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Abstract

Motivated by the problem of controlling walking in a bipedthviseries compliant actuation, this
paper develops two main theorems relating to the stahizaif periodic orbits in systems with impulse
effects. First, when a periodic orbit of a system with impuksffects lies within a hybrid invariant
manifold, the Jacobian linearization of the Poincarémetmap results in a matrix that is block upper
triangular. One diagonal block is the linearization of tieéurn map of the hybrid zero dynamics, and
the other is the product of two sensitivity matrices relatedhe transverse dynamics. When either
sensitivity matrix is sufficiently close to zero, the stékibf the return map is determined solely by the
hybrid zero dynamics. The second main result of the papeaildehe construction of a hybrid invariant
manifold by introducing impact-updated control parametéssing the construction, entries of either
(or both) of the transverse dynamics’ sensitivity matriceas be made arbitrarily small. A simulation

example is provided, where stable walking is achieved inlialsbiped with series compliant actuation.

Keywords: hybrid systems; zero dynamics; bipedal robots; undertaiusystems.

. INTRODUCTION

The results of this paper are motivated by the study of pariedlking (and running) motions
in bipedal robots. The first problem studied concerns a setiffitient conditions for determining
if a periodic solution of an autonomous closed-loop systensisting of a bipedal robot, ground

contact model, and feedback controller is exponentiaiplst The problem is first cast in terms
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of periodic orbits in nonlinear systems with impulse efégl], [38], that is, systems modeled by
an ordinary, time-invariant differential equation (ODRB)co-dimension one switching surface,
and a re-initialization rule. Such models can be used tcesgt a wide range of systems with
discontinuous or jump phenomena, including walking anchimgp gaits in legged robots [16],
[11]. The method of Poincaré sections is the proper thaaletool for analyzing the stability
of periodic orbits in systems with impulse effects [16], [2@st as it is for ordinary differential
equations.

When the method of Poincaré sections is applied in prdgtiazblems, it is very common
to see the Jacobian linearization of the Poincaré map astthnumerically and the exponential
stability of a fixed point (i.e., a periodic orbit) deducedttve basis of the eigenvalues. This can
be very unwieldy when stability needs to be evaluated repiats part of an iterative procedure
to design a feedback controller. Here, the method of Poinsactions is augmented with notions
of (hybrid) invariance attractivity, andtime-scale separatiom order to simplify its application
to nonlinear systems with impulse effects. The experiemiaegl in [34] in the context of bipedal
robots has proven that when stability analysis can be reddsufficiently tractable, it becomes
possible to efficiently explore a large set of asymptoticathble orbits in order to find one that
meets additional performance objectives, such as minimoengg consumption or minimum
peak-actuator power demand. The analytical results dlaila [16] require that an invariant
manifold of the ODE portion of a system with impulse effecésrbndered finite-time attractive
through a continuous, but not Lipschitz continuous, feedd@)]. The result established in this
paper will weaken this requirement to attractivity at a suéntly-rapid exponential rate, thereby
permitting the use of smooth feedback laws.

The second main result of the paper isanstructive methotbr creating the hybrid invariant
manifold required by the first result. Hybrid invariance in@nlinear system with impulse effects
refers to a manifold being invariant under both the contusu(ODE) portion of the model as
well as the discrete (reset) map present in the model. bwee in ordinary differential equations
is a rich, well-studied subject, and in particular, the nethdeveloped by Byrnes and Isidori for
thezero dynamicsire well suited for use here. The less-well-studied andéemare challenging
problem is how to achieve invariance under the discreteqondf the model. A novel type of
dynamic extension of a system with impulse effects is dgeddor this purpose. The end result

is a truly hybrid controller for achieving invariance in asggm with impulse effects.
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[I. TECHNICAL BACKGROUND

This section reviews the definition of a system with impulffeats and introduces the two
primary analysis tools that are used in this paper: the ntetfiéoincaré sections and the notion
of a hybrid invariant manifold.

The method of Poincaré sections and return maps is widedy ts determine the existence
and stability of periodic orbits in a broad range of systemdeis, such as time-invariant
and periodically-time-varying ordinary differential emiions [27], [18], hybrid systems con-
sisting of several time-invariant ordinary differentiauations linked by event-based switching
mechanisms and re-initialization rules [16], [26], [29ifferential-algebraic equations [19], and
relay systems with hysteresis [15], to hame just a few. Wtk analytical details may vary
significantly from one class of models to another, on a cotuzgpevel, the method of Poincaré
is consistent and straightforward: sample the solution system according to an event-based
or time-based rule, and then evaluate the stability prasedf equilibrium points (also called
fixed points) of the sampled system, which is called the Roceturn map; see Fig. 1. Fixed

points of the Poincaré map correspond to periodic orhitsit(cycles) of the underlying system.

A. Systems with Impulse Effects

To define aC! control system with impulse effects, consider a nonlindfmecontrol system

&= f(z) +g(x)u, 1)

where the state manifold is an open connected subset/Bf, the control input: takes values
in Y c IR™, and f and the columns of are C' vector fields onY. An impact (or switching)
surface,S, is a co-dimension oné! submanifold withS = {x € X | H(z) =0, Hy(x) > 0}
where Hy : X — IR is continuousH : X — R is C', S # 0, andvz € S, 2L (z) # 0. An
impact (or reset) map is@* functionA : SxV — X,V C IRP, p > 0 whereSNA(Sx V) =),
that is, where the image of the impact map is disjoint fromditsnain. AC* control system

with impulse effectbas the form

[ = s s o
‘ xt = A(x7,0) r~ eS8
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wherev € V is a control input for the impact map, and (¢) = lim, ~ z(7) andz™*(t) = lim ; 2(7)
are, in words, the left and right limits of a trajectonyt). A system with inputs into the vector

field but not into the impact map,

o= fl@)+g@u 2= ¢S

el , (3)

= Ax7) €S
can be written as a special case of (2) with= (). Replacing the control system (1) with an

autonomous system
and takingy = ) leads to aC'' autonomous system with impulse effects

r = flx) 2 ¢S8
el . (5)
xt = A(x7) 2z~ €8S.
For compactness of notation, an autonomous system withlga@ifects (5) will be denoted as
a 4-tuple, X = (X, S, A, f), while a control system with impulse effects (2) will be desw
as a 7-tuplex? = (X, S, V,U, A, f,qg).

In simple terms, a solution of (2) or (5) is specified by thdeddntial equation (1) or (4) until
its state “impacts” the hyper surfaceat some timet;. At ¢;, the impact modelA compresses
the impact event into an instantaneous moment of time, treguh a discontinuity in the state
trajectory. The impact model provides the new initial cdioeti from which the differential
equation evolves until the next impact with In order to avoid the state having to take on two
values at the “impact timef;, the impact event is, roughly speaking, described in terhibe
values of the state “just prior to impact” at tim&;®, and “just after impact” at time#/”. These
values are represented by andz™, respectively. From this description, a formal definitidn o
a solution is written down by piecing together appropriateitialized solutions of (1) or (4);
see [38], [16], [26], [10]. A choice must be made whether tbitson of (5) is a left- or a
right-continuous function of time at each impact eventehaolutions are assumed to be right
continuous [16].

B. Periodic Orbits and the PoincarReturn Map

Cyclic behaviors such as walking are represented as permdits of systems with impulse

effects. A solutionp(t, ¢, z) of an autonomous systed¥! is periodic if there exists a finite
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T > 0 such thatp(t + T, tg, z9) = @(t,t9, o) for all t € [ty,00). A setO C X is aperiodic
orbit if O = {p(t,t,z0) | t > to} for some periodic solutio(t, ty, zo). If a periodic solution
has an impact event, then the corresponding periodic G1dg not closed; see [16], [24]. Let
O denote its set closure. Given a notm || on &, the distance from a point € X to a set
F C X is defined as dist, F') = inf;cr ||z — z||. Notions of stability in the sense of Lyapunov,
asymptotic stability, and exponential stability of orbitdlow the standard definitions as in [23,
pp. 302], [16], [26]. In a similar manner, a periodic orbit thie control systent® is defined
as the set of points i’ traced out by a periodic solution & for some inputs: andv.

When using the method of Poincaré to study systems with lisepeffects, it is natural to
selectS as the Poincaré section. To define the return ma;(let:,) be the maximal solution of
(4) with initial conditionz, at timet, = 0. Thetime-to-impacfunction, 7;(x), is the time from
initialization to the first intersection with the s8tand is in general a partial map. The Poincaré
return map,P : S — S, is then the partial map’(z) = ¢(77 0 A(z), A(x)). A periodic orbitO
hasperiod oné if its closure intersects at exactly one pointy* = ONS. A period one orbit is
transversalto S if L;H(z*) = 2L(z*) f(z*) # 0 (in words, the vector fieldf is not tangent to
S at the pointz*). For convenience, define the partial function (x) = ¢(77(z), z) so that the
Poincaré return map can be written Bér) = ¢r, o A(x). For the case of autonomous systems
with impulse effects, the Method of Poincaré sections imfalized in the following theorem:

Theorem 0 (Method of Poincagé Sections):If the C'! autonomous system with impulse ef-
fects X = (X, S, A, f) has a periodic orbi©) that is transversal t&, then the following are

equivalent:

i) x* is an exponentially stable (resp., asymp. stable, or siable) fixed point of P;

i) O is an exponentially stable (resp., asymp. stable, or siable) periodic orbit.
[

Proof: The proof for exponential stability is in [24]. Proofs foryasptotic stability and
stability i.s.L are in [16], [26]. [ ]

tUnless otherwise stated, all periodic orbits are assumétve period one.
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Fig. 1. Geometric interpretation of a Poincaré return nfapS — S for a system with impulse effects. The Poincaré section
is selected as the switching surfacg, A periodic orbit exists wher?(z~) = x~. Due to right-continuity of the solutions;™

is not an element of the orbit. With left-continuous soloEpA (z~) would not be an element of the orbit.

[1l. HYBRID INVARIANT MANIFOLDS AND DETERMINING ORBITAL STABILITY ON THE

BASIS OF ARESTRICTION DYNAMICS

This section identifies properties of the autonomous syg@nunder which the exponential
stabilizability of a periodic orbit can be determined on Hasis of a hybrid restriction dynamics.
The key hypothesis will be the existence of an embedded suifwichthat is invariant under both
the continuous and discrete portions of the hybrid model Thg design of static and dynamic
state variable feedbacks that create invariant submasiftdr systems modeled by ordinary
differential equations is a well-studied problem and playsrominent role in the notion of the
zero dynamics [21]. How to design feedbacks that achievariamce under the impact map in
(2) is the topic of Section IV.

A. Hybrid Invariance and Restriction Dynamics

For an autonomous system with impulse effécts= (X, S, A, f), a submanifoldZ c X is
forward invariantif for each pointz in Z, f(x) € T, Z. A submanifoldZ is impact invariant
in an autonomous system with impulse effett$ = (X, S, A, f) or in a control system with
impulse effects>® = (X, S,0,U, A, £, g), if for each pointr in SNZ, A(x) € Z. A submanifold
Z is hybrid invariantif it is both forward invariant and impact invariant. If @ embedded

submanifoldZ is hybrid invariant andS N Z is C* with dimension one less than that 8f then
2 = flz(2) 2 ¢SNZ

I (6)
2t = Algz(27) 27 eSNZ,
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is called ahybrid restriction dynamicsf the autonomous systekf’, wheref|- andA|s~z are
the restrictions off and A to Z andS N Z, respectively. If, in addition, the systekf' has a
periodic orbitO C Z, thenO is a periodic orbit of the hybrid restriction dynamics. Thystem
(6) will sometimes be denoted a8|, = (2,8 N Z, Alsnz, f|z). Hybrid invariance ofZ is
reflected in the Poincaré map as

PSNZ)csSnZ. )

On the basis of (7), theestricted Poincagé mapp: SN Z — SN Z, is defined ap = P|z, or

equivalently,

p(2) = ¢|z(Tr|z 0 Alsnz(2), Alsnz(2)) = ¢,z 0 Alsnz(2). (8)

B. Factoring the Sensitivities of the Transverse Dynamics

The following theorem identifies conditions under which éx@onential stability of a periodic
orbit of the restriction dynamics is inherited by the full deb. The importance of such conditions
in the design of controllers that create stable, periodomhootion patterns in biped robots has
been studied before in [16], [34], where finite-time conegrce to an invariant manifold was
assumed. The result presented here relaxes this to “safficieapid” exponential convergence.
A less general version was first presented in [24], and agpppieBD bipedal locomotion in [3].

Theorem 1: Consider aC'! autonomous system with impulse effeétd = (X, S, A, f) and

assume there exists@ embedded:-dimensional submanifol& such that
H1.1) Z is hybrid invariant;
H1.2) SN Z is aC! embedded submanifold and has dimension one less Zhand
H1.3) X has a periodic orbi© transversal taS and contained irgZ.
Then, there exist local changes of coordindted/ — R*~! x R"*andV : V — IRF x R"*,

aboutz* = O NS and A(z*), respectively, such that when the Poincaré map of the systé

is represented in the new coordinates, its Jacdadout the fixed point* is

DP(z*,n*) = [DP(Z*) ’ -| ; )
[0 [se,omsatm)]

2For a differentiable functiog(z1, 2, ..., z,), the notatiorD; g(y1, yz, ..., yp) refers todg/dz; evaluated atz1, 2, ..., zp) =

(y1,y2,...,yp). The argumentz; may be a vectorDg(yi,...,yp) iS (0g/0x1,...,09/0xp) evaluated at(zi,...,zp) =

(Y1, Yp)-
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wheré P =T'oPol'", pis the restricted map of (8Bor, (2, 1") = Da(I'200r, oW1)(z*, 77%),
and Sa(z*,m%) = Dy(¥y 0 A o ') (2%, 9%), for (2*,n*) = (['1(x*),Ty(z*)) = T(z*) and
(Z5, ") = Vo A(z*) = (¥ o A(x*), Uy 0 Ax¥)).
O

The proof is given in the appendix. This theorem identifies tatures present in the linearized
Poincaré map evaluated at a fixed point lying in a hybrid riard manifold. The first is the
upper-triangular structure, which is immediate from théory invariance ofZ; see (7). The
second, and more interesting result, is that the bottont ek is the product of5,, and
Sa, which are the sensitivities of the transverse dynamicé wespect to the continuous flow
and impact map, respectively. If either of the sensitigitig, or Sa can be made sufficiently
small, then the spectral radius BfP will be determined solely by the restricted Poincaré map.
Corollary 2 below is based on the observation thgt can be made small through sufficiently
rapid convergence of the transversal dynamicg€tdlrhe next section will address, showing
that this term can be made arbitrarily small by controllihg behavior of the impact map.

Corollary 2: Consider a family ofC' autonomous systems with impulse effects with the
vector field of each member depending on a real parameted, X = (X, S, A, f€). Assume
that for each value of € (0, ), Hypotheses H1.1) - H1.3) are met and also that
H2.1) the submanifold® and fixed pointz* are independent aof;
H2.2) f¢ restricted toZ is independent of, so thatf|z = f|z for anye € (0, 00); and
H2.3) there exists a functiok” : (0,00) — [0, 00) such thatlim. o K (¢) = 0, andV ¢ > 0, 3

§ > 0 such that vV zy € Bs(A(z*)), dist{¢r;(20), Z) < K(e) dist(zg, Z).

Then the restriction dynamics

- =(2,8N Z,Alsnz, f|z) is independent of. In addition,
there exists > 0 such that for) < e < ¢, the following are equivalent:

i) z* is an exponentially stable fixed point pf and

i) x* is an exponentially stable fixed point &,

where P¢ = ¢1,0 A andp = P¢|z.
0

Ty (z) and 'z () refer to the firstk — 1 and lastn — k coordinates of*(x), and ¥, (z) and Wy (z) refer to the firstk and
lastn — k coordinates ofl’(x), respectively.

“Throughout the paper, the notatid®.(z) refers to an open ball of radiusabout the point: .
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The proof of the theorem is given in the appendix and shows i#2a3) is sufficient for
achievinglim. o S(;TI = 0. In other words, fore > 0 sufficiently small, an exponentially stable

periodic orbit of the restriction dynamicse

. =(2,8N Z,Alsnz, f|z), is an exponentially
stable periodic orbit of the full modet<c = (X, S, A, f¢). The next result shows how to
construct a closed-loop system meeting the hypotheses raill@y 2.

Definition 3: (from [21]) An outputh(x) has uniform vector relative degréeat a pointz if

i) for 0 <n <k-2, LgL?h(x) =0; and

ii) the matrix L, L}~ h(x) is invertible.

Corollary 4: Assume that a control system with impulse effeeté = (X, S, 0,U, A, f, 9),
has a smooth output= h(z), h : X — IR™ , with the properties that

H4.1) h(x) has uniform vector relative degrée

H4.2) there exists a point such thath(z) =0, Lyh(z) =0,..., L’}‘lh(x) = 0; and

H4.3) the distributiorspan{gi(z),-- -, gm(z)} is involutive.

Then the seZ = {x € X | h(z) = 0, Lyh(x) = 0,---, L}"'h(z) = 0} is a smooth embedded

submanifold. Moreover, for any > 0 and any scalar constants, ..., K, ; where s* +
Ki_1s"1 + ... K, is Hurwitz, the feedback

e _ -1 a _

u(x) = — (LyLE h(z)) ( LEh(z) + Y5y 7= KiLih(z) ) (10)

applied tox*' renderszZ forward invariant in the family of closed-loop systedid< = (X, S, A, f<)
for febe(x) = f(x) + g(z)u(z). In addition, the family of system&<: and the manifoldZ

satisfy conditions H2.1) to H2.3) of Corollary 2.
U

The proof is given in the appendix. Theorem 1 and CorollaBleand 4 provide precise
guidelines for designing a closed-loop system where thkiléyaof a periodic orbit can be
determined on the basis of a restriction dynamics. This igrafctical importance because
the restriction dynamics necessarily has lower dimengiam the full model, and usually the
dimension issignificantlylower. The main obstacle to applying these results is agtgewmpact

invariance of the forward invariant manifolé, which is addressed in the following section.
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V. ACHIEVING IMPACT INVARIANCE THROUGH HYBRID EXTENSION
A. Definition and Properties of Hybrid Extensions

Let X% = (X, S,0,U, A, f,g) be a control system with impulse effetand let.A be an open
subset oflR?, ¢ > 1. Then, the system

o { (3,6) = (f(@)+g(@)u,0) (27,07) ¢S x A
| @taet) = (A@)) (27, 07) €8 x A,
is called aparameterized extensiaf ¥ and is denoted as = (X,, S., A, U, A, f., g.) (with
elements of the 7-tupl& defined in the obvious way).

When a parameter update lawis chosen to be independent of the parametgethat is,
v: 8 — A, the resultant system?' = (X,,S.,0,U, AL, f., g.), with AZ(z,) = (A(z),v(x))
and z. = (z,a), is called anopen-loop deadbeat hybrid extensioh closed-loop deadbeat
hybrid extensioris denoted-¢ = (X, S., AY, f¢') where f&(z.) = fo(z.) + ge(we)u(z,) for
some continuous-time state feedback X, — U.

Remark 5: Suppose thab? = (X, S,0,U, A, f,g) has a periodic orbitD. Define the pa-
rameter vecton* = v(z*) for z* = ONS. Then the se®, = O x o* is a periodic orbit of the
open-loop deadbeat hybrid extensigff, and O, will be called thetrivial lift of O into ¥¢.

Remark 6: Consider a closed-loop deadbeat hybrid extensign= (X.,S., A?, ;<) and let
P, be its Poincaré map. I£¢ contains a hybrid invariant manifol€, and there exists a set
Z C Z, such thatS, N Z, = (SN 2Z) x A, then the Poincaré return map for the restriction

dynamicszgl}z has the property thab.|z. : (SNZ)x A — (SN Z)x A, by

P

Ze('Z’ Oé) = (pe(z)vv(z>>7 (11)

wherev is the parameter update law of the deadbeat hybrid extersidp, : SNZ — SN Z.

B. Constructing Hybrid Invariant Manifolds

The following theorem, with constructive proof in the apgen addresses the property of

impact invariance.

®Note thatV = (), indicating an absence of control authority over the impaap.

February 28, 2007 DRAFT



11

Theorem 7: Consider a smooth control system with impulse effeeté = (X, S,0,U, A, £, g),

with & C IR™. Assume there exists a periodic orbltthat is transversal t§ and that in addition

H7.1) there exists a smooth output: X — IR™ such thath vanishes on the orbit and has
uniform vector relative degrek in an open neighborhood of the orbit;

H7.2) the distributiorspan{gi(z), -, gm(z)} is involutive; and

H7.3) there exists a smooth real-valued functigm) that is strictly monotonically increasihgn
O, Lyr(x) =---= LgLI;_ZT(l') =0, and forz* = 0O NS, 7(2*) =1 and7(A(z*)) = 0.

Then, starting from the original systeRf’ and output functiony = h(z), one can construct an

open-loop deadbeat hybrid extensigft = (Xe,Se,@,u,Agl, fe,ge) and a new output function

y. = h.(z.) such that all of the conditions of Corollary 4 are satisfiedX¢ andh,.. Moreover,
the manifoldZ. defined as

Z, ={ze € X | he(we) =0, Ly he(xe) =0, -+, L he(xe) = 0},

is impact invariant w.r.t2' and containg),, the trivial lift of O into ¥
O
Remark 8: The derivation of the parameter update law of the open-loegddeat hybrid
extension of Theorem 7 allows the introduction of a parameatec /R. Dependence of the
parameter update law onwill be emphasized using the notation(z~). When\ is chosen to

equal zeron™ = v*(z7) is such that for anyz—,a") € S,,
he(z®, %) =0,Lyh(z",a®) =0,..., Lk h(2",a") = 0. (12)

wherex™ = A(z~). Furthermorep* has the following two properties:
i) for any fixedz, = (z7,a") € S., the value ofv*(z~) is continuous in\; and

i) for any fixedz, = (27,a7) € S. N Z., the value ofv*(z™) is independent of.

Remark 9: An ¢ and A dependant closed-loop deadbeat hybrid extension can bedréy
applying Corollary 4 to the open-loop deadbeat hybrid esitem constructed in Theorem 7.

®0nce again note that = (), indicating an absence of control authority over the impaap.

"In this context, a real-valued functian(z) is strictly monotonically increasing if.; () > 0 for every pointz in O.
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Applying Corollary 4 and Theorem 1, it follows that for anyc IR and forz¥ = (z*, o),
[D(R12) ) | : ]

L o s GashGm ]
with the subscript &” indicating reference to the closed-loop deadbeat hybxidresion. Because

Y

DPANrml) =

Z. meets the conditions of Remark 6,

_Dpe(z*) 0 *

DEAGLm)=| 0 |0 *

|0 |0 Sg, () SA (2 )
As shown in the proof of Corollary 2jm. o S;TI (zX,7%) =0, and by (12) and property i) of

v, limy_o SA (2%, n;) = 0. Because the vector fielfi|z, is independent of and v*

S.nz. IS
independent of\ (by property ii ofv), it follows thatDp.(z*) is independent of both and A.
Thus, for appropriate choices afande, max |eig(D P (z7))| = max |eig(Dp.(z*))|, showing
how the creation of a hybrid zero dynamics leads to a low-dsimanal test for stabilizability of

an orbit.

V. APPLICATION TO PLANAR BIPEDAL WALKERS WITH COMPLIANT ACTUATION

To give an application of theory, this section develops asclat models for planar robots with
series compliant actuation (see Fig. 2), derives propedi¢hese models as they relate to planar
robots without series compliance, and provides a simuladtady of a sample gait stabilized by
the continuous-time feedback of Corollary 4 and the paramgtdates of Theorem 7. As shown
in Fig. 2, a series compliant actuator is one in which a coamplelement has been deliberately
inserted between an actuated joint and its correspondirtgrnmo order to increase the overall
energy efficiency or to more accurately control the torquagliad at the joint. The specific
model used in simulation is based on a prototype robot thatiisently under construction in
a collaborative effort between the University of MichigamdaCarnegie Mellon University. The
purpose of the robot, named BIMASC, is to study the effectsesfes compliant actuation on
achieving efficient, stable, planar walking and running ioT.

Including springs in a legged robot is a well-motivated cleo[2], [1]. Introducing tuned
springs into an otherwise rigid mechanism can significamtiprove energy efficiency in two

ways: within the strides of walking and running, springs store and release some of the energy
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that would otherwise be lost as actuators do negative woik aafoot touchdown events, springs
isolate reflected motor inertias from the energy-dissiygpgffects of rigid collisions.

However, obtaining the energetic benefits of complianceotswithout cost: delivering torque
through compliant elements poses several challenges faratadesign. There is an obvious
increase in the degrees of freedom of the robot, and heneeletpree of underactuation. This is
a widely recognized issue in robotics; see [31], [30], [4¢l arferences therein. An additional
challenge particular to legged robots arises from the isipeleffects occurring when the swing
leg impacts the ground. Because of the higher degree of actition, previous results such as
[33] are not applicable to bipeds with series compliant abtun, further motivating the theory

of Sections Il and IV.

A. Hybrid Models

As in [34, Sec. ll], consider a bipedal robot consistingdflinks connected in a planar tree
structure to form two identical legs with knees, but withdegt, with the legs connected at a
common point called the hips, and possibly other limbs (sagla torso, etc.). All links have
mass, are rigid, and are connected in revolute joints (se2lyilt is assumed that no actuation is
applied between the stance leg and the ground, while all pdives are independently actuated,
and hence there argV — 1) controls. As shown in [12], [13], [14], addressing the cohwf
robots without actuation between the stance leg and grosirash iimportant step in achieving
anthropomorphic walking motions in robots with non-triviaet and actuated ankles. Further
details on the model are given in [34, Sec. ll], along withuasgtions on the walking gait
(instantaneous double support phase, no slipping nor rebati impact, motion from left to
right, symmetric gait). A rigid impact is used to model thentaxt of the swing leg with the
ground. To study the effects of introducing springs, a rigadel (without springs) is first derived,
followed by a compliant model having series compliant aituaat each body coordinate.

The configuration coordinates of the robot in single supfadgo commonly called the stance
phase) are denoted lgy= (q1, - - - , qv). The method of Lagrange leads to the mechanical model
for the rigid walker,

D(q)i+ C(q,4)¢ + G(q) = Bu, (13)

where D(q) is the inertia matrix,C'(¢, ¢) contains Coriolis and centrifugal term&yq) is the

gravity vector, andB is an N x (/N — 1) constant matrix with rankN — 1). Lettingz = (¢, g),

February 28, 2007 DRAFT



14

Fig. 2. (Left) A coordinate diagram of an example of the class\efink biped robot models considereRight) A schematic

of a rotational joint with series compliant actuation.

and definingf andg in the obvious manner, the mechanical model is expressedta griable

form as
&= f(z) +g(z)u. (14)

When the swing leg contacts the ground, an inelastic imgaassumed, giving rise to a jump
in the velocity coordinates, which is computed as in [205][1So that the same mechanical
model can be used independent of which leg is the stance Heggdordinates must also be
relabeled at impact, giving rise to a jump in the configuratkariables as well; see [16], [34].

The hybrid model of the robot (stance phase Lagrangian digsaplus impact map) is
constructed by specifying a state manifold,c 1?2V, corresponding to physically reasonable

joint configurations and velocities, the impact or switchsurface

S={(¢.4) € X | y2(q) — y1(q) = 0, x2(q) — x1(q) > 0},

the set of points where the swing leg height is zero and iszbotally in front of the stance
leg, and the impact map : S — X. The corresponding system with impulse effects for the
rigid model is¥¢' = (X, 8,0, RN A, f,9).

Assume now that the vector of torques applied to the robotah(iB) is generated through

a compliant model to form th&N — 1) DOF Lagrangian system
D(q)i+ C(g:4)q+ G(q) = BK(gm —qa) = 0

Jéjm+K(Qm_Qa) = Ue.

(15)
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whereg,, is a vector of( N — 1) motor anglesg, is a vector of the relative angles corresponding
to the (N — 1) actuated joints of the robot,. is the vector of(N — 1) motor torques,K is
a diagonal matrix of (positive) spring constants ahds a diagonal matrix of (positive) rotor

inertias. LettingX, = X x IR*™~Y andx, = (2, ¢, ¢m), this is easily expressed as
jjc = fc(xc) + gc<xc>uc- (16)

Because the impact condition depends only on the positioth@fswing foot (which is in-

dependent of the motor variablesy, = S x IR*™~1. Following [20], [16], the impact map
A, : S, — X, has the formA.(z.) = (A(z7),R q,,, R q,,), where R is a joint relabeling

matrix. Up to joint relabeling, the impact map,. imposes continuifyin the motor positions
and velocities across the impact. The corresponding mottelimupulse effects for the compliant
model is written aso? = (X, S, 0, RN, A, fe, gc)-

B. Model Properties

Some properties of the mechanical models (13) and (15) avesammarized. These properties
provide information on the stance phase zero dynamics of §bd (16). In the following, we
choose configuration coordinates for (13)@s- (q.,0), wheref references a position on the
robot to the world frame (see Fig 2).

Proposition 10: Let o be the angular momentum of the biped about the contact pbiiteo
support leg with the ground. In the coordinates (q,,0),

a) the inertia matrixD of (13) is independent of;

b) (14) is globally feedback equivalent to

. oV

=

6 = — — + R(qa)q
dNN(Qa) o

qa = w,
whereV is the potential energy of the robot model (13),

dn 1(%) dn N—1(qa)
R a) — — . s T 7
(q ) dN,N(Qa) dN,N(Qa)

8In other words, the springs isolate the motors’ rotor imertirom the impact dynamics. Since in practice, the rotortim
are reflected through a gear ratio on the orded®f. 1 or higher, removing the rotor inertias from the impact dyr@ntan

result in considerably less energy loss at impacts.
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andd, ; are the elements ab; and

c) (16) is globally feedback equivalent to
ov

g = —%(Q)

6 = —— + R(q.)d
dNN(qa) e

¢t = w.

The proof and the required feedback are given in [17], ancbased on [32], [28].
Proposition 11: Include the same smooth output functign= h(q) in the rigid model>¢
and the compliant modéL’. Then the following hold,
a) h has uniform vector relative degredor (14) if, and only if, it has uniform vector relative
degrees for (16);
b) the decoupling matrices depend only ¢and they are equal, that Is,Lsh = Lchjich;
c) for h(q) = qu — ha(6), det(L,Lsh)(q) = 1 — R(q,) 224?,
d) if h(q) = q. — ha(f) and has uniform vector relative degreefor (14), then the zero

dynamics manifolds and restriction dynamics of (14) and é6 diffeomorphic. Moreover,

the zero dynamics manifold of (14) is

. . 0hg(9) ,

Z= {(q,q) € X|qa = ha(0), 4o = ég >9} (17)
and in the coordinate§), o), the restriction dynamics is
;- (18)
00 | gu=na(o)
-1
- 7 (1 - R(@)ahd(9)) : (19)
dn n(6) 00

where,dy v(0) = dn nlguny0) @ R(0) = R|g—n,0)-

Proof: a) and b) are immediate from Proposition 10. The calculatoorc) is a straight-
forward application of the Sherman-Morrison-Woodburynfota [6] and is left to the reader.
The first part of d) follows from basic results in [21] and etgoas (17), (18), and (19) follow
from [34]. [ |

C. Designing a Gait, Outputs, and a Monotonic Function

Various computational methods have been proposed to desigs for models similar to

those used here. In order to implement the control methodbisfpaper on a robot model
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with compliance Y, we need not only a reference gait (periodic orbit), but &fsam H7.1) a
smooth output: : X. — IR™ that vanishes on the orbit and has uniform vector relatigreke
k, and (from H7.3) a smooth real-valued functiofx.) that is strictly monotonic on the orbit
and satisfied , 7(z.) = -+ = Lch’Jic‘zr(xc) = 0. The example gait of Fig. 3 was found by first

choosing a family of output functioAgarameterized by a vectat, namely

Yy = h(Qvﬁ) =dqa — hd(evﬁ)v (20)

whereh, is, in the following example, & x 1 vector of 7'" degree Bézier polynomials. Gradient
optimization was used to find & x 8 matrix!® of polynomial coefficients3* and an initial

conditionz, € X, such that

i) 0 lies in a periodic orbitD of the systen®? under the state feedback controller
ue(we) = — (L. L e, 8) " (L5 h(we B)

ii) the outputsy = ¢, — hq(0, 5*) vanish on the orbitDO and have uniform vector relative

degreek in an open neighborhood @?; and

iii) the coordinated is strictly monotonic on the orbit.

In the presence of the geometric constraints of ii) and mymerical integration of the stance
phase dynamics can be efficiently carried out on a lower-dgiemal system, which is the stance
phase zero dynamics; see [35].

When numerical optimization is successful, the resultiag gnd output function satisfy the
hypotheses of Corollary 4. As a result, there exists a feddbach that the closed-loop system
satisfies the conditions of Corollary 2 and all the hypoteeseTheorem 1 except H1.1). This
last condition is the most difficult to satisfy and, in gerieraquires parameter updates such as

those developed in the proof of Theorem 7 and discussed ifotlosving subsection.

D. Achieving Hybrid Invariance

By Proposition 10, the compliant model is a dynamic extemsibthe rigid model, and hence

by [21], the problem of designing controllers to zero an autpf the form (20) is, from a

°In an alternative method using techniques of [37], the abitld be designed first, independently of the outputs. Cditrpa

outputsy = h(z.) and a monotonic(x.) are chosen in a second step.

PEach7'™ degree polynomial has independent coefficients.
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theoretical perspective, no more difficult for the compliamodel than for the rigid model. In
particular, parts (a) and (b) of Proposition 10 show thamifoaitput functioni(q) for the rigid
model, X%, satisfies H4.1), H4.2), and H4.3) of Corollary 4, then th@sautput function when
used with the compliant mode},*, will also satisfy H4.1), H4.2), and H4.3) of Corollary 4.
Creating a forward invariant manifold is straightforwardeéach case.

However, the stability test of Theorem 1 requires the addél property of impact invariance
of Z—which is significantly harder to achieve in the compliantdebthan in the rigid one,
due to the higher relative degree of the output. For outpaisnly the special form of (20),
when used with planar biped models with one degree of untlexthan, a rigid impact map,
and no compliance, it can be shown that any forward invar@enifold Z containing a periodic
orbit O is automatically impact invariant [36, Thm. 6.2]. Such aufesloes not hold for the
compliant model, and in fact, we (the authors) have beenlartalfind even a single example
of an output of the form (20) giving rise to an impact invatiananifold in the model with
compliance, without the use of parameter updates. We domgethat outputs of this formever
give rise to an impact invariant manifold when actuationrigvided through springs.

Theorem 7 shows how impact invariance can be recovered ghrole introduction of a
discrete component to the overall control law, where a patarized output is introduced and
the parameters are updated stride to stride. This procegilgs rise to a manifold that is hybrid
invariant, allowing the stability test of Theorem 1 to bergat out on an orbit that is a trivial
lift of the original. See Remark 5.

To contrast this result with previous work, in [25] we foungh@ameterized output function,
continuous-phase controller, and impact update law to eenlde resulting manifold hybrid
invariant in a closed-loop deadbeat hybrid extension of exliivk robot model with compliance.
In that work, the parameterized output function and appab@rparameter update law were
crafted by hand and heavily exploited the fact that the ugioher rigid model had only one
degree of underactuation. Based strongly on spline-likasition functions, the constructive
outputs proposed in this paper are significantly differeotnf those used in [25] and the design

procedure does not constrain the number of degrees of widat@n.
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E. Simulation on a five-link biped

A numerical example is provided here to illustrate the aygion of the theorems of this paper
to the task of stabilizing walking in a five-link planar bipadth series compliant actuation. A
gait was designed following the method of [35] to achieveravéod progression rate 0f8 m/s
and to minimize an approximation of motor electrical enecgymsumed per distance traveled,
subject to constraints on max torque, ground friction, tjidimits, etc. Parameters of the model
are available in Table | and are estimates of the physicarpaters of BIMASC. In the model,
all links have uniform mass distributions except the femwkose center of mass 15 m
from the hip joint. Figure 3 gives a stick animation of the géngait. Values of) below each
frame show that) is monotonically increasing within a stride. The percertaglue indicates
the amount of total step time elapsed, which has a nonlirdationship withd. Rotor angles
for the sample motion are shown in Fig. 4. As required by thpaoh model, values of rotor
position and velocity are constant across the impact ewgntp joint relabeling.

The controller for stabilizing this gait was derived by cekog A\ = 1 and constructing an open-
loop deadbeat hybrid extensioly;* = (X, S..,0, R*, A%, f.c, gee), from the compliant
system, ¥ = (X, S.,0, R*, A, f., g.), as described in Theorem 7. A closed-loop deadbeat
hybrid extension ot = (X, See. AL, febe ), was formed by applying the feedback

ce vJce

-1
UZ(J,’C,@) - - <L9c,eL?}c’eh€<xcye)> ( Lz}c?ehe<xc,e) + Z?:(] %Ki[/ifc,ehe<xc,e) ) )

for Ko =1, K1 =4, Ky =6, K3 = 4, e = 0.07 to the open-loop deadbeat hybrid extension,
whereh,.(z.) is an output for the open-loop deadbeat hybrid extensiomsteocted (as described
in Theorem 7) from an output (20) for @ chosen by optimization. The required monotonic
function is7(z.) = (6§ — 6%)/(6— — 6T), wheref™ and#~ are the values of the coordinafe
just after and just before impact, respectively, as evatlian the orbit.

Figure 5 compares eigenvalues of the transverse sensithatrix S;Tpe(zg,ﬁ;)sgve(z:,n:)
of the closed-loop deadbeat hybrid extension at variougegabfe and . As eithere or A is
held constant and the other approaches zero, the eigeavaidlee transverse sensitivity matrix

converge to zerét Oncemax|eig(S;TI7e(2’;,ﬁg)Sge(z;f,n;f))| < 1, the stability of the periodic

UTheory predicts that as long as= 0, stability of the transverse dynamics can be obtained ahyevaf ¢ > 0, although

the region of attraction of the controller becomes vaniglyirsmall whene is large.
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TABLE |

PARAMETERS OF THE FIVE LINK MODEL.

Parameter Units Value
Length of each Link m 0.5
Mass of the Torso kg 27.5
Mass of each Femur and Tibip kg 0.5

CoM Inertia of the Torso kg - m? 0.5729

CoM Inertia of each Tibia | kg - m? | 0.0104

CoM Inertia of each Femur | kg - m? 0.0391

Reflected Inertia of Rotors | kg - m? | 0.03584

Transmission Ratio (unitless) 8:1
Spring Constant N/m 550
0=2.77 0=2.86 0=2.92 0=2.99
0% 4% 13% 28%
6=3.09 6=3.19 0=3.33 0=3.45
55% 77% 93% 100%

Fig. 3. Stick figure of a sample gait, walking @Bm/s. Values of@ are monotonically increasing.

orbit is determined solely by the partial map of (11), whose eigenvalues are unaffected by
eithere or \. For this example, the eigenvalues of the transverse satysinatrix are known

in closed-form aSSQTI,e(ZZ,ﬁZ)SZ,e(Z;ﬂnZ) = XeA?/¢ for t* equaling the period of the orbit
and the constant matrid found from the polynomial coefficient&, . .., K5. The one nonzero
eigenvalue unaffected by eitheior A can be found as slope @f at the fixed point; see Fig. 6.

For parameter choices of = 0.07 and A = 1, the magnitudes of the eigenvalues of the
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Fig. 4. Values of the motor angleg, along two cycles of the periodic orbit. Stance knee and hiprsoare plotted with a
solid line, swing knee and hip rotors with a dashed line. Momm@f impact are noted with a hollow circle. Consistent wifth

impact model, rotor positions and velocities are contirsuaaross the impact.

transverse sensitivity matrix are well below zero, the eigédues associated with parameter
updates are identically zero (see (11)), and the eigenddltlee partial map. is approximately
equal to0.55—indicating that the trivial liftO, is a stable periodic orbit in the closed-loop
deadbeat hybrid extensi@gfﬁ. A visualization of convergence is given in Fig. 7. The most
important feature of this plot is that the parameters (iepordinates) are indeed constant within
a stride, and stride-to-stride they converg® tén the figure, the initial condition is marked with

an asterisk and solution progresses from stride-to-sindbe direction of the arrow.

VI. CONCLUSION

Periodic walking gaits of bipedal robots can be modeled asge orbits in nonlinear systems
with impulse effects, with stability of an orbit determinbg linearizing a Poincaré return map
and checking its eigenvalues. While numerical techniquesb®e used to find fixed points and
to estimate the Jacobian linearization of the return maputbofixed point, generally, the
computations are too cumbersome for useféadback designOne solution is to design the

feedback control law so that it induces a special structarthe closed-loop system [9]. This
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Fig. 5. Effects of the controller parametersand A on the eigenvalues of the product of sensitivity matricegeaping in
the linearized return map. A5 is held fixed ande decreases to zero, the eigenvalues of the matrix produeeoys to zero.

Similarly, ase is held fixed and\ approaches zero, the eigenvalues converge to zero.

60
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lpe(o)l

451
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Fig. 6. The partial map.. The fixed point is located at the point where= p.(c), at approximatelyo| = 45 kgm?/s. The
slope at the fixed point is approximately 0.55, indicatingttthe discrete-time system,+1 = pe(ox) is locally exponentially

stable. The dashed line is the identity map.

idea gave rise to théybrid zero dynamic®f nonlinear systems with impulse effects, where
feedback is used to create an attractive, invariant sudsyst the hybrid model. Stability analysis

of a periodic orbit can then be decomposed into the computaif the Poincaré return map

restricted to the invariant surface (a lower-dimensiormrabfem) and determining the required

rate of convergence of the transverse dynamics to the amMasurface [16], [34].

The current paper presents two main results that extendhtgtecal techniques of the hybrid
zero dynamics framework. The first is a new set of hypotheselgruwhich the stability of a
periodic orbit can be determined on the basis of a restriet@dcaré map. An improvement over
[34] is the elimination of an hypothesis on the existence @adicular set of coordinates. In
addition, the transverse dynamics are not required to cgavi® the invariant surface in finite
time, but instead are allowed to converge at a “sufficierdlyia” exponential rate. This allows
the feedback to be smooth, whereas before it was continbotisiot Lipschitz continuous. The
second main result of the paper is a constructive methoddiieging hybrid invariance for a

much broader class of models than was allowed by [16]. Iniqudalr, the relative degree of
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Fig. 7. Projection of a solution converging to the orbit farpmeter values = 0.07 and A = 1. The initial condition is

marked with an asterisk. Within a given stride, valuesxodire constant and converge from step to step: te 0.

each output is no longer required to be two and special ptiegenf the impact or reset m&p
are no longer needed.

The theoretical results of the paper were demonstratedeoddbign of an exponentially stable,
periodic walking gait for a robot with series compliant attan. The presence of compliance
allows periodic gaits that require less power for locommotad a given speed, and hence the
springs enhance autonomy. However, springs also incréasedegrees of freedom of the robot,
and hence the extent of its underactuation. For the exanfigidize-link robot with four actuated
joints, the degree of underactuation becomes five. Theiaddltdegrees of underactuation pose
a challenge for achieving impact invariance, that is, irarare of a surface under the impact
map. Impact invariance is recovered by the use of a paraimederontroller with impact updated
parameters. The constructive controller design procediitke paper was applied to a five-link

robot and an exponentially stable gait was obtained.
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APPENDIX

A. Proof of Theorem 1 and its Corollaries

Proof of Theorem 1: The (local) coordinate transform represents elements of the the

submanifoldSN Z in preferred coordinatgsso that® (i) for any point*z € SNZNU, I'y(x) = 0,

BFacts (i) and (i) are properties easily derived from therdédin of preferred coordinatesn [8, p. 76].

4By definition, the domairl/ of I" is a subset oS and thus(U N S) = U. To emphasize this fact, we prefer to designate
the domain ofl’ as (U N S).
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and (ii) for any pointr € SNU, I'"1(T";(z),0) € SNZNU. Similarly, the coordinate transform
represents elements &f in preferred coordinates: (i) for anye ZNV, Wy(z) = 0, and (ii) for
any pointz € V, U1 (¥, (z),0) € ZNV. The coordinate transformdand¥ must exist by virtue
of the fact thatSN Z and Z are embedded submanifolds. Conditions H1.2) and the teasahty
portion of H1.3) are sufficient conditions under which theire map is differentiable at the point
z*. Let Pi(z,n) =Ty 0 PoT"Y(z,n) and Py(z,1) = [y 0 PoI'"(z,7) so that the Jacobian of

the return map can be written as

DB(z,m) = [Dlpl(zm) 172131(2777)] |
D1 Py(z,m) DyPa(z,n)

which, when evaluated dt:*,n*) = I'(z*), reduces to (9). By H1.3), the fixed point lies
within Z, and as a consequence of property (i)Iofn* = I';(z*) = 0. By the definition of
P, above andp in (8), Pi(z,0) = p(z), implying thatD, P, (z*,n*) = Dp(z*) and proving the
form of the upper left block of (9). The hypothesis on hybmddriance, H1.1), is a sufficient
condition for (7) and (by property (i) of) implies that]%(z,()) = 0 at all points(z,0) of its
domain. Differentiation with respect to thecoordinates give§>1]52(z*,n*) = 0, which is the

lower left block of (9). Applying the chain ruté to the alternative form of the return map gives,
DyPy(2, ") = Da(Ty0r, 0 AoT ™) (2", 1)
= Dy((Fr0¢p 0 U)o (ToAol™h) (2%, 1)
= Di(T2007,007")(2",77") Da(T10A o) (2%, 7")
+ Dy(T20¢7, 0071 (2%, 77") Da(V2 0 Ao T7H) (2%, 7%)
Forward invariance of implies thatD; (T'; o ¢7, o U~1)(z*,77*) = 0, leading to the expression
DyPy(2*, %) = Sor, (Z°,77)Sa(2", "), which completes the derivation of the form (9).
Lemma 12: Suppose that for some> 0, F': B,.(0) — IR" satisfies

a) dL < oo such thatvz € B,(0), ||F(x)| < L||z|; and

b) F'is continuously differentiable at every point ,(0).

Then, ||0F(0)/0x||; < L where|| - ||; is the induced norm.

®For any differentiable functiongy : R™ x R" — IR*, F» : R™ x IR" — RY, F(z1,22) = (Fi(x1,x2), Fo(x1,22)),
andG : R" x IR* — IRP, application of the chain rule shows thB:(G o F)(x1,x2) = D1G - D2 F1 + D2G - Do Fo.
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Proof: By (b) and Taylor's theoremf’(z) = F(0) 4+ (0F(0)/0x)z + R(x) where
lim,. o [[R(z)[|/[l«] = 0. By (a), F'(0) = 0 and||(9F(0)/9x) = + R(z)|| = [[F(x)|| < L||=|. By
compactness of closed unit ballsigr, there existg such that| (0F'(0)/0x) z|| = ||[(OF(0)/0x)||,
and||z|| = 1. Lettingxz = oz, for any value ob > 0, |[(0F(0)/0x) (0z/||éz|) + (R(6x)/||0z|)|| =
|(0F(0)/0x) 4+ (R(0x)/||oz])|| < L. It follows thatlimgs o || (OF(0)/0z) T + (R(0z)/||0z|)| =
I(0F(0)/9z)[|; and hence|(0F(0)/0x)||; < L. =
Remark 13: Any parameterized functiod™ : B, (0) — IR", r(e) > 0 that satisfies
a) for eache > 0, F<(0) = 0;
b) for eache > 0, there existsi(e) > 0 such thatF<(z) is continuously differentiable on
Bs¢(0); and
¢) [|F(@)|| < L)l with limes o L(€) = 0,

must (by Lemma 12) have the property thiab o ||2=-(0)||, = 0.

Proof of Corollary 2: The first claim of the corollary is trivial to prove: the syste <
restricted to the hybrid invariant manifol@ is independent ot. By H2.1) and H2.2), the
manifold Z is independent ot and so is the vector fielg|z. For the second claim of the
corollary, the Method of Poincaré Sections (Theorem Oyexito establish a relationship between
the eigenvalues of the Jacobian of a Poincaré map and thditgtaf the underlying orbit.
Because they are unaffected by coordinate transforms,igleevalues ofD P¢(z*) are equal to
the eigenvalues 0P P<(z*, *). As shown in Theorem 1, the matriRP<(z*, *) is block upper

triangular for all values ot, and therefore

eig(DP*(x")) = eig(Dp(z")) U eig(Sg,, (2 77)Sa(z",17)). (21)

Assume thatim.\ S;TI (z*,7*) = 0 (a fact to be proven below). In this case, fosufficiently
small, the maximum eigenvalue éfP¢(z*) is equal to the maximum eigenvalue ®p(z*), and
by the Method of Poincaré Sections, the omBitis exponentially stable in the full systerf’<
if and only if the same orbit is exponentially stable in thetreted systemzd\ .

To show thatlim. o S(;TI (z*,7*) = 0, invoke the convergence property of H2.3) in the
application of Taylor's theorem in Lemma 12. To start, ndtattthe functionl is differentiable

and therefore locally Lipschitz continuous. That is, thexests L > 0 such that for allz in an
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open neighborhood df N'S containing the point:*,
dist(z, 2) = infyez |z —y| > infyez 7-[T(z) - T(y)]|

= infyes 7-[|(T1(2), To(x)) — (T1(y), 0)|-
The last line in the above is obtained using property (i) @ pineferred coordinates given by
(as used in the proof of Theorem 1). By property (iiflofvz € UNS, T—1(Ty(x),0) € UNSNZ.
Stated differentlyyz € UNS, 3y € U NS N Z such thatl’; (x) = I'1(y). Applying this to the

(22)

last line of (22) shows that
dist(z, Z) > 1 |(T1(2), To(x)) — (Ta(),0)]| = 2 ||Ta(a)]- (23)
Next, by the triangle inequality, for any, in an open neighborhood d&f containingA(z*),
dist(zg, Z) < ||zg — U H(Wy(20),0)]. (24)
Writing o as the identityry = U=1(U (), Uy(z)) gives,

dist(zg, 2) < [[OH( Uy (o), Ua(xp)) — U~ H(W4(20),0)|
(25)

< Lg-1[[(Pi(z0), Wa(zo)) — (Yi(20), 0)[| = L1 [|W2(z0)],
for some finiteLy 1+ > 0 (as¥~! is also locally Lipschitz).

Recall the following factsA(z*) lies within the open set’; for everye > 0, ¢r;(A(z*)) = z*
lies within the open set/ N S; and for everye > 0, A(z*) lies within the open seBs(A(z*))
for 6 from H2.3). The functionA is continuous, as i®, for each value ok > 0. Thus, for
every e > 0 there existsy > 0 such thatB,(A(z*)) CV, ¢ (B.(A(z*))) C (UNS), and
p < 0. Together, (23), (25), and H2.3) imply thdt, € B, (A(z*))

772 0 675 (o) || < dist(¢r5(w0), Z) < K (€) dist(zg, Z) < K(€) Ly-1 [ Wa(xo)]|- (26)

Setting(z,7) = ¥(zo) leads to||T'y o ¢75 0 W1(2,7)|| < LrLy-1K(¢€)||7]]. The periodic orbit
O is contained inZ and thus for alle > 0, n* = (T'y 0 ¢7; o U1 (z*,7*) = 0. Thus, the
function (T'y o ¢7¢ o U~1)(2*,77*) meets the criteria of Lemma 12 and Remark 13, which imply
thatlime g Do(T'3 0 @75 0 W) (2%, 77*) = 0, or, equivalentlylim o S;TI (z*,7%) = 0, which was

to be shown.

Proof of Corollary 4. Forward invariance and the submanifold propertyZofollow imme-

diately from applying the general results of [21, Ch.5] te tirift and control vector fields of
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>, Condition H2.1) of Corollary 2 is trivially satisfied besai does not participate in the
definition of Z. Similarly, the feedback (10) is independentcain the manifoldZ and therefore
the closed-loop flowf(z) + g(x)u‘(z) when restricted teZ is independent of.

Under the feedback (10), the manifalis exponentially attractive witlh-dependant conver-
gence parametersandy satisfying®V 0 < t < T (z¢) dist(¢*(t, z0), Z) < c(e)e™Otdist(x, Z)
andlim. g c(e)e™9 = 0. For a givene > 0, chooses > 0 such thatpr,“(x) exists for allz
in the closedball Bs(A(x*)). On this compact set, the differentiable functidp(x) achieves
a minimum value. If necessary, further restricso that this minimum value is strictly greater
than one half of the period* of the orbit ©. Then for the choserm and corresponding,
eachz, in the openball Bs(A(x*)) satisfies digtpr, (o), Z) < c(e)e 7O @) dist(xy, Z) <
c(e)e 2 dist(zg, Z). Define K(e) = c(e)e 72", Then for each value of > 0 there
exists > 0 such that for allzy € Bs(A(x*)), dist(ér;(xo), Z) < K(e)dist(zg, Z), with
lime o K () = 0. Thus Hypothesis H2.3) of Corollary 2 is satisfied, complgtthe proof of
Corollary 4.

B. Proof of Theorem 7

This section constructs the open-loop deadbeat hybrichsxte¥?'* = (X, S.,0,U, AL, f., g.)
and output functiory, = h.(z.) used in the proof of Theorem 7. A proof of the theorem is then
given. To begin the construction @f = h.(z.), choose any functio3 : IR x R™ — R™
satisfying the propertié$

i) foranyb= (bo,...,bx_1), bo,...,bxp_1 € IR™

B(5,0)]s=0 = by, 2-B(5,0)]s=0 = b1, - . ., 2o B(5,b)|s=0 = bj_1;
i) forany b= (bo,...,bx_1), bo,...,bp_1 € IR™
0 fo
B(5,0)]s=1 = 0, 2 B(5,b)|s=1 = 0, ..., 2 B(s,b)]s=1 = 0;

i) Vs € IR, B(s,0) =0;
iv) Vb € IR™, the functionB(s,b) is C**! in s; and

V) Vs € IR, each of the functions®(s,b), £ B(s,b), ..., %B(s,b) is continuous irp.

oas specified earlier, the initialization time fai(¢, zo) is always assumed to hg = 0.

YThat is, B is a vector-valued>** spline.

February 28, 2007 DRAFT



30

Continuing, define a functior : X x IR — IR as s(z,sg) = 27(x) + so, and note that by
monotonicity of(z) (Hypothesis H7.3%(z, so) will be strictly monotonically increasing (that
is Lys(z,s9) = 2Ls(z)7 > 0 on O) for any choice ofs,. Define the parameter vector =
(b, 50) € IR™**! for b € IR™* ands, € IR, and designate an extended state vectar.as (z, ).

With this notation, the constructed output function is terit as

{ h(z) + B(s(z, s0),b) for s(z, s9) < 1

he(x.) = (27)

h(z) else.

Motivated by the parameter vector of the constructed ou@r, let. A = IR *!. In general,
there are uncountably many parameter update functionsctatl be constructed to satisfy

Theorem 7. One family of such updates is indexed by a scatarR with
MaT) = 0p(a7), . biog (@), so(27)) (28)
wheresy(z7) = —27(x"), b)(2~) = Ah(z~) — h(z*), and
ba(x7) = (2Ly7(a) ™" (—Lh(z*) + ALFR(z™) — R\ (@™, bo(z7), ..., baer(27)))  (29)

for 2= € S, 2t = A(z™), and1l < n < k — 1. The termR\’ (z*, b, . .., b,_1) will be defined
shortly, following Remark 14. Lettingt, = X x A, S, = S x A, A% z.) = (A(z), v (z)),
ze = (z,q), fe(ze) = (f(2),0), andg.(z.) = (g(x),0) leads to the final construction of the
open-loop deadbeat hybrid extensidif;* = (X.,S.,0,U, A&, f., g.).

Remark 14: For the compositionB(s(z, sq),b), Faa di Bruno’'s formula [22] for the:'"
partial derivative generaliz&€sto a formula for then!” Lie derivative

i n i Ji
L3 B(s(, 50), ) — %:jl! jQ!n‘!“ - aJB(S((?Z;m%b) }:[1 (M) ’ (30)

wherej = j; + --- + j, and the summation is over the s&t of all n-tuples of nonnegative

integer valuegji, ..., j,) satisfyingj; + 2jo + - - - + nj, = n.
For use in (29), |eng)(x,oz) represent the summation of (30) over the index g6 =
T\ {(n,0,...,0}, so that witha = (b, sg) andz, = (z, @),

0" B(s(z, so), b)
os™

L} he(xe) = Lth(z) + RY (z, @) + (Lys(z,50))™ (31)

8This generalization is only possible because the functiém scalar-valued.
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By property i) of B, whenxz and s, are such that(zx,sy) = 0, the value ofR,(f)(x,oz) is
dependent only on: and the parameter,...,b,_1, and the notatiorvzg)(:c,bo,...,bn_l)
becomes appropriate. For use in the proof of Lemma 15;1&@, a) represent the summation
of (30) over the index sef,\” = 7, \ {(0,...,0,1)}, so that witha = (b, s9) andz, = (z, ),

n 0B(s(z, s9),b)
0s

Lemma 15: The outputh.(z.) of (27) has uniform vector relative degréefor all x. in an

L} he(z.) = Lih(z) + RY (2, )

L's(, so). (32)

open neighborhood of th€., which is the trivial lift of O into X,
Proof: Forallz, € X, 0<n<k-—1

e Lih(z) + L} B(s(z, 0),b0) for s(z,sg) <1 )
e\Te) =
e Lh(x) else
By H7.1), the claim of the Lemma is trivial for alt. € X, for which s(z, sy) > 1. Using the
term R (z,«) developed after Remark 14, expand the first line of (33) taiobthat for all
ze = (z,a) € X, such thats(z, sg) < 1, for0 <n <k —1,

N 0B(s(x,s0),b)
0s

which is (32). Each additive term &' (x, ) containsL’s(x, so) for some0 < i < n—1. From

L} he(xe) = Lth(z) + R (z, ) Lis(z, so), (34)

its definition, the function(x, sq) satisfies the property thslt: € X', Vs, € IRand0 < n < k—1,
LyL}s(x,s0) = 2Ly L7 (x). And, by H7.3),L,L%7(x) = 0 for 0 < n < k — 2. With omitted
chain-rule calculations left to the reader, this furtheplies that for allz, = (z, a) = (x,b, o) €
X, such thats(z, sg) < 1,0 < n < k—2, it holds thatL,R” (z, b, so) = 0. Accordingly, for all
r. = (v,a) € X, such thats(z, sg) < 1, for 0 <n <k —2, Ly L} h(z.) = 0, which is part i)
of the definition uniform vector relative degree. In the cater = k£ — 1, (34) simplifies to

_ _ 0B(s(z,s0),b) ;.
Lg L he(we) = LyL} 1h(x)+Lg( ( (as o) )L’; s(x, so))

giving the decoupling matrix as

O0B(s(z, so),b)
0s

Applying the Sherman-Morrison-Woodbury formula [6], thecdupling matrix is invertible at

LgeLljslhe(xe) = Lng}_lh(x) + LgL’;_ls(a:, 50)- (35)

each pointr, = (z,b, s9) € X. where the continuous scalar function

—1 0B(s(z, s0),b)

k— k—
L+ Ly Ly s(x, s0) (Lg Ly h(x)) o

(36)
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is nonzero. Along),, the trivial lift of O, the parametel takes a value off ¢ IR™* and thus by
property iii) of B, for all (x,b, s9) € O, 0B(s(x, s9),b)/0s = 0. As a result the function in (36)
has a constant value afon the orbit®,. Because (36) is continuous and nonzera’hnit must
be nonzero in an open neighborhood®f. Equivalently, the decoupling matri&geL’Jiéjlhe(xe)
is invertible in an open neighborhood 6f., which fulfills part ii) of the definition of uniform
vector relative degree. [ ]
Proof of Theorem 7: By Lemma 15, the parameterized extensigff;* and output function
h. together fulfill H4.1) of Corollary 4. Hypothesis H7.1) of @brem 7 implies that H4.2) of
Corollary 4 is true - indeed every point on the trivial I, meets this condition. Hypothesis
H7.2) of Theorem 7 implies that the open-loop deadbeat Hybexiension meets H4.3). The

manifold Z, is impact invariant if and only for alk, = (z~,a7) € S. N Z,,
he(z®,a™) =0, Lyhe(at,a™) =0,..., L h (2T, a®) =0

with z* = A(z7) anda™ = v*(z~). The above Lie derivatives can be expanded as in (31);
Ve~ € Swith 2t = A(z7) and0 <n < k — 1,

O"B(s(xT, s9),b)
Os™

for anya € A. By the construction o, Lys(x, sg) = 2Ls7(z) (independent of the value of).

(Lfs(x+750))n> (37)

L} he(zt,a) = Lih(z®) + RY (2%, a) +

After the update ok, = —27(z™), the value ofs(z", s) is necessarily zero. Using property i)
of B, then = 0 case of (37) is simplified ta.(z", b, sq) = h(x*) 4+ by, and forl <n < k—1,
L% he(x7%,0,50) = L?h(ﬁ)+bn(2LfT(:c+))”+Rg)(:c+, bo, - - ., b,_1). The parameter updates of
(29) are derived by settinggﬁehe(ﬁ, b, s0) = ALth(x~) and solving forb,. In this way, impact
invariance ofZ, is achieved by construction. Lastly, Hypothesis H7.1) angperty iii) of B

imply that the orbitO, is in Z., which is the final claim of the theorem.
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