOT (bottom) during 100 consecutive steps of NHVC0 on a concrete
street (left) and NHVC3 in a flat parking lot (right).

up and down 5 cm terrain disturbances–disturbances greater
than those used during optimization.

After concluding indoor experiments, the NHVC0 control
solution was evaluated on the robot outdoors. MARLO
walked for more than 100 steps across a slightly sloped paved
area with potholes; the experiment was manually stopped to
prevent the robot from colliding with a building. The MCOT
was 0.65 and the forward walking speed was 0.92 m/s, as
reported in Table 7. These values differ from the simulation
values reported in Table 5 for at least two reasons: (1)
because of differences between the simulation model and the
physical robot mentioned previously and (2) because outdoor
terrain injects additional step-to-step variability, as shown in
Figure 25.

After observing how the NHVC0 control solution
performed outdoors, it became apparent that laterally-sloped
terrain caused the most significant perturbation to the robot.
A new control solution, NHVC3, was optimized to address
this type of disturbance and subsequently evaluated over a
variety of terrains outdoors (see Table 7 for results).

Implementing NHVC3 in multiple environments revealed
many informative behaviors. First, the experiments with
NHVC3 show how COTabs. and COTregen vary with terrain.
For example, COTregen is lower for downhill walking than for
uphill walking. This is expected because walking downhill
reduces the height of the robot’s center of mass–a decrease
in potential energy that may be recovered. Next, as shown
in Table 7, the cost associated with Pbase decreases with
decreasing walking speed, consistent with the simulation
work of Xi et al. (2015). Finally, the walking behavior
of MARLO varies more with changes in hardware than

with changes in terrain. Switching to prosthetic feet in the
grass field causes a greater change in walking speed than
when traversing any other terrain with the normal hardware
configuration.

Outdoor experiments with MARLO set a new precedent
for walking efficiency in realistic environments. Figure 26
and Table 8 in Appendix E provide context for the outdoor
walking experiments within the broader legged robotics
literature. To the best of the authors’ knowledge, MARLO
under the NHVC0 and NHVC3 control solutions has
achieved the lowest MCOT of any unsupported bipedal robot
tested over rough terrain. Based on the conservative and
liberal estimates of the COT in Table 7, it seems likely that
this is also the case for the actual COT. In addition, this
precedent is set at a faster speed than any other bipedal robot
benchmark. Finally, whereas previous benchmarks have only
been reported for treadmills and flat terrain, the NHVC3

control solution provides a MCOT benchmark for walking
over various realistic terrains.

8 Conclusions

A model-based control design methodology was developed
for a class of underactuated 3D bipedal robots and evaluated
both in simulations and in experiments. The first key aspect
of the control design methodology was the computation of
periodic orbits for walking that were robust to a finite set
of perturbations. The second key aspect was the extension
of the method of virtual constraints to include terms that
depend on the robot’s generalized velocity coordinates.
Both aspects complement each other. Nonholonomic virtual

Prepared using sagej.cls



20 Journal Title XX(X)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Denise (Flat Ground) MABEL (Lateral Support)

MARLO

DURUS (Flat Ground)

Asimo

ATRIAS (Speed Unknown)

ERNIE (Lateral Support, Flat Ground)

Speed (m/s)

M
C

O
T

Figure 26. Mechanical cost of transport (MCOT) and speed for various bipedal robots. MARLO achieves the lowest MCOT of any
unsupported bipedal robot tested over rough terrain (at a faster speed than any other bipedal benchmark). Cost of transport is used
when MCOT is not available (see Table 8 in Appendix E for more details).

constraints enable the biped to adapt its posture with velocity,
and the control optimization is performed while subjecting
the biped model to disturbances that are representative
of common failure modes. The result is an optimized
walking controller that regulates velocity and, by extension,
momentum in response to external disturbances, which
addresses a characteristic failure mode of 3D bipedal robots.

The viability of the design methodology was illustrated
on MARLO, a 3D bipedal robot with thirteen DOF in single
support and six actuators. During indoor experiments across
a relatively short (i.e., 11 m) section of a laboratory, the robot
was able to walk on flat ground and over a series of obstacles
without perception or a priori knowledge of the terrain. The
controllers were designed on the basis of the full-order model
of the robot and were implemented on the robot without
hand tuning. Using the same design method during outdoor
experiments, the robot traversed sloped sidewalks, parking
lots, and grassy areas, while maintaining average walking
speeds between 0.9-0.98 m/s.

The mechanical cost of transport was evaluated for a
variety of terrain conditions. To the authors’ knowledge,
there is no precedent for this in the robotics literature,
whether in simulation or in actual experiments. This
evaluation is significant because, for practical applications,
robots must be able to traverse a variety of environments in
a reliable and efficient manner. It is hoped that other robotics
researchers will consider environments other than flat ground
when evaluating walking efficiency of their robots.

Future extensions of this work include perception and yaw
control to enable navigation and obstacle avoidance.
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Notes

1. A more comprehensive approach for calculating errors of
perturbed trajectories that includes backward extensions of
nominal trajectories is available in Saccon et al. (2014).

2. Unactuated yaw control methods for 3D bipeds with point feet
are available in Shih et al. (2012); (Griffin 2016b, pp. 158).

3. A procedure for transforming a Lagrangian system with
feedback control into a control-free Lagrangian system with a
new class of trajectories is available in Shiriaev et al. (2014).

4. Because of limited actuation, selecting only the torso roll or
the stance hip as a control variable causes the uncontrolled
joint to drift during perturbations. However, a control variable
defined by a combination of torso roll and stance hip causes the
controller to respond to either component drifting, even if the
exact behavior of each individual joint is no longer guaranteed
in perturbed conditions. For the combined control variable in
(43), the sign convention of the stance hip is selected such
that an input from the hip actuator causes consistent directional
output changes for both components.

5. In (50), we use the absolute Cartesian distance between the
stance and swing feet at impact as the step length. Alternatively,
step length can be defined as the y distance between the feet in
the sagittal plane.
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Appendix A: Extended Model for Invariant
Hybrid Zero Dynamics

Parameters κ are used to achieve invariance of the zero
dynamics manifold induced by output vector y (37). If a
hybrid system is invariant to the zero dynamics manifold,
hybrid zero dynamics are achieved (see also Appendix B).
For the choice of output in (48), it is straightforward to
construct a function Ψ : Sd × B → K such that for all

β ∈ B and
[
q+

q̇+

]
= ∆(q−, q̇−)
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the initial values of the outputs are zeroed, that is,[
0
0

]
=

[
y+

ẏ+

]
=[

h(q+, σ+, κ+, β)
∂
∂qh(q

+, σ+, κ+, β)q̇+ + ∂
∂σh(q

+, σ+, κ+, β)σ̇+

]
(63)

for κ+ = Ψ(q−, q̇−, β). The current implementation of κ+

is derived in Appendix B.
Parameters κ are constant within each step and are reset at

the end of each step, hence, they are included as states in the
dynamics with

xe :=
[
q, q̇, κ

]′
(64)

and κ̇ = 0. The extended closed-loop model used is then

Σ :

{
ẋe = f cl(xe, β) x−

e /∈ Sd
e

x+
e = ∆e(x

−
e ) x−

e ∈ Sd
e ,

(65)

where

f cl(xe, β) = f cl(x, κ, β) :=

[
f(x) + g(x)Γ(x, κ, β)

0

]
,

(66)

∆e(x
−
e , β) :=

[
∆(q−, q̇−)

Ψ(q−, q̇−, β)

]
, (67)

and
Sd
e := Sd ×K. (68)

Remarks: (a) Because κ+ = Ψ(q−, q̇−, β), (63) is indepen-
dent of the current value of κ. (b) Because of the second-
order system (41) and the reset map in (63), solutions of
(66) that are initialized in Sd

e satisfy y(t) ≡ 0. This has two
consequences: (i) The solutions evolve on the zero dynamics
manifold. (ii) The feedback term ufb in (39) is identically
zero, and thus Γ in (40) is independent of the gains Kp and
Kd.

Appendix B: Bézier Parameter Reset
Derivation
When swapping stance legs in periodic or perturbed
conditions (e.g., walking over terrain disturbances), control
parameters κ must be reset such that post-impact outputs are
zeroed in (63). Using output vector y (37), choice of output
h (42), and desired evolution of controlled outputs hd (44),
output terms dependent on κ are defined as

hκ(τ(q), α(κ, β)) := hd,τ (τ(q), κ, β) (69)

and output terms independent of κ are defined as

hβ(q, σ, β) := h0(q, β)− hd,σ(σ, β). (70)

Next, hκ and hβ substitute into (37) as

y = hβ(q, σ, β)− hκ(τ(q), α(κ, β)). (71)

From (71) and hd,τ,i (45), we find that the desired trajectory
of hβ along τ is specified by Bézier parameters
α(κ, β) ∈ R6×(M+1), which are defined as

α(κ, β) :=
[
α0(κ), α1(κ), α2(β), . . . , αM (β)

]
. (72)

It is evident from (45) that α0(κ) and α1(κ) have the most
effect on trajectories during low τ values immediately after
impact. The remaining columns of α(κ, β), defined by fixed
parameters β, determine trajectories toward the end of the
gait. Hence, perturbed trajectories return to the nominal gait
as τ increases.

Let y+ = ẏ+ = 0 as in (63). Using (71), this implies that

hκ(τ(q
+), α(κ+, β)) = hβ(q

+, σ+, β), (73)

or simply hκ(τ
+, κ+, β) = h+

β . To satisfy (73), we must
reset at least one column of Bézier parameters, α0(κ

+). To
guarantee desired trajectories match post-impact velocities,
we reset a second column, α1(κ

+), to satisfy

∂hκ(τ
+, κ+, β)

∂τ
τ̇+ = ḣ+

β . (74)

Using (69), (45), and (72), we solve for α0(κ
+) and α1(κ

+)
in (73) and (74) as

α0(κ
+) =

h+
β −

M∑
k=1

αk
M !(τ+)k(1−τ+)M−k

k !(M−k) !

(1− τ+)M
(75)

α1(κ
+) =

ḣ+
β

τ̇+ − α2M(M − 1)τ+(1− τ+)M−2 − a+ b

M((1− τ+)M−1 + τ+(1− τ+)M−2)
,

(76)

where a =
M−1∑
k=2

(αk+1 − αk)
M !(τ+)k(1−τ+)M−1−k

k !(M−1−k) ! and

b = M
1−τ+

(
h+
β −

M∑
k=2

αk
M !(τ+)k(1−τ+)M−k

k !(M−k) !

)
.

(75) and (76) are a solution for κ+ = Ψ(q−, q̇−, β) that
always satisfies (63).

Appendix C: Extended Gait Phasing Variable
and Bézier Polynomials
Along periodic walking gaits, the y position of the center of
the hips, pHIP,y shown in Figure 6, is monotonic and cycles
between a minimum value, pmin

HIP,y , and a maximum value,
pmax
HIP,y . The nominal gait phasing variable is defined as

τ(q) :=
pHIP,y − pmin

HIP,y

pmax
HIP,y − pmin

HIP,y

, (77)

where pmin
HIP,y is the initial value of pHIP,y each step, and

pmax
HIP,y is the final value of pHIP,y on the periodic orbit.
If the periodic orbit is exited and τ(q) > 1, the desired

trajectory defined by the nominal gait phasing variable and
Bézier polynomials can become counterproductive. To avoid
this, an alternative trajectory is defined using an extended
gait phasing variable,

τext(q) :=
pHIP,y − pmax

HIP,y

pmax
HIP,y − pmin

HIP,y

, (78)

and a second set of Bézier polynomials, αext(β). Note
that (77) subtracts pmin

HIP,y in the numerator, whereas (78)
subtracts pmax

HIP,y . The transition between (77) and (78)
occurs when τ(q) = 1, which means pHIP,y(q) = pmax

HIP,y
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and τext(q) = 0. The complete τ̄(q) and ᾱ(κ, β) used in (45)
are defined using their nominal definitions and equivalent
extensions as

τ̄(q) :=

{
τ(q) if pHIP,y(q) ≤ pmax

HIP,y

τext(q) if pHIP,y(q) > pmax
HIP,y

(79)

ᾱ(κ, β) :=

{
α(κ, β) if pHIP,y(q) ≤ pmax

HIP,y

αext(β) if pHIP,y(q) > pmax
HIP,y

. (80)

τ(q), τext(q), α(κ, β), and αext(β) should be defined such
that (45) is continuous. One way of achieving continuity is
by defining τext such that {(q, q̇)′ ∈ X | τ(q) = 1}

τext(q) = 0 (81)
τ̇ext(q, q̇) = τ̇(q, q̇), (82)

and defining αext such that

αext,0 = αM (83)

αext,1 = αext,0 +
(
αM − α(M−1)

) M

Mext
, (84)

where αi and αext,i are the (i+ 1) columns of α and
αext, and (M + 1) and (Mext + 1) are the degree of Bézier
polynomials associated with α and αext. Using (83) and (84),
the complete extended Bézier parameters
αext(β) ∈ R6×(Mext+1) are defined as

αext(β) :=
[
αext,0, αext,1, αext,2(β), . . . , αext,Mext(β)

]
, (85)

where αext,2(β), . . . , αext,Mext(β) are found in optimization.
Remarks: (a) If M 6= Mext, Mext replaces M in hd,τ,i (45)
when using the extended parameters. (b) Defining τ(q),
τext(q), α(κ, β), and αext(β) such that control trajectories
defined by (45) are continuous does not guarantee continuity
of control inputs u in (40). This is evident in Figure 19 where,
when τ > 1 (i.e., during downhill walking), the extended
controller causes a jump in u that immediately requires a
greater friction coefficient.

Appendix D: Comparison of Original and
Processed Signals
The phase estimator, τ̂ in Figure 27, and Luenberger-
observer angular momentum, σL in Figure 28, are compared
with their corresponding original signals. Signal data are
collected from simulation and the robot implementation.
Simulation data corresponds to two steps from the periodic
orbit of NHVC0. Robot experiment data are taken from two
steps using the NHVC0 control solution. Angular momentum
and other velocity-based quantities generally decrease at step
transition due to impact losses.

For robot experiments, the original signals for τ̇ , σxz ,
and σyz use velocities ̂̇q that are estimated from encoder
readings through numerical differentiation, which presents
non-physical behavior. This non-physical behavior is evident
in τ̇ directly following impacts (see Figure 27) and is evident
in σxz and σyz throughout the entire step (see Figure 28). In
all cases, signal oscillations are caused by ̂̇q, not physical
oscillations on the robot (see videos of experiments at
Dynamic Legged Locomotion Lab (2016)). Consequently,

original signals for τ̇ , σxz , and σyz are replaced with signals
˙̂τ , σxz,L, and σyz,L, which track well with the original
signals in simulation and provide reliable estimates during
robot experiments.

Appendix E: Cost of Transport Derivation
The cost of transport (COT) is an alternative metric to
the mechanical cost of transport (MCOT) for evaluating
locomotion efficiency. Table 8 provides a review of the
MCOT and COT for various legged robots. Here, we make
the distinction between COT calculated instantaneously as

COTP :=
P

Mgvy
, (86)

where M is the total mass of the biped, g is the acceleration
due to gravity, and P is power consumption at forward
velocity vy , and COT calculated over a period of time as

COT :=
E

Mgdy
, (87)

where E is the energy used to travel distance dy . (87) is more
useful to the current work than (86), because it accounts for
local changes that occur for non-periodic conditions, such as
when traversing almost any outdoor environment.

Based on experiments in the lab with supply-power
measurements, a conservative estimate for COT can be
calculated using data that is also available during outdoor
experiments. The conservative estimate uses the absolute
MCOT, calculated as

MCOTabs. :=
1

Mgdy

∫ T0

0

6∑
i=1

|uiq̇m,i|dt, (88)

which includes negative actuator work, as in (Hobbelen
and Wisse 2008a, Eqn. (4)). As in (Xi et al. 2015,
Eqn. (23)), a fixed power cost, Pbase, is added to account
for ancillary electronics. Based on the highest measurement
for power consumption of on-board sensing and computation
on MARLO, Pbase = 131.7 W. The resulting conservative
estimate for COT is defined as

COTabs. :=
1

Mgdy

∫ T0

0

Pbase +

6∑
i=1

|uiq̇m,i|dt, (89)

which is consistently higher than the actual measured power
consumption, because it does not consider any negative-work
regenerative capabilities of the amplifiers and batteries.

For comparison, a liberal estimate based on the
regenerative COT is defined as

COTregen :=
1

Mgdy

∫ T0

0

Pbase +

6∑
i=1

uiq̇m,idt, (90)

which is consistently lower than the actual measured power
consumption due to regenerative losses in hardware. Based
on power experiments with nominal periodic motion, the
average power consumption based on (89) is about 14%
higher than the actual measured values, while the average
power consumption based on (90) is about 30% lower.
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Figure 27. Comparison of the gait phasing variable (τ ) and the phase estimator (τ̂ ) in simulation (left) and on the robot (right).
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Figure 28. Comparison of angular momentum (σ) and the Luenberger-observer angular momentum (σL) in the frontal (top) and
sagittal (bottom) planes, in simulation (left) and on the robot (right). The sign convention of σxz alternates between left and right
stance for symmetric control. σ̄xz and σ̄xz,L are found using (49).
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Table 8. Mechanical cost of transport and cost of transport for various legged robots. Blank spaces indicate that information is not
currently available.

Configuration for Cost of Transport Calculation
Includes On- Rough

Speed Mass Lateral Abduction board Test Terrain
Robot MCOT COT (m/s) (kg) Legs Support Motors Power Terrain Tested

Ranger (COT record) Linoleum
Bhounsule et al. (2014) 0.04 0.19 9.9 4 No N/A Yes Floor No

Human (estimated)
Collins et al. (2005) 0.05 0.2 2 No Yes

Ranger (distance record) Indoor
Bhounsule et al. (2014) 0.28 0.59 9.9 4 No N/A Yes Track No

Denise
Collins et al. (2005)
Wisse et al. (2007) 0.08 0.47 8 2 No N/A Yes No

Meta 0.09 a 0.4 12.3 4 No N/A Yes Yes
MIT Cheetah

Hyun et al. (2014)
Seok et al. (2013) 0.5 6 33 4 Yes No No Treadmill No b

MABEL
Sreenath et al. (2011)

Park et al. (2013) 0.14 0.8 58 2 Yes N/A No Flat Yes
ERNIE 0.31 c 0.60 19.6 2 Yes N/A No Flat No

MARLO (NHVC0) Concrete
(current work) 0.65 0.92 63 2 No Yes No d Street Yes

MARLO (NHVC3) Grass
(current work) 0.68 0.95 63 2 No Yes No Field Yes

MARLO (NHVC3) Gradual
(current work) 0.69 0.91 63 2 No Yes No Uphill Yes

ATRIAS (OSU)
Hurst (2015) 1.0 2 No Yes Yes Yes

DURUS (DRC)
Hereid et al. (2016)
Ackerman (2015) 1.33 0.23 80 2 No Yes Yes Treadmill No
Asimo (estimated)

Collins et al. (2005) 1.6 3.2 0.44 52 2 No Yes Yes Yes
ATLAS (estimated)
Ackerman (2015) 20 157 2 No Yes Yes Yes

aCalculated using the absolute mechanical power (see (Hobbelen and Wisse 2008a, Eqn. (4))).
bThe MIT Cheetah II has performed jumps over obstacles and outdoor running, but no COT information is available (see Park et al. (2015)).
cCalculated using the absolute mechanical power (see (Post and Schmiedeler 2014, Eqn. (12))).
dMARLO can be configured to use an on-board 3 kg battery for power (see Oregon State DRL (2015)).
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