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Abstract

This paper shows how controlled-invariant manifolds in hybrid dynamical
systems can be used to reduce the offline computational burden associated
with locally exponentially stabilizing periodic orbits. We recently introduced
a method to systematically select stabilizing feedback controllers for hybrid
periodic orbits from a family of parameterized control laws by solving offline
optimization problems. These problems search for controller parameters as
well as a set of Lyapunov matrices for the full-order hybrid systems. When
the method is applied to mechanical systems with high degrees of freedom
(DOF), the number of entries in the Lyapunov matrices may render the
numerical optimization problems prohibitively slow. To address this chal-
lenge, the paper considers a family of attractive and parameterized hybrid
zero dynamics (HZD) manifolds in the state space. It then investigates the
properties of the associated Poincaré map to translate the full-order optimiza-
tion framework to a reduced-order one on the parameterized HZD manifolds
with lower-dimensional Lyapunov matrices. In addition, the paper provides
a systematic approach to numerically compute the Jacobian linearization
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of the parameterized Poincaré map on the HZD manifolds. The power of
the proposed framework is demonstrated by designing a set of stabilizing
input-output linearizing controllers for walking gaits of an underactuated 3D
bipedal robot with 13 DOFs and 6 actuators. It is shown that the number of
decision variables in the reduced-order optimization problem can be reduced
by 70% compared to the full-order one.

Keywords: Hybrid Periodic Orbits, Hybrid Zero Dynamics Manifolds,
Reduced-Order Exponential Stabilization Problem, Poincaré Map,
Underactuated Bipedal Robots

1. Introduction

This paper presents a systematic framework to reduce the computational
burden in the design of feedback controllers that render periodic orbits of hy-
brid dynamical systems locally exponentially stable. By investigating prop-
erties of the Poincaré map, the paper breaks down the exponential stabi-
lization problem of hybrid periodic orbits for full-order models into a lower-
dimensional one defined for a family of parameterized zero dynamics models.
The framework can ameliorate specific challenges in the design of stabilizing
controllers for bipedal robots arising from high dimensionality and underactu-
ation. Specifically, the theoretical innovations are applied to design nonlinear
stabilizing controllers for walking gaits of an underactuated 3D bipedal robot
with 13 degrees of freedom (DOFs) and 6 actuators. It is shown that the
number of decision variables for the lower-dimensional problem is reduced by
70% compared to the one for the full-order model.

Models of bipedal walking robots are hybrid with continuous-time phases
to represent the right and left stance phases and discrete-time phases to
represent the contact of the swing leg end with the walking surface [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Our motivation is to design
stabilizing feedback controllers for 3D bipedal robots with high degrees of
freedom and underactuation, but the results we present apply to a broader
range of hybrid dynamical systems [18, 19, 20, 21].

The most basic tool for analyzing the stability of hybrid periodic orbits is
the Poincaré return map that describes the evolution of the hybrid model on
a hypersurface transversal to the orbits, referred to as the Poincaré section [2,
18, 22, 23]. An important drawback, however, is that in almost all practical
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cases, there is no closed-form expression for the Poincaré map and it must
be estimated numerically.

Previous work on bipedal walking has made use of a multi-level feed-
back control architecture in which parameters of a continuous-time controller
were updated in an event-based manner to achieve stable bipedal walking
[24, 25, 10, 26, 27, 28, 29, 30, 31, 32, 17, 33, 34]. One drawback of achiev-
ing stability via event-based controllers is the potentially large delay between
the occurrence of a disturbance and the event-based control effort in the next
steps. We have recently presented a systematic method to design continuous-
time controllers that provide robust stability of a given periodic orbit without
relying on event-based controllers [35, 36, 37]. This approach was numerically
and experimentally illustrated to design nonlinear stabilizing controllers for
stable walking of an underactuated 3D bipedal robot with point feet and 13
DOFs [35, 36, 38]. The video of our experiments is available online [39]. Ref-
erence [37] also extended the algorithm to design robust optimal controllers
for hybrid models of bipedal running. Our approach is mainly based on op-
timization techniques and matrix inequalities in the full-order state space.
Roughly speaking by employing a family of nonlinear controllers parameter-
ized by ξ, the evolution of the hybrid system on a Poincaré section S can be
described by a parameterized Poincaré map given by

x[k + 1] = P (x[k], ξ) , k = 0, 1, · · · (1)

whose fixed point x⋆ is assumed to be invariant under the choice of the con-
troller parameters ξ. When following the Poincaré analysis, the exponential
stabilization problem of the corresponding periodic orbit consists of finding
ξ such that the following matrix inequality

I (A(ξ),W, γ) :=

[
W A(ξ)W
⋆ (1− γ)W

]

> 0, (2)

is satisfied, in which A(ξ) ∈ R
(n−1)×(n−1) represents the Jacobian linearization

of the Poincaré map with respect to x, evaluated at the fixed point x⋆, n is
the order of the hybrid system, W = W⊤ > 0 is a Lyapunov matrix, and
γ > 0 denotes a scalar to tune the convergence rate. To look for a set of
controller parameters ξ, we then set up an optimization problem as follows
[35, 36, 37, 40]

min
(ξ,W,γ)

J (ξ, γ) (3)

s.t. I (A(ξ),W, γ) > 0 (4)
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for some smooth cost function J (., .). We see that the Lyapunov matrix

W contains n(n−1)
2

scalar entries. The optimization problem (3) and (4)

requires p + n(n−1)
2

+ 1 decision variables, where p represents the dimension
of the controller parameters ξ. When n is significantly large, the number
of the resulting Lyapunov variables becomes dominant and the optimization
problem may be computationally prohibitive. In order to reduce the number
of decision variables in the optimization framework, we are interested in
applying a change of coordinates in the state space as follows

x̂ :=

[
z
η

]

:= Ψ (x, ξ) (5)

to translate the optimization problem (3) and (4) into an equivalent one in
terms of a reduced-order Jacobian and lower-dimensional Lyapunov matrices
in the z-coordinates. This important numerical benefit of the coordinate
transform (5) also introduces an analytical challenge because the image of the
Poincaré section itself may now depend on the parameters, viz Ŝξ := T (S, ξ),
whereas previously the “state space” of the Poincaré map was independent
of the controller parameters.

The contribution of this paper is to present a systematic framework based
on the concept of hybrid invariant manifolds to reduce the number of deci-
sion variables in (3) and (4). The framework assumes a family of parameter-
ized output functions to be regulated for the continuous-time portion of the
hybrid system using input-output (I-O) linearizing controllers [41]. It also
assumes a family of parameterized event-based controllers. We remark that
these event-based laws are not utilized to stabilize orbits. They are instead
employed to make the corresponding parameterized zero dynamics manifolds
hybrid invariant under the reset map of the hybrid system. The paper then
investigates the structure of the parameterized Poincaré map. It presents
a systematic numerical approach to compute the Jacobian linearization of
the Poincaré map and then develops a reduced-order stability analysis on
a parameterized family of Poincaré sections. To illustrate the power of the
framework, it is finally applied to exponentially stabilize walking gaits of an
underactuated 3D bipedal robot with 13 DOFs. It is shown that the number
of decision variables in the reduced-order framework can be decreased by
70% compared to the optimization problem employed in [35].

For dynamical systems with hybrid invariant manifolds, [42] presented
a local coordinate transform under which the Jacobian linearization of the
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Poincaré map has a block upper triangular structure. It also provided con-
ditions under which the exponential stabilization problem of periodic orbits
for the full-order models can be translated to a reduced-order model based
on restricted Poincaré maps on the hybrid invariant manifolds. As alluded
to earlier, when the controller parameters intervene in the Poincaré sections
and hybrid invariant manifolds, the analysis of the restricted Poincaré maps
is more subtle. In particular, reference [42] did not investigate the stabi-
lization problem for a family of parameterized manifolds. In addition, it did
not consider the effect of output parameters as well as event-based update
laws on the Jacobian linearization of the Poincaré map. The current paper
first addresses these issues and subsequently presents a systematic numerical
approach to compute parameterized restricted Poincaré maps for a reduced-
order framework.

The paper is organized as follows. Section 2 presents open-loop hybrid
models. It develops family of parameterized I-O linearizing controllers and
event-based control laws. The properties of closed-loop hybrid systems and
Poincaré return map are also investigated in Section 2. Section 3 presents a
computational approach for the Jacobian linearization and reduced-order sta-
bilization framework. Section 4 extends the analytical results to the hybrid
models of bipedal walking and illustrates the method by determining sta-
bilizing controllers for an underactuated bipedal robot. Section 5 contains
concluding remarks.

2. Hybrid Model

We consider single-phase hybrid dynamical systems of a form that natu-
rally arises in bipedal walking as follows

Σ :

{

ẋ = f(x) + g(x) u, x− /∈ S

x+ = ∆(x−), x− ∈ S,
(6)

in which x ∈ X and u ∈ U represent the state variables and continuous-time
control inputs, respectively. The state manifold and set of admissible control
inputs are denoted by X ⊂ R

n and U ⊂ R
m for some positive integers n and

m. The continuous-time portion of the hybrid system is represented by the
ordinary differential equation (ODE) ẋ = f(x)+g(x) u, where the vector field
f : X → TX and columns of g (i.e., gj(x) for j = 1, · · · , m) are assumed to be
smooth (i.e., C∞). TX denotes the tangent bundle of the state manifold X .
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We further suppose that the distribution generated by the columns of g(x),
i.e., Ω(x) := span{g1(x), · · · , gm(x)}, is involutive. The discrete-time portion
of the hybrid system is also represented by x+ = ∆(x−), where ∆ : X → X
is a C∞ reset map, and x−(t) := limτրt x(τ) and x+(t) := limτցt x(τ) denote
the left and right limits of the state trajectory x(t), respectively. The guard
of the hybrid system is then given by the switching manifold

S := {x ∈ X | s(x) = 0, σ(x) < 0} (7)

on which the state solutions of the hybrid system (6) undergo an abrupt
change according to the reset map. Furthermore, s : X → R represents a
C∞ switching function with the property ∂s

∂x
(x) 6= 0 for all x ∈ S. Finally,

σ : X → R denotes a C∞ function to determine feasible switching events as
σ(x) < 0. The solutions of the hybrid system (6) are constructed by piecing
together the flows of the continuous-time phase such that the re-initialization
rule x+ = ∆(x−) is applied when the flows intersect the switching manifold
S. Throughout this paper, we shall assume that the solutions of (6) are right-
continuous. We further suppose that there exists a period-one orbit O for (6)
which is transversal to the switching manifold S. The precise assumptions
are as follows.

Assumption 1 (Transversal Period-One Orbit). There exist a bounded pe-
riod T ⋆ > 0 (referred to as the fundamental period), smooth nominal control
input u⋆ : [0, T ⋆] → U , and a smooth nominal state solution ϕ⋆ : [0, T ⋆] → X
such that the following conditions are satisfied:

1. ϕ̇⋆(t) = f(ϕ⋆(t)) + g(ϕ⋆(t)) u⋆(t) for all t ∈ [0, T ⋆];

2. ϕ⋆(t) /∈ S for all t ∈ [0, T ⋆) and ϕ⋆(T ⋆) ∈ S;

3. ϕ⋆(0) = ∆(ϕ⋆(T ⋆)) (periodicity condition); and

4. ṡ(ϕ⋆(T ⋆)) = ∂s
∂x
(ϕ⋆(T ⋆)) ϕ̇⋆(T ⋆) 6= 0 (transversality condition).

Then,
O := {x = ϕ⋆(t) | 0 ≤ t < T ⋆} (8)

is a period-one orbit for the hybrid system (6) which is transversal to the
switching manifold S. In addition,

{x⋆} := O ∩ S = {ϕ⋆(T ⋆)} (9)

is a singleton, in which O denotes the set closure of the orbit O.
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Throughout this paper, we shall consider O as the desired periodic orbit
to be stabilized and we will assume that there is a smooth and real-valued
function, referred to as the phasing variable, which is strictly increasing along
O. The phasing variable replaces time which is a key to obtaining time-
invariant feedback controllers to exponentially stabilize the periodic orbit.
In particular, it represents the progress of the system (e.g., robot) on the
periodic orbit (e.g., walking gait). The precise conditions are as follows.

Assumption 2 (Phasing Variable). There exists a smooth function θ : X →
R such that Lgjθ(x) = 0 for all x ∈ X and j = 1, · · · , m. Furthermore,
θ(x) is strictly increasing on the orbit O. In particular, there is an open
neighborhood of O, denoted by N (O) ⊂ X , such that for every x ∈ N (O),
θ̇(x) = Lfθ(x) > 0.

Reference [23] shows that the existence of a phasing variable follows di-
rectly from Assumption 1 on the periodic orbit.

2.1. Family of Parameterized I-O Linearizing Controllers

In order to exponentially stabilize the periodic orbit O, we consider a
parameterized family of output functions, to be regulated for the continuous-
time portion of the hybrid system, as follows

y := h (x, ξ, α) :=

{

fcn (x, ξ, α) , if θ(x) ≤ θth

fcn (x, ξ, α⋆) , otherwise,
(10)

in which dim(y) = dim(u) = m. The family of output functions in (10)
is defined in a piece-wise manner for which θ(x) = θth, a level set of the
phasing variable, determines the sub-domains in (10). Here θth ∈ (θmin, θmax)
denotes a threshold value, where θmin and θmax represent the limits of the
phasing variable on O, i.e., θmin := minx∈O θ(x) and θmax := maxx∈O θ(x).
In addition, the sub-function fcn : X × Ξ × A → R

m is parameterized by
two sets of parameters ξ and α. The first set includes the continuous-time
parameters ξ ∈ Ξ ⊂ R

pc, whereas the second set includes the discrete-time
parameters α ∈ A ⊂ R

pd for some connected and open sets Ξ and A and
some positive integers pc and pd. In addition, α⋆ ∈ A represents a nominal
discrete-time parameter based on which the sub-functions in (10) (i.e., for
θ ≤ θth and θ > θth) are differentiated.

Roles of the Output Parameters: In this stabilization strategy, the param-
eters ξ are identically constant. They will be selected by offline optimization
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with cost (3) and constraints (4) to render the fixed-point of a Poincaré map
locally exponentially stable. The parameters α, referred to as the event-based
parameters, will be kept constant during the continuous-time phase. How-
ever, they are allowed to be updated by an event-based update law when state
trajectories intersect the switching manifold S to generate a family of hybrid
invariant manifolds in the state space that will ultimately reduce the num-
ber of decision variables in the optimization problem (3) and (4). In what
follows, we will set up a required set of assumptions to follow this strategy.

Assumption 3 (Uniform Relative Degree). The family of parameterized
outputs in (10) fulfills the following conditions.

1. h is at least w-times differentiable with respect to (x, ξ) on N (O)× Ξ
for every α ∈ A and some w ≥ 2.

2. The sub-function fcn is at least w-times differentiable with respect to
α on A for every (x, ξ) ∈ N (O)× Ξ.

3. The output function h(x, ξ, α) has uniform relative degree r < w with
respect to u on N (O)× Ξ×A. That is,

LgjL
i
fh (x, ξ, α) = 0, and det

(
LgL

r−1
f h (x, ξ, α)

)
6= 0,

for all (x, ξ, α) ∈ N (O)×Ξ×A, i = 0, 1, · · · , r− 2, and j = 1, · · · , m.

4. For every (ξ, α) ∈ Ξ×A,

Z(ξ, α) := {x ∈ X |h(x, ξ, α) = Lfh(x, ξ, α) = · · · = Lr−1
f h(x, ξ, α) = 0}

(11)

is a nonempty set.

5. h(x, ξ, α⋆) is identically zero on the periodic orbit for every ξ ∈ Ξ, i.e.,
h (x, ξ, α⋆) = 0 for all (x, ξ) ∈ O × Ξ.

Assumption 3 presents the family of parameterized zero dynamics man-
ifolds (11) on which the output function h is identically zero. From Items
3 and 4 of Assumption 3, each member of this family is a k := n − rm
dimensional embedded sub-manifold of X . Furthermore, Item 5 of Assump-
tion 3 implies that O is an invariant subset for the family of zero dynamics
manifolds Z(ξ, α⋆) for all values of ξ, i.e., O ⊂ Z (ξ, α⋆) for all ξ ∈ Ξ (see
Fig. 1.a). This will help us to look for continuous-time parameters ξ without
changing the desired orbit. In order to clarify the idea, the following example
presents a family of parameterized output functions that satisfy Items 1, 2,
and 5 of Assumption 3.
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(a) (b)

Figure 1: (a) Geometric illustration of the periodic orbit O and family of zero dynamics
manifolds Z(ξ, α⋆) for four different continuous-time parameters ξ1, ξ2, ξ3, ξ4 ∈ Ξ. Here
α = α⋆ is fixed and from Item 5 of Assumption 3, O ⊂ Z(ξ, α⋆) for every ξ ∈ Ξ. (b)
Geometric description of the family of zero dynamics manifolds Z(ξ, α) for four different
discrete-time parameters α1, α2, α3, α4 ∈ A and a fixed ξ ∈ Ξ. According to the con-
struction procedure in Assumption 5, S ∩ Z(ξ, α) = S ∩ Z(ξ, α⋆) for every ξ ∈ Ξ and
α ∈ A.

Example 1. This example illustrates a parameterization of output functions
for which the outputs are constructed by adding nominal and corrective por-
tions as follows

h(x, ξ, α) = H(ξ) (x− xd (θ(x)))
︸ ︷︷ ︸

=:hnom(x,ξ)

−hcorr (θ(x), α) , (12)

where xd(θ) represents the desired evolution of the state variables on O in
terms of the phasing variable θ(x). In particular,

xd (θ) := ϕ⋆(t)
∣
∣
t=θ

−1(θ) , (13)

in which ϕ⋆(t) was already defined in Assumption 1, and θ = θ(t) and
t = θ

−1(θ) denote the evolution of the phasing variable on O and its in-
verse function, respectively. In (12), hnom(x, ξ) ∈ R

m also denotes a nominal
output function vanishing on the orbit O, and H(ξ) ∈ R

m×n represents a
parameterized output matrix to be determined. One can assume that ξ de-
notes the columns of the H matrix, i.e., ξ = vec(H), where vec(.) is the
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vectorization operator. The corrective term is then defined as

hcorr (θ, α) :=

{

b (θ, α) , if θ ≤ θth

b (θ, α⋆) , otherwise
(14)

to zero the output function (12) right after the switching event (this will be
clarified with more details in Section 2.2). To satisfy Items 1, 2, and 5 of
Assumption 3, the function b : R×A → R

m is finally assumed to be w-times
differentiable with respect to (θ, α) with the following properties:

1. b(θ, α⋆) ≡ 0 for some α⋆ ∈ A.

2. b(θth, α) =
∂b
∂θ
(θth, α) = · · · = ∂wb

∂θw
(θth, α) = 0 for every α ∈ A.

Using these properties, one can easily see that Item 5 of Assumption 3 is sat-
isfied. Furthermore, these properties make the piece-wise defined corrective
function in (14) w-times differentiable with respect to θ which in combination
with Assumption 2 fulfills Item 1 of Assumption 3.

Now we are in a position to present a diffeomorphism to investigate the
evolution of the hybrid system in a set of tangent and transverse coordinates.
The following assumption presents a valid change of coordinates for the state
space in which the tangent coordinates for the family of zero dynamics man-
ifolds in (11) are assumed to be independent of the value of the continuous-
and discrete-time parameters ξ and α.

Assumption 4 (Invariant Tangent Coordinates). There exists a smooth
function z : X → R

k, referred to as the tangent coordinates, with the property
Lgjz(x) = 0 for all j = 1, · · · , m such that the mapping Ψ : X ×Ξ×A → R

n

by

x̂ = Ψ(x, ξ, α) :=

[
z(x)

η(x, ξ, α)

]

(15)

is a diffeomorphism to its image, where

η (x, ξ, α) :=








h(x, ξ, α)
Lfh(x, ξ, α)

...
Lr−1
f h(x, ξ, α)







∈ R

rm. (16)

denotes the transverse coordinates.
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From the relative degree condition in Item 3 of Assumption 3, one can
present a valid change of coordinates, parameterized by (ξ, α), to repre-
sent the continuous-time portion of the hybrid system in a set of tangent
and transverse coordinates [41, Proposition 5.1.2]. However, Assumption 4
presents a special structure for the corresponding diffeomorphism by suppos-
ing that the tangent coordinates z(x) are independent of the value of the
output parameters (ξ, α). The motivation for this assumption comes from a
set of coordinates introduced in [26, Appendix A] to describe zero dynamics
of underactuated robots. This will help us to simplify the computation of the
parameterized Poincaré map and the stability analysis in Sections 2.3 and 3.
An example of a set of tangent coordinates satisfying this assumption will
also be presented for the numerical results of Section 4. We remark that the
transverse coordinates η(x, ξ, α) in Assumption 4 are free to be parameterized
by the output parameters.

In order to make the family of zero dynamics manifolds Z(ξ, α) attrac-
tive and forward invariant under the flow of the closed-loop continuous-time
phase, we now employ a family of parameterized nonlinear controllers, arising
from the standard I-O linearization technique [41], as follows

Γ (x, ξ, α) := −
(
LgL

r−1
f h (x, ξ, α)

)−1

(

Lr
fh (x, ξ, α) +

r−1∑

j=0

kj
εr−j

Lj
fh (x, ξ, α)

)

,

(17)
where ε > 0 and the constants kj for j = 0, 1, · · · , r− 1 are chosen such that
the monic polynomial χ(λ) := λr + kr−1λ

r−1 + · · · + k0 becomes Hurwitz.
Applying the feedback law (17) results in the output dynamics

y(r) +
kr−1

ε
y(r−1) + · · ·+

k0
εr
y = 0 (18)

for which the origin is exponentially stable1. In addition, the output dynam-
ics (18) can be written in the following compact equation

η̇ = F (ε) η (19)

1For every ε > 0, λ̄ is a root for χ(λ) = 0 if and only if 1
ε
λ̄ becomes a root for

χ(λ, ε) = λr + kr−1

ε
λr−1 + · · · + k0

εr
= 0. Therefore, χ(λ) is a Hurwitz polynomial if and

only if χ(λ, ε) is Hurwitz.
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in which F (ε) ∈ R
rm×rm is a Hurwitz matrix with the property limεց0 exp(F (ε) T ⋆) =

0 [42]. The tangent dynamics can then be given by

ż = f0 (z, η, ξ, α) , (20)

where [
f0 (z, η, ξ, α)

F (ε) η

]

=
∂Ψ

∂x
(x, ξ, α) f cl (x, ξ, α)

∣
∣
∣
x=Ψ−1(z,η,ξ,α)

and f cl(x, ξ, α) := f(x) + g(x) Γ(x, ξ, α) and Ψ−1(z, η, ξ, α) represent the
closed-loop vector field and inverse of the mapping (15), respectively. The
superscript “cl” also stands for the closed-loop system. For later purposes,
the family of the zero dynamics manifolds (11) can be rewritten as Z(ξ, α) =
{(z⊤, η⊤)⊤ | η = 0} for which the parameterized zero dynamics become

ż = f0(z, 0, ξ, α). (21)

2.2. Hybrid Invariance

This section investigates the hybrid invariance property of the parame-
terized zero dynamics manifolds Z(ξ, α). In particular, we present a set of
parameterized event-based update laws to make the family of zero dynamics
manifolds hybrid invariant under the flow of the closed-loop hybrid system.
For this purpose from Assumption 2, θ(x) is strictly increasing on O. Ac-
cording to the construction procedure of the output functions in (10) and
the fact that θth ∈ (θmin, θmax), one can conclude that the periodic orbit
O intersects the switching manifold S in the sub-domain θ(x) > θth, i.e.,
θ(x⋆) > θth. Thus, there is an open neighborhood B(x⋆) ⊂ N (O) of x⋆

such that for every (x, ξ, α) ∈ B(x⋆)× Ξ×A, θ(x) > θth, and consequently,
h(x, ξ, α) = h(x, ξ, α⋆) (see the structure of the output function in (10)).
This implies that for every (x, ξ, α) ∈ B(x⋆)×Ξ×A, x ∈ Z(ξ, α) if and only
if x ∈ Z(ξ, α⋆) (see Fig. 1.b). Now we are in a position to present the hybrid
invariance assumption for the family of zero dynamics manifolds.

Assumption 5 (Hybrid Invariance). We assume that for every fixed ξ ∈ Ξ,
the family of zero dynamics manifolds Z(ξ, α) has a nonempty and k −
1 dimensional intersection with the switching manifold S, shown by S ∩
Z(ξ, α⋆), which is independent of the value of the discrete-time parameters
α. That is,

S ∩ Z (ξ, α) = S ∩ Z(ξ, α⋆) 6= ∅, ∀α ∈ A (22)
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(see again Fig. 1.b). We further suppose that the hybrid invariance property
is satisfied. In particular, there exists a smooth and parameterized event-
based update law 2 v(z, ξ) ∈ A such that (1) it maps x⋆ to α⋆ for every ξ ∈ Ξ,
i.e.,

v (z (x⋆) , ξ) = α⋆, ∀ξ ∈ Ξ, (23)

and (2) for all x− ∈ S ∩ Z(ξ, α⋆) and ξ ∈ Ξ,

x+ ∈ Z
(
ξ, α+

)
, (24)

where x+ = ∆(x−) and
α+ = v

(
z
(
x−
)
, ξ
)
. (25)

Remark 1. Assumption 5 has important consequences. First, the diffeo-
morphism Ψ, restricted to B(x⋆), becomes independent of the discrete-time
parameters α and can be shown by Ψ(x, ξ, α⋆). This results in the following
local image of the switching manifold S under the mapping Ψ(x, ξ, α⋆),

Ŝξ :=
{
(z⊤, η⊤)⊤ | ŝ (z, η, ξ) = 0

}
, (26)

where ŝ(z, η, ξ) := s ◦ Ψ−1(z, η, ξ, α⋆). Second, the reset map ∆ can locally
be expressed in the (z, η) coordinates as follows

∆̂
(
z−, η−, ξ

)
:=

[
∆̂z (z

−, η−, ξ)

∆̂η (z
−, η−, ξ)

]

:= Ψ
(
∆
(
x−
)
, ξ, α+

)
∣
∣
∣x− = Ψ−1

(

z−, η−, ξ, α⋆
)

, α+ = v
(

z−, ξ
)

(27)

in which the subscripts “z” and “η” stand for the z and η coordinates, re-
spectively. For later purposes, we remark that Ŝξ and ∆̂(z−, η−, ξ) are only
parameterized by the continuous-time parameters ξ which will affect the
structure of the Jacobian matrix of the Poincaré map in Theorem 1.

2.3. Closed-Loop Hybrid Model and Poincaré Return Map

By employing the I-O linearizing controller (17) and the event-based up-
date law (25), the closed-loop hybrid model becomes

Σcl :







[
ẋ
α̇

]

=

[
f cl(x, ξ, α)

0

]

, x− /∈ S

[
x+

α+

]

=

[
∆(x−)

v (z (x−) , ξ)

]

, x− ∈ S,

(28)

2The event-based update law is only parameterized by the continuous-time parameters.
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where the discrete-time parameters α are kept constant during the continuous-
time phase, i.e., α̇ = 0 and are updated according to the event-based law
α+ = v(z(x−), ξ) on the switching manifold S. Here, the continuous-time
parameters ξ are assumed to be constant.

Lemma 1 (Invariant Periodic Orbit). Assume that Assumptions 1-5 are
satisfied. Then, O×{α⋆} is a period-one orbit for (28) which is transversal to
S×A. Furthermore, this orbit is independent of the value of the continuous-
time parameters ξ.

Proof. According to the construction procedure in Item 5 of Assumption
3, O ⊂ Z(ξ, α⋆) for all ξ ∈ Ξ. In addition from Item 3 of Assumption
3, the decoupling matrix is square and full rank, and the control driving
h(x, ξ, α⋆) to zero is unique on Z(ξ, α⋆) [41, pp. 226]. Hence, the control
Γ(x, ξ, α⋆), restricted to O, becomes independent of ξ. This fact together
with Assumption 4 and (23) implies that O×{α⋆} is an orbit of (28) for all
ξ ∈ Ξ. Transversality follows directly from Assumption 1.

For later purposes, the unique solution of the parameterized ODE ẋ =
f cl(x, ξ, α) (supposed to be at least C1) with the initial condition x(0) = x0

is denoted by ϕ(t, x0, ξ, α) for all t ≥ 0 in the maximal interval of existence.
The time-to-switching function T : X × Ξ×A → R>0 is also defined as the
first time at which the flow of the ODE intersects the switching manifold S,
that is,

T (x0, ξ, α) := inf {t > 0 |ϕ (t, x0, ξ, α) ∈ S} .

The evolution of the closed-loop hybrid system (28) on the Poincaré section
S ×A can then be described by the following discrete-time system

[
x[k + 1]
α[k + 1]

]

=

[
P (x[k], v (z (x[k]) , ξ) , ξ)

v (z (x[k]) , ξ)

]

, k = 0, 1, · · · , (29)

in which P : S ×A× Ξ → S by

P (x, α, ξ) := ϕ (T (∆(x), ξ, α) ,∆(x), ξ, α) (30)

denotes the parameterized Poincaré map. According to the construction pro-
cedure in Assumptions 3 and 4, and (23), (x⋆, α⋆) is an invariant fixed point
for the discrete-time system (29) under the change of the continuous-time
parameters ξ, i.e.,

[
P (x⋆, α⋆, ξ)
v (z (x⋆) , ξ)

]

=

[
x⋆

α⋆

]

, ∀ξ ∈ Ξ. (31)
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In order to reduce the dimension of the stabilization problem, we now con-
sider the discrete-time system (29) in the (z, η, α) coordinates as follows





z[k + 1]
η[k + 1]
α[k + 1]



 =





P̂z (z[k], η[k], v (z[k], ξ) , ξ)

P̂η (z[k], η[k], v (z[k], ξ) , ξ)
v (z[k], ξ)



 , (32)

where P̂ (., ., ., ξ) : Ŝξ ×A → Ŝξ is defined by3

P̂ (z, η, α, ξ) :=

[
P̂z (z, η, α, ξ)

P̂η (z, η, α, ξ)

]

:= Ψ
(
P
(
Ψ−1 (z, η, ξ, α⋆) , α, ξ

)
, ξ, α⋆

)
. (33)

Direct calculations shows that (32) is a Poincaré map for the following hybrid
system

Σ̂cl :











ż
η̇
α̇



 =





f0 (z, η, ξ, α)
F (ε) η

0



 ,

[
z−

η−

]

/∈ Ŝξ





z+

η+

α+



 =





∆̂z (z
−, η−, ξ)

∆̂η (z
−, η−, ξ)

v (z−, ξ)



 ,

[
z−

η−

]

∈ Ŝξ,

(34)

for which the Poincaré section Ŝξ × A is parameterized by ξ. Now we are
in a position to present the fundamental properties of the closed-loop hybrid
model (34) based on which the main results will be presented in Section 3.

Lemma 2 (Properties of the Closed-Loop Hybrid System). Under Assump-
tions 1-5, the following statements are correct.

1. (Invariant Image of the Orbit): The projection of the periodic orbit
O under the mapping Ψ(., ξ, α⋆) is independent of the value of the
continuous-time parameters ξ and can be given by Ô := Ôz × {0},
where Ôz := {z = ϕ̂⋆

z(t) | t ∈ [0, T ⋆)} and

[
ϕ̂⋆
z(t)
0

]

:= Ψ (ϕ⋆(t), ξ, α⋆) , ∀(t, ξ) ∈ [0, T ⋆]× Ξ. (35)

3In (33), we have made use of the assumption that Ψ and Ψ−1 on B(x⋆)∩S and Ŝξ do
not change by the discrete-time parameters α, respectively (see Remark 1).
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In particular, (z⋆⊤, 0)⊤ := Ψ(x⋆, ξ, α⋆) is independent of the choice of
ξ ∈ Ξ.

2. (Invariant Orbit): For every ξ ∈ Ξ, Ô × {α⋆} is a periodic orbit for
(34) which is transversal to Ŝξ × A. More specifically, the following
independence properties are satisfied

∂f0
∂ξ

(ϕ̂⋆
z(t), 0, ξ, α

⋆) = 0, ∀(t, ξ) ∈ [0, T ⋆]× Ξ (36)

∂ŝ

∂ξ
(z⋆, 0, ξ) = 0, ∀ξ ∈ Ξ (37)

∂∆̂z

∂ξ
(z⋆, 0, ξ) = 0, ∀ξ ∈ Ξ (38)

∂∆̂η

∂ξ
(z⋆, 0, ξ) = 0, ∀ξ ∈ Ξ. (39)

3. (Hybrid Invariance): ∆̂η(z
−, 0, ξ) = 0 for all ξ ∈ Ξ and z− in an open

neighborhood of z⋆.

Proof. Part (1): According to Item 5 of Assumption 3 and the construction
procedure in (16), one can conclude that η(x, ξ, α⋆) = 0 for all (x, ξ) ∈ O×Ξ.
In addition from Assumption 4, the tangent coordinates z(x) are independent
of the value of ξ. These two facts result in (35).

Part (2): From Lemma 1, O × {α⋆} is a transversal periodic orbit for
(28) which is independent of the value of ξ. This in combination with Part
(1) of Lemma 2 implies that Ô × {α⋆} is also a transversal4 orbit for (34).
Equations (36)-(39) are immediate consequences of the invariance property
with respect to ξ.

Part (3) follows directly from Assumption 5.

3. Main Results

The objective of this section is to present a reduced-order exponential sta-
bilization framework to systematically search for continuous-time parameters
ξ. The state space for the discrete-time system (32) is taken as Ŝξ×A which is
parameterized by ξ. This complicates the computation of the parameterized

4We remark that the transversality is invariant under the valid change of coordinates.
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Poincaré map as well as the stabilization problem when one looks for a set of
continuous-time parameters ξ using the optimization framework of (3) and
(4). To address these problems, this section introduces an augmented closed-
loop hybrid system whose Poincaré section is not parameterized by ξ. Next
it presents a asystematic way to numerically compute the Jacobian of the
corresponding parameterized Poincaré map. The resultant Jacobian matrix
is finally investigated to present a reduced-order stabilization framework.

To achieve the goals of this section, let us consider the following aug-
mented system in the (z, η, α, ξ) coordinates

Σ̂cl
a :













ż
η̇
α̇

ξ̇






=







f0(z, η, ξ, α)
F (ε) η

0
0






,







z−

η−

α−

ξ−







/∈ Ŝa







z+

η+

α+

ξ+






=







∆̂z (z
−, η−, ξ−)

∆̂η (z
−, η−, ξ−)

v (z−, ξ−)
ξ−






,







z−

η−

α−

ξ−






∈ Ŝa,

(40)

where ξ is now taken as one of the state variables,

Ŝa :=
{
(z⊤, η⊤, α⊤, ξ⊤)⊤ | ŝ (z, η, ξ) = 0

}
(41)

denotes an augmented switching manifold, and the subscript “a” stands for
the augmented system. In order to keep ξ constant, the evolution of ξ during
the continuous- and discrete-time phases of the augmented model (40) is
described by ξ̇ = 0 and ξ+ = ξ−, respectively. To study the stabilization
problem of the periodic orbitO for the closed-loop hybrid system, we consider
the augmented Poincaré return map for (40) which is defined as P̂a : Ŝa → Ŝa

by

P̂a (z, η, α, ξ) :=







P̂z (z, η, v (z, ξ) , ξ)

P̂η (z, η, v (z, ξ) , ξ)
v (z, ξ)

ξ






. (42)

The following theorem addresses the properties of the augmented Poincaré
map.

Theorem 1 (Properties of the Augmented Poincaré Map). Assume that
Assumptions 1-5 are satisfied. Then, the following statements are correct.
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1. (Augmented Orbit): For every ξ ∈ Ξ, Ôa := Ôz × {0} × {α⋆} × {ξ} is
a periodic orbit for the augmented hybrid system (40). Furthermore,
Ôa is transversal to Ŝa.

2. (Augmented Fixed Point): For every ξ ∈ Ξ, (z⋆⊤, 0, α⋆⊤, ξ⊤)⊤ is a fixed
point of P̂a, i.e., the fixed points are not isolated.

3. (Structure of the Augmented Jacobian Matrix): For every ξ ∈ Ξ, the
Jacobian of the Poincaré map P̂a, evaluated at (z⋆⊤, 0, α⋆⊤, ξ⊤)⊤, has
the following structure







DzP̂z (z
⋆, 0, α⋆, ξ) DηP̂z (z

⋆, 0, α⋆, ξ) 0 0

0 DηP̂η (z
⋆, 0, α⋆, ξ) 0 0

Dzv(z
⋆, ξ) 0 0 0

0 0 0 I






. (43)

Remark 2 (Geometric Description). According to the construction proce-
dure in (40) and Parts (1) and (2) of Theorem 1, one can present a geometric
description for the augmented orbit Ôa in the state space of the system (40)
(see Fig. 2). In this description, the augmented state space and augmented
switching manifold for Σ̂a are given by R

n×A×Ξ and Ŝa, respectively. When
ξ changes, the family of augmented orbits can form a cylinder as Ô×{α⋆}×Ξ.
For a fixed ξ ∈ Ξ, the intersections of the augmented switching manifold Ŝa

and the cylinder with the hyperplane ξ = const become Ŝξ and Ô×{α⋆}×{ξ},
respectively. We remark that these intersections coincide with the switching
manifold and periodic orbit of the closed-loop system Σ̂cl in (34). Item 3
of Theorem 1 presents a special structure for the Jacobian linearization of
the augmented Poincaré map in (43) which will simplify the stabilization
problem in Theorem 2. The problem of exponential stabilization consists of
finding the continuous-time parameters ξ such that the intersection of the
cylinder Ô × {α⋆}×Ξ with the hyperplane ξ = const becomes exponentially
stable for (34).

Proof. Parts (1) and (2) are immediate.
Part (3): Let us define the augmented state vector, closed-loop vector

field, reset map, and switching function as xa := (z⊤, η⊤, α⊤, ξ⊤)⊤, fa(xa) :=
(f⊤

0 , η
⊤F⊤, 0, 0)⊤, ∆a(xa) := (∆̂⊤

z , ∆̂
⊤
η , v

⊤, ξ⊤)⊤, and sa(xa) := ŝ, respec-
tively. In addition for a fixed ξ ∈ Ξ, the augmented nominal solution can be
represented by ϕ⋆

a(t) := (ϕ̂⋆⊤
z (t), 0, α⋆⊤, ξ⊤)⊤ for every t ∈ [0, T ⋆]. Next we

define the Jacobian matrix of the augmented closed-loop vector field along
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Figure 2: Geometric illustration of the augmented state space Rn×A×Ξ and augmented
switching manifold Ŝa for the closed-loop system Σ̂a in (40). The figure depicts the cylinder
Ô × {α⋆} × Ξ and a typical ξ = const hyperplane.

Ôa as follows

A(t) :=
∂fa
∂xa

(xa)
∣
∣
xa=ϕ⋆

a(t) , 0 ≤ t ≤ T ⋆. (44)

Suppose further Φ⋆
a(t) denotes the unique solution of the following matrix dif-

ferential equation, referred to as the variational equation (VE) [22, Appendix
B],

{

Φ̇⋆
a(t) = A(t) Φ⋆

a(t), 0 ≤ t ≤ T ⋆

Φ⋆
a(0) = I.

(45)

From the structure of fa and (36), one can conclude that

A(t) =







A11(t) A12(t) A13(t) 0
0 A22 0 0
0 0 0 0
0 0 0 0






, (46)

in which A11(t) :=
∂f0
∂z

(ϕ̂⋆
z(t), 0, ξ, α

⋆), A12(t) :=
∂f0
∂η

(ϕ̂⋆
z(t), 0, ξ, α

⋆), A13(t) :=
∂f0
∂α

(ϕ̂⋆
z(t), 0, ξ, α

⋆), and A22 := F . The structure of A(t) in (46) then results
in the following solution for the VE

Φ⋆
a(t) =







Φ⋆
11(t) Φ⋆

12(t) Φ⋆
13(t) 0

0 Φ⋆
22(t) 0 0

0 0 I 0
0 0 0 I






, (47)
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where

Φ̇⋆
11(t) = A11(t) Φ

⋆
11(t), Φ⋆

11(0) = I

Φ̇⋆
12(t) = A11(t) Φ

⋆
12(t) + A12(t) Φ

⋆
22(t), Φ⋆

12(0) = 0

Φ̇⋆
13(t) = A11(t) Φ

⋆
13(t) + A13(t), Φ⋆

13(0) = 0

Φ⋆
22(t) = exp(F (ε) t).

We now consider the saltation matrix

Πa := I −
fa (x

⋆
a)

∂sa
∂xa

(x⋆
a)

∂sa
∂xa

(x⋆
a) fa (x

⋆
a)
, (48)

in which x⋆
a := (z⋆⊤, 0, α⋆⊤, ξ⊤)⊤ denotes the augmented fixed point. Using

(37), the saltation matrix becomes

Πa =







Π11 Π12 0 0
0 I 0 0
0 0 I 0
0 0 0 I






, (49)

where

Π11 := I −
f0 (z

⋆, 0, ξ, α⋆) ∂ŝ
∂z

(z⋆, 0, ξ)
∂ŝ
∂z

(z⋆, 0, ξ) f0 (z⋆, 0, ξ, α⋆)
(50)

Π12 := −
f0 (z

⋆, 0, ξ, α⋆) ∂ŝ
∂η

(z⋆, 0, ξ)
∂ŝ
∂z

(z⋆, 0, ξ) f0 (z⋆, 0, ξ, α⋆)
. (51)

From (38), (39), (23), and Item 3 of Lemma 2, the Jacobian of the augmented
reset map, evaluated at x⋆

a, can be expressed as

Υa :=
∂∆a

∂xa

(x⋆
a) =







Υ11 Υ12 0 0
0 Υ22 0 0

Υ31 0 0 0
0 0 0 I






, (52)

in which Υ11 := ∂∆̂z

∂z
(z⋆, 0, ξ), Υ12 := ∂∆̂z

∂η
(z⋆, 0, ξ), Υ22 := ∂∆̂η

∂η
(z⋆, 0, ξ), and

Υ31 := ∂v
∂z
(z⋆, ξ). Finally, from [22, Appendix D], the Jacobian of the aug-

mented Poincaré map, evaluated at the fixed point x⋆
a, is given by

DPa (x
⋆
a) = Πa Φ

⋆
a (T

⋆) Υa (53)

20



which in combination with (47), (49), and (52) results in

DzP̂z (z
⋆, 0, α⋆, ξ) = Π11 {Φ

⋆
11 (T

⋆) Υ11 + Φ⋆
13 (T

⋆) Υ31} (54)

DηP̂z (z
⋆, 0, α⋆, ξ) = Π11 {Φ

⋆
11 (T

⋆) Υ12 + Φ⋆
12 (T

⋆) Υ22}+Π12Φ
⋆
22 (T

⋆) Υ22

(55)

DηP̂η (z
⋆, 0, α⋆, ξ) = Φ⋆

22 (T
⋆)Υ22 = exp (F (ε) T ⋆)Υ22. (56)

This completes the proof of Part (3).

Remark 3. Equations (54)-(56) together with Part (3) of Theorem 1 present
important improvements with respect to [42]. In particular, [42] did not con-
sider parameterized hybrid zero dynamics (HZD) manifolds. In addition, it
did not address the effect of the hybrid-invariance event-based controller on
the structure of the Jacobian matrix of the Poincaré map. From Part (3) of
Theorem 1, the contribution of the event-based controller on the Jacobian
matrix can now be seen in two different places. The first one is explicit
and includes the (3, 1) block of the Jacobian matrix, i.e., Dzv(z

∗, ξ). The
second place is implicit and includes the term Π11Φ

⋆
13 (T

⋆)Υ31 in (54) (tan-
gent coordinates). Finally, (54) presents a systematic approach to compute
the Jacobian of the parameterized restricted map as given in the following
corollary.

Corollary 1 (Numerical Approach for Computing the Parameterized Re-
stricted Poincaré Map). Consider the parameterized zero dynamics ż =
f0(z, 0, ξ, α) and let Φ⋆

11(t, ξ) and Φ⋆
13(t, ξ) denote the solution of the following

parameterized VEs

Φ̇⋆
11(t, ξ) =

∂f0
∂z

(z, 0, ξ, α⋆)
∣
∣
z=ϕ̂⋆

z(t) Φ⋆
11(t, ξ), Φ⋆

11(0, ξ) = I

Φ̇⋆
13(t, ξ) =

∂f0
∂z

(z, 0, ξ, α⋆)
∣
∣
z=ϕ̂⋆

z(t) Φ⋆
13(t, ξ) +

∂f0
∂α

(z, 0, ξ, α⋆)
∣
∣
z=ϕ̂⋆

z(t) , Φ⋆
13(0, ξ) = 0

for t ∈ [0, T ⋆]. Then, the Jacobian of the parameterized Poincaré map along
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the z-coordinates and restricted to Ŝξ∩Z(ξ, α⋆) can be computed as follows5

DzP̂z (z
⋆, 0, α⋆, ξ) = πproj(ξ) Π11(ξ)






Φ⋆

11(T
⋆, ξ) Υ11(ξ)

︸ ︷︷ ︸

Zero Dynamics Portion

+Φ⋆
13(T

⋆, ξ) Υ31(ξ)
︸ ︷︷ ︸

Event-based Portion






πlift(ξ),

(57)
in which Π11, Υ11, and Υ31 were defined in (50) and (52). In (57), we make
use of the notation “(ξ)” to highlight the dependence on ξ. Finally, πproj(ξ) ∈
R

(k−1)×k and πlift ∈ R
k×(k−1) are parameterized projection and lift matrices

satisfying the following conditions

πproj(ξ) πlift(ξ) = I(k−1)×(k−1) (58)

∂ŝ

∂z
(z⋆, 0, ξ) πlift(ξ) = 0. (59)

The following theorem makes use of the results of Theorem 1 and Corol-
lary 1 to present the reduced-order stabilization framework.

Theorem 2 (Reduced-Order Stabilization Framework). There exists ε̄ > 0
such that for all 0 < ε < ε̄ and ξ ∈ Ξ,

ρ
(

DzP̂z (z
⋆, 0, α⋆, ξ)

)

< 1 (60)

implies that

1. Ôa = Ôz × {0} × {α⋆} × {ξ} is stable for the augmented system (40);
and

2. Ôz × {0} × {α⋆} is exponentially stable for (34).

In our notation, ρ(.) denotes the spectral radius of a matrix.

Proof. See Appendix A.

Remark 4. Theorem 2 reduces the optimization problem (3) and (4) into
the following one

min
(ξ,Wz,γ)

J (ξ, γ) (61)

s.t. I
(

DzP̂z (z
⋆, 0, α⋆, ξ) ,Wz, γ

)

> 0, (62)

5In (54), DzP̂z (z
⋆, 0, α⋆, ξ) is considered from R

k into R
k. However here, we consider it

from the k− 1 dimensional tangent space T(z⋆,0)Ŝξ ∩Z(ξ, α⋆) back to T(z⋆,0)Ŝξ ∩Z(ξ, α⋆).
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in which Wz = W⊤
z ∈ R

(k−1)×(k−1) is a lower-dimensional positive definite
Lyapunov matrix. We remark that the optimization problem (61) and (62)

requires p+ k(k−1)
2

+ 1 decision variables rather than p+ n(n−1)
2

+ 1, required
for the original one in (3) and (4).

4. Application to Underactuated 3D Bipedal Walking

Virtual constraints are a set of kinematic relations among generalized co-
ordinates enforced asymptotically by continuous-time control inputs [2, 43,
7, 35, 36, 44, 45, 46, 28, 47, 48]. They are defined to coordinate the links of
bipedal robots within a stride. In this approach, a set of holonomic output
functions y(x) are defined for the continuous-time portion of the hybrid mod-
els of bipedal robots and then I-O linearizing controllers [41] are employed
to regulate the outputs. Virtual constraint controllers have been numerically
and experimentally validated for 2D and 3D underactuated bipedal robots
[46, 28, 16, 49, 26] as well as 2D powered prosthetic legs [45, 44, 50, 51]. For
mechanical systems with more than one degree of underactuation, the stabil-
ity of walking gaits depends on the choice of virtual constraints [35, 25]. Our
recent approach [35, 37] applied the optimization problem (3) and (4) for the
full-order hybrid systems to search for stabilizing virtual constraints. The
objective of this section is to employ the reduced-order optimization frame-
work (61) and (62) to systematically look for stabilizing virtual constraints
using a smaller set of decision variables.

For the purpose of this paper, we consider a parameterized family of
virtual constrains as follows

y(q, ξ, α) := H(ξ) (q − qd(θ))− hcorr(θ, α), (63)

where q and qd(θ) denote the generalized coordinates of the mechanical sys-
tem and their desired evolution on the periodic gait in terms of the phasing
variable θ, respectively. We remark that the virtual constraints in (63) have
the structure of the parameterized output functions presented in Example 1
for which the uniform relative degree is 2 (i.e., r = 2) due to the second-order
nature of the Lagrangian continuous-time models. H(ξ) q represents a set of
holonomic variables to be controlled, referred to as the controlled variables.
The objective is to search for the output matrix H(ξ), or equivalently the
controlled variables, to guarantee the exponential stability of periodic walk-
ing gaits. The corrective term here is defined in a piece-wise manner as given
in (14) for which b(θ, α) is taken as a Bézier polynomial analogous to [25].
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4.1. ATRIAS: An Underactuated 3D Bipedal Robot

ATRIAS is an underactuated bipedal robot designed for robust and en-
ergy efficient 3D walking. The robot’s structure includes a torso with two
identical legs terminating in point feet (see Fig. 3). More details about the
robot’s model can be found in [26, 52]. Two motors in series with harmonic
drives are used to drive each leg in the sagittal plane. In the frontal plane,
each of the hip joints is driven by a motor located in the torso. In total, the
robot has 6 brushless DC motors.

The orientation of the torso frame with respect to an inertial world frame
can be described by thee Euler angles qzT (yaw), qyT (roll), and qxT (pitch)
(see Fig. 3). In the sagittal plane, the angles of the shin and thigh links
with respect to the torso are denoted by q1R and q2R for the right leg and
q1L and q2L for the left leg. The angles of the corresponding harmonic drives
with respect to the torso are then represented by qgr1R, qgr2R, qgr1L, and qgr2L
(see again Fig. 3). The torques generated by the sagittal plane DC motors
are also denoted by u1R, u2R, u1L, and u2L. In the frontal plane, the angles
of the right and left hips with respect to the torso are represented by q3R
and q3L, respectively. Finally, u3R and u3L denote the corresponding torques
generated by the frontal plane DC motors.

During the single support phase, the robot has 13 DOFs. In particular,
the generalized coordinates vector can be expressed as

q :=
(
q⊤u , q

⊤
a

)⊤
∈ R

13, (64)

where qu and qa denote the unactuated and actuated DOFs, respectively,
defined as follows

qu := (qzT, qyT, qxT, q1R, q2R, q1L, q2L)
⊤ ∈ R

7 (65)

qa := (qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L)
⊤ ∈ R

6. (66)

The control input vector can also be given by

u := (u1R, u2R, u3R, u1L, u2L, u3L)
⊤ ∈ R

6. (67)

Based on the left-right symmetry, one can present an open-loop hybrid model
with one continuous-time phase, as given in (6), to describe the 3D walking
motion of ATRIAS [35, Theorem 4]. In particular, the evolution of the
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Figure 3: Sagittal and frontal planes of ATRIAS during the right stance phase with the
associated configuration variables [35]. The Euler angles describe the orientation of the
tors frame OTxTyTzT with respect to the world frame O0x0y0z0. The right figure is
a conceptual representation of series elastic actuators employed in the sagittal plane of
ATRIAS.

system during the continuous-time phase can be represented by the following
dynamics arising from the Euler-Lagrange equation

Duu(q) q̈u +Dua(q) q̈a +Nu(q, q̇) = 0 (68)

Dau(q) q̈u +Daa(q) q̈a +Na(q, q̇) = Ba u (69)

where Duu ∈ R
7×7, Dua ∈ R

7×6, Dau ∈ R
6×7, and Daa ∈ R

6×6 denote the
sub-matrices of the positive-definite mass-inertia matrix. Nu ∈ R

7 and Na ∈
R

6 represent the unactuated and actuated decomposition of the Coriolis,
centrifugal, gravity, and spring-damper terms. Furthermore, Ba ∈ R

6×6 is
the input distribution matrix with the property rankBa = 6. The reset map
∆ in (6) is also constructed based on the rigid and instantaneous impact
model of the swing leg end with the ground [1]. The switching manifold S
is finally chosen as the set of all state vectors x := (q⊤, q̇⊤)⊤ for which the
swing leg end contacts the flat ground.

4.2. Parameterized Zero Dynamics for ATRIAS

Using the motion planning algorithm of [26], a periodic gait is designed
for walking at the speed of 1.1 (m/s) to satisfy Assumption 1. The phasing
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variable θ is then defined as the angle of the virtual line connecting the stance
leg end to the hip joint in the sagittal plane to fulfill Assumption 2 (see Fig.
3). For the ATRIAS structure, θ is only a function of unactuated coordinates
and can be given by θ = θ(qu). The virtual constraints in (63) can then be
decomposed as follows

y(q, ξ, α) =
[
Hu(ξ) Ha(ξ)

]
[
qu − qud(θ)
qa − qad(θ)

]

− hcorr(θ, α)

= 0,

(70)

where Hu(ξ) ∈ R
6×7 and Ha(ξ) ∈ R

6×6 are the corresponding sub-matrices of
H(ξ) with the assumption rankHa(ξ) = 6 for every ξ ∈ Ξ. In addition, qud(θ)
and qad(θ) denote the desired evolutions of the unactuated and actuated
coordinates on the orbit O in terms of θ, respectively. From (70), one can
obtain the evolution of the actuated coordinates on the parameterized zero
dynamics manifold Z(ξ, α) in terms of (qu, ξ, α) as follows

qa = qad(θ)−H−1
a (ξ)Hu(ξ) (qu − qud(θ)) +H−1

a (ξ) hcorr(θ, α)

=: q̂ad(qu, ξ, α)
(71)

which results in the position lift map

q =

[
qu

q̂ad(qu, ξ, α)

]

=: q̂d(qu, ξ, α). (72)

Substituting (71) and (72) in (68) then results in the following 14-dimensional
parameterized zero dynamics

Dzero(qu, ξ, α) q̈u +Nzero(qu, q̇u, ξ, α) = 0, (73)

where

Dzero(qu, ξ, α) := Duu (q̂d(qu, ξ, α))

+Dua (q̂d(qu, ξ, α))
∂q̂ad
∂qu

(qu, ξ, α)

Nzero(qu, q̇u, ξ, α) := Nu

(

q̂d(qu, ξ, α), ˙̂qd(qu, q̇u, ξ, α)
)

+Dua (q̂d(qu, ξ, α))
∂

∂qu

(
∂q̂ad
∂qu

(qu, ξ, α) q̇u

)

q̇u.

Based on (73), the tangent coordinates can be chosen as z(x) := (q⊤u , q̇
⊤
u )

⊤ ∈
R

14 to satisfy Assumption 4. Finally for the ATRIAS structure, we remark
that the full and restricted Poincaré maps are 25- and 13-dimensional, re-
spectively.
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4.3. Numerical Results

For bipedal robots with yaw motion, there are two kinds of stability
during waling: full-state stability and stability-modulo yaw. The stability
modulo yaw refers to the stability in X \ S1, where S

1 := [0, 2π) denotes the
unit circle [5, 53] and “\” represents the set difference. We will apply the
reduced-order framework for the stability modulo yaw and full-state stability
in Sections 4.3.1 and 4.3.2, respectively. To solve the optimization problem
(61) and (62), we employ the bilinear matrix inequality (BMI) algorithm
developed in [35]. The algorithm is based on the sensitivity analysis and
BMIs for which the cost function is chosen as

J (ξ, γ) = −wγ +
1

2
‖ξ − ξ⋆‖22 , (74)

where ξ⋆ represents a nominal set of continuous-time parameters and w > 0
is a weighting factor. In addition, the algorithm approximates the nonlinear
matrix inequality (62) by a BMI based on its Taylor series expansion around
ξ⋆. The cost function (74) tries to improve the convergence rate while keeping
the continuous-time parameters close enough to the nominal ones to have
a good approximation for the Taylor series. To numerically solve the BMI
algorithm of [35], we then employ the PENBMI solver from TOMLAB [54, 55]
integrated with the MATLAB environment through the YALMIP [56]. For
the purpose of this paper, the nominal parameters ξ⋆, or equivalently the
nominal controlled variables, are chosen as

H⋆ q =











1
2
(qgr1R + qgr2R)

1
2
(qgr1L + qgr2L)
qgr2R − qgr1R
qgr2L − qgr1L

q3R
−qyT + q3L











. (75)

The first two components of the controlled variables in (75) represent the leg
angles for the right and left legs. The leg angle is defined as the angle between
the torso and the virtual line connecting the hip joint to the leg end. We
remark that for the ATRIAS structure, the legs are actuated through springs
and hence, the leg angles are defined at the outputs of the harmonic drives.
The third and fourth components of the controlled variables in (75) are then
taken as the right and left knee angles, respectively. The fifth and sixth
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components are finally defined in the frontal plane. In particular, the fifth
component represents the stance hip angle, whereas the sixth component is
defined as the absolute swing hip angle.

4.3.1. Stability Modulo Yaw

Corresponding to the nominal controlled variables given in (75), the
dominant eigenvalues of the 13-dimensional restricted Poincaré map become
{−1.3060,−1.000, 0.8815,−0.1221} and consequently, the gait is not stable.
From [35], the eigenvalue −1 corresponds to the yaw coordinates. We have
observed that the first four components of the controlled variables in (75) can
stabilize walking gaits for the planar (i.e., 2D) model of ATRIAS [26]. To
improve the stability of the gait, one can then focus on the lateral stability.
For this purpose, we let ξ = (ξ1, · · · , ξ6)⊤ ∈ R

6 only parameterize the second
column of the output matrix H that corresponds to the torso roll angle qyT.
In particular, we parameterize the output matrix as follows

H(ξ) = H⋆ +
6∑

i=1

Ei,2 ξi, (76)

where for every i ∈ {1, 2, · · · , 6}, Ei,2 ∈ R
6×13 is a matrix whose elements are

zero except the (i, 2) component. The reduced-order optimization framework
(61) and (62) then requires 6+ 14×13

2
+1 = 98 decision variables, whereas the

original one in (3) and (4) requires 6 + 26×25
2

+ 1 = 332 variables (i.e. 70%
decrease in the number of decision variables). A local optimal solution for
the BMI algorithm is numerically computed as follows

H(ξ) q =











1
2
(qgr1R + qgr2R)

1
2
(qgr1L + qgr2L)
qgr2R − qgr1R
qgr2L − qgr1L

q3R
−qyT + q3L











+











−0.5574
0.4878
−0.0162
0.0735
−0.2613
−0.3884











︸ ︷︷ ︸

ξ

qyT (77)

for which the dominant eigenvalues of the restricted Poincaré map become
{−1.0000, 0.7067,−0.1577±0.5296i}. Hence, the optimal controlled variables
in (77) exponentially stabilize the gait modulo yaw. Figure 4 depicts the
phase portraits of the closed-loop hybrid system during 100 consecutive steps.
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Figure 4: Phase portraits of the closed-loop hybrid system for the Euler angles and right
hip during 100 consecutive steps corresponding to the optimal solutions of (61) and (62)
for stability modulo yaw. The circles represent the initial condition of the simulator.

Here, the simulation starts at the beginning of the right stance phase on the
orbit. During the tenth step, an external horizontal force with a magnitude
of 100 (N) is applied to the COM of the robot in the frontal plane for 40% of
the step. Convergence to the periodic orbit in all coordinates except the yaw
motion is clear. We remark that the periodic gait O has been designed to
walk along the y-axis of the world frame which corresponds to the yaw angle
qzT being zero. However, since the orbit is exponentially stable modulo yaw,
the external force changes the direction of walking by shifting the phase
portrait in the yaw coordinates. The animation of this simulation can be
found at [57].

4.3.2. Full-State Stability

Starting with the optimized controlled variables in (77) as the nominal
parameters, we now consider the full-state stabilization problem. For this
purpose, we let ξ parameterize the first column of the H matrix that corre-
sponds to the yaw motion. In particular,

H(ξ) = Hopt +

6∑

i=1

Ei,1 ξi, (78)
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where Hopt represents the output matrix obtained in (77) for stability modulo
yaw. Furthermore for every i ∈ {1, 2, · · · , 6}, Ei,1 ∈ R

6×13 is a matrix whose
elements are zero except the (i, 1) component. For this set of output matrices,
the optimal controlled variables become

H(ξ) q =











1
2
(qgr1R + qgr2R)

1
2
(qgr1L + qgr2L)
qgr2R − qgr1R
qgr2L − qgr1L

q3R
−qyT + q3L











+











−0.5574
0.4878
−0.0162
0.0735
−0.2613
−0.3884











qyT +











0.2697
−0.1641
−0.0266
−0.0130
−0.1375
−0.0266











︸ ︷︷ ︸

ξ

qzT (79)

for which the dominant eigenvalues of the restricted Poincaré map are {0.7449,-
0.7154,-0.4938±0.3453i}. To confirm the numerical results, Fig. 5 represents
the phase portraits of the closed-loop system during 100 consecutive steps.
Here the simulation starts at the initial condition of Fig. 4. During the
tenth step, an external horizontal force with a magnitude of 100 (N) is ap-
plied to the COM of the robot in the frontal plane for 40% of the step. The
convergence to the periodic orbit even in the yaw coordinates is clear. The
animation of this simulation can be found at [57].

5. Conclusion

Hybrid systems have become a very common language for representing
the dynamics of bipedal robots and for posing feedback control design prob-
lems. For obvious reasons, equilibrium points are of less interest than peri-
odic orbits in such robots and thus this paper focuses on the stabilization of
periodic orbits through offline optimization. The quest for greater mobility
is driving an increase in the mechanical complexity of these robots, which
manifests itself in higher-dimensional dynamical models, and thus in opti-
mization problems with ever more variables. The key contribution of the
paper was to show how controlled-invariant manifolds in the hybrid setting
can be used to pare down the size of the optimization problem.

This paper introduced a reduced-order framework to exponentially stabi-
lize periodic orbits on a parameterized family of hybrid invariant manifolds.
Our previous work developed an optimization framework to systematically
choose stabilizing controllers from a family of parameterized feedback laws.
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Figure 5: Phase portraits of the closed-loop hybrid system for the Euler angles and right
hip during 100 consecutive steps corresponding to the optimal solutions of (61) and (62)
for full-state stability. The circles represent the initial condition of the simulator.

The optimization problem looks for controller parameters as well as a set
of Lyapuonv matrices to stabilize the orbits. One drawback of applying the
optimization problem for the full-order models is that for bipedal robots
with high DOFs, the number of entries in the Lyapunov matrices becomes
dominant that makes the stabilization problem prohibitive. To address this
challenge, the current paper assumed a family of parameterized output func-
tions to be regulated for the continuous-time portion of the hybrid system
using I-O linearizing controllers. In addition, it considered a family of param-
eterized event-based update laws to make the corresponding zero dynamics
manifolds hybrid invariant. We then investigated the properties of the pa-
rameterized Poincaré map to translate the full-order optimization problem
into a reduced-order one on the family of parameterized HZD manifolds.

The key features of the reduced-order framework are as follows: (1) it
accounts for underactuation; (2) it significantly reduces the number of deci-
sion variables for the optimization-based stabilization problem; (3) it inves-
tigates the effect of output parameters and event-based update laws on the
Poincaré map; and (4) finally the framework presents a systematic approach
to compute the Jacobian linearization of the parameterized Poincaré. To
illustrate the power of the algorithm, the paper then employed the reduced-
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order framework to systematically design stabilizing I-O linearizing controller
for walking gaits of a 3D bipedal robot with 13 DOFs and 7 degrees of un-
deractuation.

Appendix A. Proof of Theorem 2

By defining x1 := (z⊤, η⊤, α⊤)⊤ and x2 := ξ, the augmented hybrid sys-
tem (40) can be rewritten in the following compact form

Σ̂cl
a :







[
ẋ1

ẋ2

]

=

[
f1 (x1, x2)

0

]

,

[
x−
1

x−
2

]

/∈ Ŝa

[
x+
1

x+
2

]

=

[
∆1

(
x−
1 , x

−
2

)

x−
2

]

,

[
x−
1

x−
2

]

∈ Ŝa,

(A.1)

where f1 := (f⊤
0 , η

⊤F⊤, 0)⊤ and ∆1 := (∆̂⊤
z , ∆̂

⊤
η , v

⊤)⊤. Furthermore for every

x2, O1×{x2} is a period-one orbit of (A.1), in which O1 := Ôz×{0}×{α⋆}.
Using this new notation, the Jacobian of the Poincaré map in (43) can be
written as [

A11 0
0 I

]

,

where

A11 :=





DzP̂z (z
⋆, 0, α⋆, ξ) DηP̂z (z

⋆, 0, α⋆, ξ) 0

0 DηP̂η (z
⋆, 0, α⋆, ξ) 0

Dzv(z
⋆, ξ) 0 0



 .

Analogous to the analysis of [42], limεց0DηP̂η(z
⋆, 0, α⋆, ξ) = limεց0 exp(F (ε)T ⋆)Υ22 =

0, and hence from continuity of A11 with respect to ε, there is ε̄ > 0 such that
the dominant eigenvalues of A11 are determined by those of DzP̂z (z

⋆, ξ, α⋆, 0)
for all 0 < ε < ε̄. This fact in combination with (60) implies that A11 is Schur
stable, i.e., all eigenvalues of A11 lie inside the unit circle. Next, the decen-
tralized structure of the augmented Poincaré return map on Ŝa as

[
x1[k + 1]
x2[k + 1]

]

=

[
P1 (x1[k], x2[k])

x2[k]

]

guarantees the stability of the fixed point (x⋆⊤
1 , x⊤

2 )
⊤ for the fixed x2 = ξ,

where P1 := (P̂⊤
z , P̂⊤

η , v⊤)⊤ and x⋆
1 := (z⋆⊤, 0, α⋆⊤)⊤. In addition, x⋆

1 is
exponentially stable for x1[k + 1] = P1(x1[k], x2). Now, let us take a point
(x⊤

10, x
⊤
20)

⊤ ∈ Ŝa and denote the solution of the hybrid system, starting from
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the initial condition (∆⊤
1 (x10, x20), x

⊤
20)

⊤, by (ϕ⊤
1 (t), ϕ

⊤
2 (t))

⊤. Suppose further
that t1 represents the first time at which the solution intersects Ŝa. Then
applying inequality (C.6) of [58] implies that

sup
0≤t≤t1

dist

([
ϕ1(t)
ϕ2(t)

]

,O1 × {x2}

)

≤ L

∥
∥
∥
∥

[
x10 − x⋆

1

x20 − x2

]∥
∥
∥
∥

≤ L ‖x10 − x⋆
1‖+ L ‖x20 − x2‖ (A.2)

for some L > 0. Finally, one can apply the ǫ-δ requirements to show that x⋆
1

being exponentially stable for x1[k + 1] = P1(x1[k], x2) implies O1 × {x2} is
stable for (A.1). In particular for every ǫ > 0, there is δ > 0 such that

∥
∥
∥
∥

[
x10 − x⋆

1

x20 − x2

]∥
∥
∥
∥
< δ

results in

dist

([
ϕ1(t)
ϕ2(t)

]

,O1 × {x2}

)

< ǫ.

This completes the proof of Part (1). For Part (2) when x20 is set to x2,
ϕ2(t) ≡ x2 and hence, the inequality (A.2) reduces to

sup
0≤t≤t1

dist (ϕ1(t),O1) ≤ L ‖x10 − x⋆
1‖

which in turn guarantees the exponential stability of O1 for (34).
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