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Hybrid Invariant Manifolds in Systems with Impulse Effects

with Application to Periodic Locomotion in Bipedal Robots

B. Morris∗ and J.W. Grizzle∗

Abstract

Motivated by the problem of controlling walking in a biped with series compliant actuation, this

paper develops two main theorems relating to the stabilization of periodic orbits in systems with impulse

effects. First, when a periodic orbit of a system with impulse effects lies within a hybrid invariant

manifold, the Jacobian linearization of the Poincaré return map results in a matrix that is block upper

triangular. One diagonal block is the linearization of the return map of the hybrid zero dynamics, and

the other is the product of two sensitivity matrices relatedto the transverse dynamics. When either

sensitivity matrix is sufficiently close to zero, the stability of the return map is determined solely by the

hybrid zero dynamics. The second main result of the paper details the construction of a hybrid invariant

manifold by introducing impact-updated control parameters. Using the construction, entries of either

(or both) of the transverse dynamics’ sensitivity matricescan be made arbitrarily small. A simulation

example is provided, where stable walking is achieved in a 5-link biped with series compliant actuation.

Keywords: hybrid systems; zero dynamics; bipedal robots; underactuated systems.

I. INTRODUCTION

The results of this paper are motivated by the study of periodic walking (and running) motions

in bipedal robots. The first problem studied concerns a set ofsufficient conditions for determining

if a periodic solution of an autonomous closed-loop system consisting of a bipedal robot, ground

contact model, and feedback controller is exponentially stable. The problem is first cast in terms
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of periodic orbits in nonlinear systems with impulse effects [5], [38], that is, systems modeled by

an ordinary, time-invariant differential equation (ODE),a co-dimension one switching surface,

and a re-initialization rule. Such models can be used to represent a wide range of systems with

discontinuous or jump phenomena, including walking and running gaits in legged robots [16],

[11]. The method of Poincaré sections is the proper theoretical tool for analyzing the stability

of periodic orbits in systems with impulse effects [16], [26], just as it is for ordinary differential

equations.

When the method of Poincaré sections is applied in practical problems, it is very common

to see the Jacobian linearization of the Poincaré map estimated numerically and the exponential

stability of a fixed point (i.e., a periodic orbit) deduced onthe basis of the eigenvalues. This can

be very unwieldy when stability needs to be evaluated repeatedly as part of an iterative procedure

to design a feedback controller. Here, the method of Poincaré sections is augmented with notions

of (hybrid) invariance, attractivity, andtime-scale separationin order to simplify its application

to nonlinear systems with impulse effects. The experience gained in [34] in the context of bipedal

robots has proven that when stability analysis can be rendered sufficiently tractable, it becomes

possible to efficiently explore a large set of asymptotically-stable orbits in order to find one that

meets additional performance objectives, such as minimum energy consumption or minimum

peak-actuator power demand. The analytical results available in [16] require that an invariant

manifold of the ODE portion of a system with impulse effects be rendered finite-time attractive

through a continuous, but not Lipschitz continuous, feedback [7]. The result established in this

paper will weaken this requirement to attractivity at a sufficiently-rapid exponential rate, thereby

permitting the use of smooth feedback laws.

The second main result of the paper is aconstructive methodfor creating the hybrid invariant

manifold required by the first result. Hybrid invariance in anonlinear system with impulse effects

refers to a manifold being invariant under both the continuous (ODE) portion of the model as

well as the discrete (reset) map present in the model. Invariance in ordinary differential equations

is a rich, well-studied subject, and in particular, the methods developed by Byrnes and Isidori for

thezero dynamicsare well suited for use here. The less-well-studied and hence more challenging

problem is how to achieve invariance under the discrete portion of the model. A novel type of

dynamic extension of a system with impulse effects is developed for this purpose. The end result

is a truly hybrid controller for achieving invariance in a system with impulse effects.
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II. TECHNICAL BACKGROUND

This section reviews the definition of a system with impulse effects and introduces the two

primary analysis tools that are used in this paper: the method of Poincaré sections and the notion

of a hybrid invariant manifold.

The method of Poincaré sections and return maps is widely used to determine the existence

and stability of periodic orbits in a broad range of system models, such as time-invariant

and periodically-time-varying ordinary differential equations [27], [18], hybrid systems con-

sisting of several time-invariant ordinary differential equations linked by event-based switching

mechanisms and re-initialization rules [16], [26], [29], differential-algebraic equations [19], and

relay systems with hysteresis [15], to name just a few. Whilethe analytical details may vary

significantly from one class of models to another, on a conceptual level, the method of Poincaré

is consistent and straightforward: sample the solution of asystem according to an event-based

or time-based rule, and then evaluate the stability properties of equilibrium points (also called

fixed points) of the sampled system, which is called the Poincaré return map; see Fig. 1. Fixed

points of the Poincaré map correspond to periodic orbits (limit cycles) of the underlying system.

A. Systems with Impulse Effects

To define aC1 control system with impulse effects, consider a nonlinear affine control system

ẋ = f(x) + g(x)u, (1)

where the state manifoldX is an open connected subset ofIRn, the control inputu takes values

in U ⊂ IRm, andf and the columns ofg areC1 vector fields onX . An impact (or switching)

surface,S, is a co-dimension oneC1 submanifold withS = {x ∈ X | H(x) = 0, H0(x) > 0}

whereH0 : X → IR is continuous,H : X → IR is C1, S 6= ∅, and∀x ∈ S, ∂H
∂x

(x) 6= 0. An

impact (or reset) map is aC1 function∆ : S×V → X , V ⊂ IRp, p ≥ 0 whereS∩∆(S×V) = ∅,

that is, where the image of the impact map is disjoint from itsdomain. A C1 control system

with impulse effectshas the form

Σol :







ẋ = f(x) + g(x)u x− 6∈ S

x+ = ∆(x−, v) x− ∈ S
(2)
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wherev ∈ V is a control input for the impact map, andx−(t) = limτրt x(τ) andx+(t) = limτցt x(τ)

are, in words, the left and right limits of a trajectory,x(t). A system with inputs into the vector

field but not into the impact map,

Σol :







ẋ = f(x) + g(x)u x− 6∈ S

x+ = ∆(x−) x− ∈ S
, (3)

can be written as a special case of (2) withV = ∅. Replacing the control system (1) with an

autonomous system

ẋ = f(x), (4)

and takingV = ∅ leads to aC1 autonomous system with impulse effects,

Σcl :







ẋ = f(x) x− 6∈ S

x+ = ∆(x−) x− ∈ S.
(5)

For compactness of notation, an autonomous system with impulse effects (5) will be denoted as

a 4-tuple,Σcl = (X ,S, ∆, f), while a control system with impulse effects (2) will be denoted

as a 7-tuple,Σol = (X ,S,V,U , ∆, f, g).

In simple terms, a solution of (2) or (5) is specified by the differential equation (1) or (4) until

its state “impacts” the hyper surfaceS at some timetI . At tI , the impact model∆ compresses

the impact event into an instantaneous moment of time, resulting in a discontinuity in the state

trajectory. The impact model provides the new initial condition from which the differential

equation evolves until the next impact withS. In order to avoid the state having to take on two

values at the “impact time”tI , the impact event is, roughly speaking, described in terms of the

values of the state “just prior to impact” at time “t−I ”, and “just after impact” at time “t+I ”. These

values are represented byx− andx+, respectively. From this description, a formal definition of

a solution is written down by piecing together appropriately initialized solutions of (1) or (4);

see [38], [16], [26], [10]. A choice must be made whether the solution of (5) is a left- or a

right-continuous function of time at each impact event; here, solutions are assumed to be right

continuous [16].

B. Periodic Orbits and the Poincaré Return Map

Cyclic behaviors such as walking are represented as periodic orbits of systems with impulse

effects. A solutionϕ(t, t0, x0) of an autonomous systemΣcl is periodic if there exists a finite
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T > 0 such thatϕ(t + T, t0, x0) = ϕ(t, t0, x0) for all t ∈ [t0,∞). A set O ⊂ X is a periodic

orbit if O = {ϕ(t, t0, x0) | t ≥ t0} for some periodic solutionϕ(t, t0, x0). If a periodic solution

has an impact event, then the corresponding periodic orbitO is not closed; see [16], [24]. Let

Ō denote its set closure. Given a norm‖ · ‖ on X , the distance from a pointx ∈ X to a set

F ⊂ X is defined as dist(x, F ) = inf x̄∈F ‖x− x̄‖. Notions of stability in the sense of Lyapunov,

asymptotic stability, and exponential stability of orbitsfollow the standard definitions as in [23,

pp. 302], [16], [26]. In a similar manner, a periodic orbit ofthe control systemΣol is defined

as the set of points inX traced out by a periodic solution ofΣol for some inputsu andv.

When using the method of Poincaré to study systems with impulse effects, it is natural to

selectS as the Poincaré section. To define the return map, letφ(t, x0) be the maximal solution of

(4) with initial conditionx0 at timet0 = 0. The time-to-impactfunction,TI(x), is the time from

initialization to the first intersection with the setS and is in general a partial map. The Poincaré

return map,P : S → S, is then the partial mapP (x) = φ(TI ◦∆(x), ∆(x)). A periodic orbitO

hasperiod one1 if its closure intersectsS at exactly one point,x∗ = Ō∩S. A period one orbit is

transversalto S if LfH(x∗) = ∂H
∂x

(x∗)f(x∗) 6= 0 (in words, the vector fieldf is not tangent to

S at the pointx∗). For convenience, define the partial functionφTI
(x) = φ(TI(x), x) so that the

Poincaré return map can be written asP (x) = φTI
◦∆(x). For the case of autonomous systems

with impulse effects, the Method of Poincaré sections is formalized in the following theorem:

Theorem 0 (Method of Poincaŕe Sections): If the C1 autonomous system with impulse ef-

fects Σcl = (X ,S, ∆, f) has a periodic orbitO that is transversal toS, then the following are

equivalent:

i) x∗ is an exponentially stable (resp., asymp. stable, or stablei.s.L.) fixed point ofP ;

ii) O is an exponentially stable (resp., asymp. stable, or stablei.s.L.) periodic orbit.

�

Proof: The proof for exponential stability is in [24]. Proofs for asymptotic stability and

stability i.s.L are in [16], [26].

1Unless otherwise stated, all periodic orbits are assumed tohave period one.
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∆(x−)

x−

S∆(S)

x+

φ(t, ∆(x−))

P (x−)

Fig. 1. Geometric interpretation of a Poincaré return mapP : S → S for a system with impulse effects. The Poincaré section

is selected as the switching surface,S . A periodic orbit exists whenP (x−) = x−. Due to right-continuity of the solutions,x−

is not an element of the orbit. With left-continuous solutions, ∆(x−) would not be an element of the orbit.

III. H YBRID INVARIANT MANIFOLDS AND DETERMINING ORBITAL STABILITY ON THE

BASIS OF A RESTRICTION DYNAMICS

This section identifies properties of the autonomous system(5) under which the exponential

stabilizability of a periodic orbit can be determined on thebasis of a hybrid restriction dynamics.

The key hypothesis will be the existence of an embedded submanifold that is invariant under both

the continuous and discrete portions of the hybrid model (5). The design of static and dynamic

state variable feedbacks that create invariant submanifolds for systems modeled by ordinary

differential equations is a well-studied problem and playsa prominent role in the notion of the

zero dynamics [21]. How to design feedbacks that achieve invariance under the impact map in

(2) is the topic of Section IV.

A. Hybrid Invariance and Restriction Dynamics

For an autonomous system with impulse effectsΣcl = (X ,S, ∆, f), a submanifoldZ ⊂ X is

forward invariant if for each pointx in Z, f(x) ∈ TxZ. A submanifoldZ is impact invariant

in an autonomous system with impulse effectsΣcl = (X ,S, ∆, f) or in a control system with

impulse effectsΣol = (X ,S, ∅,U , ∆, f, g), if for each pointx in S∩Z, ∆(x) ∈ Z. A submanifold

Z is hybrid invariant if it is both forward invariant and impact invariant. If aC1 embedded

submanifoldZ is hybrid invariant andS ∩Z is C1 with dimension one less than that ofZ, then

Σcl
∣

∣

Z
:







ż = f |Z (z) z− 6∈ S ∩ Z

z+ = ∆|S∩Z (z−) z− ∈ S ∩ Z,
(6)
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is called ahybrid restriction dynamicsof the autonomous systemΣcl, wheref |Z and∆|S∩Z are

the restrictions off and∆ to Z andS ∩ Z, respectively. If, in addition, the systemΣcl has a

periodic orbitO ⊂ Z, thenO is a periodic orbit of the hybrid restriction dynamics. The system

(6) will sometimes be denoted asΣcl
∣

∣

Z
= (Z,S ∩ Z, ∆|S∩Z , f |Z). Hybrid invariance ofZ is

reflected in the Poincaré map as

P (S ∩ Z) ⊂ S ∩ Z. (7)

On the basis of (7), therestricted Poincaŕe map, ρ : S ∩ Z → S ∩ Z, is defined asρ = P |Z , or

equivalently,

ρ(z) = φ|Z(TI |Z ◦ ∆|S∩Z(z), ∆|S∩Z(z)) = φTI
|Z ◦ ∆|S∩Z(z). (8)

B. Factoring the Sensitivities of the Transverse Dynamics

The following theorem identifies conditions under which theexponential stability of a periodic

orbit of the restriction dynamics is inherited by the full model. The importance of such conditions

in the design of controllers that create stable, periodic locomotion patterns in biped robots has

been studied before in [16], [34], where finite-time convergence to an invariant manifold was

assumed. The result presented here relaxes this to “sufficiently rapid” exponential convergence.

A less general version was first presented in [24], and applied to 3D bipedal locomotion in [3].

Theorem 1: Consider aC1 autonomous system with impulse effectsΣcl = (X ,S, ∆, f) and

assume there exists aC1 embeddedk-dimensional submanifoldZ such that

H1.1) Z is hybrid invariant;

H1.2) S ∩ Z is a C1 embedded submanifold and has dimension one less thanZ; and

H1.3) Σcl has a periodic orbitO transversal toS and contained inZ.

Then, there exist local changes of coordinatesΓ : U → IRk−1 × IRn−k andΨ : V → IRk × IRn−k,

aboutx∗ = Ō ∩ S and∆(x∗), respectively, such that when the Poincaré map of the system Σcl

is represented in the new coordinates, its Jacobian2 about the fixed pointx∗ is

DP̂ (z∗, η∗) =





Dρ(z∗) ⋆

0 SφTI
(z̄∗, η̄∗)S∆(z∗, η∗)



 , (9)

2For a differentiable functiong(x1, x2, ..., xp), the notationDig(y1, y2, ..., yp) refers to∂g/∂xi evaluated at(x1, x2, ..., xp) =

(y1, y2, ..., yp). The argumentxi may be a vector.Dg(y1, ..., yp) is (∂g/∂x1, . . . , ∂g/∂xp) evaluated at(x1, ..., xp) =

(y1, ..., yp).
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where3 P̂ = Γ◦P ◦Γ−1, ρ is the restricted map of (8),SφTI
(z̄∗, η̄∗) = D2(Γ2◦φTI

◦Ψ−1)(z̄∗, η̄∗),

and S∆(z∗, η∗) = D2(Ψ2 ◦ ∆ ◦ Γ−1)(z∗, η∗), for (z∗, η∗) = (Γ1(x
∗), Γ2(x

∗)) = Γ(x∗) and

(z̄∗, η̄∗) = Ψ ◦ ∆(x∗) = (Ψ1 ◦ ∆(x∗), Ψ2 ◦ ∆(x∗)).

�

The proof is given in the appendix. This theorem identifies two features present in the linearized

Poincaré map evaluated at a fixed point lying in a hybrid invariant manifold. The first is the

upper-triangular structure, which is immediate from the hybrid invariance ofZ; see (7). The

second, and more interesting result, is that the bottom right block is the product ofSφTI
and

S∆, which are the sensitivities of the transverse dynamics with respect to the continuous flow

and impact map, respectively. If either of the sensitivities SφTI
or S∆ can be made sufficiently

small, then the spectral radius ofDP̂ will be determined solely by the restricted Poincaré map.

Corollary 2 below is based on the observation thatSφTI
can be made small through sufficiently

rapid convergence of the transversal dynamics toZ. The next section will addressS∆ showing

that this term can be made arbitrarily small by controlling the behavior of the impact map.

Corollary 2: Consider a family ofC1 autonomous systems with impulse effects with the

vector field of each member depending on a real parameterǫ > 0, Σcl,ǫ = (X ,S, ∆, f ǫ). Assume

that for each value ofǫ ∈ (0,∞), Hypotheses H1.1) - H1.3) are met and also that

H2.1) the submanifoldZ and fixed pointx∗ are independent ofǫ;

H2.2) f ǫ restricted toZ is independent ofǫ, so thatf |Z = f ǫ|Z for any ǫ ∈ (0,∞); and

H2.3) there exists a functionK : (0,∞) → [0,∞) such thatlimǫց0 K(ǫ) = 0, and∀ ǫ > 0, ∃

δ > 0 such that4 ∀ x0 ∈ Bδ(∆(x∗)), dist(φTI

ǫ(x0),Z) ≤ K(ǫ) dist(x0,Z).

Then the restriction dynamicsΣcl,ǫ
∣

∣

Z
= (Z,S ∩ Z, ∆|S∩Z , f |Z) is independent ofǫ. In addition,

there exists̄ǫ > 0 such that for0 < ǫ < ǭ, the following are equivalent:

i) x∗ is an exponentially stable fixed point ofρ, and

ii) x∗ is an exponentially stable fixed point ofP ǫ,

whereP ǫ = φTI

ǫ ◦ ∆ andρ = P ǫ|Z .

�

3Γ1(x) andΓ2(x) refer to the firstk − 1 and lastn − k coordinates ofΓ(x), andΨ1(x) andΨ2(x) refer to the firstk and

last n − k coordinates ofΨ(x), respectively.

4Throughout the paper, the notationBr(x) refers to an open ball of radiusr about the pointx .
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The proof of the theorem is given in the appendix and shows that H2.3) is sufficient for

achievinglimǫց0 Sǫ
φTI

= 0. In other words, forǫ > 0 sufficiently small, an exponentially stable

periodic orbit of the restriction dynamicsΣcl,ǫ
∣

∣

Z
= (Z,S ∩ Z, ∆|S∩Z , f |Z), is an exponentially

stable periodic orbit of the full modelΣcl,ǫ = (X ,S, ∆, f ǫ). The next result shows how to

construct a closed-loop system meeting the hypotheses of Corollary 2.

Definition 3: (from [21]) An outputh(x) has uniform vector relative degreek at a pointx if

i) for 0 ≤ n ≤ k − 2, LgL
n
fh(x) = 0; and

ii) the matrix LgL
k−1
f h(x) is invertible.

Corollary 4: Assume that a control system with impulse effectsΣol = (X ,S, ∅,U , ∆, f, g),

has a smooth outputy = h(x), h : X → IRm , with the properties that

H4.1) h(x) has uniform vector relative degreek;

H4.2) there exists a pointx such thath(x) = 0, Lfh(x) = 0, . . . , Lk−1
f h(x) = 0; and

H4.3) the distributionspan{g1(x), · · · , gm(x)} is involutive.

Then the setZ = {x ∈ X | h(x) = 0, Lfh(x) = 0, · · · , Lk−1
f h(x) = 0} is a smooth embedded

submanifold. Moreover, for anyǫ > 0 and any scalar constantsK0, . . . , Kk−1 where sk +

Kk−1s
k−1 + · · ·K0 is Hurwitz, the feedback

uǫ(x) = −
(

LgL
k−1
f h(x)

)−1
(

Lk
fh(x) +

∑k−1
i=0

1
ǫk−i KiL

i
fh(x)

)

, (10)

applied toΣol rendersZ forward invariant in the family of closed-loop systemsΣcl,ǫ =
(

X ,S, ∆, f cl,ǫ
)

for f cl,ǫ(x) = f(x) + g(x)uǫ(x). In addition, the family of systemsΣcl,ǫ and the manifoldZ

satisfy conditions H2.1) to H2.3) of Corollary 2.

�

The proof is given in the appendix. Theorem 1 and Corollaries2 and 4 provide precise

guidelines for designing a closed-loop system where the stability of a periodic orbit can be

determined on the basis of a restriction dynamics. This is ofpractical importance because

the restriction dynamics necessarily has lower dimension than the full model, and usually the

dimension issignificantlylower. The main obstacle to applying these results is achieving impact

invariance of the forward invariant manifoldZ, which is addressed in the following section.
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IV. A CHIEVING IMPACT INVARIANCE THROUGH HYBRID EXTENSION

A. Definition and Properties of Hybrid Extensions

Let Σol = (X ,S, ∅,U , ∆, f, g) be a control system with impulse effects5 and letA be an open

subset ofIRq, q ≥ 1. Then, the system

Σol
e :







(ẋ, α̇) = (f(x) + g(x)u, 0) (x−, α−) /∈ S ×A

(x+, α+) = (∆(x−), v) (x−, α−) ∈ S × A,

is called aparameterized extensionof Σol and is denoted asΣol
e = (Xe,Se,A,U , ∆e, fe, ge) (with

elements of the 7-tupleΣol
e defined in the obvious way).

When a parameter update lawv is chosen to be independent of the parameterα, that is,

v : S → A, the resultant systemΣol
e =

(

Xe,Se, ∅,U , ∆cl
e , fe, ge

)

, with ∆cl
e (xe) = (∆(x), v(x))

and xe = (x, α), is called anopen-loop deadbeat hybrid extension. A closed-loop deadbeat

hybrid extensionis denotedΣcl
e =

(

Xe,Se, ∆
cl
e , f cl

e

)

wheref cl
e (xe) = fe(xe) + ge(xe)u(xe) for

some continuous-time state feedbacku : Xe → U .

Remark 5: Suppose thatΣol = (X ,S, ∅,U , ∆, f, g) has a periodic orbitO. Define the pa-

rameter vectorα∗ = v(x∗) for x∗ = Ō ∩ S. Then the setOe = O × α∗ is a periodic orbit of the

open-loop deadbeat hybrid extensionΣol
e , andOe will be called thetrivial lift of O into Σol

e .

Remark 6: Consider a closed-loop deadbeat hybrid extensionΣcl
e =

(

Xe,Se, ∆
cl
e , f cl

e

)

and let

Pe be its Poincaré map. IfΣcl
e contains a hybrid invariant manifoldZe and there exists a set

Z ⊂ Ze such thatSe ∩ Ze = (S ∩ Z) ×A, then the Poincaré return map for the restriction

dynamicsΣcl
e

∣

∣

Ze
has the property thatPe|Ze

: (S ∩ Z) ×A → (S ∩ Z) ×A, by

Pe|Ze
(z, α) = (ρe(z), v(z)), (11)

wherev is the parameter update law of the deadbeat hybrid extensionandρe : S ∩Z → S ∩Z.

B. Constructing Hybrid Invariant Manifolds

The following theorem, with constructive proof in the appendix, addresses the property of

impact invariance.

5Note thatV = ∅, indicating an absence of control authority over the impactmap.
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Theorem 7: Consider a smooth control system with impulse effects6 Σol = (X ,S, ∅,U , ∆, f, g),

with U ⊂ IRm. Assume there exists a periodic orbitO that is transversal toS and that in addition

H7.1) there exists a smooth outputh : X → IRm such thath vanishes on the orbit and has

uniform vector relative degreek in an open neighborhood of the orbit;

H7.2) the distributionspan{g1(x), · · · , gm(x)} is involutive; and

H7.3) there exists a smooth real-valued functionτ(x) that is strictly monotonically increasing7 on

O, Lgτ(x) = · · · = LgL
k−2
f τ(x) = 0, and forx∗ = Ō ∩ S, τ(x∗) = 1 andτ(∆(x∗)) = 0.

Then, starting from the original systemΣol and output functiony = h(x), one can construct an

open-loop deadbeat hybrid extensionΣol
e =

(

Xe,Se, ∅,U , ∆cl
e , fe, ge

)

and a new output function

ye = he(xe) such that all of the conditions of Corollary 4 are satisfied for Σol
e andhe. Moreover,

the manifoldZe defined as

Ze = {xe ∈ Xe | he(xe) = 0, Lfe
he(xe) = 0, · · · , Lk−1

fe
he(xe) = 0},

is impact invariant w.r.t.Σol
e and containsOe, the trivial lift of O into Σol

e .

�

Remark 8: The derivation of the parameter update law of the open-loop deadbeat hybrid

extension of Theorem 7 allows the introduction of a parameter λ ∈ IR. Dependence of the

parameter update law onλ will be emphasized using the notationvλ(x−). Whenλ is chosen to

equal zero,α+ = vλ(x−) is such that for any(x−, α−) ∈ Se,

he(x
+, α+) = 0, Lfe

he(x
+, α+) = 0, . . . , Lk−1

fe
he(x

+, α+) = 0. (12)

wherex+ = ∆(x−). Furthermore,vλ has the following two properties:

i) for any fixedx−
e = (x−, α−) ∈ Se, the value ofvλ(x−) is continuous inλ; and

ii) for any fixed x−
e = (x−, α−) ∈ Se ∩ Ze, the value ofvλ(x−) is independent ofλ.

Remark 9: An ǫ andλ dependant closed-loop deadbeat hybrid extension can be created by

applying Corollary 4 to the open-loop deadbeat hybrid extension constructed in Theorem 7.

6Once again note thatV = ∅, indicating an absence of control authority over the impactmap.

7In this context, a real-valued functionτ (x) is strictly monotonically increasing ifLfτ (x) > 0 for every pointx in O.

February 28, 2007 DRAFT



12

Applying Corollary 4 and Theorem 1, it follows that for anyλ ∈ IR and forz∗e = (z∗, α∗),

DP̂ ǫ,λ
e (z∗e , η

∗
e) =





D (Pe|Ze
) (z∗e) ⋆

0 Sǫ
φTI

,e(z̄
∗
e , η̄

∗
e)S

λ
∆,e(z

∗
e , η

∗
e)



 ,

with the subscript “e” indicating reference to the closed-loop deadbeat hybrid extension. Because

Ze meets the conditions of Remark 6,

DP̂ ǫ,λ
e (z∗e , η

∗
e) =













Dρe(z
∗) 0 ⋆

0 0 ⋆

0 0 Sǫ
φTI

,e(z̄
∗
e , η̄

∗
e)S

λ
∆,e(z

∗
e , η

∗
e)













.

As shown in the proof of Corollary 2,limǫց0 Sǫ
φTI

(z̄∗e , η̄
∗
e) = 0, and by (12) and property i) of

v, limλ→0 Sλ
∆,e(z

∗
e , η

∗
e) = 0. Because the vector fieldf cl,ǫ

e |Ze
is independent ofǫ andvλ|Se∩Ze

is

independent ofλ (by property ii ofv), it follows thatDρe(z
∗) is independent of bothǫ andλ.

Thus, for appropriate choices ofλ and ǫ, max |eig(DP ǫ,λ
e (x∗

e))| = max |eig(Dρe(z
∗))|, showing

how the creation of a hybrid zero dynamics leads to a low-dimensional test for stabilizability of

an orbit.

V. APPLICATION TO PLANAR BIPEDAL WALKERS WITH COMPLIANT ACTUATION

To give an application of theory, this section develops a class of models for planar robots with

series compliant actuation (see Fig. 2), derives properties of these models as they relate to planar

robots without series compliance, and provides a simulation study of a sample gait stabilized by

the continuous-time feedback of Corollary 4 and the parameter updates of Theorem 7. As shown

in Fig. 2, a series compliant actuator is one in which a compliant element has been deliberately

inserted between an actuated joint and its corresponding motor in order to increase the overall

energy efficiency or to more accurately control the torques applied at the joint. The specific

model used in simulation is based on a prototype robot that iscurrently under construction in

a collaborative effort between the University of Michigan and Carnegie Mellon University. The

purpose of the robot, named BiMASC, is to study the effects ofseries compliant actuation on

achieving efficient, stable, planar walking and running motions.

Including springs in a legged robot is a well-motivated choice [2], [1]. Introducing tuned

springs into an otherwise rigid mechanism can significantlyimprove energy efficiency in two

ways: within the strides of walking and running, springs canstore and release some of the energy
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that would otherwise be lost as actuators do negative work, and at foot touchdown events, springs

isolate reflected motor inertias from the energy-dissipating effects of rigid collisions.

However, obtaining the energetic benefits of compliance is not without cost: delivering torque

through compliant elements poses several challenges for control design. There is an obvious

increase in the degrees of freedom of the robot, and hence, the degree of underactuation. This is

a widely recognized issue in robotics; see [31], [30], [4] and references therein. An additional

challenge particular to legged robots arises from the impulsive effects occurring when the swing

leg impacts the ground. Because of the higher degree of underactuation, previous results such as

[33] are not applicable to bipeds with series compliant actuation, further motivating the theory

of Sections III and IV.

A. Hybrid Models

As in [34, Sec. II], consider a bipedal robot consisting ofN links connected in a planar tree

structure to form two identical legs with knees, but withoutfeet, with the legs connected at a

common point called the hips, and possibly other limbs (suchas a torso, etc.). All links have

mass, are rigid, and are connected in revolute joints (see Fig. 2). It is assumed that no actuation is

applied between the stance leg and the ground, while all other joints are independently actuated,

and hence there are(N − 1) controls. As shown in [12], [13], [14], addressing the control of

robots without actuation between the stance leg and ground is an important step in achieving

anthropomorphic walking motions in robots with non-trivial feet and actuated ankles. Further

details on the model are given in [34, Sec. II], along with assumptions on the walking gait

(instantaneous double support phase, no slipping nor rebound at impact, motion from left to

right, symmetric gait). A rigid impact is used to model the contact of the swing leg with the

ground. To study the effects of introducing springs, a rigidmodel (without springs) is first derived,

followed by a compliant model having series compliant actuation at each body coordinate.

The configuration coordinates of the robot in single support(also commonly called the stance

phase) are denoted byq = (q1, · · · , qN). The method of Lagrange leads to the mechanical model

for the rigid walker,

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (13)

whereD(q) is the inertia matrix,C(q, q̇) contains Coriolis and centrifugal terms,G(q) is the

gravity vector, andB is anN × (N − 1) constant matrix with rank(N − 1). Letting x = (q, q̇),
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q2

q1

q4

q3

θ (x1,y1)

(x2,y2)

qm i

q i

Fig. 2. (Left) A coordinate diagram of an example of the class ofN -link biped robot models considered.(Right) A schematic

of a rotational joint with series compliant actuation.

and definingf andg in the obvious manner, the mechanical model is expressed in state variable

form as

ẋ = f(x) + g(x)u. (14)

When the swing leg contacts the ground, an inelastic impact is assumed, giving rise to a jump

in the velocity coordinates, which is computed as in [20], [16]. So that the same mechanical

model can be used independent of which leg is the stance leg, the coordinates must also be

relabeled at impact, giving rise to a jump in the configuration variables as well; see [16], [34].

The hybrid model of the robot (stance phase Lagrangian dynamics plus impact map) is

constructed by specifying a state manifold,X ⊂ IR2N , corresponding to physically reasonable

joint configurations and velocities, the impact or switching surface

S = {(q, q̇) ∈ X | y2(q) − y1(q) = 0, x2(q) − x1(q) > 0},

the set of points where the swing leg height is zero and is horizontally in front of the stance

leg, and the impact map∆ : S → X . The corresponding system with impulse effects for the

rigid model isΣol
r =

(

X ,S, ∅, IRN−1, ∆, f, g
)

.

Assume now that the vector of torques applied to the robot model (13) is generated through

a compliant model to form the(2N − 1) DOF Lagrangian system

D(q)q̈ + C(q, q̇)q̇ + G(q) − BK(qm − qa) = 0

Jq̈m + K(qm − qa) = uc.
(15)
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whereqm is a vector of(N −1) motor angles,qa is a vector of the relative angles corresponding

to the (N − 1) actuated joints of the robot,uc is the vector of(N − 1) motor torques,K is

a diagonal matrix of (positive) spring constants andJ is a diagonal matrix of (positive) rotor

inertias. LettingXc = X × IR2(N−1) andxc = (x, qm, q̇m), this is easily expressed as

ẋc = fc(xc) + gc(xc)uc. (16)

Because the impact condition depends only on the position ofthe swing foot (which is in-

dependent of the motor variables),Sc = S × IR2(N−1). Following [20], [16], the impact map

∆c : Sc → Xc has the form∆c(x
−
c ) = (∆(x−), R q−m, R q̇−m) , where R is a joint relabeling

matrix. Up to joint relabeling, the impact map∆c imposes continuity8 in the motor positions

and velocities across the impact. The corresponding model with impulse effects for the compliant

model is written asΣol
c =

(

Xc,Sc, ∅, IR
N−1, ∆c, fc, gc

)

.

B. Model Properties

Some properties of the mechanical models (13) and (15) are now summarized. These properties

provide information on the stance phase zero dynamics of (14) and (16). In the following, we

choose configuration coordinates for (13) asq = (qa, θ), whereθ references a position on the

robot to the world frame (see Fig 2).

Proposition 10: Let σ be the angular momentum of the biped about the contact point of the

support leg with the ground. In the coordinatesq = (qa, θ),

a) the inertia matrixD of (13) is independent ofθ;

b) (14) is globally feedback equivalent to

σ̇ = −
∂V

∂θ
(q)

θ̇ =
σ

dNN(qa)
+ R(qa)q̇a

q̈a = w,

whereV is the potential energy of the robot model (13),

R(qa) = −

[

dN,1(qa)

dN,N(qa)
, · · · ,

dN,N−1(qa)

dN,N(qa)

]

8In other words, the springs isolate the motors’ rotor inertias from the impact dynamics. Since in practice, the rotor inertias

are reflected through a gear ratio on the order of10 : 1 or higher, removing the rotor inertias from the impact dynamics can

result in considerably less energy loss at impacts.
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anddi,j are the elements ofD; and

c) (16) is globally feedback equivalent to

σ̇ = −
∂V

∂θ
(q)

θ̇ =
σ

dNN(qa)
+ R(qa)q̇a

q(4)
a = w.

The proof and the required feedback are given in [17], and arebased on [32], [28].

Proposition 11: Include the same smooth output functiony = h(q) in the rigid modelΣol
r

and the compliant modelΣol
c . Then the following hold,

a) h has uniform vector relative degree2 for (14) if, and only if, it has uniform vector relative

degree4 for (16);

b) the decoupling matrices depend only onq and they are equal, that isLgLfh = Lgc
L3

fc
h;

c) for h(q) = qa − hd(θ), det(LgLfh)(q) = 1 − R(qa)
∂hd(θ)

∂θ
;

d) if h(q) = qa − hd(θ) and has uniform vector relative degree2 for (14), then the zero

dynamics manifolds and restriction dynamics of (14) and (16) are diffeomorphic. Moreover,

the zero dynamics manifold of (14) is

Z=

{

(q, q̇) ∈ X | qa = hd(θ), q̇a =
∂hd(θ)

∂θ
θ̇

}

(17)

and in the coordinates(θ, σ), the restriction dynamics is

σ̇ =
−∂V

∂θ

∣

∣

∣

∣

qa=hd(θ)

(18)

θ̇ =
σ

d̃N,N(θ)

(

1 − R̃(θ)
∂hd(θ)

∂θ

)−1

, (19)

where,d̃N,N(θ) = dN,N |qa=hd(θ) and R̃(θ) = R|qa=hd(θ).

Proof: a) and b) are immediate from Proposition 10. The calculationfor c) is a straight-

forward application of the Sherman-Morrison-Woodbury formula [6] and is left to the reader.

The first part of d) follows from basic results in [21] and equations (17), (18), and (19) follow

from [34].

C. Designing a Gait, Outputs, and a Monotonic Function

Various computational methods have been proposed to designgaits for models similar to

those used here. In order to implement the control methods ofthis paper on a robot model
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with compliance,Σol
c , we need not only a reference gait (periodic orbit), but also(from H7.1) a

smooth outputh : Xc → IRm that vanishes on the orbit and has uniform vector relative degree

k, and (from H7.3) a smooth real-valued functionτ(xc) that is strictly monotonic on the orbit

and satisfiesLgc
τ(xc) = · · · = Lgc

Lk−2
fc

τ(xc) = 0. The example gait of Fig. 3 was found by first

choosing a family of output functions9 parameterized by a vectorβ, namely

y = h(q, β) = qa − hd(θ, β), (20)

wherehd is, in the following example, a4×1 vector of7th degree Bézier polynomials. Gradient

optimization was used to find a4 × 8 matrix10 of polynomial coefficientsβ∗ and an initial

conditionx0 ∈ Xc such that

i) x0 lies in a periodic orbitO of the systemΣol
c under the state feedback controller

uc(xc) = −
(

Lgc
Lk−1

fc
h(xc, β

∗)
)−1 (

Lk
fc

h(xc, β
∗)
)

;

ii) the outputsy = qa − hd(θ, β
∗) vanish on the orbitO and have uniform vector relative

degreek in an open neighborhood ofO; and

iii) the coordinateθ is strictly monotonic on the orbit.

In the presence of the geometric constraints of ii) and iii),numerical integration of the stance

phase dynamics can be efficiently carried out on a lower-dimensional system, which is the stance

phase zero dynamics; see [35].

When numerical optimization is successful, the resulting gait and output function satisfy the

hypotheses of Corollary 4. As a result, there exists a feedback such that the closed-loop system

satisfies the conditions of Corollary 2 and all the hypotheses of Theorem 1 except H1.1). This

last condition is the most difficult to satisfy and, in general, requires parameter updates such as

those developed in the proof of Theorem 7 and discussed in thefollowing subsection.

D. Achieving Hybrid Invariance

By Proposition 10, the compliant model is a dynamic extension of the rigid model, and hence

by [21], the problem of designing controllers to zero an output of the form (20) is, from a

9In an alternative method using techniques of [37], the orbitcould be designed first, independently of the outputs. Compatible

outputsy = h(xc) and a monotonicτ (xc) are chosen in a second step.

10Each7th degree polynomial has8 independent coefficients.
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theoretical perspective, no more difficult for the compliant model than for the rigid model. In

particular, parts (a) and (b) of Proposition 10 show that if an output functionh(q) for the rigid

model,Σol
r , satisfies H4.1), H4.2), and H4.3) of Corollary 4, then the same output function when

used with the compliant model,Σol
c , will also satisfy H4.1), H4.2), and H4.3) of Corollary 4.

Creating a forward invariant manifold is straightforward in each case.

However, the stability test of Theorem 1 requires the additional property of impact invariance

of Z—which is significantly harder to achieve in the compliant model than in the rigid one,

due to the higher relative degree of the output. For outputs having the special form of (20),

when used with planar biped models with one degree of underactuation, a rigid impact map,

and no compliance, it can be shown that any forward invariantmanifoldZ containing a periodic

orbit O is automatically impact invariant [36, Thm. 6.2]. Such a result does not hold for the

compliant model, and in fact, we (the authors) have been unable to find even a single example

of an output of the form (20) giving rise to an impact invariant manifold in the model with

compliance, without the use of parameter updates. We conjecture that outputs of this formnever

give rise to an impact invariant manifold when actuation is provided through springs.

Theorem 7 shows how impact invariance can be recovered through the introduction of a

discrete component to the overall control law, where a parameterized output is introduced and

the parameters are updated stride to stride. This proceduregives rise to a manifold that is hybrid

invariant, allowing the stability test of Theorem 1 to be carried out on an orbit that is a trivial

lift of the original. See Remark 5.

To contrast this result with previous work, in [25] we found aparameterized output function,

continuous-phase controller, and impact update law to render the resulting manifold hybrid

invariant in a closed-loop deadbeat hybrid extension of a five-link robot model with compliance.

In that work, the parameterized output function and appropriate parameter update law were

crafted by hand and heavily exploited the fact that the underlying rigid model had only one

degree of underactuation. Based strongly on spline-like transition functions, the constructive

outputs proposed in this paper are significantly different from those used in [25] and the design

procedure does not constrain the number of degrees of underactuation.
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E. Simulation on a five-link biped

A numerical example is provided here to illustrate the application of the theorems of this paper

to the task of stabilizing walking in a five-link planar bipedwith series compliant actuation. A

gait was designed following the method of [35] to achieve a forward progression rate of0.8 m/s

and to minimize an approximation of motor electrical energyconsumed per distance traveled,

subject to constraints on max torque, ground friction, joint limits, etc. Parameters of the model

are available in Table I and are estimates of the physical parameters of BiMASC. In the model,

all links have uniform mass distributions except the femurs, whose center of mass is0.15 m

from the hip joint. Figure 3 gives a stick animation of the sample gait. Values ofθ below each

frame show thatθ is monotonically increasing within a stride. The percentage value indicates

the amount of total step time elapsed, which has a nonlinear relationship withθ. Rotor angles

for the sample motion are shown in Fig. 4. As required by the impact model, values of rotor

position and velocity are constant across the impact event,up to joint relabeling.

The controller for stabilizing this gait was derived by choosingλ = 1 and constructing an open-

loop deadbeat hybrid extension,Σol,λ
c,e =

(

Xc,e,Sc,e, ∅, IR
4, ∆cl,λ

c,e , fc,e, gc,e

)

, from the compliant

system,Σol
c = (Xc,Sc, ∅, IR

4, ∆c, fc, gc), as described in Theorem 7. A closed-loop deadbeat

hybrid extension,Σcl,ǫ,λ
c,e =

(

Xc,e,Sc,e, ∆
cl,λ
c,e , f cl,ǫ

c,e ,
)

, was formed by applying the feedback

uǫ
c(xc,e) = −

(

Lgc,e
L3

fc,e
he(xc,e)

)−1 (

L4
fc,e

he(xc,e) +
∑3

i=0
1

ǫ4−i KiL
i
fc,e

he(xc,e)
)

,

for K0 = 1, K1 = 4, K2 = 6, K3 = 4, ǫ = 0.07 to the open-loop deadbeat hybrid extension,

wherehe(xe) is an output for the open-loop deadbeat hybrid extension, constructed (as described

in Theorem 7) from an output (20) for aβ∗ chosen by optimization. The required monotonic

function is τ(xe) = (θ − θ+)/(θ− − θ+), whereθ+ and θ− are the values of the coordinateθ

just after and just before impact, respectively, as evaluated on the orbit.

Figure 5 compares eigenvalues of the transverse sensitivity matrix Sǫ
φTI

,e(z̄
∗
e , η̄

∗
e)S

λ
∆,e(z

∗
e , η

∗
e)

of the closed-loop deadbeat hybrid extension at various values ofǫ and λ. As eitherǫ or λ is

held constant and the other approaches zero, the eigenvalues of the transverse sensitivity matrix

converge to zero.11 Oncemax |eig(Sǫ
φTI

,e(z̄
∗
e , η̄

∗
e)S

λ
∆,e(z

∗
e , η

∗
e))| < 1, the stability of the periodic

11Theory predicts that as long asλ = 0, stability of the transverse dynamics can be obtained any value of ǫ > 0, although

the region of attraction of the controller becomes vanishingly small whenǫ is large.
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TABLE I

PARAMETERS OF THE FIVE LINK MODEL.

Parameter Units Value

Length of each Link m 0.5

Mass of the Torso kg 27.5

Mass of each Femur and Tibia kg 0.5

CoM Inertia of the Torso kg · m2 0.5729

CoM Inertia of each Tibia kg · m2 0.0104

CoM Inertia of each Femur kg · m2 0.0391

Reflected Inertia of Rotors kg · m2 0.03584

Transmission Ratio (unitless) 8 : 1

Spring Constant N/m 550

θ=2.77 
0%

θ=2.86 
4%

θ=2.92 
13%

θ=2.99 
28%

θ=3.09 
55%

θ=3.19 
77%

θ=3.33 
93%

θ=3.45 
100%

Fig. 3. Stick figure of a sample gait, walking at0.8m/s. Values ofθ are monotonically increasing.

orbit is determined solely by the partial mapρe of (11), whose eigenvalues are unaffected by

either ǫ or λ. For this example, the eigenvalues of the transverse sensitivity matrix are known

in closed-form asSǫ
φTI

,e(z̄
∗
e , η̄

∗
e)S

λ
∆,e(z

∗
e , η

∗
e) = λeAt∗/ǫ, for t∗ equaling the period of the orbit

and the constant matrixA found from the polynomial coefficientsK0, . . . , K3. The one nonzero

eigenvalue unaffected by eitherǫ or λ can be found as slope ofρe at the fixed point; see Fig. 6.

For parameter choices ofǫ = 0.07 and λ = 1, the magnitudes of the eigenvalues of the
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Fig. 4. Values of the motor anglesqm along two cycles of the periodic orbit. Stance knee and hip rotors are plotted with a

solid line, swing knee and hip rotors with a dashed line. Moments of impact are noted with a hollow circle. Consistent withthe

impact model, rotor positions and velocities are continuous across the impact.

transverse sensitivity matrix are well below zero, the eigenvalues associated with parameter

updates are identically zero (see (11)), and the eigenvalueof the partial mapρe is approximately

equal to0.55—indicating that the trivial liftOe is a stable periodic orbit in the closed-loop

deadbeat hybrid extensionΣcl,ǫ,λ
c,e . A visualization of convergence is given in Fig. 7. The most

important feature of this plot is that the parameters (i.e.,α coordinates) are indeed constant within

a stride, and stride-to-stride they converge to0. In the figure, the initial condition is marked with

an asterisk and solution progresses from stride-to-stridein the direction of the arrow.

VI. CONCLUSION

Periodic walking gaits of bipedal robots can be modeled as periodic orbits in nonlinear systems

with impulse effects, with stability of an orbit determinedby linearizing a Poincaré return map

and checking its eigenvalues. While numerical techniques can be used to find fixed points and

to estimate the Jacobian linearization of the return map about a fixed point, generally, the

computations are too cumbersome for use infeedback design. One solution is to design the

feedback control law so that it induces a special structure in the closed-loop system [9]. This
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Fig. 5. Effects of the controller parametersǫ and λ on the eigenvalues of the product of sensitivity matrices appearing in

the linearized return map. Asλ is held fixed andǫ decreases to zero, the eigenvalues of the matrix product converge to zero.

Similarly, asǫ is held fixed andλ approaches zero, the eigenvalues converge to zero.
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Fig. 6. The partial mapρe. The fixed point is located at the point whereσ = ρe(σ), at approximately|σ| = 45 kg m2/s. The

slope at the fixed point is approximately 0.55, indicating that the discrete-time systemσk+1 = ρe(σk) is locally exponentially

stable. The dashed line is the identity map.

idea gave rise to thehybrid zero dynamicsof nonlinear systems with impulse effects, where

feedback is used to create an attractive, invariant subsystem of the hybrid model. Stability analysis

of a periodic orbit can then be decomposed into the computation of the Poincaré return map

restricted to the invariant surface (a lower-dimensional problem) and determining the required

rate of convergence of the transverse dynamics to the invariant surface [16], [34].

The current paper presents two main results that extend the analytical techniques of the hybrid

zero dynamics framework. The first is a new set of hypotheses under which the stability of a

periodic orbit can be determined on the basis of a restrictedPoincaré map. An improvement over

[34] is the elimination of an hypothesis on the existence of aparticular set of coordinates. In

addition, the transverse dynamics are not required to converge to the invariant surface in finite

time, but instead are allowed to converge at a “sufficiently rapid” exponential rate. This allows

the feedback to be smooth, whereas before it was continuous,but not Lipschitz continuous. The

second main result of the paper is a constructive method for achieving hybrid invariance for a

much broader class of models than was allowed by [16]. In particular, the relative degree of
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Fig. 7. Projection of a solution converging to the orbit for parameter valuesǫ = 0.07 and λ = 1. The initial condition is

marked with an asterisk. Within a given stride, values ofα are constant and converge from step to step toα = 0.

each output is no longer required to be two and special properties of the impact or reset map12

are no longer needed.

The theoretical results of the paper were demonstrated on the design of an exponentially stable,

periodic walking gait for a robot with series compliant actuation. The presence of compliance

allows periodic gaits that require less power for locomotion at a given speed, and hence the

springs enhance autonomy. However, springs also increase the degrees of freedom of the robot,

and hence the extent of its underactuation. For the example of a five-link robot with four actuated

joints, the degree of underactuation becomes five. The additional degrees of underactuation pose

a challenge for achieving impact invariance, that is, invariance of a surface under the impact

map. Impact invariance is recovered by the use of a parameterized controller with impact updated

parameters. The constructive controller design procedureof the paper was applied to a five-link

robot and an exponentially stable gait was obtained.
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APPENDIX

A. Proof of Theorem 1 and its Corollaries

Proof of Theorem 1: The (local) coordinate transformΓ represents elements of the the

submanifoldS∩Z in preferred coordinates, so that13 (i) for any point14 x ∈ S∩Z∩U , Γ2(x) = 0,

13Facts (i) and (ii) are properties easily derived from the definition of preferred coordinatesin [8, p. 76].

14By definition, the domainU of Γ is a subset ofS and thus(U ∩ S) = U . To emphasize this fact, we prefer to designate

the domain ofΓ as (U ∩ S).
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and (ii) for any pointx ∈ S∩U , Γ−1(Γ1(x), 0) ∈ S∩Z∩U . Similarly, the coordinate transformΨ

represents elements ofZ in preferred coordinates: (i) for anyx ∈ Z∩V , Ψ2(x) = 0, and (ii) for

any pointx ∈ V , Ψ−1(Ψ1(x), 0) ∈ Z∩V . The coordinate transformsΓ andΨ must exist by virtue

of the fact thatS∩Z andZ are embedded submanifolds. Conditions H1.2) and the transversality

portion of H1.3) are sufficient conditions under which the return map is differentiable at the point

x∗. Let P̂1(z, η) = Γ1 ◦ P ◦ Γ−1(z, η) and P̂2(z, η) = Γ2 ◦ P ◦ Γ−1(z, η) so that the Jacobian of

the return map can be written as

DP̂ (z, η) =





D1P̂1(z, η) D2P̂1(z, η)

D1P̂2(z, η) D2P̂2(z, η)



 ,

which, when evaluated at(z∗, η∗) = Γ(x∗), reduces to (9). By H1.3), the fixed pointx∗ lies

within Z, and as a consequence of property (i) ofΓ, η∗ = Γ2(x
∗) = 0. By the definition of

P̂1 above andρ in (8), P̂1(z, 0) ≡ ρ(z), implying thatD1P̂1(z
∗, η∗) = Dρ(z∗) and proving the

form of the upper left block of (9). The hypothesis on hybrid invariance, H1.1), is a sufficient

condition for (7) and (by property (i) ofΓ) implies thatP̂2(z, 0) = 0 at all points(z, 0) of its

domain. Differentiation with respect to thez coordinates givesD1P̂2(z
∗, η∗) = 0, which is the

lower left block of (9). Applying the chain rule15 to the alternative form of the return map gives,

D2P̂2(z
∗, η∗) = D2(Γ2 ◦ φTI

◦ ∆ ◦ Γ−1)(z∗, η∗)

= D2 ((Γ2 ◦ φTI
◦ Ψ−1) ◦ (Ψ ◦ ∆ ◦ Γ−1)) (z∗, η∗)

= D1(Γ2◦φTI
◦Ψ−1)(z̄∗, η̄∗) D2(Ψ1◦∆ ◦Γ−1)(z∗, η∗)

+ D2(Γ2◦φTI
◦Ψ−1)(z̄∗, η̄∗) D2(Ψ2 ◦ ∆ ◦ Γ−1)(z∗, η∗)

Forward invariance ofZ implies thatD1(Γ2 ◦ φTI
◦ Ψ−1)(z̄∗, η̄∗) = 0, leading to the expression

D2P̂2(z
∗, η∗) = SφTI

(z̄∗, η̄∗)S∆(z∗, η∗), which completes the derivation of the form (9).

Lemma 12: Suppose that for somer > 0, F : Br(0) → IRn satisfies

a) ∃L < ∞ such that∀x ∈ Br(0), ‖F (x)‖ ≤ L‖x‖; and

b) F is continuously differentiable at every point inBr(0).

Then,‖∂F (0)/∂x‖i ≤ L where‖ · ‖i is the induced norm.

15For any differentiable functionsF1 : IRm × IRn → IRu, F2 : IRm × IRn → IRv, F (x1, x2) = (F1(x1, x2), F2(x1, x2)),

andG : IRu × IRv → IRp, application of the chain rule shows thatD2(G ◦ F )(x1, x2) = D1G · D2F1 + D2G · D2F2.
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Proof: By (b) and Taylor’s theorem,F (x) = F (0) + (∂F (0)/∂x)x + R(x) where

limx→0 ‖R(x)‖/‖x‖ = 0. By (a),F (0) = 0 and‖(∂F (0)/∂x) x + R(x)‖ = ‖F (x)‖ ≤ L‖x‖. By

compactness of closed unit balls inIRn, there exists̄x such that‖(∂F (0)/∂x) x̄‖ = ‖(∂F (0)/∂x)‖i

and‖x̄‖ = 1. Lettingx = δx̄, for any value ofδ > 0, ‖(∂F (0)/∂x) (δx̄/‖δx̄‖) + (R(δx̄)/‖δx̄‖)‖ =

‖(∂F (0)/∂x) x̄ + (R(δx̄)/‖δx̄‖)‖ ≤ L. It follows thatlimδց0 ‖(∂F (0)/∂x) x̄ + (R(δx̄)/‖δx̄‖)‖ =

‖(∂F (0)/∂x)‖i and hence‖(∂F (0)/∂x)‖i ≤ L.

Remark 13: Any parameterized functionF ǫ : Br(ǫ)(0) → IRn, r(ǫ) > 0 that satisfies

a) for eachǫ > 0, F ǫ(0) = 0;

b) for eachǫ > 0, there existsδ(ǫ) > 0 such thatF ǫ(x) is continuously differentiable on

Bδ(ǫ)(0); and

c) ‖F ǫ(x)‖ ≤ L(ǫ)‖x‖ with limǫց0 L(ǫ) = 0,

must (by Lemma 12) have the property thatlimǫց0

∥

∥

∂F ǫ

∂x
(0)
∥

∥

i
= 0.

Proof of Corollary 2: The first claim of the corollary is trivial to prove: the system Σcl,ǫ

restricted to the hybrid invariant manifoldZ is independent ofǫ. By H2.1) and H2.2), the

manifold Z is independent ofǫ and so is the vector fieldf ǫ|Z . For the second claim of the

corollary, the Method of Poincaré Sections (Theorem 0) is used to establish a relationship between

the eigenvalues of the Jacobian of a Poincaré map and the stability of the underlying orbit.

Because they are unaffected by coordinate transforms, the eigenvalues ofDP ǫ(x∗) are equal to

the eigenvalues ofDP̂ ǫ(z∗, η∗). As shown in Theorem 1, the matrixDP̂ ǫ(z∗, η∗) is block upper

triangular for all values ofǫ, and therefore

eig(DP ǫ(x∗)) = eig(Dρ(z∗)) ∪ eig(Sǫ
φTI

(z̄∗, η̄∗)S∆(z∗, η∗)). (21)

Assume thatlimǫց0 Sǫ
φTI

(z̄∗, η̄∗) = 0 (a fact to be proven below). In this case, forǫ sufficiently

small, the maximum eigenvalue ofDP ǫ(x∗) is equal to the maximum eigenvalue ofDρ(z∗), and

by the Method of Poincaré Sections, the orbitO is exponentially stable in the full systemΣcl,ǫ

if and only if the same orbit is exponentially stable in the restricted systemΣcl
∣

∣

Z
.

To show thatlimǫց0 Sǫ
φTI

(z̄∗, η̄∗) = 0, invoke the convergence property of H2.3) in the

application of Taylor’s theorem in Lemma 12. To start, note that the functionΓ is differentiable

and therefore locally Lipschitz continuous. That is, thereexistsLΓ > 0 such that for allx in an
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open neighborhood ofU ∩ S containing the pointx∗,

dist(x,Z) = infy∈Z ‖x − y‖ ≥ infy∈Z
1

LΓ
‖Γ(x) − Γ(y)‖

= infy∈Z
1

LΓ
‖(Γ1(x), Γ2(x)) − (Γ1(y), 0)‖.

(22)

The last line in the above is obtained using property (i) of the preferred coordinates given byΓ

(as used in the proof of Theorem 1). By property (ii) ofΓ, ∀x ∈ U∩S, Γ−1(Γ1(x), 0) ∈ U∩S∩Z.

Stated differently,∀x ∈ U ∩ S, ∃ y ∈ U ∩ S ∩ Z such thatΓ1(x) = Γ1(y). Applying this to the

last line of (22) shows that

dist(x,Z) ≥ 1
LΓ

‖(Γ1(x), Γ2(x)) − (Γ1(x), 0)‖ = 1
LΓ
‖Γ2(x)‖. (23)

Next, by the triangle inequality, for anyx0 in an open neighborhood ofV containing∆(x∗),

dist(x0,Z) ≤ ‖x0 − Ψ−1(Ψ1(x0), 0)‖. (24)

Writing x0 as the identityx0 = Ψ−1(Ψ1(x0), Ψ2(x0)) gives,

dist(x0,Z) ≤ ‖Ψ−1(Ψ1(x0), Ψ2(x0)) − Ψ−1(Ψ1(x0), 0)‖

≤ LΨ−1‖(Ψ1(x0), Ψ2(x0)) − (Ψ1(x0), 0)‖ = LΨ−1‖Ψ2(x0)‖,
(25)

for some finiteLΨ−1 > 0 (asΨ−1 is also locally Lipschitz).

Recall the following facts:∆(x∗) lies within the open setV ; for everyǫ > 0, φTI

ǫ(∆(x∗)) = x∗

lies within the open setU ∩ S; and for everyǫ > 0, ∆(x∗) lies within the open setBδ(∆(x∗))

for δ from H2.3). The function∆ is continuous, as isφTI

ǫ for each value ofǫ > 0. Thus, for

every ǫ > 0 there existsµ > 0 such thatBµ(∆(x∗)) ⊂ V , φTI

ǫ(Bµ(∆(x∗))) ⊂ (U ∩ S), and

µ < δ. Together, (23), (25), and H2.3) imply that∀x0 ∈ Bµ(∆(x∗))

1
LΓ

‖Γ2 ◦ φTI

ǫ(x0)‖ ≤ dist(φTI

ǫ(x0),Z) ≤ K(ǫ) dist(x0,Z) ≤ K(ǫ) LΨ−1‖Ψ2(x0)‖. (26)

Setting(z̄, η̄) = Ψ(x0) leads to‖Γ2 ◦ φTI

ǫ ◦ Ψ−1(z̄, η̄)‖ ≤ LΓLΨ−1K(ǫ)‖η̄‖. The periodic orbit

O is contained inZ and thus for allǫ > 0, η∗ = (Γ2 ◦ φTI

ǫ ◦ Ψ−1)(z̄∗, η̄∗) = 0. Thus, the

function (Γ2 ◦ φTI

ǫ ◦ Ψ−1)(z̄∗, η̄∗) meets the criteria of Lemma 12 and Remark 13, which imply

that limǫց0 D2(Γ2 ◦ φTI

ǫ ◦Ψ−1)(z̄∗, η̄∗) = 0, or, equivalentlylimǫց0 Sǫ
φTI

(z̄∗, η̄∗) = 0, which was

to be shown.

Proof of Corollary 4: Forward invariance and the submanifold property ofZ follow imme-

diately from applying the general results of [21, Ch.5] to the drift and control vector fields of
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Σol. Condition H2.1) of Corollary 2 is trivially satisfied because ǫ does not participate in the

definition ofZ. Similarly, the feedback (10) is independent ofǫ on the manifoldZ and therefore

the closed-loop flowf(x) + g(x)uǫ(x) when restricted toZ is independent ofǫ.

Under the feedback (10), the manifoldZ is exponentially attractive withǫ-dependant conver-

gence parametersc andγ satisfying16 ∀ 0 ≤ t < T ǫ
I (x0) dist(φǫ(t, x0),Z) ≤ c(ǫ)e−γ(ǫ)tdist(x0,Z)

and limǫց0 c(ǫ)e−γ(ǫ) = 0. For a givenǫ > 0, chooseδ > 0 such thatφTI

ǫ(x0) exists for allx0

in the closedball B̄δ(∆(x∗)). On this compact set, the differentiable functionT ǫ
I (x) achieves

a minimum value. If necessary, further restrictδ so that this minimum value is strictly greater

than one half of the periodt∗ of the orbit O. Then for the chosenǫ and correspondingδ,

eachx0 in the openball Bδ(∆(x∗)) satisfies dist(φTI

ǫ(x0),Z) ≤ c(ǫ)e−γ(ǫ)T ǫ
I
(x0)dist(x0,Z) ≤

c(ǫ)e−γ(ǫ) 1

2
t∗dist(x0,Z). Define K(ǫ) = c(ǫ)e−γ(ǫ) 1

2
t∗. Then for each value ofǫ > 0 there

exists δ > 0 such that for allx0 ∈ Bδ(∆(x∗)), dist(φTI

ǫ(x0),Z) ≤ K(ǫ) dist(x0,Z), with

limǫց0 K(ǫ) = 0. Thus Hypothesis H2.3) of Corollary 2 is satisfied, completing the proof of

Corollary 4.

B. Proof of Theorem 7

This section constructs the open-loop deadbeat hybrid extensionΣol,λ
e =

(

Xe,Se, ∅,U , ∆cl,λ
e , fe, ge

)

and output functionye = he(xe) used in the proof of Theorem 7. A proof of the theorem is then

given. To begin the construction ofye = he(xe), choose any functionB : IR × IRmk → IRm

satisfying the properties17

i) for any b = (b0, . . . , bk−1), b0, . . . , bk−1 ∈ IRm

B(s, b)|s=0 = b0,
∂
∂s

B(s, b)|s=0 = b1, . . . ,
∂k−1

∂sk−1 B(s, b)|s=0 = bk−1;

ii) for any b = (b0, . . . , bk−1), b0, . . . , bk−1 ∈ IRm

B(s, b)|s=1 = 0, ∂
∂s

B(s, b)|s=1 = 0, . . . , ∂k

∂sk B(s, b)|s=1 = 0;

iii) ∀s ∈ IR, B(s, 0) ≡ 0;

iv) ∀b ∈ IRmk, the functionB(s, b) is Ck+1 in s; and

v) ∀s ∈ IR, each of the functionsB(s, b), ∂
∂s

B(s, b), . . . , ∂k

∂sk B(s, b) is continuous inb.

16As specified earlier, the initialization time forφ(t, x0) is always assumed to bet0 = 0.

17That is,B is a vector-valuedCk+1 spline.
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Continuing, define a functions : X × IR → IR as s(x, s0) = 2τ(x) + s0, and note that by

monotonicity ofτ(x) (Hypothesis H7.3)s(x, s0) will be strictly monotonically increasing (that

is Lfs(x, s0) = 2Lf(x)τ > 0 on O) for any choice ofs0. Define the parameter vectorα =

(b, s0) ∈ IRmk+1 for b ∈ IRmk ands0 ∈ IR, and designate an extended state vector asxe = (x, α).

With this notation, the constructed output function is written as

he(xe) =







h(x) + B(s(x, s0), b) for s(x, s0) < 1

h(x) else.
(27)

Motivated by the parameter vector of the constructed output(27), letA = IRmk+1. In general,

there are uncountably many parameter update functions thatcould be constructed to satisfy

Theorem 7. One family of such updates is indexed by a scalarλ ∈ IR with

vλ(x−) = (bλ
0(x

−), . . . , bλ
k−1(x

−), s0(x
−)) (28)

wheres0(x
−) = −2τ(x+), bλ

0(x
−) = λh(x−) − h(x+), and

bλ
n(x−) = (2Lfτ(x+))−n

(

−Ln
fh(x+) + λLn

fh(x−) −R(1)
n (x+, b0(x

−), . . . , bn−1(x
−))
)

(29)

for x− ∈ S, x+ = ∆(x−), and1 ≤ n ≤ k − 1. The termR
(1)
n (x+, b0, . . . , bn−1) will be defined

shortly, following Remark 14. LettingXe = X × A, Se = S × A, ∆cl,λ
e (xe) =

(

∆(x), vλ(x)
)

,

xe = (x, α), fe(xe) = (f(x), 0), and ge(xe) = (g(x), 0) leads to the final construction of the

open-loop deadbeat hybrid extension,Σol,λ
e =

(

Xe,Se, ∅,U , ∆cl,λ
e , fe, ge

)

.

Remark 14: For the compositionB(s(x, s0), b), Faá di Bruno’s formula [22] for thenth

partial derivative generalizes18 to a formula for thenth Lie derivative

Ln
fB(s(x, s0), b) =

∑

Jn

n!

j1! j2! . . . jn!

∂jB(s(x, s0), b)

∂sj

n
∏

i=1

(

Li
fs(x, s0)

i!

)ji

, (30)

wherej = j1 + · · · + jn and the summation is over the setJn of all n-tuples of nonnegative

integer values(j1, . . . , jn) satisfyingj1 + 2j2 + · · · + njn = n.

For use in (29), letR(1)
n (x, α) represent the summation of (30) over the index setJ

(1)
n =

Jn \ {(n, 0, . . . , 0}, so that withα = (b, s0) andxe = (x, α),

Ln
fe

he(xe) = Ln
f h(x) + R(1)

n (x, α) +
∂nB(s(x, s0), b)

∂sn
(Lfs(x, s0))

n. (31)

18This generalization is only possible because the functions is scalar-valued.
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By property i) of B, when x and s0 are such thats(x, s0) = 0, the value ofR(1)
n (x, α) is

dependent only onx and the parametersb0, . . . , bn−1, and the notationR(1)
n (x, b0, . . . , bn−1)

becomes appropriate. For use in the proof of Lemma 15, letR
(2)
n (x, α) represent the summation

of (30) over the index setJ (2)
n = Jn \ {(0, . . . , 0, 1)}, so that withα = (b, s0) andxe = (x, α),

Ln
fe

he(xe) = Ln
f h(x) + R(2)

n (x, α) +
∂B(s(x, s0), b)

∂s
Ln

f s(x, s0). (32)

Lemma 15: The outputhe(xe) of (27) has uniform vector relative degreek for all xe in an

open neighborhood of theOe, which is the trivial lift of O into Σol
e .

Proof: For all xe ∈ Xe, 0 ≤ n ≤ k − 1

Ln
fe

he(xe) =











Ln
fh(x) + Ln

fB(s(x, s0), b) for s(x, s0) < 1

Ln
fh(x) else.

(33)

By H7.1), the claim of the Lemma is trivial for allxe ∈ Xe for which s(x, s0) > 1. Using the

term R
(2)
n (x, α) developed after Remark 14, expand the first line of (33) to obtain that for all

xe = (x, α) ∈ Xe such thats(x, s0) < 1, for 0 ≤ n ≤ k − 1,

Ln
fe

he(xe) = Ln
f h(x) + R(2)

n (x, α) +
∂B(s(x, s0), b)

∂s
Ln

f s(x, s0), (34)

which is (32). Each additive term ofR(2)
n (x, α) containsLi

fs(x, s0) for some0 ≤ i ≤ n−1. From

its definition, the functions(x, s0) satisfies the property that∀x ∈ X , ∀s0 ∈ IR and0 ≤ n ≤ k−1,

LgL
n
f s(x, s0) = 2LgL

n
f τ(x). And, by H7.3),LgL

n
f τ(x) = 0 for 0 ≤ n ≤ k − 2. With omitted

chain-rule calculations left to the reader, this further implies that for allxe = (x, α) = (x, b, s0) ∈

Xe such thats(x, s0) < 1, 0 ≤ n ≤ k− 2, it holds thatLgR
(2)
n (x, b, s0) = 0. Accordingly, for all

xe = (x, α) ∈ Xe such thats(x, s0) < 1, for 0 ≤ n ≤ k − 2, Lge
Ln

fe
he(xe) = 0, which is part i)

of the definition uniform vector relative degree. In the caseof n = k − 1, (34) simplifies to

Lge
Lk−1

fe
he(xe) = LgL

k−1
f h(x) + Lg

(

∂B(s(x, s0), b)

∂s
Lk−1

f s(x, s0)

)

giving the decoupling matrix as

Lge
Lk−1

fe
he(xe) = LgL

k−1
f h(x) +

∂B(s(x, s0), b)

∂s
LgL

k−1
f s(x, s0). (35)

Applying the Sherman-Morrison-Woodbury formula [6], the decoupling matrix is invertible at

each pointxe = (x, b, s0) ∈ Xe where the continuous scalar function

1 + LgL
k−1
f s(x, s0)

(

LgL
k−1
f h(x)

)−1 ∂B(s(x, s0), b)

∂s
(36)
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is nonzero. AlongOe, the trivial lift of O, the parameterb takes a value of0 ∈ IRmk and thus by

property iii) of B, for all (x, b, s0) ∈ Oe, ∂B(s(x, s0), b)/∂s = 0. As a result the function in (36)

has a constant value of1 on the orbitOe. Because (36) is continuous and nonzero onOe, it must

be nonzero in an open neighborhood ofOe. Equivalently, the decoupling matrixLge
Lk−1

fe
he(xe)

is invertible in an open neighborhood ofOe, which fulfills part ii) of the definition of uniform

vector relative degree.

Proof of Theorem 7: By Lemma 15, the parameterized extension,Σol,λ
e and output function

he together fulfill H4.1) of Corollary 4. Hypothesis H7.1) of Theorem 7 implies that H4.2) of

Corollary 4 is true - indeed every point on the trivial liftOe meets this condition. Hypothesis

H7.2) of Theorem 7 implies that the open-loop deadbeat hybrid extension meets H4.3). The

manifoldZe is impact invariant if and only for allx−
e = (x−, α−) ∈ Se ∩ Ze,

he(x
+, α+) = 0, Lfe

he(x
+, α+) = 0, . . . , Lk−1

fe
he(x

+, α+) = 0

with x+ = ∆(x−) and α+ = vλ(x−). The above Lie derivatives can be expanded as in (31);

∀x− ∈ S with x+ = ∆(x−) and0 ≤ n ≤ k − 1,

Ln
fe

he(x
+, α) = Ln

f h(x+) + R(1)
n (x+, α) +

∂nB(s(x+, s0), b)

∂sn
(Lfs(x

+, s0))
n, (37)

for anyα ∈ A. By the construction ofs, Lfs(x, s0) = 2Lfτ(x) (independent of the value ofs0).

After the update ofs0 = −2τ(x+), the value ofs(x+, s0) is necessarily zero. Using property i)

of B, then = 0 case of (37) is simplified tohe(x
+, b, s0) = h(x+) + b0, and for1 ≤ n ≤ k − 1,

Ln
fe

he(x
+, b, s0) = Ln

fh(x+)+bn(2Lfτ(x+))n+R
(1)
n (x+, b0, . . . , bn−1). The parameter updates of

(29) are derived by settingLn
fe

he(x
+, b, s0) = λLn

fh(x−) and solving forbn. In this way, impact

invariance ofZe is achieved by construction. Lastly, Hypothesis H7.1) and property iii) of B

imply that the orbitOe is in Ze, which is the final claim of the theorem.
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