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Asymptotic Observers for Detectable and Poorly Observable Systems

P.E. Moraal*and J.W. Grizzle !

Abstract

A new notion of detectability for nonlinear sys-
tems, which generalizes the existing definition of de-
tectability for linear systems, is explored. Based on
this notion, a constructive observer design method for
detectable, but not necessarily observable, nonlinear
systems is given. Preliminary results on the observer
design for “poorly observable” systems are also dis-
cussed and illustrated with an example.

1 Introduction

When a given system is not completely observable,
it is not possible to recover all the state components
from the outputs. However, in some cases one may
be able to reconstruct at least a part of the state. In
linear system theory, the notion of detectability was
introduced to deal with systems that are not com-
pletely observable, yet for which one can construct
an observer whose error decays to zero exponentially.

The notion of detectability has also been intro-
duced for nonlinear systems [1, 2, 7], for the primary
purpose of formulating necessary and sufficient condi-
tions for the stability of observer-based feedback con-
trol problems. The current literature leaves open the
problem of how constructively to check the detectabil-
ity conditions or actually design the observer. An-
other important, and thus far unaddressed problem in
observer design concerns systems which we will term
“poorly observable”, i.e., systems with state compo-
nents that are only weakly coupled in some sense to
the outputs.

In this paper, we will address these problems to
some extent. Section 2 will provide the necessary
preliminaries. We will introduce a new definition of
detectability which is shown to be a generalization of
the linear notion of detectability; moreover, the ob-
server design for a special class of nonlinear detectable
systems will be demonstrated. In Section 4, we will
present an exponential observer design method for
a more general class of detectable systems which is
related to the Newton observers developed in [6]. Fi-
nally, in Section 5, some preliminary results on the
observer problem for poorly observable systems are
discussed, with an example illustrating the ideas.
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2 Background

Consider the following linear system:

A A n
T Tgy1 = ( 011 A;; z, Tx €R
e = (0 Co)ax yw €R

(2.1

Clearly, this system is not observable: the first com-
ponent of the state is not measured, nor does it affect
the output in an indirect way. However, if the pair
{Az2, C?) is observable and A;; is asymptotically sta-
ble, then it is possible to construct an observer for
3;. If these conditions hold, the above system is said
to be detectable [3]. In general, a system

Yo Zryr = Az, yp = Ca

is said to be detectable if the unobservable part is
asymptotically stable. Recall that for a linear sys-
tem the unobservable subspace A is given by N =
ker col(C,CA,...,CA™ 1) so, for a linear system
to be detectable, its dynamics restricted to N must
be asymptotically stable.

The task of designing an observer for a detectable
linear system in the special form of (2.1) is straight-
forward. For a linear system in the general form s,
one approach is to compute a state transformation
zx = Pzj such that Xy takes the form of (2.1) in
the new coordinates and then proceed, Here, we will
give an alternative approach which is related to the
recently developed Newton observers [6].

Notation: The pseudo-inverse of a p x n matrix
A (p < n) with rank A = p will be denoted Af.

Suppose that system X, is detectable and that

rank col(C,CA,...,CA™ 1) = p < n. Furthermore,
for simplicity, assume that A is invertible. Then

CA-(r—1)
H=1 g
C

has rank p and the pseudo-inverse of H is given
by Ht = HT(HHT)"'. Define ¥, = Haz; =

(Y%, Yk—p+1)T. Now, an observer for & is given
by
& = & +HI(Ye - Hzp) 2.2)
:E,:_H = AZy. :



To see this, consider the error dynamics for ex = 25 —
Dy

Azy — Ady — AHY(Yy — Hi})

€k41 =
= A(I - HT(HHT)"'H)ey.

(2.3)

Since the matrix (I — HT(HHT)~'H) is the projec-
tion onto ker H and, by the detectability assumption,
the system’s dynamics restricted to ker H is asymp-
totically stable, it follows that (2.3) is asymptotically
stable.

In this paper, we explore how such an approach
can be extended to observer design for nonlinear de-
tectable systems. To this end, a new definition of
detectability for nonlinear systems is introduced. A
previous result on Newton observers for nonlinear
discrete-time systems will be used throughout this
paper and is repeated here for convenience. Consider
the following system:

F(xx)
h(zk)

with 2y € R" and yr € IR?, and denote a
vector of N consecutive measurements by Y, :=

col(Yr—N+41, -+, Yk)

Th+1
Yk

(2.4)

h(zkr-Nn41)
ho F(xk_N.\Ll)
. =: H(:ck_N+1) (2.5)

ho FN—I(.’L'k_N.'.l)

Let O be a subset of R", N > 1 a given integer and
€ > 0 a positive constant. Denote the complement of
O by ~ O and define dist(z,~ O) = inf{||lz — y|| :
y €~ 0}, and O, = {z € O|dist(z,~ O) > ¢}.
Moreover, define constants §,y, and L by

B = sup{" [%—Z(m)]~l “ rx € O}
¥y = sup{” %1]21 (1:)” rz €0}
L = sup{“%—i(a:)“ rz €0}

Then the following result was proven [5, 6]:

Theorem 2.1 Suppose that F and h in (2.4) are
at least twice differentiable with respect to x; that
there erists a bounded conver subset O C IR"™ which
is forward invariant for the system (2.4); that is,
F(0O) C O. Furthermore, suppose that there ez-
ists an integer 1 < N < n such that the state-to-
measurement map H is square and injective on O
(observability) and has rank n at every point of O
(Observability Rank Condition) *.

13ee [5] for the case that the resulting map H is not square,
but does satisfy the two observability conditions.
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Then, for every ¢ > 0 and 0 < p < 1, there erists
a § > 0 satisfying

. fe n
§< mln{L, _—_—ﬂ‘yl]z} (2.6)
such that
N —  [0H  _1-1! -
o= &+ 50| (ean-1 - H(E))
il_c—-{-l = F(‘i'k)’

is a quasi-local, exponential observer for (2.4) in the
sense that: (A) ifzy € O and &7 = x1, then &, = i
forallk > 1 and (B), ifx1 € O, ||8] — =)l < ¢
and for all k > 0, dist(zx,~ O) > ¢, then ||[Tpy1 —
i1l < pliZ - @kl

3 Detectability of Nonlinear Systems

We wish to take a constructive approach to the ob-
server design for detectable systems, we will introduce
an alternative definition of detectability for nonlinear
discrete-time systems, first for systems in a special
form: Consider the following system

:L'é+1 = Fl(zé,x,%)
ziy = Fa(zg) (3.7)
w = h(=}).

Definition 3.1 System (8.7) is said to be exponen-
tially detectable when the following conditions are sat-
wsfied:

(i) The subsystem 2., = Fa(2}), wx = h(z}) is
observable and satisfies the Observability Rank Con-
dition.

(ii) Whenever the series {2} is such that ||&} —
22|| = 0 ezponentially, then {&}} defined by &, =
Fi(2},22) satisfies ||&), — z}|| = 0 ezponentially.

A somewhat stronger notion of detectability, which is
sometimes easier to check is the following:

Definition 3.2 System (3.7) is said to be strongly
detectable when the following conditions are satisfied:
(i) The subsystem z},, = Fa(x}), vk = h(z}) is
observable and satisfies the Observability Rank Con-
dition.

(i) With an appropriate choice of norm ||-||, F1 sat-
isfies the Lipschitz condition

[|F1(€1,2) — F1(€2, 2)}| € L1]|€1 — &2
with Ly < 1 for all (&1, 2) and (&2, 2).

Of course, a given system may not satisfy the strong
detectability condition globally. The following defini-
tion will then be useful:

Definition 3.3 System

(8.7) is strongly O-detectable when, for a given subset
O C R, the conditions of Definition 3.2 are satisfied
foralze€O.



The two notions of detectability thus defined are re-
lated as shown in the following lemma:

Lemma 3.4 For systems in the form (8.7) with Fy
globally Lipschitz in its second component with Lips-
chitz constant Ly < c0:

Strong detectability = Detectability.

The following result establishes that this notion of
detectability is a direct extension of the correspond-
ing property for linear systems. The proof is con-
tained in [5].

Lemma 3.5 For linear systems, Definitions 3.1 and
3.2 are both equivalent to the usual notion of de-
tectability.

Definition 3.6 If, for a nonlinear system in general
form
zii1 = Flzg)
w = h(zk) (3.8)
there ezists a coordinate transformation zx = P(zk)
such that, in the new coordinates, (3.8) takes the form
of (3.7) and this transformed system satisfies cond:-
tions (i) and (ii) of Definition 3.2, then (3.8) is said
to be strongly detectable.

In fact, let
h(z)
Hy(z) = )
ho FP~1(z)
and suppose that p is such that H, has rank p and
ho F?(z) = ¢p(h(), ..., ho FP~(z))

for some function ¢,. Moreover, suppose that there
exist functions ¢p41(2),...¢n(z) such that

O(2) := (Hp(2), bp41(2), - -, 6n(2)) =: (Hp(2), T2(2))

is a valid coordinate transformation. Then, in the
new coordinates z, system (3.8) takes the form of

(3.7) and is given by:

ZI%-H = zi

-1 _ p

R T

zk:H = ¢p(2gy. s 2L) (3.9)
2£+1 = ¢p+1 oFoq)_l(Zk)

Z}:+1 = ¢poFo @"1(zk)

Yk = Z'Ii

A sufficient condition for strong detectability is then
given by
8% !

E ||<1.

o OF
sup ||| -sup | 5| - sup|
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Example: As a simple example, consider the follow-
ing system:

T
Zry1 = A% ~ () _E(Zk—zk) (3.10)
wo= -3

Using the transformation z! = 22 — 22 and 22 = 2}
¢ 5= % — % k= %k
one obtains the system

Tk

1
Thrt 11 1\2 1,2
5z — (23)? + 2z 2

3
Tht1

z (3.11)
which, by Definition 3.2, is strongly detectable when
[l = |zt — 2?| = |y| < £ — € for all k > 0 and some
¢ > 0. Finally, the following result can be proven:

Lemma 3.7 If system (3.8) with F(0) = h(0) =0 is
strongly detectable in an open set around the origin,
then its linearization about the origin is detectable in
the usual sense.

3.1 Observer design for detectable systems

It will now be shown how to construct an observer
for the unobservable but detectable system in canon-
ical form (3.7). First, define

h(xlzc—N+1)
Y. = : =: H(J:Z_NH).
ho FzN—l(mlzc-NH)
(3.12)
and, for a given compact subset @ C R"

1= s |20

o= (@) |

€
vi= |0

Theorem 3.8

{Exponential observer for strongly detectable
systems I) Consider the nonlinear system (8.7) and
its associated extended output map H, describing N
consecutive outputs as a function of the system’s state
as defined in (8.12). Suppose there ezists a compact,
convez subset O C R"™ such that the following hold:

1. The system (3.7) is strongly O-detectable in the
sense of Definition 3.3 with Lipschitz constant
L <1.

2. Fy is Lipschitz continuous in O with respect to
its second component with constant Lo

3. O is F-invariant, i.e., F(Q) C O.
Then, for every € > 0 and § > 0 satisfying

. € Ly el €
6 < F 9 3 1
<min{ 1 267L5 SLaLy 2L§} (313)



the system

2k41 —

- N-1
ff% = F l(sz)
Zpp1 = Fu(@g, P

3.14
15 a quasi-local ezponential observer for (3.7) En th<)3
sense that:
(A) if (z1,22) € O and 2n41 = 22 and 2! = z}, then
Tr=ak forallk > N +1
(B)’ if (x%:x%) € 0, ”ZN+1 - $%” < 4, and
lley —&x|l < &, and for all k > 0, dist(zx,~ O) > ¢,
then ||Zken — tran|| < L€ for all k > 0.

The idea of the proof is to apply Theorem 2.1 to
the subsystem involving 2 in order to obtain a suf-
ficiently fast exponential observer for z2. Along with
the detectability assumption (i.e., F; is a contraction
mapping with respect to its first variable), this will
ensure exponential convergence of ||z} — &3|.

4 Asymptotic observers for strongly
detectable systems
In this section, it will be shown how to construct
a quasi-local exponential observer for a more general
nonlinear system in the original coordinates without
explicitly performing a state coordinate transforma-
tion. We will need the following result:

Theorem 4.1 Newton-like method for under-
determined systems Let R R — RRP with
p < n be twice continuously differentiable in an open
R
conver set O C R"™ and let J(z) = %—z—(m) As-
sume that there e:cz'.(;t ry > 0 and z, € O such that
J
R(zs) = 0 and |l5=(@)ll < 7, V()| < a and

17t (z)|| < B for all x € B(zy,r1) C O. Then there
erists 0 < ro < r1 such that Vzo € B(x4,72), the
sequence generated by

T4l = Tk — Jt(xk)R(Zk) (415)
is well-defined, satisfies
‘ 1
I R(ze41)l] < 57132“3(“)“2 (4.16)

and R(zk) converges to zero quadratically.

Note: the theorem does not state that the sequence
{zx} converges to x,, however, it does guarantee that
{z1} is such that the sequence {R(zx)} converges to
zero quadratically. The proof may be found in [5).
Now consider a system in general form

Tk+1 =

w = (4.17)

Fafi) + [ (Fal))] (Y = H(Fa(es)

which is detectable in the sense that there exists a
coordinate transform z = ®(z) such that, in the new
coordinates, the system is in the form of (3.7) and
satisfies Definition 3.2. Furthermore, define

H(z) = :
ho FN=1)(z)
A(Z) = @oFo‘I)_l(Z)
c(z) = ho®7(2)
Clz) = . =Ho® (z)

co AN=1)(2)

where N is such that C(z), which in the z-coordinates
is a function of z9 only, is square, injective and has
full rank. The following theorem can be stated:

Theorem 4.2 (Exponential observer
for strongly detectable systems II) Suppose that
the system (4{.17) is strongly detectable in the sense
that there exists a coordinate transform z = ®(z) such
that, in the new coordinates, the system is in the form
of (3.7) and satisfies Definition 3.2, then the system

OH f
o = i+ (G060 Ohnes - )
‘%l:+1 = F(&)
(4.18)
is a quasi-local ezponential observer for (4.17); i.e.,
the observer error ||&x — zx|| = O ezponentially, pro-
vided that ||&¢ — zo|| is sufficiently small.

Note that for this theorem to apply, one doesn’t need
to know the coordinate transformation explicitly, as
long as it is known that there does exist one.

A sketch of the proof is outlined below; again, the
complete proof can be found in [5]. Notation: let
2, = ®(&x) and %, := ®(&;). The structure of
the proof is as follows: (1) Using Theorem 4.1 it is
established that

1B (&542) ~ H(@nan)l| < SIHEE) - H(zi)

for any 0 < p < 1 provided that ||zo — Zo| is suffi-
ciently small.

(2) Then, it is shown that this implies ||2Z — 22|| <
Q1 (g—)k ||2% — 22|} for some finite @1, and hence,

(3) using the detectability assumption, the spe-
cial structure of the system equations in the z-
coordinates, and Theorem 3.8: ||2c— 2k || < Q2p*||20—
2g|| for some finite Q3.

(4) Finally, this then implies that ||#; — zx|| < Qap*
for some finite @3, and p < 1, which proves the the-
orem.



5 Poorly observable systems

In practice, the distinction between observable and
unobservable systems is often not so clear. A system
may be found to be technically observable; however,
if, for example, one of the states is only very weakly
coupled to the outputs, it might well be found to be
unobservable for all practical purposes. This section
explores some of the issues and possible ways of deal-
ing with such “poorly observable” systems.

Consider the following system and assume for sim-
plicity z},zZ, yx € RR:

x1£+1 = Fi(z},=7)
W = Blhial  (6519)
w = h(zy)

The state-to-measurement map is given by

bz ) (5.20)

Yiy1 = H(zg) = ( h(Fz(z;%)k+ ez})

The Jacobian matrix Z—Iz(xk) of this map is given by

Oh, ,
0 B;(mk)

oh Oh OF:
5, (Falad) +eak)  o-(Fa(e}) + ex}) 5 2 (a)

For this system, consider the following observer:

& 4+ G(E) (Yes1 — H(E,))
F(iy)

€

T =
. (5.21)

Ty =
When € # 0, one could, in principle, choose G(&x) =

H
Q——-(a?;)“l to obtain the standard Newton observer.

On the other hand, when ¢ = 0, one would re-
construct only z2 from Yj 41, which is accomplished

by choosing G(z) = ( Gz(ziv) ) where Gs(z) =

3332 (9.'E2
G, one obtains a Newton observer with overdeter-
mined state-to-measurement map (because two mea-
surements are used to reconstruct a single state vari-
able).
The approach just outlined is, of course, not ac-

-1
(g—H(z)T O z)) 3—H(x)T. With this choice of
L2

T 0w
is almost singular. The z} component of the state
is almost unobservable and the problem of determin-
ing zi from the outputs y; becomes numerically ill-
conditioned. Rather than attempting to solve this
ill-conditioned problem (recovering zi from the mea-
surements), one would want to reconstruct zZ only
and estimate zi using the system’s dynamics, pro-
vided that the system is detectable in some sense.

In general, if a system is poorly observable (e.g.

ceptable in practice. Clearly, for ¢ very small

large condition number for ——), it will not be so

Oz
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straightforward to separate the observable from the
poorly observable states, unless the system happens
to be in’a special form like (5.19). To get an idea
as to how one could deal with the more general case,
it is useful to recall the idea that lies at the heart
of the Newton observer design method developed in
[6, 6]. Namely, at a given time k, one wants to find an
approximate solution z4 of Yy — H(z) = 0 given an
initial guess z.. Newtons’s method proposes to do so
by solving z from the following system of equations,
which is linear once z, is given:

Ve H(z) = =90 )@y —2)  (5:22)

For convenience, denote the Jacobian by J :=

%g(:cc) When J is known to be potentially ill-

conditioned, a numerically robust way of comput-
ing its rank is to use a singular value decompo-
sition (SVD) [4]. Let an SVD of J be given by
J = USVT  that is, U and V are unitary matrices
and S = diag(oy,...,00) with oy > -+ > 0, > 0.
When J is (nearly) rank deficient, one or more sin-
gular values will be (almost) zero. Theoretically, the
rank of J is equal to the number of nonzero singular
values ¢; of J. The “numerical” rank of J is de-
termined similarly, after replacing all singular values
that are less than a certain threshold é by zero. In
the context of observability, the “numerical” rank of J
could, loosely speaking, be interpreted as the dimen-
sion of the “robustly observable” part of the system’s
state.

Suppose that S = diag(o1,...,05) is such that
Op+1,-.-,0n < 6 for a given threshold . A pseudo-
inverse J; of J using SVD’s is then defined as [4]

JF=vstuT (5.23)
where S} = diag(1/01,...,1/0,,0,...,0) The
pseudo-inverse is subscripted with a § to indicate the
dependence on the choice of threshold. It can be eas-
ily verified that if a matrix P of size p xn has full rank
and usual pseudo-inverse Pt = PT(PPT)~!  then,
for sufficiently small threshold &, the above defined

pseudo-inverse for P = g

satisfies 136"" = (P! 0). Moreover, when a square
matrix A is invertible, A} = A~!, again, provided
that J is chosen sufficiently small. Using this special
pseudo-inverse, we can now construct an observer for
a class of poorly observable linear systems.

Consider the following family of linear discrete-
time systems parametrized by € and assume for sim-
plicity that the output is scalar valued:

, an n X n matrix,

Trit1

i - (5.24)



C(e)

Define H(e) := and Yj

C()A()™!
H(€)zk—n+1, and assume that A(e) and C(e) are dif-
ferentiable in e.

Theorem 5.1 Suppose that system (5.24) is de-
tectable for ¢ = 0 and rank H(0) = p < n. Then
Je* > 0 and 3(¢*) > 0 such that for any fized € sat-
isfying 0 < le| < €, the following is an ezponential
observer for (5.24):

27 + HF () (Yign-1— H(e)&y)
A(C)i‘k

gy =
Epp =
(5.25)

For a proof, see [5].

As of yet, we have not been able to generalize the
above result to nonlinear systems, however, given this
result and recalling the statement of Theorem 4.2
(Observer for strongly detectable systems in general
form), the following Conjecture seems plausible:

Conjecture 5.2 Consider a system X Tyl =
Fe(zk), Yo = He(zk—nN41), where Fe and H, are such
that, for € = 0, the system s strongly detectable.
Then 3¢* > 0 and §(e*) > 0 such that Y0 < |¢] < €,
a quasi-local exponential observer for X, is given by

) — (0He, _\\* -
s = ot (GHEaR)) O~ Hle7)

)
Sep1 = Fe(x)

(%),
where | —
oz /4

(5.26)
is as defined in (5.23).

Remark 5.3 Note that if the system is poorly ob-

servable only in a certain part of the state space, but
“robustly” observable otherwise, the above observer
structure naturally exploits the available information
to the full extent possible: In the poorly observable
region, the system is implicitly interpreted as a de-
tectable system and only a part of the state estimate
is updated via the measurements, whereas otherwise
the observer is exactly the standard Newton observer
developed in [5, 6].

Remark 5.4 Consider again system X. given in
Conjecture 5.2 and assume that Fe = 0 and h(0) = 0.
Using Lemma 3.7, it follows that the linearization of
¥ about the origin is detectable. Theorem 5.1 can
then directly be applied to prove the above conjecture
for the special case of this linearized system.

As an illustration in further support of the above
Conjecture, consider the following example:
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Example: Consider the following system:

a:,lc_,_1 = 1.08z} — 0.03z}z? + 0.04z3 arctan z7
zi., = 0.7z} +0.05z4zf
zpy = 0.999z3

Y = x}g

(5.27)
This system has the structure of a predator-prey
model, with z} and z? representing the prey and
predator populations at time k, respectively. The ad-
ditional state variable z3 can be interpreted as a very
slowly varying component of the growth rate for the
prey species, whose initial value is unknown. Fur-
thermore, at every sampling instant, a reliable count
can be made of the prey species only, i.e., the out-
put is yx = z}. A first look at the model structure
reveals that the observability of the third state vari-
able is dependent on the size of z2: if zZ is close
to zero, the third state is practically unobservable; if
z? = 0, then the above system is actually unobserv-
able, however, it is detectable. Figure 1 illustrates the

Population size
T v v

0 10 20 30 70 80 920 100

40 50 60
Number of samples

Figure 1: Characteristic evolution of predator and
prey species.

evolution of the two species over time: Initially, the
predator species diminishes the prey species, until the
latter is so low that, due to higher mortatility rate of
the predator population (reflected in the 0.7 growth
rate), the predators become almost extinct. This al-
lows the prey population to grow again, which in turn
feeds the predator species after some time. During
the period that the predator population is very low,
the state :ci is practically unobservable, whereas the
system exhibits better observability properties when
z? is high. The observer structure proposed in Con-
jecture 5.2 is applied to this system, with a threshold
& = 0.0005 for the computation of the pseudo inverse.
Moreover, as in [5, 6], the observer update equation
(5.26) is slightly modified by including a gain A = 0.1
(equivalent to modifying the step size in the conven-
tional Newton algorithm):

+
& =85 + ) (%(iz;))é (Yegn-1 — He(2))).
(5.28)



The result are shown in Figures 2 and 3. Figure 2

Observer error
°
o

-1.5] 4

0 20 40 60 B0 100 120 140 160 180 200
Number of samples

Figure 2: Observer error for i and z2.

System state

Observer state

0.5

Observabity indicator

~0.5

-1
80 100 120 140 160 180 200
Number of samples

Figure 3: The poorly observable state: =3 and its es-
timate &;. The observability indicator shows when
the system is observable (indicator is 0) and when it

is practically unobservable, but detectable (indicator

~1).

shows the observer error for z; and z7. Figure 3 il-
lustrates that the observer does exactly what it was
intended to do. In order to show what happens, we
have included a signal (labeled “Observability indi-
cator”) which is 0 when the system is judged to be
observable and —1 otherwise. It is immediately ap-
parent that the observer is able to reduce the observer
error during periods of observability (except for some
“transient” behavior during the first few samples),
whereas it only propagates the estimated 2 through
the system’s dynamics when z3 is judged to be un-
observable.

6 Conclusions

In this paper we have explored a new definition
of detectability for nonlinear discrete-time systems,
which is more amenable to the construction of ob-
servers for nonlinear detectable systems. Further-
more, we have proven the exponential convergence
of an observer for such systems, which can be con-
structed without performing state coordinate trans-
formations. This observer was based on the Newton
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observers described in [5, 6]. Finally, we presented
some preliminary results on the observer design prob-
lem for systems that are “poorly observable”, mean-
ing that the state-to-measurement map is nearly rank
deficient. In the case of linear systems, it was shown
that a Newton observer with an appropriately de-
fined pseudo inverse yields an exponential observer.
For nonlinear systems, we suspect that the same is
true, although a conclusive proof has, sofar, eluded
us. In one particular example, namely a predator-
prey model, our conjecture appeared to hold.

The most severe drawback to this latter type of
observer is that, at every iteration of the observer,
it has to be checked whether the system is observ-
able or merely detectable. Since this amounts to a
rank test, a singular value decomposition is required
at each iteration. Certainly when the sampling pe-
riods are short, this places a heavy burden on the
computational unit. On the other hand, to the best
of our knowledge, the proposed approach is the only
one known to date that can deal, in a systematic way,
with such poorly observable systems. Moreover, it
may only be a matter of time until the computation
of SVD’s is considered to be a computationally low
cost operation.
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