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Abstract— This note focuses on control design issues asso-
ciated with creating and stabilizing periodic orbits in systems
with impact events via control decisions that take place only
at event-triggered transitions in the dynamics. Many hybrid,
underactuated, mechanical systems with impacts arising in
legged locomotion can be modeled as systems with impulse
effects. Constructive techniques are needed for the design dn T = for(x) + gor(z)u
analysis of periodic orbits in such systems.

I. INTRODUCTION

Mechanical legged locomotion is being studied for its rt = A(z7)
enhanced maneuverability in rough terrain, for its abitiy
deal with environments with discontinuous supports, such &ig. 1. A nonlinear system with impulse effects. In the caseaof

inedal robot, the state consists of the generalized camafigm and velocity
the rungs of a ladder, and because of the pODUIar app(_gé;iables, the transition condition corresponds to thgltesf the swing foot

of machines that operate in anthropomorphic Wayghe apove the ground going to zero, and the re-initializatiole orresponds
dynamic models that arise in the study of legged locomotiote the impact map of two rigid bodies (the swing foot and the gdu

; ; In this note, it will be assumed that a parameterized family efback
are fundamema"y hyb“d' For example’ a blpedal Walklaws u(z,a), a € A, has been designed for the continuous phase so that

ing motion consists of successive phases of single SUPPOL: o) = f,i(x) + goi(z)u(z, a). The problem of determining event-
(meaning the stance leg is touching the ground and the swihgsed update laws for the parameteis investigated for the existence of

leg is not) and double support (both legs are in contact witffymptotically stable periodic orbits.
the ground), while running consists of successive phases of

single support and flight (there is no contact with the grundyjme invariant ordinary differential equations linked éyent-
Itis common to model the impact that occurs when the swingaseq switching mechanisms and re-initialization rulds [7
leg strikes the ground as an instantaneous contact of r|grg3], [15], [12], differential-algebraic equations [10&nd
podies, which result_s in an algebraic representation of tr}%|ay systems with hysteresis [6]. The conceptual advantag
Impact event; see Figure 1. . _ of the method of Poincéris that it reduces the study of

A canonical problem in legged robots is how to desigyeriggic orbits to the study of equilibrium points of sample
a controller that generates closed-loop motions, such g8, systems, with the latter being a more extensively atudi
walking or running, that are periodic and stable (i.e., imipopiem. n particular, this note is based on the fact that
cycles). Due to the hybrid nature of the system, this task i5,ameter values that are held constant within the contisuo
far from being solved through existing control methods. Ne‘%hase of the hybrid dynamics and updated at impact events
paradigms, concepts, and control analysis techniquesiase t 5 oar a5 standard sampled-data controls in the Péincar
needed to deal with this class of systems [4]. Because thgy, map. This observation leads to the formulation of
system model is hybrid, it is natural for the controller to besampled-data feedback design problems for the creation and

hybrid as well, with control actions taking place during theyailization of periodic orbits in nonlinear systems with
continuous phase(s) [7], [16] as well as at discrete triammsit impulse effects.

[18], [8], [17], [5]. This note focuses on the latter issue.

The method of Poincarsections and return maps is widely Il. BACKGROUND
used to determine the existence and stability of periodic This section reviews the notions of systems with im-
orbits in a broad range of system models, such as timeulse effects, periodic orbits, stability of periodic dghithe
invariant and periodically-time-varying ordinary diféettial method of Poincd and hybrid invariance. The objective is
equations [14], [9], hybrid systems consisting of severab set the stage for studying event-based control actions in
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defined on some state spag&g a co-dimension one surface

S C X at which solutions of the differential equation
undergo a discrete transition that is modeled as an instan-
taneous re-initialization of the differential equatiomdaa

rule A : § — X that specifies the new initial condition as

a function of the point at which the solution impadg2],

[19]. The co-dimension one surfackis called a transition

surface or an impact surface (in analogy with biped models) ol (t, A(z7))
and A is often called an impact map. The system will be_ o _ o
denoted b Fig. 2. Geom‘etn‘c interpretation of a Pomeatetu_rn rr_1apP S-S
Yy for a system with impulse effects. The Poireaection is selected as the
. . - ¢S switching surfacesS. A periodic orbit exists whe?(z~) = z~. Due to
& = f(z) x” ¢ 2 right-continuity of the solutionsg~ is not an element of the orbit. With
i Alz™) z~ €8, ) left-continuous solutionsA(z~) would not be an element of the orbit.
and the following hypotheses will be made:
HSHO) X is a smooth embedded submanifoldRf; Notions of stability in the sense of Lyapunov, and asymp-
HSH1) f : X — TX is continuous, and a solution &f = totic stability of orbits follow the standard definitionsees
f(z) from a given initial condition is unique and dependd1l; PP 302], [7], [13]. A periodic orbil© is transversal
continuously on the initial condition: to S if its closure intersects in exactly one point, and for

= .— O =\ . OH (=\ (= ;
HSH2) there exist a differentiable functioll : X — R, < :=ONS, LiH(z) = 55(7)f(z) # 0 (in words, at the
such thats = {z € X | H(z) = 0}; moreover, for every intersection is not tangent t&, whereQ is the set closure

s€S, U(s)#£0. of O).
HSH3) A : § — X is continuous, whereS is given the C. Poincag
subset topology fromi’. - . oy o
HSH4) A(S) NS = 0, where A(S) is the set closure of In order to study periodic orbits with impact events, it is
A(S). natural to selectS as the Poincé&r section. To define the

! . .
In simple terms, a solution of (2) is specified by thereturn map, letp/ (¢, 2o) denote the maximal solution of (1)

differential equation (1) until its state “impacts” the eyp m|;2tzgﬁ|a}09$jﬁ0%x& ?;f}mfst%:figég P;)e me-to-impact
surfaceS at some timet;. At t;, the impulse modelA L ’ y

return map

compresses the impact event into an instantaneous moment inf{t > 0|/ (t,20) € S}  if 3 ¢ such that
of time, resulting in a discontinuity in the state trajegtarhe 7, (5,) .= o(t,z0) €S
impact model provides the new initial condition from which .

. ; : : . ; 00 otherwise.
the differential equation evolves until the next impacthwit 3)

S. In_order tq avoid the ;tate having tq take on two valu_es &he Poincae return mapP : S
the “impact time”t;, the impact event is, roughly speaking,
described in terms of the values of the state “just prior t
impact” at time *; ", and “just after impact” at time #". P(z) := o/ (T 0 A(z), A(z)). 4
These values are representedaby and z T, respectively. _ , . -
From this description, a formal definition of a squtionRe_rPa[k' From [7], P is well defined on the open sét:=
is easily written down by piecing together appropriateI)A (), where
initialized solutions of (1); see [19], [7], [13], [3]..A chwe ¥ — {zeX|0<Ti(z) <oo, LiH(p! (Ty(x),z)) # 0}.
must be made as to whether to take a solutioft) of
(2) as being a left- or right-continuous function of time af~or many reasons, it is more convenient to work witras
each impact event; here, solutions are assumed to be righpartial map.

— &, is then given as (the
8artial map)

continuous [7]. Theorem 1: (Method of Poincagé Sections for Systems
with Impulse Effects) [7] Under HSHO)-HSH4), the fol-
B. Periodic orbits lowing statements hold:

A solution ¢(t) of (2) is periodic if there exists a finite a) If O is a periodic orbit of (2) that is transversal
T > 0 such thatp(t + T') = (¢t) for all t € [tp, 00). A set to S, then there exists a point* € S such that
O C X is aperiodic orbitof (2) if O = {(t) | t > o} for LyH(z*) # 0 and A(z*) generateg), that isO =
some periodic solutiop(t). While a system with impulse {pf(t, A(z*)) | 0 <t < Tyo A(x*)}.

effects may certainly have periodic solutions that do not b) z* € S is a fixed point of P and L H (z*) # 0 if,
involve impact events, they are not of interest here because and only if, A(z*) generates a periodic orbit that is
they could be studied more simply as solutions of (1). If a transversal tcS.

periodic solution has an impact event, then the correspondi  ¢) z* € S is a stable equilibrium point o[k + 1] =
periodic orbit© is not closed; see [7] and Fig. 2. L& P(z[k]) and LyH(z*) # 0 if, and only if, the orbit
denote its set closure. O(A(z*)) is stable and transversal &



d) z* € S is an asymptotically stable equilibrium point of certain periodic orbits of the full-order dynamic can be
of z[k + 1] = P(z[k]) and LyH(2*) # 0 if, and completely determined on the basis of a lower order model.
only if, the orbit O(A(z*)) is asymptotically stable = Theorem 2: (Poincaé for the Hybrid Restriction

and transversal te. Dynamics)7], [16] Assume that the autonomous system
_ N o with impulse effects, (2), satisfies Hypotheses HSHO)-
D. Invariance conditions and attractivity HSH4). Suppose furthermore thatC X' satisfies InvH1)—

A set Z C X is forward invariantif for eachz, € Z, InvH4). Then (2) has a stable (resp., asymptotically sjable
there existsl; > 0 such thaty/ (¢, z0) € Z for ¢ € [0,11). orbit transversal taS N Z if, and only if, the discrete-time
Z is impact invariantif SNZ # 0, andA(SNZ) c Z. Z  system
is hybrid invariantif it is both forward invariant and impact z[k + 1] = p(z[k]) @)

invariant. ] )
Define thesettling time toZ, 75 : X — R U {oc}, by with state space& N Z has a stable (resp., asymptotically
stable) equilibrium point:* such thatL s H (z*) # 0.

inf{r > 031 > 7,9/ (t,20) € Z, t € [1,71)}
5 (o) == if 3¢ such thatp? (¢, z0) € Z

IIl. EVENT-BASED CONTROL

) In this section, we assume that various elements of the

oo otherwise system with impulse effects (2) depend on one or more

) _ L L () parameters that are to be held constant between transition

Z islocally continuously finite-time attractivié 7 is forward events, but at each transition, the parameters may be up-
invariant and there exists an open $etontainingZ such  yateq. This situation arises, for example, when a within-
that 77" is finite and continuous at each point vf stride controller for a bipedal robot has been designed to
depend on a (possibly vector valued) parameter in such
a way that by changing the parameter’s value, different
It is advantageous to analyze the autonomous system wiitomotion characteristics may be achieved, such as walkin
impulse effects (2) when it possesses a sulisetC X gt a different speed, or with a different step length; seé [18

E. Restricted Poincd& map

satisfying the hypotheses below. [8], [17], [5]. The parameter will be assumed to take on a
InvH1) Z is an embedded submanifold 4f. continuum of values and may be updated at each transition
InvH2) S N Z is an embedded submanifold with dimensiorevent. The objective is to analyze when a given event-based
one less than the dimension &t update rule for the parameter will result in an asymptolycal
InvH3) Z is locally continuously finite-time attractive. stable, periodic orbit for the system with impulse effects.
InvH4) Z is hybrid invariant (forward invariant and impact

invariant). A. Analyzing Event-Based Control with the Full-Order
By forward invariance, solutions of = f(z) initialized in Model

Z remain inZ. Denote the restriction of to Z by f; and Consider a collection of systems with impulse effects,
the associated differential equation by= f|z(z). Similarly, ~indexed by a parameter,

let H,; and A s, denote the restriction off and A to Z. . _

We note that Hypotheses HSHO)-HSH1) on (2) imply the )T fla) 2 ¢S ®)
corresponding properties on the restriction dynamicsedald ‘ ot = A@",a) z7 €S,

H; clearly satisfies HSH2), and by impact invariance, ... common state space € X and impact setS, and

A :SNZ —ZbyA (2) :== A(z), z € Z, satisfies

ISnZ ISz : - ._suppose that Hypotheses HSH0) and HSH2)-HSH4) hold.
HSH3) and HSH4). Hence, the hybrid restriction dynamlcsAssume thata takes values ind, an open subset GRP,
_ i = fiz(2) 2~ é8NnZ ©) and that Hypothesi; HSH1 .is strengthened to hold for the

259+ Ajsnz(=") = €SNz associated differential equation

: - o . o z = f(z,a)
is a system with impulse effects in its own right, verifying ) 9)
Hypotheses HSHO)-HSH4) with respect to its state space, a = 0,
Z. Therefore, Theorem 1 on the method of Poilcsections hat js, f is continuous ont x A and solutions of (9) exist,
can be applied to characterize periodic orbits in (6). Ireerd 416 ynique, and depend continuously on initial conditions.
to profitably use this observation, two further observation prqor, ¢ 4, let P, : S — S be the Poincdr return map of
need to be made: (1) By construction, periodic orbits of th@s)_ However, instead of considering the difference equati
hybrid restriction dynamics are also periodic orbits of thgﬂ[k +1] = P,(z[k]) on S, we now invoke the fact that
full-order model (2). (2) Lep : Z — Z denote the Poincar ¢4 pe changed at each impact and we view the difference

map of the hybrid restriction dynamics. Ther= Pz. This  equation as a discrete-time control system ®mith the
next result establishes conditions under which the Stﬁb'“parameter vectos € A as the control:

properties of orbits of the hybrid restriction dynamicsrgar
over to the full-order dynamics. In other words, the projsrt x[k + 1] = P(z[k], alk]), (10)



where P(z,a) := P,(z). It will now be established that impulse effects:

there is a one-to-one correspondence between static,(resp. . - r
dynamic) state-variable feedback control laws for (10) and [ ) f(z,a) ]
static (resp., dynamic) parameter update laws for (8). More a | 0

over, thanks to Poincaranalysis, this correspondence ex- (16)
tends to periodic orb.|F5 and their stability properties. . r Az, v(z-)) o

Theorem 3: (Stability under Event-Based Parameter = - | € Sauzs
Updates-I) Consider the collection of systems with impulse | ¢ (@) a

effects, (8), witha € A, an open subset dR”. Suppose where the state space #&,., := X x A and the impact
that X and S satisfy Hypotheses HSHO), HSH2)-HSH4).surface isS,,, := S x.A. Hence, by Theorem 1, designing a
Suppose furthermore that Hypothesis HSH1) holds for th@iemoryless parameter-update law for (8) that results i) (16
differential equation (9). LedV be an open subset @&’ possessing a stable (resp., asymptotically stable) geriod
for some integer, and defineX;,, := X x A x W and orbit is precisely equivalent to designing a static state-
Sauz = S X Ax W. Suppose that, : S x W — A and  feedback control law for (10) that results in (13) possessin

vg : § x W — W are continuous. Then, stable (resp., asymptotically stable) equilibrium pofince
- _ the same reasoning applies mutatis mutandis for the more
T f(z,a) T general case of a parameter update law with memory (i.e.,
a | = 0 a” | €Sauz @ dynamic event-based feedback controller), the result is

W 0 w— proved. u

Remark: The special case of a memoryless parameter update
for (8), and hence, static state feedback control of (10), is

at A=, o1 (z7, w7)) T obtained by letting/y be empty. Integral feedback control
at | = vy (z7,w™) a” € Squz,  action, either to reject a constant disturbance or to track
w va(z™, w™) w a constant reference, is also a special cased Hnd r

(11) are constants (possibly vector valued) representing rdistu
has a stable (resp., asymptotically stable) orbit trarssléo  bances and references, respectively, then formally define

Sauz if, and only if, the discrete-time system f(z,a) = f(z,a,d), vi(z,w) = 01 (z,w,r) andvs(z,w) =
Ug(z, w,r) in the above analysis.
zlk+1] = P(z[k],v1(z[k],w[k])) (12) Remark: In words, Theorem 3 states that the design of

a parameter update law for (8) that creates an asymptoti-
cally stable periodic orbit can be performed by designing a
on S x W has a stable (resp., asymptotically stable) equfeedback controller for (10) that creates an asymptoticall

librium point (z*;w*) such thatL;H(z*,a*) # 0, where stable equilibrium point. Even more specifically, suppose
a* = vy (z*, w*). ' there exists a parameter valaé for which (8) possesses

Proof: Suppose first that = v(z) is a static state- a desired periodic orbit, but the orbit is either not stable,
variable feedback control law for (10) and consider thd iS @ymptotically stable, but the rate of convergenceds t

discrete-time closed-loop system slow. Letz* be the corresponding fixed point &f,-. Then
designing a parameter update law for (8) that preserves the
o[k + 1] = P(x[k], v(z[k))) (13) orbit and stabilizes it (or increases the rate of converggnc

is equivalent to designing a feedback controller for (1@ th
preserves the equilibrium point and stabilizes it (or iases

and a deadbeat dynamic extension
the rate of convergence).

zlk+1] = P(z[k], v(z[k])) 14y B- Analyzing Event-Based Actions with a Hybrid Restriction
alk +1] = v(z[k]). (14) Dynamics and Finite-Time Attractivity
The previous subsection reduced the study of orbits in a

Note that (13) has an equilibrium point if, and only if, (14)collection of systems with impulse effects, having a common
has an equilibrium point, and moreovet, is stable (resp., state space and a common impact surface, to the study of
asymptotically stable) equilibrium point for (13) if, and equilibrium points of a discrete-time control system etrdy
only if, (z*;a* = v(z")) is a stable (resp., asymptotically on the impact surface. This subsection will identify circum
stable) equilibrium point for (14). The importance of thisstances in which analysis and feedback controller design fo

observation is that the discrete-time control system can be performed on the
restriction dynamics, thereby reducing the dimension ef th
Pos(2,a) = P(z,v(z)) ] (15) feedback design problem; for concrete examples, see [18],
v(z 8], [17], [5].

We present two refinements of Theorem 3 to allow the
is the Poinca& return map of the following system with event-based feedback design to be performed on the restric-



tion dynamics. Consider a collection of subs¢fs, | « € The hypotheses of Theorem 4 assure that (18) Znd-

A} C X. In the first case, we suppose thdtN Z, is {(Z,,a) | a € A} satisfy all the hypotheses of Theorem 2,
independent ofi € A. We denote the common intersectionand thus the existence and stability of orbits can be checked
by S N Z,. Under this assumption, hybrid invariance lead$y evaluating the stability of fixed points of the discreitad

to a restricted Poincarmap,p, : SNZs — SN Z. Under  system associated with the restricted Poigaaap, namely
appropriate hypotheses, the reduction method of Theorem

2 can be combined with Theorem 3 so that event-based zlk+1] = p(z[k],vi(z[k])) (20)

feedback design can be carried out on the control system alk+1] = wvi(z[k]).

z[k + 1] = p(z[k], ak]) evolving on the state spacen Z

with controls taking values im. Since the stability properties of (20) are equivalent tostho
Theorem 4: (Stability under Event-Based Parameter of

Updates-I1) Consider the collection of systems with impulse z[k 4 1] = p(z[k], vy (x[K])), (21)

effects, (8), with the parametertaking values ind. Suppose
that X andS satisfy Hypotheses HSHO) and HSH2)-HSH4)the result is proven.
Suppose furthermore that is an open subset dk” such  For W # (), the reasoning is essentially identical and is

that Hypothesis HSH1) holds for the differential equati®h ( left to the reader. ]
and there exists a collection of subs¢td, | a € A} C X We next allowS N Z, to depend om € A and hence
such that: impact invariance must be replaced by a more general notion
1) Ya € A, Z, C X satisfies Hypotheses InvH1) andthat is closer to what has been used in transition contrgl [18
InvH2); Theorem 5: (Stability under Event-Based Parameter
2) VYa € A, SN Z, is independent ofi; denote the Updates-Ill) Consider the collection of systems with im-
common intersection witls by S N Z,; pulse effects, (8), withu taking values ind := A; x As,
3) Va e A, A(SN Zy,a) C Z,. where A; is an open subset @”: and.A, is an open subset

4) Z = {(z,a) | x € Z,,a € A} is an embedded of RP2. Suppose that’ and S satisfy Hypotheses HSHO),
submanifold ofX x 4 and is locally continuously HSH2)-HSH4). Suppose furthermore that Hypothesis HSH1)
finite-time attractive for (9). holds for the differential equation (9) and there exists a

Let W be an open subset & suppose that; : SxW — A  collection of subsets ot’ such that:
andvy : S x W — W are given continuous maps. Define 1) V(ai,a2) € A1 X Ag, Zg, 4, C X satisfies

KXowz = X X AXW, Sgue =S X AXW, and Z,,,, := Hypotheses InvH1) and InvH2);
Z xW. Then (11) has a stable (resp., asymptotically stable) 2) V(a1,a2) € Ay x Az, SN Z,, 4, is independent of
orbit transversal t&,,, N Z4. if, and only if, the discrete- a1; denote the intersection with by S N Z¢ q,;
time system 3) there exists a continuous functiony
A, — Ay such that, Vas,al € Ao,
k41 = p(x[k],vi(x[k], wk])) 17) ASNZ, - lag).af) C Zw(z’) ;_
wlk +1] = wvo(z[k], w[k]) 4) Z = {(:c,étf, as) | © € Zyy 4y, 01 26 7,,421,a2 € Ay}

is an embedded submanifold af x A; x A5 and

on S N Zo x W has a stable (resp., asymptotically stable) is locally continuously finite-time attractive for (9).

equilibrium point (z*;w*) such thatL;H(z*,a*) # 0,
wherea* = vy (z*, w*). ¢ Let W be an open subset & and defineX,,, := X x Ax

Proof: For clarity, first assume that’ = ¢ and consider W andSuu, = S x AxW. Suppose that; : S x W — A,
andvy : S x W — W are continuous. Defing,,, :=

v1 ()

i | T~ XXAXW, Squze =S X AXW, andZ,,, .= Z x W.
[ = fauz (Sﬂ, a) [ _ ‘| ¢ Saur Then ’
a 1
) (18) ] [ f(z,a1,a9) x~
+ - 0 -
[ x+ = Aguz (x77a7) [ x, ] € Sauz» “ = s al, & Saua
a’ | a Qo 0 aq
. w 0 w™
where the state space 43, := X x A, the impact surface - -
is Squz := S X A, and the differential equation and impact
map are given by [ A(e,9(ay), .
vi(z",w7)) _
f(x,a) a
fauw (JZ, a) = l 0 af = 1/1(@2 ) ) a1, € Sauw)
(19) ag vz, w”) ?
w
AGUUL’('raa) = A(x7v1($)) ] ’ ’U)+ ’UQ(JT_,’LU_)




has a stable (resp., asymptotically stable) orbit trarsseo
Saue N Zauz if, and only if, the discrete-time system

zlk+1] = p(zlk],¢(azlk]), vi(2[k], w[k]))
aslk +1] = wvi(x[k], w[k]) (23)
wlk+1] = va(z[k], wlk])

on {(SN Zyay,a2) | a2 € A2} x W has a stable (resp.,
asymptotically stable) equilibrium pointz*; a3; w*) such
that Ly H (z*,a}, a’) # 0, wherea} = ¢(a3). ¢

Proof. The proof follows the same pattern as the proo?
of Theorem 4. For clarity, first assume thet = () and
consider

] T~ [1]
a1 | = fous(7,a1,02) ay | & Saua [2]
ag | ay 3]
(24)
xt ]| x~ [4]
al | = Awue(x 07 ,05) a; | € Sauz,
a | “ /5]

where the state space 4,,, := X x A; x As, the impact
surface isSq.. 1= S x A; x Ag, and the differential equation

and impact map are given by [6]
I f(z,a1,a2) [71

fauz (T, 01,a2) = 0
! 0 (25) (8]

Az, (az), v1(x))
Aguz(,01,02) = Y(az) ©]
vi(z)

The hypotheses of Theorem 5 assure that (24)and :=7Z  [10]

satisfy all the hypotheses of Theorem 2 and thus the existenc
and stability of orbits can be checked by evaluating thg
stability of fixed points of the discrete-time system asatmd

with the restricted Poincarmap, namely (12]

[k + 1] p(zlk], ¥ (azk]), vi (z[k]))
a[k+1] = Y(az[k)]) (26) [13]
aslk+1] = wvi(x[k])

Since the stability properties of (26) are equivalent tostho [14]

of [15]

alk+1] = pz[k], ¥(az(k]), vi(z[]))
aslk + 1) vy (x[k]), 16

the result is proven. The simple modifications for including

W # () are left to the reader. g

(27)

IV. CONCLUSION

This note has analyzed the problem of event-based fee%—3
back control of systems with impact effects, with the parL ]
ticular objective of creating and asymptotically staliily
periodic orbits. The method of Poinéasections transforms

. - o . T 9
the analysis of periodic orbits into one of analyzing flxed

points of the Poinca& return map, which in turn is equivalent

to analyzing equilibrium points of a sampled-data system
evolving on the impact surface. Parameter values that are
held constant within the continuous phase of the hybrid
dynamics and updated at impact events appear as standard
sampled-data controls in the Poingaeturn map. In many
practical instances that have only been alluded to in thig,no
but which have been developed in detail elsewhere [18], [8],
[17], [5], it is very advantageous to design the continuous-
phase controller so that it creates a hybrid subsystem in the
ystem with impulse effects. It was shown how this could be
exploited in event-based control designs.
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