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Summary. This paper reviews and expands the class of hybrid zero dynamics
(HZD) controllers that induce stable running in bipedal robots and discusses re-
lated experiments conducted in September 2004 in Grenoble, France. In these ex-
periments, RABBIT, a five-link, four-actuator, planar bipedal robot, executed six
consecutive running steps. These steps were notably human-like, having a long stride
length (approx. 50 cm or 36% of body length), flight phases of significant duration
(approx. 100 ms or 25% of the step duration), an upright posture, and an average
forward rate of 0.6 m/s. A video is available at [8,18]. Validation of the theory’s pre-
diction that the running gait would be stable was not possible in the time available
for the experiments. Unmodeled dynamic and geometric effects that contributed to
the implementation difficulties are discussed.

1 Introduction

Designed and built as a platform to explore legged locomotion, RABBIT, a
five-link, four-actuator, planar, bipedal robot [2, 3] (see Fig. 1(a)), has pro-
vided a means to test conceptually new approaches to underactuated, active,
dynamic walking and running. Since March 2003, RABBIT has been used
to experimentally verify a mathematical framework for the systematic de-
sign, analysis, and optimization of controllers that induce stable walking gaits
in N -link planar bipedal robots with one degree of underactuation [9, 21].
Walking controllers designed within this framework act by enforcing virtual

constraints, which are holonomic constraints on the robot’s configuration that
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are asymptotically imposed through feedback control. The existence and sta-
bility properties of resulting periodic walking motions are analyzed on the
basis of the hybrid zero dynamics (HZD) of walking. The HZD of walking is
a two-dimensional, invariant, sub-dynamic of the full hybrid walking model
that arises from perfect enforcement of virtual constraints that satisfy certain
boundary conditions.

The next challenge for RABBIT is to achieve a stable running gait, that is,
a gait consisting of alternating phases of stance (one leg on the ground) and
flight (no contact with the ground). Recent work in [5,6] extends the method
of virtual constraints and the notion of an HZD to encompass stable running
in robots such as RABBIT. The developed control strategy is hybrid with both
continuous and event-based actions and leads to the deliberate creation of an
HZD of running. As in walking, the HZD of running is a low-dimensional, in-
variant, sub-dynamic of the full hybrid running model that arises from perfect
enforcement of virtual constraints that satisfy certain boundary conditions.

The present paper builds on the work of [6], establishing a new, larger
class of controllers that induce stable running. These modified controllers
are obtained by designing virtual constraints with fewer boundary conditions
than required to achieve an HZD, yielding running motions that are simpler
to design and control.

1.1 Related Work on Running Machines

Nearly twenty years ago, Raibert developed a series of 2D and 3D running ma-
chines that are more commonly called hoppers [17]. These hoppers employed
a three part controller regulating hopping height, foot touchdown angle, and
body attitude correction. The successful use of such a controller is tied to the
morphology of the hopper: a point mass at the end of an actuated, compliant
prismatic leg.

Recently, there have been a number of of successful demonstrations of
running in bipedal robots with revolute knees. In late 2003, both Iguana
Robotics and Sony announced (separate) experimental demonstrations of
running. Iguana Robotics’ controller was based on central pattern genera-
tors (CPGs) and Sony’s was based on the ZMP. In early 2004, running was
announced for HRP-2LR [14] using a controller based on “resolved momen-
tum”. In December 2004, Honda’s robot, ASIMO, achieved running at 3 km/h
(0.83 m/s) with a 50 ms flight phase using a controller based on “posture con-
trol”.

1.2 Outline

The remainder of the paper is a self-contained description of the theoreti-
cal development and hardware modifications leading up to the experiment in
which RABBIT took six consecutive running steps. Echoing [6, Sects. III and



Achieving Bipedal Running with RABBIT: Six Steps toward Infinity 3

(a) RABBIT

q1

q2

q3

q4

q5

(i) (ii) (iii)

xcm

ycm

y1

x1

y2

x2θs(q)

(b) Phases of running and coordinate conventions.

Fig. 1. RABBIT and the different phases of running with coordinate conventions
labeled. In (b), the robot is shown (i) at the end of the stance phase; (ii) during
flight; and (iii) at the beginning of the stance phase just after landing. To avoid
clutter, the coordinate conventions have been spread out over the stance and flight
phases. Angles are positive in the counter clockwise direction.

IV], Section 2 develops an open-loop model for RABBIT.5 Section 3 discusses
an extension to the control law given in [6]. Philosophy and motivation of the
modified control law are given in Section 3.1 with a detailed development of
the hybrid controller in Sections 3.2 to 3.6. The resulting closed-loop model
of RABBIT is given in Section 3.7 with a discussion of theoretical stability in
Section 3.8. Section 4 outlines a method for the design of stable gaits using
constrained nonlinear optimization and includes a numerical example. Sec-
tion 5 presents results from the first experimental implementation of running
on RABBIT and a discussion outlining a number of possible reasons why
stable running was not observed. Conclusions are drawn in Section 6.

2 Modeling

2.1 Assumptions and Terminology

RABBIT is modeled as a planar robot with five rigid massive links connected
by (four) actuated, frictionless, revolute joints. The model is subdivided into
two legs with identical physical properties, and a torso. The legs each consist
of two links, a thigh and a shank, and are connected to each other and the
single-link torso at the hips. Let qb := (q1, q2, q3, q4)

′ be the vector of actuated
body coordinates, q5 be the absolute coordinate that gives the robot’s abso-
lute orientation, and xcm and ycm be the cartesian coordinates that give the

5 In fact, the content of Section 2 is based entirely on [6, Sects. III and IV] and is
included for completeness.
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horizontal and vertical positions of the robot’s center of mass. See Fig. 1(b)
for a depiction of the robot’s morphology and coordinate convention.

The robot is said to be in flight phase when neither leg is in contact with
the ground, and in stance phase when one leg is in stationary contact with
the ground. The point of contact is modeled as an ideal pivot. During stance,
the leg contacting the ground is called the stance leg and the other is called
the swing leg. The transition from stance to flight is called takeoff and the
transition from flight to stance is called landing. In this context, (steady-state)
running is defined as a sequence of alternating stance and flight phases that
is symmetric with respect to the left and right legs stride-to-stride.6

2.2 Dynamics of Flight and Stance

In the flight phase, the robot has 7 DOF with generalized coordinates
qf := (q′b, q5, xcm, ycm)′. The equations of motion for this phase may be de-
rived using the method of Lagrange and written in the following form:

Df(qb)q̈f + Cf(qb, q̇f)q̇f + Gf(qf) = Bfu. (1)

Introducing the state vector xf := (q′f , q̇
′

f)
′, the model (1) is expressed as

ẋf = ff(xf) + gf(xf)u. (2)

The state space is taken as Xf = TQf = {xf = (q′f , q̇
′

f)
′ | qf ∈ Qf , q̇f ∈ IR7},

where the configuration space Qf is a simply-connected, open subset of IR7

corresponding to physically reasonable configurations of the robot.
In the stance phase, the stance leg end is fixed and, therefore, xcm and

ycm are no longer independent coordinates. Accordingly, the robot in stance
phase has 5 DOF with generalized coordinates q := (q′b, q5)

′. Similar to the
flight phase, the equations of motion may be written as

Ds(qb)q̈ + Cs(qb, q̇)q̇ + Gs(q) = Bsu. (3)

Note that (3) may be obtained by subjecting (1) to the constraint that one
leg end is in contact with the ground. Choosing the state vector xs := (q′, q̇′)′,
the model (3) may be expressed as

ẋs = fs(xs) + gs(xs)u. (4)

The state space is taken as Xs = TQs = {xs = (q′, q̇′)′ | q ∈ Qs, q̇ ∈ IR5},
where the configuration space Qs is a simply-connected, open subset of of IR5

corresponding to physically reasonable configurations of the robot.

6 The chosen definition of running is fundamental to the following model and con-
troller development. Other authors have defined running based on the motion of
the center of mass or the reaction force profile on the stance leg, for example
see [15].
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2.3 Transitions

Landing, the transition from the flight phase to the stance phase, is modeled as
a rigid impact. During this instantaneous event impulsive reaction forces from
the ground bring the velocity of the touchdown foot to zero without causing
it to rebound or slip. In addition, at the moment of landing, the robot’s
configuration remains unchanged, but joint velocities change instantaneously
[12]. The post-impact joint velocities7 are given by a function [6, Eq. (21)],

q̇+ = ∆̃(q−
f

, q̇−
f

). (5)

Since the gait is assumed to be symmetric from stride to stride (with re-
spect to the left and right legs) a state relabeling matrix R is used to swap leg
definitions (redefine the coordinates) at landing. The flight-to-stance transi-
tion operator, including state relabeling, is therefore defined as

x+
s = ∆s

f (x
−

f
) :=

[

R q−

R∆̃(q−
f

, q̇−
f

)

]

. (6)

This transition operator is applied when the end of the advancing leg touches
the ground, that is, when y2 = 0 (see Fig. 1(b)). Define the function, Hs

f :
TQf → IR by Hs

f (xf) := y2, so that Hs
f (xf) = 0 characterizes the transition

hypersurface surface within TQf .
The transition from stance to flight is also modeled as an instantaneous

event, but one on which positions and velocities are unchanged,

x+

f
= ∆f

s(x
−

s ) :=













[

q−

fcm(q−)

]

[

q̇−

∂
∂q

fcm(q−) q̇−

]













. (7)

where fcm(q) := (xcm(q), ycm(q))′ gives the location of the center of mass.
The transition from stance into flight is treated as a control decision because
the flight phase is initiated (at will) by accelerating the stance leg off the
ground. Thus, a description of the transition hypersurface, S f

s , as a level set
of a function H f

s (xs) : TQs → IR is included as part of the control law.

7 The terms x−

f
:= (q−

′

f
, q̇−

′

f
)′ and x+

s := (q+′

, q̇+′

)′ refer to the system state

just before and just after the landing event. The terms x−

s := (q−
′

, q̇−
′

)′ and

x+

f
:= (q+′

f
, q̇+′

f
)′ refer to the system state just before and just after the takeoff

event. The addition of the superscript “ ∗” (such as x+∗

f
) indicates reference to

the value at steady-state, i.e., on the periodic orbit.
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2.4 A Hybrid, Open-Loop Model of Running

The stance and flight dynamic models may be represented compactly, along
with their transition models, as a discrete-event system with two charts (ter-
minology taken from [10]). This open-loop hybrid model is specified by charts
Σf and Σs where for (i, j) ∈ {(f, s), (s, f)}, Σi = {Xi,Fi,S

j
i , T j

i },

1. Xi is a state manifold, which is 10 dimensional in stance and 14 dimen-
sional in flight;

2. Fi is a flow on the state manifold, a differential equation describing the
in-phase motion on Xi;

3. Sj
i is a switching hypersurface, a hypersurface of Xi corresponding to tran-

sition from one state manifold to another; and
4. T j

i is a transition map giving initial conditions for the next continuous
phase.

In this notation, the open-loop hybrid model is

Σf :



























Xf = TQf

Ff : (ẋf) = ff(xf) + gf(xf)u

Ss
f = {xf ∈ TQf | Hs

f (xf) = 0}

T s
f : x+

s = ∆s
f (x

−

f
)

(8a)

Σs :



























Xs = TQs

Fs : (ẋs) = fs(xs) + gs(xs)u

Sf
s = {xs ∈ TQs | H f

s (xs) = 0}

T f
s : x+

f
= ∆f

s(x
−

s ).

(8b)

3 Control Methodology

3.1 Summary and Philosophy

The overall philosophy of HZD control is to use the freedom available in feed-
back design to achieve a parameterized family of closed-loop systems whose
stability analysis is analytically tractable. This allows the use of numerical
optimization to search among the family of closed-loop systems to find those
that yield a desired behavior, such as stable running at a pre-determined
speed, with upper bounds on peak actuator power and the coefficient of static
friction between the leg end and ground.

Parameterization is achieved through the use of virtual constraints in both
the stance and flight phases. Perfect enforcement of virtual constraints results
in low-dimensional surfaces that are invariant under the differential equations
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of the closed-loop model8 and are also invariant under the transition maps.9

To achieve the invariance at landing, a deadbeat action is incorporated in
the flight phase controller that steers the robot to land in a pre-determined
configuration, while respecting conservation of angular momentum about the
robot’s center of mass. This hybrid controller creates a one DOF HZD that
allows the stability of a running motion to be analyzed in closed form on the
basis of a one-dimensional Poincaré map.

In the first running experiment attempted on RABBIT, there was not
sufficient time10 to implement completely the controller of [6]. The controller
that was implemented used virtual constraints in the both the stance and
flight phases, but the deadbeat action of the flight phase controller was not
implemented to regulate the final configuration of the robot at touchdown.
Instead, to account for the changing configuration of the robot at touchdown,
the transition controller of [20] was adopted.

In the next sections, the controller that was used in the running experiment
is detailed. This controller does not create a one DOF HZD, and thus the
stability analysis of [6] must be modified; the key points of the analysis are
highlighted in Section 3.8.

3.2 Preliminaries on virtual constraints

Since RABBIT has four independent actuators (two at the hips and two and
the knees), four virtual constraints may be imposed in both the stance and
flight phases. To define them, consider a function pair {θ(q), hd(θ)}, where
θ : Q → IR is a monotonic scalar function of the configuration variables, and
hd : IR → IR4 is a function giving the desired configuration of the actuated
joints as a function of θ. The virtual constraints are expressed as outputs of
(8),

y = h(q) := qb − hd ◦ θ(q). (9)

The output (9) is zeroed by the action of a state feedback controller. The
design of such a controller is a well-understood, standard problem of nonlinear
control [13].

For purposes of design, the virtual constraints are parameterized [6]. For
notational convenience, the stance phase and flight phase virtual constraints
will be parameterized separately by as and af , respectively. These parameter
sets, which lie in the parameter spaces As := IRns and Af := IRnf , may be

8 “Invariant” in this sense means that if the differential equation is initialized on
the constraint surface, then its solution remains on the constraint surface until a
transition occurs.

9 “Invariant” in this sense means that if the solution is on the flight phase
(resp. stance phase) constraint surface at touchdown (resp. takeoff), then after
transition the solution will be contained in the stance phase (resp. flight phase)
constraint surface.

10 A total of two weeks were available to perform the experiments.



8 B. Morris, E.R. Westervelt, C. Chevallereau, G. Buche, and J.W. Grizzle

updated at takeoff and landing events but are otherwise constant. With this
notation, the virtual constraints for stance and flight are, respectively,11

y = qb − hd,s[as](θs(q)) (10a)

y = qb − hd,f [af ](θf [af ](qf)). (10b)

3.3 Stance phase control

The controller for the stance phase acts by updating the parameters as and
by enforcing the virtual constraints (10a). As a result of enforcing the vir-
tual constraints, in stance phase, the robot behaves as an unactuated 1 DOF
system whose properties may be tuned by choosing different constraint pa-
rameters. Apart from different boundary conditions on the virtual constraints,
this control is identical to the walking controllers developed in [19, 21]. The
set of parameters as is detailed next.

The stance phase parameter vector, as, may be expressed as the vector

as := (a′

s,0, a′

s,1, . . . , a′

s,ms−1, a′

s,ms
, θ−s , θ+

s )′ (11)

where ms ≥ 3, as,i ∈ IR4 for i ∈ {0, 1, . . . ,ms − 1,ms}, and θ−s , θ+
s ∈ IR. Note

that ns = 4 (ms + 1) + 2. The terms θ−s and θ+
s are the values of the function

θs(q) evaluated at the end and the beginning of the stance phase. In [19, 21],
hd is expressed in terms of Bézier polynomials. Here, a slightly different class
of polynomials is used. These polynomials satisfy the following:12

hd,s[as](θ
+
s ) = as,0

d
dθs

hd,s[as](θ
−

s ) = as,ms−1

d
dθs

hd,s[as](θ
+
s ) = as,1 hd,s[as](θ

−

s ) = as,ms
.

(12)

The stance phase virtual constraints are imposed on the dynamics by using
a control us : Xs → IR4 that drives (10a) to zero in finite time. The specific
assumptions are as in [9, 21].

3.4 Flight phase control

The development of the flight phase controller is similar to that of the stance
phase controller. The key difference is the choice of θf in (10b) to be a function
of the position of the center of mass. The flight phase parameter vector, af , is
defined as

af := (a′

f,0, a′

f,1, . . . , a′

f,mf−1, a′

f,mf
, x+

cm,f , ẋ+

cm,f , Tf)
′ (13)

11 Terms that are constant during the continuous phases of motion, and potentially
updated at phase transitions, will be considered parameters and enclosed in square
brackets.

12 In fact, any class of smooth functions satisfying these properties may be used to
define virtual constraints.
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where mf ≥ 3, af,i ∈ IR4 for i ∈ {0, 1, . . . ,mf−1,mf}, and x+

cm,f , ẋ
+

cm,f , Tf ∈ IR.

Note that nf = 4 (mf +1)+3. The terms x+

cm,f , ẋ+

cm,f , and Tf are, respectively,
the horizontal position of the center of mass at the beginning of the flight
phase, the horizontal velocity of the center of mass at the beginning of the
flight phase, and the estimated13 duration of the flight phase. The flight phase
virtual constraints (10b) are given by

θf [af ](qf) :=
1

Tf

(

xcm − x+

cm,f

ẋ+

cm,f

)

, (14)

and hd,f [af ], which, as in the stance phase, is a smooth, vector-valued function
that satisfies

hd,f [af ](0) = af,0
d

dθf

hd,f [af ](1) = af,mf−1

d
dθf

hd,f [af ](0) = af,1 hd,f [af ](1) = af,mf
.

(15)

For a given stride, let tf denote elapsed time within the flight phase. By
conservation of linear momentum, ẋ+

cm,f is constant during flight, which implies

tf = (xcm − x+

cm,f)/ẋ
+

cm,f . Therefore, under the given assumptions, θf = tf/Tf

is a valid substitute for (14), and for this reason, the given flight phase virtual
constraints are said to be time scaled. Flight phase virtual constraints are
enforced using any smooth state feedback controller uf : Xf → IR4 that drives
(10b) to zero exponentially quickly.

Note that finite-time convergence is not used in the flight phase. To per-
form reduced-order stability analysis similar to that outlined in Section 3.8,
a finite-time converging controller must be used in either the stance or the
flight phase. A finite-time controller is used in the stance phase to render the
stance phase constraint surface finite-time attractive so that the analysis of
running will be similar to that of walking [9]. For further discussion of this
point, refer to Section 3.8.

3.5 Transition control: landing

In the event that landing occurs with the state of the robot not satisfy-
ing the virtual constraints, the control parameters of the subsequent stance
phase, as, are updated to ensure that the configuration of the robot satisfies
qb − hd,s[as](θ

+
s ) = 0. The parameter updates are governed by the differen-

tiable function ws
f : Ss

f → As, such that for as = ws
f (x

−

f
),

13 Calculation of Tf requires the height of the center of mass at landing, y−

cm,f
to

be known a priori, which is only possible if the virtual constraints are exactly
enforced throughout the flight phase.



10 B. Morris, E.R. Westervelt, C. Chevallereau, G. Buche, and J.W. Grizzle

as,0 = q+

b,s

as,1 = a∗

s,1

...

as,ms−1 = a∗

s,ms−1

as,ms
= a∗

s,ms
.

θ+
s = θs(q

+)

θ−s = θ−∗

s

(16)

In the above, q+ is calculated using ∆s
f (x

−∗

f
), and the terms θ−∗

s and a∗

s,i ∈ IR4,
i ∈ {1, . . . ,ms − 1,ms} are constant parameters chosen during design.

If the stance phase finite-time controller can satisfy the virtual constraints
(10a) before the liftoff event occurs, and the parameter updates obey (16),
then the stance phase will terminate with qb − hd,s[as](θ

−

s ) = 0, or equiva-
lently, with q− = q−∗.

3.6 Transition control: takeoff

At takeoff, the parameters of the flight phase virtual constraints, af , are up-
dated so that the duration of the planned motion of the robot is equal to
the estimated flight time. Parameter updates are governed by a continuously
differentiable function wf

s : Sf
s → Af , such that for af = wf

s(x
−

s ),

af,0 = a∗

f,0

af,1 = a∗

f,1

...

af,mf−1 = a∗

f,mf−1

af,mf
= a∗

f,mf

x+

cm,f = (fcm(q−))
1

ẋ+

cm,f =

(

∂fcm

∂q
(q−) q̇−

)

1

Tf =
ẏ+

cm,f

g
+

√

(ẏ+

cm,f)
2 − 2g(y−∗

cm,f − y+

cm,f)

g
.

(17)

where, g is the magnitude of acceleration of gravity and y−∗

cm,f is the height of
the center of mass at the end of the flight phase on the limit cycle. The terms
a∗

f,i ∈ IR4, i ∈ {0, 1, . . . ,mf − 1,mf} are parameters chosen during design.
Initiation of the takeoff event is a control decision, designated to occur when
θs(q) = θ−s . In the open loop model (8), the switching hypersurface is therefore
given by S f

s = {(xs, as) ∈ Xs × As | H f
s (xs, as) = 0} where H f

s (xs, as) :=
θs(q) − θ−s .

3.7 Resulting closed-loop model of running

To form the closed-loop model of running, the state space of the open-loop
model, (8), is enlarged to include the parameters of the flight and stance
phases. Define the augmented state spaces X̄f := TQf×Af and X̄s := TQs×As
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with elements given by x̄f := (q′f , q̇
′

f , a
′

f)
′ and x̄s := (q′, q̇′, a′

s)
′. The closed-loop

dynamics may then be written as

f̄f(x̄f) :=

[

ff(xf) + gf(xf)uf(xf)

0nf×1

]

(18a)

f̄s(x̄s) :=

[

fs(xs) + gs(xs)us(xs)

0ns×1

]

. (18b)

The zero vectors reflect that the virtual constraint parameters do not change
during the continuous phases of running. The impact maps, in which the
parameters are updated, are modified to include the parameter update laws,
ws

f and wf
s:

∆̄s
f (x̄

−

f
) :=

[

∆s
f (x

−

f
)

ws
f (x

−

f
)

]

(19a)

∆̄f
s(x̄

−

s ) :=

[

∆f
s(x

−

s )

wf
s(x

−

s )

]

. (19b)

The closed-loop hybrid model is then

Σcl,f :



























X̄f = TQf ×Af

F̄f : ( ˙̄xf) = f̄f(x̄f)

S̄s
f = {(xf , af) ∈ X̄f | Hs

f (xf) = 0}

T̄ s
f : x̄+

f
= ∆̄s

f (x̄
−

f
)

(20a)

Σcl,s :



























X̄s = TQs ×As

F̄s : ( ˙̄xs) = f̄s(x̄s)

S̄f
s = {(xs, as) ∈ X̄s | H f

s (xs, as) = 0}

T̄ f
s : x̄+

s = ∆̄f
s(x̄

−

s ).

(20b)

3.8 Existence and stability of periodic orbits

Analysis on running shows that asymptotically stable orbits of the HZD are
asymptotically stabilizable orbits of the full-order hybrid model (equivalently,
stabilizable running gaits) [6]. Using the idea of a restricted Poincaré return

map—the Poincaré return map associated with the HZD—explicit criteria are
given for determining the existence and stability of periodic orbits.

The Poincaré return map is a well-known tool for determining the existence
of periodic orbits and their stability properties; for its use in hybrid systems,
see for example [7, 9, 11, 16]. Its application to periodic orbits of (20) can be
carried out using the results in [9] and a construction presented in [6, Thm. 1].
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Since through development of these ideas would consume more space than is
available, the main ideas are only sketched.

The first step is to construct a system with impulse effects (that is, a single-
chart hybrid model) that has the same Poincaré map as (20). Following [6,
Eq. (62)], define

Σcl :

{

˙̄x(t) = f̄s(x̄(t)) x−(t) 6∈ S̄

x̄+(t) = ∆̄(x̄−(t)) x̄−(t) ∈ S̄,
(21)

where S̄ := S̄f
s , ∆ := ∆̄s

f ◦Pf , and Pf is the flow of the closed-loop flight phase
model (see [6, Eq. (59)]). In words, this system consists of the differential
equation of the closed-loop stance phase model of (20) and a generalized
impact map ∆̄ that includes the transition map from stance to flight, the flight
phase dynamics, and the impact map from flight to stance. The generalized
impact map is the result of event-based sampling the solution of (20) from
takeoff to landing.

Because the virtual constraints in the stance phase are achieved with a
continuous finite-time controller [1], the reduction technique of [9, Thm. 2] is
applicable. Because the parameter updates in the stance phase can be com-
puted in terms of the state of the robot at takeoff, the analysis of periodic
orbits can be reduced to the computation of a one-dimensional restricted
Poincaré map, ρ, having S f

s as a Poincaré section.

4 Design of Running Motions with Optimization

4.1 Optimization parameters

In designing a gait, a numerical routine is used to search the parameter spaces
As and Af for a set of parameters that results in a desirable gait (periodic orbit
of (20)). Common requirements on the gait are achieved by incorporating con-
straints into the numerical search. Such constraints address actuator limits,
allowable joint space, and unilateral ground-contact forces. The constraints
also ensure steady-state running at a certain speed and overall efficiency of
the gait. For the experiments reported here, the gait was designed using an op-
timization approach that combined the ideas of [4] and [21]; the optimization
was performed directly on the parameters of the virtual constraints in order
to simultaneously determine a periodic running motion and a controller that
achieves it. This is in contrast with the approach of [6] where virtual con-
straints are designed by regression against optimal, pre-computed, periodic
trajectories.

Virtual constraints are assumed to be identically satisfied on the periodic
orbit, which has two consequences: First, the integration of the closed-loop
system dynamics can be performed using the stance and flight phase zero dy-
namics (see [6] for details), resulting in short computation times; and second,
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the virtual constraint parameters, as and af , are not independent. Once the
independent parameters have been identified, standard numerical optimiza-
tion routines may be used to search for desirable gaits. The implementation
of such a procedure is outlined in the following subsections.

4.2 Boundary conditions of the virtual constraints

Periodicity at takeoff and landing results in constraints between the virtual
constraint parameter vectors as and af . Given the state corresponding to the
end of the limit-cycle stance phase, x−∗

s = (q−∗, q̇−∗), the state at the begin-
ning of the subsequent flight phase may be computed as x+∗

f
= (q+∗

f
, q̇+∗

f
) =

∆f
s(x

−∗

s ). For both x−∗

s and x+∗

f
to satisfy the virtual constraints of their

respective phases, the following relations must hold,

a∗

s,ms−1 = q̇−∗

b,s /θ̇−∗

s a∗

f,0 = q+∗

b,f

a∗

s,ms
= q−∗

b,s a∗

f,1 = q̇+∗

b,f T ∗

f ,
(22)

which are derived by applying (12), (14), (15), and (17) to (10). These are
the boundary conditions associated with the liftoff event of the periodic or-
bit. To find the boundary conditions associated with the landing event of the
periodic orbit, consider the state of the robot corresponding to the beginning
of the stance phase, x+∗

s = (q+∗, q̇+∗). This can be related to the state cor-
responding to the end of the previous flight phase by inverting the landing
map x−∗

f
= (q−∗

f
, q̇−∗

f
) = (∆s

f )
−1(x+∗

s ), yielding the following additional design
constraints,

a∗

s,0 = q+∗

b,s a∗

f,mf−1 = q̇−∗

b,f T ∗

f

a∗

s,1 = q̇+∗

b,s /θ̇+∗

s a∗

f,mf
= q−∗

b,f .
(23)

The controller presented in this paper requires fewer boundary conditions
than the HZD of running presented in [6]. To design virtual constraints for
an HZD of running, boundary conditions are associated not only with the
periodic orbit, but also with the the constraint surfaces of stance and flight.
The additional boundary conditions associated with takeoff are satisfied by
(22). The additional boundary conditions of landing are more difficult to meet
because of conservation of angular momentum in the flight phase. The main
theoretical result of this paper is that invariance of the flight and stance
phase constraint surfaces over the landing event is not a necessary condition
for achieving provably stable running. As noted earlier, relaxing this condition
makes running motions significantly easier to design.

4.3 Optimization algorithm details

Trial gaits for the running experiments were generated using the constrained
nonlinear optimization routine fmincon of MATLAB’s Optimization Toolbox.
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Three quantities are involved in optimization, J, a scalar cost function to be
minimized on the periodic orbit, EQ, a vector of equality constraints, and
INEQ, a vector of inequality constraints. The following is a description of
the optimization procedure that was implemented. The independent and de-
pendent terms14 of optimization are given in Table 1. Note that when the
optimizer terminates with the constraints satisfied, x+∗

s will be point on a
closed-loop periodic orbit and the virtual constraints will be given by (11)
and (13).

Algorithm

1. Select x+∗

s = (q+∗, q̇+∗), the state corresponding to the beginning of the
stance phase.

2. Calculate θ+∗

s by (16) and a∗

s,0, a∗

s,1 by (23).
3. Select a∗

s,2, . . . , a
∗

s,ms
, and θ−∗

s to complete the stance phase parameter
vector as.

4. Using parameters as and the initial condition x+∗

s , integrate the equations
of motion of stance and apply the stance-to-flight transition operator, ∆f

s,
to obtain x+∗

f
= (q+∗

f
, q̇+∗

f
).

5. Calculate a∗

f,0, a∗

f,1 by (22); a∗

f,mf−1, a∗

f,mf
by (23); and x+∗

cm,f , ẋ+∗

cm,f , and
T ∗

f by (17).
6. Select a∗

f,2, . . . , a
∗

f,mf−2 to complete the flight phase parameter vector af .

7. Using parameters af , and initial condition x+∗

f
, integrate the equations of

motion of flight through the landing event to obtain x+
s .

8. Evaluate J, EQ, and INEQ.
9. Iterate Steps 1 to 8 until J is (approximately) minimized, each entry of

EQ is zero, and each entry of INEQ is less than zero.

4.4 An Example Running Motion

A sample running gait designed by the above algorithm is now presented.
A stick diagram of this motion is given in Fig. 2(a). The stability analysis
outlined in Section 3.8 was applied to the resulting running motion. Fig. 2(b)
gives the restricted Poincaré map, which indicates that the motion is locally
exponentially stable. The gait was designed to minimize electrical energy per
distance traveled, with the following constraints:

Equality constraints, EQ

• error associated with finding a fixed point ||x+
s − x+∗

s ||
• deviation from the desired running rate
• continuity of required frictional forces on takeoff and landing

14 “Terms” is used to describe those variables used in optimization; these are differ-
ent from the parameters of the virtual constraints.
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Table 1. Independent and dependent terms used in optimization. The choice of
the independent terms is non-unique and depends on the specific optimization pro-
cedure. The parameters below correspond to algorithm in Section 4.3, which is one
straightforward method to ensure the boundary conditions of the virtual constraints
are met.

Terms of Optimization

Independent Dependent

x+∗

s ∈ IR10 θ+∗

s ∈ IR
a∗

s,2, . . . , a
∗

s,ms
∈ IR4 a∗

s,0, a∗

s,1 ∈ IR4

θ−∗

s ∈ IR x+∗

f
∈ IR14

a∗

f,2, . . . , a
∗

f,mf−2 ∈ IR4 a∗

f,0, a∗

f,1 ∈ IR4

a∗

f,mf−1, a∗

f,mf
∈ IR4

x+∗

cm,f
, ẋ+∗

cm,f
, T ∗

f ∈ IR

x+
s ∈ IR10

Inequality constraints, INEQ

• magnitude of the required torque at each joint less than 100 Nm
• knee angles to lie in (0◦,−70◦) and hip angles to lie in (130◦, 250◦) (see

Fig. 1(b) for measurement conventions)
• minimum height of the swing foot during stance greater than 7 cm
• required coefficient of friction of the stance phase less than 0.7
• flight time greater than or equal to 25% of total gait duration
• landing foot impacts the ground at an angle of approach less than 45◦

from vertical
• joint angular velocities less than 5 rad/s

5 Experiment

5.1 Hardware Modifications to RABBIT

Prior to the experiment reported here, only walking experiments had been
performed with RABBIT. To prepare for the task of running, the following
four hardware modifications were made.

The first modification was the inclusion of prosthetic shock absorbers in the
shanks. It was speculated that with shock absorbers the landing would cause
less wear and tear on the harmonic drive gear reducers that form RABBIT’s
hip and knee joints. The inclusion of shock absorbers added approximately
5 cm to length of each shank.

The second modification was the installation of force sensitive resistors into
RABBIT’s point feet. These devices allowed for more accurate measurement
of the touchdown time than did the previously installed mechanical contact
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Fig. 2. Stick diagram and Poincaré map for the example running motion (rate 0.58
m/s). Poincaré map constructed by evaluating ζ := (σ−

s,1)
2/2 at the end of successive

stance phases, where σ−

s,1 is the angular momentum about the stance leg end just
before liftoff. The fixed point, ζ∗ = 303, is located at the intersection of ρ and the
identity map ζi = ζi+1, and corresponds to an equilibrium running rate of 0.58 m/s.
The slope of the graph at ζ∗ is dρ/dζ ≈ 0.67, indicating exponential stability.

switches. Since these sensors suffer from significant drift, their signals were
numerically differentiated to make easier the detection of impact events.

The last two modifications were the bolting of aluminum u-channel stock
along each thigh and the widening of the hips. Both of these changes were
made to help prevent flexing of the legs in the frontal plane. Significant flexing
was witnessed during the first several experimental trials of running. This
problem was more pronounced in running than in walking because of the
greater impact forces associated with landing. On several occasions RABBIT
“tripped itself” during a stance phase of running when the swing leg passed by
the stance leg (the legs knocked against each other). Ironically, RABBIT was
intentionally designed to have its legs close together to better approximate a
planar biped.

5.2 Result: Six Running Steps

After completing hardware modifications and successfully reproducing previ-
ous walking experiments, running experiments were conducted. One such ex-
periment (the implementation of the example running motion of Section 4.4)
resulted in six human-like15 running steps.

For this experiment, motion was initiated by an experimenter who pushed
the robot forward, into the basin of attraction of a walking controller that
induced walking with an average forward walking rate of 0.8 m/s. RABBIT

15 A human-like gait is considered to be characterized by an upright posture, a torso
leaning slightly forward, and a long step length.
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then achieved stable walking, followed by a transition to running in a single
step, followed by 6 running steps. After the sixth step, the experiment was
terminated by the control software when the tracking error limit of 0.3 radians
was exceeded for the stance knee angle. Examination of collected data suggests
that tracking error resulted from actuator saturation. Data also shows the
back leg extremely close to the ground at the moment the experiment was
terminated, suggesting the back leg may have, in fact, struck the ground
contributing additional tracking error.

A plot of estimated16 foot height is given in Fig. 3. Average stride duration
for the steps was 431 ms. Flight times, observed as those portions of Fig. 3
where neither leg is at zero height, lasted an average of 107 ms (25% of the
stride). Videos of the experiment and many additional data plots are available
at [8, 18].
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Fig. 3. Estimated height of the point feet. Flight phases occur when neither foot is
at zero height.

5.3 Discussion

Several problematic issues related to RABBIT’s hardware did not appear
until running was attempted. (For a discussion of general implementation
issues of walking including unmodeled effects of the boom, gear reducers, and
an uneven walking surface see [19].) Future running experiments—whether
on RABBIT or another, similar mechanism—should take into account the
following issues.

16 When RABBIT is in flight, there is no accurate way to determine hip height. A
sensor was mounted to record boom pitch angle, but due to flexing of the boom,
these data were inaccurate. During the stance phase, this problem is not an issue
since the lower foot may always be assumed to be on the floor.
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Boom dynamics

The perturbing effects of the boom were found to be much more significant
during flight phases than during stance phases. When RABBIT is modeled as
a planar system, an analysis of the three-dimensional mechanics shows that
the contribution of the boom to the center of mass dynamics is significant.
Specifically, q5 is no longer, in general, a cyclic variable during flight. However,
if boom masses are appropriately distributed, the parabolic motion of the
center of mass, as modeled in a planar system, is recovered. Unfortunately,
this special mass distribution was impossible because RABBIT does not have
a counterweight system.

Walking surface

The walking surface was also a source of problems. This surface—consisting
of rubber over elevated plywood supported on the edges by a wood frame—
was originally built to provide a uniform, level surface. Although the surface
appears uniform, walking experiments demonstrated otherwise. It was found
that the surface has “fast” and “slow” areas corresponding to varying floor
stiffness and coefficient of friction.

Limited joint space

For safety, RABBIT’s joints have hard stops that limit its joint space, which,
for example, prevent the shank from contacting the thigh. Although the avail-
able joint space was sufficient for walking, it became a significantly limiting
factor in the design of running gaits. These hard stops prevented the swing
leg from being folded close to the hip, which is a natural and desirable motion
that minimizes the leg’s rotational inertia.

6 Conclusion

A novel approach to the control of running in planar bipeds and its first
experimental implementation on RABBIT were presented. The control law is
hybrid, consisting of continuous actions in the stance and flight phases, and
discrete actions at the transitions between these phases. In the stance and
flight phases, the controller coordinates the relative motions of the robot’s
links by imposing virtual constraints at the actuated joints. At the transition
from stance to flight, the controller adjusts the virtual constraints for the
flight phase as a function of estimated flight duration to ensure that the former
swing leg is advanced properly to take up its role as the next stance leg. At the
transition from flight to stance, the controller updates the virtual constraints
of the stance phase to account for the orientation of the robot at landing. For
the nominal periodic running motion, the parameters of the virtual constraints
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are determined by numerical optimization in order to meet actuator power
limits, friction bounds, joint limits, etc. For running experiments, RABBIT’s
mechanical and electrical systems were modified: shock absorbers were added
to the shanks; the ground contact sensors were improved; the stiffnesses of
legs in the frontal plane were increased; and the hips were widened.

The main result of the experiment was the physical realization of six con-
secutive running steps with a human-like gait. Although continuous, stable
running was not achieved, the authors are confident that this will soon change.
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