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Abstract—Motivated by the challenge of developing control
software provably meeting specifications for real world problems,
this paper applies formal methods to adaptive cruise control
(ACC). Starting from a Linear Temporal Logic specification
for ACC, obtained by interpreting relevant ACC standards, we
discuss in this paper two different control software synthesis
methods. Each method produces a controller that is correct-by-
construction, meaning that trajectories of the closed-loop systems
provably meet the specification. Both methods rely on fixed-point
computations of certain set-valued mappings. However, one of
the methods performs these computations on the continuous
state space whereas the other method operates on a finite-
state abstraction. While controller synthesis is based on a low-
dimensional model, each controller is tested on CarSim, an
industry-standard vehicle simulator. Our results demonstrate
several advantages over classical control design techniques. First,
a formal approach to control design removes potential ambiguity
in textual specifications by translating them into precise mathe-
matical requirements. Second, because the resulting closed-loop
system is known a priori to satisfy the specification, testing can
then focus on the validity of the models used in control design
and whether the specification captures the intended requirements.
Finally, the set from where the specification (e.g., safety) can be
enforced is explicitly computed and thus conditions for passing
control to an emergency controller are clearly defined.

I. INTRODUCTION

Adaptive cruise control (ACC) is a driver assistance system
that seeks to combine safe following distance with speed
regulation. When there is no preceding vehicle in sight, an
ACC-equipped vehicle maintains a constant speed set by the
driver, just as in a conventional cruise control (CCC) system.
When a preceding vehicle is detected, however, an ACC-
equipped vehicle changes its control objective to maintaining
a safe distance between the two vehicles. For driver comfort,
when regulating speed or following distance, the control
system is normally limited to using significantly less than the
vehicle’s maximal deceleration and acceleration capacity. For
this reason, ACC is not an active safety system.

ACC has been available on production vehicles since the
mid-1990s. All of the ACC vehicles on the market today are
of the autonomous type, meaning that the vehicle relies only
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on information collected on-board. In future (non-autonomous)
ACC systems, communication with adjacent vehicles or road-
side infrastructure will be used to enhance the responsiveness
to lane, speed, or acceleration changes in the preceding vehicle
or vehicles. Many of the early ACC systems shut off below a
given threshold speed. More recently, full-range (stop-and-go)
ACC is available that can bring a vehicle to a full stop and then
launch from standstill, and is thus capable of dealing with con-
gested urban traffic. In the last several years, some automakers
(e.g., Volvo and Cadillac) have introduced an automated full-
braking function to leverage hardware already installed for
ACC, tiptoeing the red-line between comfort/convenience sys-
tems and active safety systems. This trend is likely to continue
as more automated vehicle control functions are introduced on
production vehicles.

Even though ACC is a driver convenience feature, manufac-
turers are likely to treat all software tied to acceleration, de-
celeration and turning of the vehicle as being related to safety.
The increase in safety related functions as manufacturers work
toward a fully automated vehicle signifies the need for certifi-
cation of correctness of the control software that implements
such functionality. Current practice for certification is through
extensive testing, which constitutes a bottleneck in vehicle
design and development cycles. This burden can be partially
alleviated by adopting correct-by-construction control software
synthesis techniques, where correct by construction means
that the control software is guaranteed to meet its formal
specifications given a set of assumptions on the physical
plant and implementation platform. If the software is known
in advance to correctly implement the control specification,
then testing can focus on the validity of the assumptions
used to model the vehicle and its environment or whether the
specification captured the intended requirements.

The main contribution of this paper is to demonstrate how
correct-by-construction ACC software can be synthesized us-
ing two different techniques. In [1], we synthesized correct-by-
construction control software for ACC when the lead vehicle’s
speed was constant. Here, we extend the task by synthesizing
correct-by-construction control software for ACC when the
speed of the lead car is variable. This brings in the need
to achieve robustness against the unknown acceleration of
the preceding vehicle. The formal specifications considered
in this paper are given in Linear Temporal Logic, a common
specification language for software systems. Two synthesis
methods are used, one performing set computations directly
on the continuous domain, and a second based on finite-
state abstractions. The two resulting correct-by-construction
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controllers are compared by running simulations in Simulink
and on a 16 degree of freedom model (with more than 30
continuous states) in CarSim1. In subsequent work, we plan
to address correct-by-construction control software for lane
keeping, as well as correct-by-construction control software
when ACC and lane keeping are simultaneously active.

The remainder of the paper is organized as follows. Section
II overviews past work on ACC, in terms of controller design
and correctness of control software. The simplified vehicle
models to be used in the paper are also introduced in this
section, which concludes with an interpretation of an ACC
standard in terms of a formal specification given in Linear
Temporal Logic. Section III develops a correct-by-construction
solution by computing polyhedral controlled invariant sets
(PCIS), while a solution based on a finite-state abstraction
is presented in Section IV. In Section V the two correct-by-
construction controllers are compared in Simulink and Car-
Sim simulations. Furthermore, we show how the synthesized
software can be used to supervise an existing ACC controller
in order to endow it with formal safety guarantees. The
controllers have also been implemented on a hardware testbed
consisting of radio-controlled (RC) cars; we summarize this
implementation in Section VI. Finally, we give concluding
remarks in Section VII.

II. ADAPTIVE CRUISE CONTROL

A. Past work

Adaptive cruise control started as an extension of conven-
tional cruise control (CCC), which was how it was described in
relevant ISO [2] and SAE [3] standards. In these early design
concepts, ACC was a phase or mode of the overall control
system, and even “rode-on” existing CCC hardware archi-
tecture: in the ACC mode, the speed command to the CCC
servo-loop was adjusted to achieve the desired range control
objective (e.g., [4]). This nested control architecture resulted
in slower response (in comparison to when throttle and brake
are controlled directly), which was observed in prototype ACC
vehicles in field tests [5]. A comparison between the velocity-
command approach and acceleration command approach was
analyzed in [6].

The potential of ACC-equipped vehicles for improving
traffic flow and safety has been studied extensively since the
1990s [7], [8]. In addition to traffic flow and safety, string
stability [9], [10], [11], [12], congestion [13], fuel economy
[14], and integration with crash avoidance [15] have also been
studied. An extensive survey on ACC designs, including the
underlying control concepts, is given in [16]. In recent years,
Model Predictive Control (MPC) is widely used in ACC design
[17].

Although driver assistance and safety modules such as
ACC have been investigated for many years, the emphasis
on the correctness of a module’s software implementation is
much more recent. Safety verification of evasive maneuvers
for autonomous vehicles is addressed in [18]. By computing

1CarSim is a vehicle simulation package that is widely used in industry. It
is a registered trademark of Mechanical Simulation Corporation, Ann Arbor,
MI.

the reachable set of each vehicle under different types of
uncertainties and disturbances, safety is ensured whenever
the reachable sets for different vehicles are disjoint. The
computation of reachability sets for hybrid systems is known
to be expensive and in [19] verification is done through
counterexample-guided search. Rather than working with a
detailed model of the system to be verified, an abstraction is
used. Verifying the abstraction leads to counterexamples that
may be spurious, i.e., they may not be true behaviors of the real
system. However, since reachability analysis on the abstraction
is cheaper, a two-step approach is taken: 1) the abstract model
is used to obtain counterexamples; 2) the counterexamples are
proved or disproved on a detailed model of the system to be
verified. The previous approaches to verification fall in the
class of model checking; given a specification one checks (by
reachability computation or counterexample-guided search)
if the specification is met. A different approach, considered
in [20], is theorem proving. Here, one writes the assumptions
about the system and its environment in a convenient logic
and proves a theorem stating that the desired specification
follows from the assumptions. A related approach is the use
of satisfiability (SAT) and satisfiability modulo theory (SMT)
solvers instead of a customized logic as was done in [21].

Unlike all the aforementioned approaches, we do not verify
an existing software module. Instead, we synthesize a software
module that is guaranteed to satisfy the specification by
construction, hence the term correct-by-construction. As we
demonstrate, correct-by-construction software can also be used
as a supervisor of an existing controller, hence eliminating the
need for verification. A similar idea was presented in [22]
where a provably correct supervisory intersection collision
avoidance controller was constructed by exploiting the order-
preserving properties of the dynamics.

A formal synthesis problem consists of a formal specifica-
tion on a set of variables and a dynamic model which governs
the evolution over time of the same set of variables. In the
following, we first introduce a dynamic model for a two-car
system, then give a formal specification that captures ACC
requirements.

B. Design model

The ACC vehicle is modeled as a (lumped) point mass m
moving along a straight line at velocity v. The net action of
braking and engine torque applied to the wheels is lumped as
a net force Fw acting on the mass of the vehicle, while the
combined aerodynamic and rolling resistance is gathered into
a net force F r,

mv̇ = Fw − Fr. (1)

In the above equation, Fw is viewed as the control input and
is assumed to be bounded by

− 0.3mg ≤ Fw ≤ 0.2mg, (2)

where g is the gravitational constant. Such a bound is consis-
tent with non-emergency braking and acceleration, and thus
with the “driver comfort” notion of ACC. The term Fr is
represented by Fr = f0 + f1v + f2v

2 for constants f0, f1

and f2 that can be empirically measured [7]. We limit the
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mv̇ = Fw − f0 − f1v − f2v
2

h ≡ hmax

mv̇ = Fw − f0 − f1v − f2v
2

ḣ = vL − v
v̇L = aL

R1,2R2,1

R2,2

q = 1:

q = 2:

Fig. 1. Hybrid system model for ACC.

admissible velocities to a bounded set V = [vmin, vmax] with
vmin ≥ 0.

To include a lead vehicle in the system description, we
assume that the ACC vehicle is equipped with a radar that
measures headway h up to a maximal value hmax. When
no lead car is present, the radar shows its maximal value
hmax. This leads to a hybrid system model with a discrete
state q ∈ {1, 2}. We call the state q = 1 the no lead car
state, and call q = 2 the lead car state. This latter discrete
state is used to model the situation when a lead car is present
within the radar range, and therefore contains an additional
continuous state vL, corresponding to lead car velocity. The
continuous dynamics in the state q = 1 are those of equation
(1) while the continuous dynamics in state q = 2 contain two
additional differential equations

ḣ = vL − v,
v̇L = aL.

(3)

Here vL is the velocity of the lead car and aL is its accelera-
tion.

The two discrete states have different continuous state
spaces. The state q = 1 has state space V × {hmax} while
state q = 2 has state space V×H×VL, where H = [0, hmax],
and the lead car velocity range VL is given below in the form
of an assumption.

In practice, q = 2 when there is a car within the radar range,
and q = 1 otherwise. Switching between the two modes is thus
governed by lane changes undertaken by other cars, which are
modeled using reset maps R1,2 : V × {hmax} → 2V×H×VL ,
R2,1 : V×H×VL → 2V×{hmax} and R2,2 : V×H×VL →
2V×H×VL :

R1,2(v, hmax) = {(v, h̄, v̄L) : (h̄, v̄L) ∈ H × VL},
R2,1(v, h, vL) = {(v, hmax)},
R2,2(v, h, vL) = {(v, h̄, v̄L) : (h̄, v̄L) ∈ H × VL}.

(4)

Here R1,2 models a transition from the no lead car state
q = 1 to the lead car state q = 2, where the headway
is initialized to some h̄ ∈ H and the lead car speed vL to
some v̄L ∈ VL. Similarly, R2,2 models situations where the
radar reading suddenly changes as a result of lane changes
undertaken by cars in front.

The switching is assumed to be non-deterministic, except
for the case when h reaches hmax in state q = 2, in which
case a forced transition to q = 1 occurs. The complete hybrid
model is shown schematically in Fig. 1.

We make the following assumptions on lead car behavior:
(A.1) The velocity vL of the lead car is always in the interval

VL = [vminL , vmaxL ], where vminL ≥ vmin. Furthermore,
its acceleration is bounded by aL ∈ [aminL , amaxL ].

(A.2) There is at most one lead car within the radar range
at all times, i.e., R2,2(v, h, vL) = (v, h, vL) for all
(v, h, vL) ∈ V ×H× VL.

In Section VII we comment on the reasonableness of these
assumptions and how they can be relaxed.

C. Formal ACC specification
In this section we formalize the adaptive cruise control

requirements using linear temporal logic (LTL). Introducing
the time headway ω, defined as ω = h/v, we summarize
the requirements defined by the International Organization of
Standardization, see [2, Chapter 6], as follows:

1) ACC operates in two modes: the set speed mode and
the time gap mode;

2) in set speed mode, a preset desired speed vdes

eventually needs to be maintained;
3) in time gap mode, a desired time headway ωdes to

the lead vehicle eventually needs to be maintained; and
the time headway needs to satisfy ω ≥ ωmin at all times,

4) The system is in set speed mode if vdes ≤ h/ωdes,
otherwise it is in time gap mode;

5) independently of the mode, the input constraint (2) needs
to be satisfied at all times.

We proceed with the translation of requirements 1)–5) into
LTL. The basic building blocks of an LTL specification are the
so-called atomic propositions. The set of atomic propositions
represents the quantities necessary to express a desired behav-
ior. These atomic propositions are identified with subsets of
the state, input and/or output spaces of the hybrid system in
the sense that an atomic proposition is satisfied whenever the
state, input and/or output of the hybrid system belongs to the
set corresponding to that proposition. For the ACC system, the
desired behavior is given in terms quantities related to velocity
v and headway h, and in terms of the input Fw. Thus, we will
identify atomic propositions with subsets of v−h−Fw space,
that is, subsets of (V ×H)× R.

First, to be able to refer to the two modes of ACC in the
specification, we introduce an atomic proposition M1 that is
satisfied when the system is in set speed mode and an
atomic proposition M2 that is satisfied when the system is
in time gap mode. We formally define specification modes
M1 and M2 as follows:

M1 =
{

(v, h, Fw) : vdes ≤ h/ωdes
}
,

M2 =
{

(v, h, Fw) : vdes > h/ωdes
}
.

We also introduce the atomic propositions G1, G2, S1, S2 and
SU . The safe sets S1 and S2 are used to express constraints that
need be satisfied at all times in mode M1 and M2, respectively.
The set SU defines the input constraint which must be satisfied
at all times. These three sets are given by

S1 = V × {hmax} × R,
S2 =

{
(v, h, Fw) : v ≤ h/ωmin

}
,

SU = {(v, h, Fw) : −0.3mg ≤ Fw ≤ 0.2mg} .
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Next, we define target sets G1 and G2 to express require-
ments 2) and 3). Here, multiple interpretations are possible, de-
pending on whether one interprets “maintain” as not exceeding
or as stay in the vicinity of. Below, both these interpretations
are detailed, and we later show how they impact performance
by synthesizing controllers for each.

a) Target sets with upper bounds: If we interpret
maintain a bound as satisfying an upper bound only,
then in mode M1, a desired upper bound on velocity
vdes should eventually be achieved which is expressed by
G̃1 =

{
(v, h, Fw) : v ≤ vdes

}
. Correspondingly, G̃2 ={

(v, h, Fw) : v ≤ h/ωdes
}

collects all states with an upper
bound on velocity that implies time headway above2 ωdes.
This set should be reached and kept invariant if the ACC is
in mode M2 indefinitely. The target sets G̃1 and G̃2, together
with mode sets and the unsafe set, are depicted in Fig. 2a.

b) Target sets with upper and lower bounds: Instead
of just respecting upper bounds on velocity, the target sets
can be constrained to a vicinity of a given speed. Intro-
ducing additional lower bounds on v bounds time headway
from above2 in time gap mode, which may be desir-
able in order to deter other cars from cutting in between
the ACC car and the current lead car. With the modified
target sets Ḡ1 =

{
(v, h, Fw) :

∣∣v − vdes∣∣ ≤ ε} and Ḡ2 ={
(v, h, Fw) :

∣∣v − h/ωdes∣∣ ≤ ε}, an upper bound is formally
guaranteed in steady state. These modified sets are depicted
in Fig. 2b for ε = 1.

In summary, the set of atomic propositions is given by
AP = {M1,M2, G1, G2, S1, S2, SU}, where G1 is either
given as G̃1 or Ḡ1, and correspondingly for G2.

The specifications considered in this paper can be expressed
using the atomic propositions AP , the propositional logic
conjunction “∧” and negation “¬”, and the temporal operator
always “�”. We interpret LTL formulas over infinite sequences
(ξ, ν) where the signal ξ : N → R2 is a sample-and-hold
trajectory for a given sampling time τ , corresponding to the
speed (v) and headway (h) states of the hybrid system in Fig.
1, given the input signal ν : N → R generated by the ACC
and some behavior of the lead car. We refer to the pair of such
sequences (ξ, ν) as a behavior of the closed-loop system, i.e.,
the hybrid system controlled by the ACC.

We next describe the syntax and the semantics of the
fragment of LTL that we use in this paper. We consider the
LTL formulas that are constructed from atomic propositions
AP according to the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | �ϕ,
for p ∈ AP . We write ϕ ∧ ψ and ϕ =⇒ ψ as abbreviations
for the formulas ¬(¬ϕ ∨ ¬ψ) and ¬ϕ ∨ ψ, respectively. We
also use the short hand notation ♦ϕ, for ¬�¬ϕ.

We give an inductive definition of when a behavior satifies
a formula ϕ at time i ∈ N, which we denote by (ξ, ν), i |= ϕ:
• For p ∈ AP , (ξ, ν), i |= p iff (ξi, νi) ∈ p,
• (ξ, ν), i |= ¬ϕ iff (ξ, ν), i 6|= ϕ,
• (ξ, ν), i |= ϕ ∨ ψ iff (ξ, ν), i |= ϕ or (ξ, ν), i |= ψ,

2Since ω = h/v, an upper bound on v is a lower bound on ω, and vice
versa.
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Fig. 2. Illustrations (best viewed in color) of projections of target sets G̃1, G̃2

(top), Ḡ1, Ḡ2 (bottom) and specification mode sets M1 (blue), M2 (red). The
black dashed part is the unsafe region.

• (ξ, ν), i |= �ϕ iff (ξ, ν), k |= ϕ, for all k ≥ i.
For example, consider the simple formulas ϕ1 = �(M1 ∧
G1 ∧ SU ) and ϕ2 = ♦(M2 ∧G2). A behavior satisfies ϕ1 if
(ξt, νt) ∈ M1 ∩ G1 ∩ SU holds for all t ∈ N. A behavior
satisfies ϕ2 if (ξt, νt) ∈M2 ∩G2 holds for some time t ∈ N.

A closed-loop system satisfies a LTL formula ϕ if every
system behavior (ξ, ν) satisfies (ξ, ν), 0 |= ϕ.

Having introduced the semantics of LTL, the ACC specifi-
cation can be described by the LTL formula

ψ = �SU ∧�
2∧
i=1

(
(Mi =⇒ Si)

∧ (�Mi =⇒ ♦�Gi)

)
. (5)

The first term �SU dictates that the input constraint should
always be met, while the second term specifies that the safe
set Si should be kept invariant when in mode Mi, and that the
target set Gi should eventually be invariant, when indefinitely
in mode Mi.

Notice that the specification gives no guarantees of reaching
the desired time headway and velocity, when the system
switches between M1 and M2 infinitely often. This is in
compliance with the ISO standard [2], which does not specify
what the system should guarantee in such a scenario.
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D. Problem statement

The goal of this paper is to synthesize a controller for
the hybrid system in Fig. 1 with reset maps given by (4)
so that every behavior of the closed-loop system satisfies
the specification ψ given in (5). However, if the lane-change
behavior of other cars is not properly constrained, e.g., if a car
with low speed may cut right in front of the ACC-equipped
when it is traveling at a high speed, no controller can prevent
collisions, hence ψ cannot be satisfied.

Motivated by this fact, the formal controller synthesis prob-
lem can now be stated as follows:

Problem 1: Assume (A.1) and (A.2) hold. Synthesize a
controller and a control domain D ⊆ V × H × VL so that
every behavior (ξ, ν) of the closed-loop system satisfies ψ if
the values of R1,2(v, h) are restricted to D.

In what follows, we present two approaches to this problem.
Both approaches seek to synthesize controllers with control
domains that are as large as possible. In general, finding a
maximal D can be hard [23]. The presented approaches are
approximate in the sense that although the synthesized con-
trollers are provably-correct, the synthesized control domains
are not necessarily maximal. In light of the discussion in
Section II-C, we give solutions for different interpretations
of the target sets and also show how different assumptions on
the environment affect the solutions.

III. SOLUTION BY PCIS

The goal of this section is to describe how a set in which
it is possible to enforce the specification (5) can be obtained
through Polyhedral Controlled Invariant Set (PCIS) computa-
tions. For the discrete state q = 1, satisfying the specification
(5) is not challenging. The system is always in specification
mode M1 which only requires the upper bound on velocity to
be maintained. For this discrete state, we use a simple MPC
controller that reaches and maintains v = vdes, and focus
our formal synthesis efforts on synthesizing a controller for
the state q = 2. Later in this section, we argue why the
composition of these controllers solve Problem 1, assuming
certain restrictions on the reset maps.

We require the ability to perform (robust) reachability
computations, which is difficult for general non-linear sys-
tems. There are however known reachability algorithms for
discrete-time affine systems, which we leverage by linearizing
equations (1) and (3) in a correctness-preserving way. Below
we describe the linearization step and recall robust reachability
computations for affine systems. We then introduce set-valued
mappings whose fixed-points provide a solution to Problem 1,
and show how we can find a fixed-point through approximate
computations.

A. Linearization

We wish to obtain an affine representation of (1)+(3) such
that correctness in the linearized system implies correctness
in (1)+(3). This can be achieved by assuring that, for any
admissible control action applied to the linearized system,
there should be a corresponding admissible control action for

the original system such that the states of the two systems
track each other.

To this end, consider the affine system

v̇ =
1

m

(
F̄w − f̄0 − f̄1v

)
,

ḣ = vL − v,
v̇L = aL,

(6)

where f̄0 = f0 − f2v̄
2 and f̄1 = f1 + 2f2v̄ for some nominal

speed v̄ ∈ V , together with the restrictions on input and
disturbance

F̄w ∈ [−0.3mg, 0.2mg − γ],

aL ∈ [aminL , amaxL ],

for γ = maxv∈V f2(v − v̄)2.
Proposition 1: For any τ > 0 and aL : [0, τ ] →

[aminL , amaxL ], if there exists an input F̄w : [0, τ ] →
[−0.3mg, 0.2mg − γ] that steers the state of (6) from
(v0, h0, v0

L) to (v1, h1, v1
L), then there exists an input Fw :

[0, τ ]→ [−0.3mg, 0.2mg] that steers the state of (1)+(3) from
(v0, h0, v0

L) to (v1, h1, v1
L).

Proof: The systems (6) and (1)+(3) only differ in the
dynamics of v, so it is enough to show that the evolution of v
is identical between the two. Given F̄w, consider the modified
control signal Fw = F̄w + f2(v − v̄)2 applied to (1)+(3). By
definition of γ, it satisfies Fw(t) ∈ [−0.3mg, 0.2mg] for all
t ∈ [0, τ ]. Furthermore, the closed-loop dynamics of v become

mv̇ = Fw − f0 − f1v − f2v
2

= F̄w + f2(v − v̄)2 − f0 − f1v − f2v
2

= F̄w − (f0 − f2v̄
2)︸ ︷︷ ︸

f̄0

− (f1 + 2f2v̄)︸ ︷︷ ︸
f̄1

v,

i.e. identical to the linearized system.

B. Robust reachability

Given a general affine system ẋ = Ax+Bu+Ed+K, we
consider the time-discretized version

x(t+ τ)=Aτx(t) +Bτu(t) + Eτd(t) +Kτ ,

x(t) ∈ Rn, u(t) ∈ Rm, d(t) ∈ Rp.
(7)

Here, Aτ = eAτ and, formally for Θ ∈ {B,E,K}, we have
Θτ =

∫ τ
0
eAsds Θ. Input restrictions and disturbance bounds

are assumed to be of the following state-dependent linear
forms:

Huxx+Huuu ≤ hu, (8)

H−dxx+ h−d ≤ d ≤ H+
dxx+ h+

d . (9)

Let Ξ denote the dynamics (7) together with (8) - (9). Then,
given Ξ and a final set X , we can characterize the backwards
reachable set from X defined as

PreΞ
τ (X) = {x0 : ∃u0 s.t. (x0, u0) sat. (8),

Aτx0 +Bτu0 + Eτd+Kτ ∈ X
for all d s.t. (x0, d) sat. (9)} ,

(10)

as a projection of a higher-dimensional polyhedron. Indeed,
it turns out that for a final set X = {x : Hxx ≤ hx} (i.e.,
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a polyhedron), PreΞ
τ (X) is the projection of a polyhedron in

x− u-space onto its x-coordinates, that is,

PreΞ
τ (X) = {x | ∃ u s.t (x, u) ∈ P}, (11)

for

P =

{
(x0, u) :

[
Hx(Aτ+EτH

+
dx) HxBτ

Hx(Aτ+EτH
−
dx) HxBτ

Hux Huu

]
[ x0
u ]

≤
[
hx−Hx(Eτh

+
d +Kτ )

hx−Hx(Eτh
−
d +Kτ )

hu

]}
.

The proof of (11) is a standard argument (e.g. [24, Chapter 11])
slightly adapted to accommodate state-dependent bounds on
input and disturbance as in (8)-(9). There is software available
for numerically computing polyhedron projections, such as the
Multi-Parametric Toolbox [25] for MATLAB.

C. Set-valued mappings

In order to compute sets in which the specification can be
enforced, we introduce two set-valued mappings. For a system
Ξ given as above, we introduce the robust, safe reachability
operator Rch∞,Ξτ,S (X) and the robust controlled invariance
operator Inv∞,Ξτ (X).

Definition 1: Rch∞,Ξτ,S (X) is the set of all x0 ∈ S such that
Ξ in finite time can reach X ⊂ S from x0 without exiting S,
regardless of disturbance:

Rch∞,Ξτ,S (X) =
⋃
k≥0

PreΞ
τ,S ◦ . . . ◦ PreΞ

τ,S︸ ︷︷ ︸
k times

(X),

where
PreΞ

τ,S(X) = S ∩ PreΞ
τ (X).

Definition 2: Inv∞,Ξτ (X) is the set of all states x0 ∈ X
starting from which Ξ can be controlled to remain in X for
all future times:

Inv∞,Ξτ (X)= lim
k→∞

PreΞ
τ,X ◦ . . . ◦ PreΞ

τ,X︸ ︷︷ ︸
k times

(X).

This invariance operator, and whether it is determined by a
finite k, is discussed in the literature [26], [27], [28].

Given these two operators, consider the composed operators
Γi : 2R

n × 2R
n → 2R

n

for i = 1, 2 defined by

Γi : (C1, C2) 7→ C+
i , (12)

where

C+
1 = M1 ∩ Rch∞,Ξτ,S1

(
Inv∞,Ξτ (G1 ∩ (C1 ∪ C2)) ∪ C2

)︸ ︷︷ ︸
D1

,

C+
2 = M2 ∩ Rch∞,Ξτ,S2

(
Inv∞,Ξτ (G2 ∩ (C1 ∪ C2)) ∪ C1

)︸ ︷︷ ︸
D2

.

Given safe sets S1, S2, mode sets M1,M2, and target sets
G1, G2, which together define a specification of the form (5),
we claim that any C1, C2 such that

C1 ⊂ Γ1(C1, C2),

C2 ⊂ Γ2(C1, C2),
(13)

TABLE I
PARAMETER VALUES

m 1370 kg vmin 0 m/s vmax 35 m/s
f0 51 N hmin 0 m hmax 200 m
f1 1.2567 Ns/m vdes 25 m/s ε 1 m/s
f2 0.4342 Ns2/m2 ωmin 1 s ωdes 1.4 s

vmin
L 0 m/s vmax

L 20 m/s g 9.82 m/s2

amin
L -0.97 m/s2 amax

L 0.65 m/s2 τ 0.5 s

constitute a domain in which the specification can be fulfilled.
Specifically, a correct control strategy for such sets is the
following:
• When in C1, make progress towards/remain in D1 (such

that it is reached in finite time),
• When in C2, make progress towards/remain in D2 (such

that it is reached in finite time).
In order to implement such a strategy, a control method that
can enforce set membership constraints is required. When the
sets are polyhedra, a natural choice is model predictive control
(MPC) which at a given time instant selects an optimal (with
respect to MPC weights) input, among the set of inputs that are
guaranteed to satisfy the specification. Provided that the sets
satisfy (13), the MPC optimization problems are guaranteed
to be feasible.

Proposition 2: Assume C1, C2 satisfy (13) and take D =
C1 ∪ C2 as the restriction of the reset map R1,2. Then the
proposed strategy for hybrid state q = 2 in conjunction with a
correct3 conventional cruise controller for hybrid state q = 1
solves Problem 1.

Proof: First remark that the strategy is feasible by defini-
tion and that the system will remain in C1 ∪ C2 whenever
q = 2. By definition of Rch∞,Ξτ,S , the safety part of the
specification is fulfilled. If the system is in C1, the clause
�(�M1 → ♦�G1) can be satisfied in two ways; either the
system reaches G1 and keeps it invariant, or it exits M1. By
definition of D1, at least one of these alternatives will happen
when D1 is reached. The same holds for C2 by symmetry.

The idea is to iterate (12) in order to find sets C1 and C2 that
satisfy (13). For C1 ⊂ C̃1 and C2 ⊂ C̃2, these operators have
the property that Γi(C1, C2) ⊂ Γi(C̃1, C̃2). Therefore, the
set valued function Γ(C1, C2)

.
= (Γ1(C1, C2),Γ2(C1, C2)) is

monotone with respect to the set inclusion order. Thus, when
initialized with C1 = M1 and C2 = M2, iterating (12) leads
to a sequence of non-expanding sets that converges towards a
fixed-point [29].

D. Synthesis of an ACC controller

We now make use of the fixed-point ideas presented in
Section III-C together with the projection-based robust reacha-
bility computations for linear systems from Section III-B. The
reachability computations allow us to implement Rch∞,Ξτ,S (X)

and Inv∞,Ξτ (X) algorithmically, and by initializing C1 = M1

and C2 = M2, and iterating (12), we can look for fixed-points
that give a valid controller domain.

3A correct conventional cruise controller should reach and maintain the
desired speed without exceeding input bounds.
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Fig. 3. Sets C1 (rear part, blue) and C2 (front part, green), together forming
the controller domain.

Since non-convex sets must be represented by unions of
convex polyhedra, some inner approximations are used to keep
set representations simple. Crucially, correctness is preserved
when inner approximations of the arguments to the Rch and
Inv operators are used in (12).

In the rest of this paper, the parameters in Table I are used
as nominal values. The parameters related to vehicle dynamics
have been extracted from the “D-Class Sedan” model in
CarSim. Using these parameters and target sets G̃1 and G̃2,
the iterations (12) converge in one step and the resulting sets
are illustrated in Fig. 3. The computations took 1 minute and
50 seconds on a 3.4 GHz iMac.

The final controller consists of a collection of convex
polyhedra (i.e., linear inequalities) and user defined weights.
At each time sample, this collection is queried to construct
a set of linear inequality constraints that are fed into a
quadratic program (QP) that solves for the optimal input. This
controller can be implemented on any embedded platform that
is equipped with a quadratic programming solver [30], [31].

E. Changing environment assumptions

The assumptions on environment (in this case lead car)
behavior are crucial in formal synthesis methods. We demon-
strate this by considering more “aggressive” assumptions on
lead car acceleration capabilities and maximal speed. Using the
modified parameters in Table II, we obtain a smaller controller
domain which reflects the additional caution that is required
when following a lead car that might decelerate quickly, as
illustrated in Fig. 4.

IV. SOLUTION BY PESSOA

In this section we explain how we synthesize a control
strategy which satisfies the LTL specification (5) using the
MATLAB toolbox PESSOA [32]. First, we explain how
PESSOA constructs a discrete abstraction of the system, and

TABLE II
MODIFIED PARAMETER VALUES

vmin
L 0 m/s vmax

L 35 m/s
amin
L -3 m/s2 amax

L 2 m/s2

0 10 20 30
0

100

200

v

h

Fig. 4. More aggressive environment assumptions (see Table II) lead to a
smaller controller domain. The figure shows cross sections at vL = 10 m/s
of sets C1 (blue) and C2 (green) which together form the controller domain.
The gray part is the cross section of the set in Fig. 3.

then present the PESSOA algorithms that solve the synthesis
problem on the abstraction.

A. Construction of a discrete abstraction

To obtain a discrete abstraction of the system given in Fig.
1, we follow the approach in [33] which is based on the
discretization of the state space and the input space. Note
that, this abstraction should be constructed in a way that
enables us to refine a controller that is synthesized for the
abstraction to a controller enforcing the same specification on
the original system. It is shown in [34] that the existence of
an ε-approximate alternating simulation relation from the ab-
straction to the original system guarantees that any controller
synthesized for the abstraction can be refined to a controller
enforcing the specification on the original system up to an error
of ε. Further details on ε-approximate alternating simulation
relations and controller refinements are provided in [35].

A finite transition system is a tuple Σ = (Q,U, δ) consisting
of:
• A finite set Q of states;
• A finite set U of inputs;
• A transition function δ : Q× U → 2Q.

For a given set Z ⊆ Rn and discretization parameter m > 0,
we define:

[Z]m = {x ∈ Z|∃k ∈ Zn : x = km},
to denote a uniform grid on Z. Consider a set of discretization
parameters η, µ, and τ , which correspond to the state space
discretization, the input space discretization, and the time
discretization, respectively. We obtain the abstraction Σ by
constructing the finite transition system (Q,U, δ), where:
• Q = [V ×H× VL]η;
• U = [SU ]µ;
• q′ ∈ δ(q, u) if

‖ξ(q,u)(τ)− q′‖ ≤ Rq(u, τ) +
η

2
,

where Rq(u, τ) is an over-approximation of the reachable
states from state q ∈ Q, when input u ∈ U is applied for
τ seconds. We compute Rq(u, τ) using the Lipschitz constant
of the dynamics given in Fig. 1. Note that the sets Q and U
are uniform grids on compact sets and hence they are finite.
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By construction, Σ is ε−approximately alternatingly simulated
by the original system, for any ε satisfying ε ≥ η

2 . It can be
shown that, for the specification given by (5), by shrinking
the sets M1, M2, G1, G2, S1, and S2 by ε, we can guarantee
that the refined controller will enforce the specification (5)
on the original system in Fig. 1. We then compute an under-
approximation of these shrunk sets by finding the grid points
that lie inside these regions. We denote the corresponding sets
in Q as M1,a, M2,a, G1,a, G2,a, S1,a, and S2,a.

B. Synthesis algorithms

The transition system Σ is nondeterministic. This means
that for a given state q and input u, there might be multiple
successor states in Σ, i.e., |δ(q, u)| ≥ 1. There are three
sources of this nondeterminism in Σ. The first is the con-
servativeness in the reachable set estimates. The second is
due to the fact that the lead car’s acceleration is unknown.
The last one results from the nondeterministic change of the
states in the hybrid system model. Recall that, since the lead
car behaves nondeterministically, the switching between the
no lead car state and the lead car state can occur at
any point in time.

For the rest of the discussion, JϕK denotes the states in Σ
for which there exists a control strategy that enforces ϕ no
matter what the successor state is in each transition of Σ.
Note that, when JψK is obtained, a control strategy on Σ can
be constructed by using the intermediate computations which
led to JψK. Thus, the controller domain D=̇JψK together with
such a control strategy constitute a solution to Problem 1.

The specification given in ψ is equivalent to

ψ = �SU ∧
2∧
i=1

(
� (Mi =⇒ Si)

∧ (�♦¬Mi ∨ ♦�Gi)

)
,

which can be rewritten in the following form:

ψ = �SU ∧
2∧
i=1

(
� (Mi =⇒ Si)

∧ (♦�Mi =⇒ ♦�Gi)

)
.

Note that we accounted for the input constraint �SU by
defining U = [SU ]µ in Σ. PESSOA handles the rest of the
formula by first synthesizing a controller for the safety part
of the specification, i.e., � ∧2

i=1 (Mi =⇒ Si). It computes
J� ∧2

i=1 (Mi,a =⇒ Si,a)K, using Algorithm 1. In this algo-
rithm,

PreΣ(Q′) = {q ∈ Q|∃u ∈ U : δ(q, u) ∈ Q′}
denotes the controllable predecessors of a set of states. The
operator PreΣ is very similar to the operator PreΞ

τ defined in
equation (10). The main difference is that PreΣ is based on a
discrete abstraction where as PreΞ

τ is based on the continuous
dynamics.

Algorithm 1: Computation of J�KK.

X̃ := Q, X := ∅
while X̃ 6= X do

X := X̃, X̃ := PreΣ(X) ∩K
return X

From the set J�∧2
i=1(Mi,a =⇒ Si,a)K PESSOA constructs

a set-valued controller that provides all possible inputs that
can be applied at each state of Σ, while enforcing the safety
specification. By composing the plant with the set valued
controller enforcing the safety specification we obtain a new
plant (finite transition system) that is guaranteed to satisfy
the safety specification. The next step is then to synthesize a
controller for this new plant that enforces the remaining part
of the specification. The formula ∧2

i=1 (♦�Mi =⇒ ♦�Gi),
has the form of a mode-target formula which was introduced
in [36], [37]. To construct the set

J∧2
i=1 (♦�Mi,a =⇒ ♦�Gi,a)K, (14)

PESSOA uses Algorithm 2. Since the proof of correctness
of this algorithm is out of the scope of this paper we refer
the interested reader to [36] and only provide an intuitive
explanation here.

Algorithm 2: Computation of (14).
X ′ := Q, X := ∅, Y ′ := ∅
Y := Q, Z ′ := V , Z := ∅
while Z ′ 6= Z do

Z := Z ′

for all i ∈ {1, 2} do
while Y ′ 6= Y do

Y := Y ′

while X ′ 6= X do
X := X ′

X ′ := Pre(X) ∩ JMi,a ∧Gi,aK
X ′ := X ′ ∪ (J¬Mi,aK ∩ Pre(Z))
X ′ := X ′ ∪ Pre(Y )

Y ′ := X ′, X ′ = Q

Yi = Y ′, Y ′ = ∅
Z ′ =

⋂
i∈I

Yi

return Z

Algorithm 2 performs a triple nested fixed-point computa-
tion. The inner double fixed-point computation gives the set of
states from which the controller can enforce the specification
♦�(Mi∧Gi)∨♦¬Mi. This is the set of states from which the
controller can force the system to either eventually settle down
in a set of states are in the target region Gi for the current
mode Mi, i.e., ♦�(Mi ∧ Gi), or change its mode at some
time in the future, i.e., ♦¬Mi. The outermost loop, i.e., the
largest fixed-point over Z, makes sure that once the system
switches to another mode it still ends up in a state that can
either reach and stay in the corresponding target region or go
through another mode change.

Note that the convergence of all the fixed-point algorithms
presented in this section is guaranteed due to the finiteness of
Q [36].

C. Solving the ACC problem

We synthesized a controller for the ACC problem using
PESSOA. For a desired precision ε = 0.5, the state space
and input space discretization parameters were chosen to be
η = 0.5 and µ = 0.3, respectively. We used τ = 0.5 for the
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Fig. 5. Domain D=̇JϕK of the controller synthesized by PESSOA using G̃1,
G̃2.

sampling time and the same problem parameter values as in
Table I. We ran Algorithm 1 followed by Algorithm 2 to obtain
a controller that enforces the formula ψ given in (5) on the
abstraction Σ using G̃1, G̃2. The abstraction was computed in
70 hours while algorithms 1 and 2 terminated after 5 minutes
and 18 hours, respectively. All computations were done on
a 3.4 GHz iMac with 32GB of RAM. Fig. 5 illustrates the
domain of the controller synthesized in PESSOA.

The controller synthesized by PESSOA is given in the form
of an ordered binary decision diagram (OBDD), a memory
efficient data structure. We query the OBDD at each sampling
time to get the set of valid inputs which enforces the speci-
fication on the closed-loop system. Hence, implementation of
the controller on an embedded device is straightforward.

D. Smaller target sets
In Section III-E we showed how assumptions on the envi-

ronment affected the synthesized controller domain. We now
explore how the modified target sets Ḡ1 and Ḡ2 result in
different controllers. Fig. 6 shows the number of available
inputs when using the target sets G̃1 and G̃2 versus the
target sets Ḡ1 and Ḡ2. Here, we illustrate that the synthesized
controller for the target sets G̃1 and G̃2 is less restrictive in
terms of the number of valid inputs in most, but not all, of
the states in the domain. This is because the sets that result
from the two different interpretations of the specification are
not comparable.

V. RESULTS

A. Evaluation on high-order model
We simulated both controllers in Simulink and CarSim for

the following scenario: At time t = 0s, a lead car is present
driving below the desired speed vdes = 25m/s of the ACC car,
but leaves the lane at t = 3s, allowing the ACC car to reach
and attain its desired speed4. At t = 13s a new lead car cuts
in 30m in front of the ACC car and starts decelerating. The
ACC car is forced to slow down in order to increase the time
headway. Fig. 7 shows how both controllers perform. Notably,
all constraints, which are indicated by green lines, are satisfied
throughout the simulations.

4With G̃1, desired speed attainment is not guaranteed by construction, but
is assured in steady state by suitable choices of MPC weights.
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Fig. 6. Different interpretations of target sets lead to different controllers
as can be appreciated by considering the number of available inputs in each
state. The plots show the number of valid inputs at the cross section vL = 10
using G̃1, G̃2 (top) and Ḡ1, Ḡ2 (bottom).

B. Supervision of a legacy controller

Next, we demonstrate how synthesized ACC software can
be used to guarantee correctness of a black-box legacy con-
troller Ψ by acting as a supervisor. In order to retain as much
of the original performance as possible, the supervision is done
in a minimally intrusive way and we focus just on satisfying
the safety specification

�SU ∧�(M2 =⇒ S2). (15)

Both synthesis methods provide a set-valued mapping P
that maps the system state x to a set of valid inputs. For
PCIS, P (x) is given in terms of linear inequalities that the
input must satisfy, while PESSOA provides P (x) as a finite
set. Given a synthesized function P , for an arbitrary control
system ẋ = g(x, u), we use the supervisory scheme

Fw =

{
min
u
‖g(x, u)− g(x,Ψ(t, x))‖ ,

s.t. u ∈ P (x),

that at each sample instant selects the safe input u ∈ P (x) that
minimizes the difference in system behavior (by minimizing
difference between the resulting vector fields). Fig. 8 shows
the effect of PCIS and PESSOA supervision of the naive
proportional ACC controller Ψ given as

(v, h) 7→ Fr(v)− k(v −min(vdes, h/ωdes)). (16)

Without supervision and with a gain k = 500, the controller
violates both the input bound as well as the safety specification
in (15). However, the supervisory framework is able to correct
this behavior during the critical phase, depicted in Fig. 8 with
grayed areas, and then hand back control to Ψ. In Fig. 9 it is
shown how PCIS-based supervision forces the state to remain
within the safe set.

VI. HARDWARE IMPLEMENTATION

The simulations in the previous section exhibited good
performance of both formally synthesized controllers when
implemented on a high-dimensional industry standard model.
In particular, the trajectories of the complex CarSim dynamics
and those of the simplified model (1) tracked each other
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Fig. 7. Simulations in Simulink and in CarSim of the PCIS (left) and PESSOA (right) controllers. The plots show, from top to bottom, velocities, headway,
applied control input, and time headway. Grayed areas indicate that the system is in specification mode M2. Dashed green lines indicate target sets, solid
green indicate safety sets.
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Fig. 8. Supervision of a legacy controller Ψ using PCIS (left) and PESSOA (right) are shown in blue. The plots show velocities, applied control input, and
time headway. For comparison, the corresponding unsupervised trajectory when using Ψ is plotted in black. The action of Ψ is overridden in the grayed
areas in order to guarantee satisfaction of (15), which is indicated with green lines. The dashed blue line shows the value of the desired (but overridden)
control (16) during supervision phases. Since the system states change as a result of supervision, the desired control during supervision is different from the
control that is applied in the unsupervised case. For PESSOA, starting from t = 14s the framework hands control back to Ψ. This is immediately followed
by PESSOA supervision to prevent violation of the requirement on the time headway. Switching between PESSOA and Ψ stops at t = 20s.
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Fig. 9. The supervised trajectory (blue) is forced to stay in safe set, whereas
the unsupervised trajectory (dashed black) exits.

closely when subject to input provided by the synthesized
controllers.

To also demonstrate practical feasibility of the proposed
controllers, we implemented them in real hardware and con-
ducted several experiments. Our testbed, shown in Fig. 10,
consists of a remote controlled car connected to a UDOO
board that gives velocity commands. On the UDOO board,
the controllers were executed at 100 Hz, which demonstrates
real-time feasibility of the proposed controllers. The same
testbed was used in [38], where further details about the
hardware are presented. A video is also available at http:
//youtu.be/i1w6BWMnTDE.

VII. DISCUSSION AND CONCLUSION

In this paper we formalized the ACC problem using a hybrid
dynamical system model and an LTL specification. Then, we
presented two solution approaches to synthesize correct-by-
construction control software for ACC. Both approaches rely
on fixed-point-based computation of a controller domain from
where the LTL specification can be enforced, one computing
such fixed-points directly on the continuous state-space, the
other on a finite-state abstraction of the nonlinear dynamics.
Each approach has certain advantages and disadvantages: (i)
Termination of fixed-point-based algorithms on continuous
state-spaces is not guaranteed whereas termination is always
guaranteed when working with finite-state abstractions. (ii)
Approximate finite-state abstractions can be computed directly
for nonlinear dynamics, whereas the current implementation
of the PCIS approach requires linearization of the dynamics
and error bounds between the actual model and the linearized
model. (iii) Changes in the system model parameters require
recomputing the finite-state abstractions in PESSOA, which
is the main computational bottleneck. Since PCIS does not
require computations of abstractions, overall computation time
for a controller is very short and is independent of different
model parameters. On the other hand, PESSOA can handle
arbitrary sets describing the atomic propositions in the spec-
ification; while intermediate steps in PCIS become computa-
tionally challenging when the atomic propositions correspond
to non-convex sets. (iv) It is currently not possible to handle
quantitative objectives in PESSOA, whereas the invariant-set

Fig. 10. Hardware testbed

based approach readily gives the designer the flexibility to
shape the transient behavior and encode “soft” constraints
through optimization. In this work, tracking objectives (i.e.,
velocity lower bounds in goal sets) were encoded as soft
constraints in PCIS.

We made some simplifying assumptions with regard to the
lead car behavior (A.1) and the number of cars within the
radar range (A.2). The assumptions in (A.1) cover a wide
variety of driving behaviors, therefore we believe they are
not particularly restrictive. Moreover, as demonstrated using
PCIS, it is possible to synthesize different controllers to see
the effects of the assumptions on the lead car behavior. On the
other hand, the assumption (A.2) is rather technical and was
adopted to avoid the pathological cases where lead cars cut
into the lane infinitely often in a way to prevent maintaining
the desired time headway while always staying in mode
M2. The synthesized controllers are still correct when this
assumption is relaxed to either (i) R2,2(v, h, vL) = D for all
(v, h, vL) ∈ V ×H×VL and there are finitely many resets, or
(ii) R2,2(v, h, vL) = G2 for all (v, h, vL) ∈ V ×H×VL. The
other way to eliminate this assumption is to properly adjust
the LTL formula (5) so that reaching and maintaining a time
headway is required only until the next reset.

For both approaches, we used discrete-time semantics of
LTL. This may lead to “small” safety violations in between
sampling times. However for both approaches, it is possible
to guarantee correctness with respect to continuous-time se-
mantics of LTL by properly shrinking the goal sets and safe
sets [39], [40]. Similarly, for simplicity, we ignored delays
in the measurements and possible sensor noise, which can be
incorporated into both approaches using ideas from [40].

Finally, it is worth noting that textual specifications are often
ambiguous, leading to multiple interpretations. Formalizing
specifications using temporal logics can help resolve such
ambiguity as it requires precise mathematical descriptions
of desired behavior and assumptions. We presented multiple
interpretations of the ACC specification and demonstrated,
using PESSOA, how the solution changes with different in-
terpretations of the specification.

It can happen that an ACC system cannot maintain safety
within specified limits on braking (e.g., (2)), such as in the
event of a car cutting dangerously close into a lane. In
this case, the ACC system is expected to alert the driver
through automated emergency braking and/or other feedback

http://youtu.be/i1w6BWMnTDE
http://youtu.be/i1w6BWMnTDE
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cues, and hand control of the vehicle back to the driver.
Another advantage of the presented correct-by-construction
controllers is that the safe set (i.e., control domain D) is
explicitly computed and thus conditions for passing control
to an emergency braking module are clearly defined.
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