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Abstract— This note focuses on control design issues asso-
ciated with creating and stabilizing periodic orbits in systems
with impact events via control decisions that take place only
at event-triggered transitions in the dynamics. Many hybrid,
underactuated, mechanical systems with impacts arising in
legged locomotion can be modeled as systems with impulse
effects. Constructive techniques are needed for the design and
analysis of periodic orbits in such systems.

I. I NTRODUCTION

Mechanical legged locomotion is being studied for its
enhanced maneuverability in rough terrain, for its abilityto
deal with environments with discontinuous supports, such as
the rungs of a ladder, and because of the popular appeal
of machines that operate in anthropomorphic ways1. The
dynamic models that arise in the study of legged locomotion
are fundamentally hybrid. For example, a bipedal walk-
ing motion consists of successive phases of single support
(meaning the stance leg is touching the ground and the swing
leg is not) and double support (both legs are in contact with
the ground), while running consists of successive phases of
single support and flight (there is no contact with the ground).
It is common to model the impact that occurs when the swing
leg strikes the ground as an instantaneous contact of rigid
bodies, which results in an algebraic representation of the
impact event; see Figure 1.

A canonical problem in legged robots is how to design
a controller that generates closed-loop motions, such as
walking or running, that are periodic and stable (i.e., limit
cycles). Due to the hybrid nature of the system, this task is
far from being solved through existing control methods. New
paradigms, concepts, and control analysis techniques are thus
needed to deal with this class of systems [4]. Because the
system model is hybrid, it is natural for the controller to be
hybrid as well, with control actions taking place during the
continuous phase(s) [7], [16] as well as at discrete transitions
[18], [8], [17], [5]. This note focuses on the latter issue.

The method of Poincaré sections and return maps is widely
used to determine the existence and stability of periodic
orbits in a broad range of system models, such as time-
invariant and periodically-time-varying ordinary differential
equations [14], [9], hybrid systems consisting of several
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1In this regard, Honda has just announced that Asimo is performing the
job of a receptionist in an office setting [1].

x+ = ∆(x−)

H(x) = 0

ẋ = fol(x) + gol(x)u

Fig. 1. A nonlinear system with impulse effects. In the case ofa
bipedal robot, the state consists of the generalized configuration and velocity
variables, the transition condition corresponds to the height of the swing foot
above the ground going to zero, and the re-initialization rule corresponds
to the impact map of two rigid bodies (the swing foot and the ground).
In this note, it will be assumed that a parameterized family of feedback
laws u(x, a), a ∈ A, has been designed for the continuous phase so that
f(x, a) = fol(x) + gol(x)u(x, a). The problem of determining event-
based update laws for the parametera is investigated for the existence of
asymptotically stable periodic orbits.

time-invariant ordinary differential equations linked byevent-
based switching mechanisms and re-initialization rules [7],
[13], [15], [12], differential-algebraic equations [10],and
relay systems with hysteresis [6]. The conceptual advantage
of the method of Poincaré is that it reduces the study of
periodic orbits to the study of equilibrium points of sampled-
data systems, with the latter being a more extensively studied
problem. In particular, this note is based on the fact that
parameter values that are held constant within the continuous
phase of the hybrid dynamics and updated at impact events
appear as standard sampled-data controls in the Poincaré
return map. This observation leads to the formulation of
sampled-data feedback design problems for the creation and
stabilization of periodic orbits in nonlinear systems with
impulse effects.

II. BACKGROUND

This section reviews the notions of systems with im-
pulse effects, periodic orbits, stability of periodic orbits, the
method of Poincaré and hybrid invariance. The objective is
to set the stage for studying event-based control actions in
Section III.

A. Systems with impulse effects

An autonomous system with impulse effects consists of
an autonomous ordinary differential equation,

ẋ = f(x), (1)



defined on some state spaceX , a co-dimension one surface
S ⊂ X at which solutions of the differential equation
undergo a discrete transition that is modeled as an instan-
taneous re-initialization of the differential equation, and a
rule ∆ : S → X that specifies the new initial condition as
a function of the point at which the solution impactsS [2],
[19]. The co-dimension one surfaceS is called a transition
surface or an impact surface (in analogy with biped models)
and ∆ is often called an impact map. The system will be
denoted by

Σ :

{

ẋ = f(x) x− /∈ S

x+ = ∆(x−) x− ∈ S,
(2)

and the following hypotheses will be made:

HSH0)X is a smooth embedded submanifold ofR
n;

HSH1) f : X → TX is continuous, and a solution ofẋ =
f(x) from a given initial condition is unique and depends
continuously on the initial condition;
HSH2) there exist a differentiable functionH : X → R,
such thatS = {x ∈ X | H(x) = 0}; moreover, for every
s ∈ S, ∂H

∂x
(s) 6= 0.

HSH3) ∆ : S → X is continuous, whereS is given the
subset topology fromX .
HSH4) ∆(S) ∩ S = ∅, where∆(S) is the set closure of
∆(S).

In simple terms, a solution of (2) is specified by the
differential equation (1) until its state “impacts” the hyper
surfaceS at some timetI . At tI , the impulse model∆
compresses the impact event into an instantaneous moment
of time, resulting in a discontinuity in the state trajectory. The
impact model provides the new initial condition from which
the differential equation evolves until the next impact with
S. In order to avoid the state having to take on two values at
the “impact time”tI , the impact event is, roughly speaking,
described in terms of the values of the state “just prior to
impact” at time “t−I ”, and “just after impact” at time “t+I ”.
These values are represented byx− andx+, respectively.

From this description, a formal definition of a solution
is easily written down by piecing together appropriately
initialized solutions of (1); see [19], [7], [13], [3]. A choice
must be made as to whether to take a solutionϕ(t) of
(2) as being a left- or right-continuous function of time at
each impact event; here, solutions are assumed to be right
continuous [7].

B. Periodic orbits

A solution ϕ(t) of (2) is periodic if there exists a finite
T > 0 such thatϕ(t + T ) = ϕ(t) for all t ∈ [t0,∞). A set
O ⊂ X is a periodic orbit of (2) if O = {ϕ(t) | t ≥ t0} for
some periodic solutionϕ(t). While a system with impulse
effects may certainly have periodic solutions that do not
involve impact events, they are not of interest here because
they could be studied more simply as solutions of (1). If a
periodic solution has an impact event, then the corresponding
periodic orbitO is not closed; see [7] and Fig. 2. Let̄O
denote its set closure.

∆(x−)

x−

S∆(S)

x+

ϕf (t,∆(x−))

P (x−)

Fig. 2. Geometric interpretation of a Poincaré return mapP : S → S

for a system with impulse effects. The Poincaré section is selected as the
switching surface,S. A periodic orbit exists whenP (x−) = x−. Due to
right-continuity of the solutions,x− is not an element of the orbit. With
left-continuous solutions,∆(x−) would not be an element of the orbit.

Notions of stability in the sense of Lyapunov, and asymp-
totic stability of orbits follow the standard definitions; see
[11, pp. 302], [7], [13]. A periodic orbitO is transversal
to S if its closure intersectsS in exactly one point, and for
x̄ := Ō ∩ S, LfH(x̄) := ∂H

∂x
(x̄)f(x̄) 6= 0 (in words, at the

intersection,Ō is not tangent toS, whereŌ is the set closure
of O).

C. Poincaŕe return map

In order to study periodic orbits with impact events, it is
natural to selectS as the Poincaré section. To define the
return map, letϕf (t, x0) denote the maximal solution of (1)
with initial condition x0 at time t0 = 0. The time-to-impact
function, TI : X → IR ∪ {∞}, is defined by

TI(x0) :=











inf{t ≥ 0|ϕf (t, x0) ∈ S} if ∃ t such that

ϕ(t, x0) ∈ S

∞ otherwise.
(3)

The Poincaŕe return map,P : S → S, is then given as (the
partial map)

P (x) := ϕf (TI ◦ ∆(x),∆(x)). (4)

Remark: From [7], P is well defined on the open set̃S :=
∆−1(X̃ ), where

X̃ = {x ∈ X | 0 < TI(x) < ∞, LfH(ϕf (TI(x), x)) 6= 0}.

For many reasons, it is more convenient to work withP as
a partial map.

Theorem 1: (Method of Poincaŕe Sections for Systems
with Impulse Effects) [7] Under HSH0)–HSH4), the fol-
lowing statements hold:

a) If O is a periodic orbit of (2) that is transversal
to S, then there exists a pointx∗ ∈ S such that
LfH(x∗) 6= 0 and ∆(x∗) generatesO, that isO =
{ϕf (t,∆(x∗)) | 0 ≤ t < TI ◦ ∆(x∗)}.

b) x∗ ∈ S is a fixed point ofP and LfH(x∗) 6= 0 if,
and only if, ∆(x∗) generates a periodic orbit that is
transversal toS.

c) x∗ ∈ S is a stable equilibrium point ofx[k + 1] =
P (x[k]) and LfH(x∗) 6= 0 if, and only if, the orbit
O(∆(x∗)) is stable and transversal toS.



d) x∗ ∈ S is an asymptotically stable equilibrium point
of x[k + 1] = P (x[k]) and LfH(x∗) 6= 0 if, and
only if, the orbit O(∆(x∗)) is asymptotically stable
and transversal toS.

D. Invariance conditions and attractivity

A set Z ⊂ X is forward invariant if for each x0 ∈ Z,
there existst1 > 0 such thatϕf (t, x0) ∈ Z for t ∈ [0, t1).
Z is impact invariantif S ∩ Z 6= ∅, and∆(S ∩ Z) ⊂ Z. Z
is hybrid invariant if it is both forward invariant and impact
invariant.

Define thesettling time toZ, T set
Z : X → R ∪ {∞}, by

T set
Z (x0) :=















inf{τ ≥ 0|∃τ1 > τ, ϕf (t, x0) ∈ Z, t ∈ [τ, τ1)}

if ∃ t such thatϕf (t, x0) ∈ Z

∞ otherwise.
(5)

Z is locally continuously finite-time attractiveif Z is forward
invariant and there exists an open setV containingZ such
that T set

Z is finite and continuous at each point ofV.

E. Restricted Poincaré map

It is advantageous to analyze the autonomous system with
impulse effects (2) when it possesses a subsetZ ⊂ X
satisfying the hypotheses below.

InvH1) Z is an embedded submanifold ofX .
InvH2) S ∩ Z is an embedded submanifold with dimension
one less than the dimension ofZ.
InvH3) Z is locally continuously finite-time attractive.
InvH4) Z is hybrid invariant (forward invariant and impact
invariant).

By forward invariance, solutions oḟx = f(x) initialized in
Z remain inZ. Denote the restriction off to Z by f|Z and
the associated differential equation byż = f|Z(z). Similarly,
let H|Z and∆|S∩Z denote the restriction ofH and∆ to Z.
We note that Hypotheses HSH0)–HSH1) on (2) imply the
corresponding properties on the restriction dynamics. Indeed,
H|Z clearly satisfies HSH2), and by impact invariance,
∆|S∩Z : S ∩Z → Z by ∆|S∩Z(z) := ∆(z), z ∈ Z, satisfies
HSH3) and HSH4). Hence, the hybrid restriction dynamics

Σ|Z :

{

ż = f|Z(z) z− 6∈ S ∩ Z

z+ = ∆|S∩Z(z−) z− ∈ S ∩ Z
(6)

is a system with impulse effects in its own right, verifying
Hypotheses HSH0)–HSH4) with respect to its state space,
Z. Therefore, Theorem 1 on the method of Poincaré sections
can be applied to characterize periodic orbits in (6). In order
to profitably use this observation, two further observations
need to be made: (1) By construction, periodic orbits of the
hybrid restriction dynamics are also periodic orbits of the
full-order model (2). (2) Letρ : Z → Z denote the Poincaré
map of the hybrid restriction dynamics. Thenρ = P|Z . This
next result establishes conditions under which the stability
properties of orbits of the hybrid restriction dynamics carry
over to the full-order dynamics. In other words, the properties

of certain periodic orbits of the full-order dynamic can be
completely determined on the basis of a lower order model.

Theorem 2: (Poincaŕe for the Hybrid Restriction
Dynamics)[7], [16] Assume that the autonomous system
with impulse effects, (2), satisfies Hypotheses HSH0)–
HSH4). Suppose furthermore thatZ ⊂ X satisfies InvH1)–
InvH4). Then (2) has a stable (resp., asymptotically stable)
orbit transversal toS ∩ Z if, and only if, the discrete-time
system

x[k + 1] = ρ(x[k]) (7)

with state spaceS ∩ Z has a stable (resp., asymptotically
stable) equilibrium pointx∗ such thatLfH(x∗) 6= 0.

III. E VENT-BASED CONTROL

In this section, we assume that various elements of the
system with impulse effects (2) depend on one or more
parameters that are to be held constant between transition
events, but at each transition, the parameters may be up-
dated. This situation arises, for example, when a within-
stride controller for a bipedal robot has been designed to
depend on a (possibly vector valued) parameter in such
a way that by changing the parameter’s value, different
locomotion characteristics may be achieved, such as walking
at a different speed, or with a different step length; see [18],
[8], [17], [5]. The parameter will be assumed to take on a
continuum of values and may be updated at each transition
event. The objective is to analyze when a given event-based
update rule for the parameter will result in an asymptotically
stable, periodic orbit for the system with impulse effects.

A. Analyzing Event-Based Control with the Full-Order
Model

Consider a collection of systems with impulse effects,
indexed by a parametera,

Σa :

{

ẋ = f(x, a) x− 6∈ S

x+ = ∆(x−, a) x− ∈ S,
(8)

with common state spacex ∈ X and impact setS, and
suppose that Hypotheses HSH0) and HSH2)–HSH4) hold.
Assume thata takes values inA, an open subset ofRp,
and that Hypothesis HSH1 is strengthened to hold for the
associated differential equation

ẋ = f(x, a)

ȧ = 0,
(9)

that is,f is continuous onX ×A and solutions of (9) exist,
are unique, and depend continuously on initial conditions.

For a ∈ A, let Pa : S → S be the Poincaré return map of
(8). However, instead of considering the difference equation
x[k + 1] = Pa(x[k]) on S, we now invoke the fact thata
can be changed at each impact and we view the difference
equation as a discrete-time control system onS with the
parameter vectora ∈ A as the control:

x[k + 1] = P (x[k], a[k]), (10)



where P (x, a) := Pa(x). It will now be established that
there is a one-to-one correspondence between static (resp.,
dynamic) state-variable feedback control laws for (10) and
static (resp., dynamic) parameter update laws for (8). More-
over, thanks to Poincaré analysis, this correspondence ex-
tends to periodic orbits and their stability properties.

Theorem 3: (Stability under Event-Based Parameter
Updates-I) Consider the collection of systems with impulse
effects, (8), witha ∈ A, an open subset ofRp. Suppose
that X and S satisfy Hypotheses HSH0), HSH2)–HSH4).
Suppose furthermore that Hypothesis HSH1) holds for the
differential equation (9). LetW be an open subset ofRℓ

for some integerℓ, and defineXaux := X × A × W and
Saux := S × A × W. Suppose thatv1 : S × W → A and
v2 : S ×W → W are continuous. Then,







ẋ

ȧ

ẇ






=







f(x, a)

0

0













x−

a−

w−






6∈ Saux







x+

a+

w+






=







∆(x−, v1(x
−, w−))

v1(x
−, w−)

v2(x
−, w−)













x−

a−

w−)






∈ Saux,

(11)
has a stable (resp., asymptotically stable) orbit transversal to
Saux if, and only if, the discrete-time system

x[k + 1] = P (x[k], v1(x[k], w[k]))

w[k + 1] = v2(x[k], w[k])
(12)

on S × W has a stable (resp., asymptotically stable) equi-
librium point (x∗;w∗) such thatLfH(x∗, a∗) 6= 0, where
a∗ = v1(x

∗, w∗).
Proof: Suppose first thata = v(x) is a static state-

variable feedback control law for (10) and consider the
discrete-time closed-loop system

x[k + 1] = P (x[k], v(x[k])), (13)

and a deadbeat dynamic extension

x[k + 1] = P (x[k], v(x[k]))

a[k + 1] = v(x[k]).
(14)

Note that (13) has an equilibrium point if, and only if, (14)
has an equilibrium point, and moreover,x∗ is stable (resp.,
asymptotically stable) equilibrium point for (13) if, and
only if, (x∗; a∗ = v(x∗)) is a stable (resp., asymptotically
stable) equilibrium point for (14). The importance of this
observation is that

Paux(x, a) :=

[

P (x, v(x))

v(x)

]

(15)

is the Poincaŕe return map of the following system with

impulse effects:
[

ẋ

ȧ

]

=

[

f(x, a)

0

] [

x−

a−

]

6∈ Saux

[

x+

a+

]

=

[

∆(x−, v(x−))

v(x−)

] [

x−

a−

]

∈ Saux,

(16)

where the state space isXaux := X × A and the impact
surface isSaux := S×A. Hence, by Theorem 1, designing a
memoryless parameter-update law for (8) that results in (16)
possessing a stable (resp., asymptotically stable) periodic
orbit is precisely equivalent to designing a static state-
feedback control law for (10) that results in (13) possessing a
stable (resp., asymptotically stable) equilibrium point.Since
the same reasoning applies mutatis mutandis for the more
general case of a parameter update law with memory (i.e.,
a dynamic event-based feedback controller), the result is
proved.
Remark: The special case of a memoryless parameter update
for (8), and hence, static state feedback control of (10), is
obtained by lettingW be empty. Integral feedback control
action, either to reject a constant disturbance or to track
a constant reference, is also a special case. Ifd and r
are constants (possibly vector valued) representing distur-
bances and references, respectively, then formally define
f(x, a) = f̃(x, a, d), v1(x,w) = ṽ1(x,w, r) andv2(x,w) =
ṽ2(x,w, r) in the above analysis.
Remark: In words, Theorem 3 states that the design of
a parameter update law for (8) that creates an asymptoti-
cally stable periodic orbit can be performed by designing a
feedback controller for (10) that creates an asymptotically
stable equilibrium point. Even more specifically, suppose
there exists a parameter valuea∗ for which (8) possesses
a desired periodic orbit, but the orbit is either not stable,or
it is asymptotically stable, but the rate of convergence is too
slow. Let x∗ be the corresponding fixed point ofPa∗ . Then
designing a parameter update law for (8) that preserves the
orbit and stabilizes it (or increases the rate of convergence)
is equivalent to designing a feedback controller for (10) that
preserves the equilibrium point and stabilizes it (or increases
the rate of convergence).

B. Analyzing Event-Based Actions with a Hybrid Restriction
Dynamics and Finite-Time Attractivity

The previous subsection reduced the study of orbits in a
collection of systems with impulse effects, having a common
state space and a common impact surface, to the study of
equilibrium points of a discrete-time control system evolving
on the impact surface. This subsection will identify circum-
stances in which analysis and feedback controller design for
the discrete-time control system can be performed on the
restriction dynamics, thereby reducing the dimension of the
feedback design problem; for concrete examples, see [18],
[8], [17], [5].

We present two refinements of Theorem 3 to allow the
event-based feedback design to be performed on the restric-



tion dynamics. Consider a collection of subsets{Za | a ∈
A} ⊂ X . In the first case, we suppose thatS ∩ Za is
independent ofa ∈ A. We denote the common intersection
by S ∩ Z♦. Under this assumption, hybrid invariance leads
to a restricted Poincaré map,ρa : S ∩Z♦ → S ∩Z♦. Under
appropriate hypotheses, the reduction method of Theorem
2 can be combined with Theorem 3 so that event-based
feedback design can be carried out on the control system
x[k + 1] = ρ(x[k], a[k]) evolving on the state spaceS ∩Z♦

with controls taking values inA.
Theorem 4: (Stability under Event-Based Parameter

Updates-II) Consider the collection of systems with impulse
effects, (8), with the parametera taking values inA. Suppose
thatX andS satisfy Hypotheses HSH0) and HSH2)–HSH4).
Suppose furthermore thatA is an open subset ofRp such
that Hypothesis HSH1) holds for the differential equation (9)
and there exists a collection of subsets{Za | a ∈ A} ⊂ X
such that:

1) ∀a ∈ A, Za ⊂ X satisfies Hypotheses InvH1) and
InvH2);

2) ∀a ∈ A, S ∩ Za is independent ofa; denote the
common intersection withS by S ∩ Z♦;

3) ∀a ∈ A, ∆(S ∩ Z♦, a) ⊂ Za.
4) Z := {(x, a) | x ∈ Za, a ∈ A} is an embedded

submanifold ofX ×A and is locally continuously
finite-time attractive for (9).

LetW be an open subset ofR
ℓ suppose thatv1 : S×W → A

and v2 : S × W → W are given continuous maps. Define
Xaux := X × A ×W, Saux := S × A ×W, andZaux :=
Z×W. Then (11) has a stable (resp., asymptotically stable)
orbit transversal toSaux ∩Zaux if, and only if, the discrete-
time system

x[k + 1] = ρ(x[k], v1(x[k], w[k]))

w[k + 1] = v2(x[k], w[k])
(17)

on S ∩ Z♦ × W has a stable (resp., asymptotically stable)
equilibrium point (x∗;w∗) such thatLfH(x∗, a∗) 6= 0,
wherea∗ = v1(x

∗, w∗). ¨

Proof: For clarity, first assume thatW = ∅ and consider
[

ẋ

ȧ

]

= faux(x, a)

[

x−

a−

]

6∈ Saux

[

x+

a+

]

= ∆aux(x−, a−)

[

x−

a−

]

∈ Saux,

(18)

where the state space isXaux := X ×A, the impact surface
is Saux := S × A, and the differential equation and impact
map are given by

faux(x, a) =

[

f(x, a)

0

]

∆aux(x, a) =

[

∆(x, v1(x))

v1(x)

]

.

(19)

The hypotheses of Theorem 4 assure that (18) andZ :=
{(Za, a) | a ∈ A} satisfy all the hypotheses of Theorem 2,
and thus the existence and stability of orbits can be checked
by evaluating the stability of fixed points of the discrete-time
system associated with the restricted Poincaré map, namely

x[k + 1] = ρ(x[k], v1(x[k]))

a[k + 1] = v1(x[k]).
(20)

Since the stability properties of (20) are equivalent to those
of

x[k + 1] = ρ(x[k], v1(x[k])), (21)

the result is proven.
For W 6= ∅, the reasoning is essentially identical and is

left to the reader.
We next allowS ∩ Za to depend ona ∈ A and hence

impact invariance must be replaced by a more general notion
that is closer to what has been used in transition control [18].

Theorem 5: (Stability under Event-Based Parameter
Updates-III) Consider the collection of systems with im-
pulse effects, (8), witha taking values inA := A1 × A2,
whereA1 is an open subset ofRp1 andA2 is an open subset
of R

p2 . Suppose thatX and S satisfy Hypotheses HSH0),
HSH2)–HSH4). Suppose furthermore that Hypothesis HSH1)
holds for the differential equation (9) and there exists a
collection of subsets ofX such that:

1) ∀(a1, a2) ∈ A1 × A2, Za1,a2
⊂ X satisfies

Hypotheses InvH1) and InvH2);
2) ∀(a1, a2) ∈ A1 ×A2, S ∩Za1,a2

is independent of
a1; denote the intersection withS by S ∩ Z♦,a2

;
3) there exists a continuous functionψ :

A2 → A1 such that, ∀a−
2 , a+

2 ∈ A2,
∆(S ∩ Z♦,a

−

2

, ψ(a−
2 ), a+

2 ) ⊂ Zψ(a−

2
),a+

2

.
4) Z := {(x, a1, a2) | x ∈ Za1,a2

, a1 ∈ A1, a2 ∈ A2}
is an embedded submanifold ofX ×A1 ×A2 and
is locally continuously finite-time attractive for (9).

Let W be an open subset ofR
ℓ and defineXaux := X ×A×

W andSaux := S×A×W. Suppose thatv1 : S×W → A2

and v2 : S × W → W are continuous. DefineXaux :=
X × A × W, Saux := S × A × W, andZaux := Z × W.
Then,











ẋ

ȧ1

ȧ2

ẇ











=











f(x, a1, a2)

0

0

0











,











x−

a−
1

a−
2

w−











6∈ Saux

















x+

a+
1

a+
2

w+

















=

















∆(x−, ψ(a−
2 ),

v1(x
−, w−))

ψ(a−
2 )

v1(x
−, w−)

v2(x
−, w−)

















,











x−

a−
1

a−
2

w−











∈ Saux,

(22)



has a stable (resp., asymptotically stable) orbit transversal to
Saux ∩ Zaux if, and only if, the discrete-time system

x[k + 1] = ρ(x[k], ψ(a2[k]), v1(x[k], w[k]))

a2[k + 1] = v1(x[k], w[k])

w[k + 1] = v2(x[k], w[k])

(23)

on {(S ∩ Z♦,a2
, a2) | a2 ∈ A2} × W has a stable (resp.,

asymptotically stable) equilibrium point(x∗; a∗
2;w

∗) such
that LfH(x∗, a∗

1, a
∗
2) 6= 0, wherea∗

1 = ψ(a∗
2). ¨

Proof: The proof follows the same pattern as the proof
of Theorem 4. For clarity, first assume thatW = ∅ and
consider







ẋ

ȧ1

ȧ2






= faux(x, a1, a2)







x−

a−
1

a−
2






6∈ Saux







x+

a+
1

a+
2






= ∆aux(x−, a−

1 , a−
2 )







x−

a−
1

a−
2






∈ Saux,

(24)

where the state space isXaux := X ×A1 ×A2, the impact
surface isSaux := S×A1×A2, and the differential equation
and impact map are given by

faux(x, a1, a2) =







f(x, a1, a2)

0

0







∆aux(x, a1, a2) =







∆(x, ψ(a2), v1(x))

ψ(a2)

v1(x)






.

(25)

The hypotheses of Theorem 5 assure that (24) andZaux := Z

satisfy all the hypotheses of Theorem 2 and thus the existence
and stability of orbits can be checked by evaluating the
stability of fixed points of the discrete-time system associated
with the restricted Poincaré map, namely

x[k + 1] = ρ(x[k], ψ(a2[k]), v1(x[k]))

a1[k + 1] = ψ(a2[k])

a2[k + 1] = v1(x[k])

(26)

Since the stability properties of (26) are equivalent to those
of

x[k + 1] = ρ(x[k], ψ(a2[k]), v1(x[k]))

a2[k + 1] = v1(x[k]),
(27)

the result is proven. The simple modifications for including
W 6= ∅ are left to the reader.

IV. CONCLUSION

This note has analyzed the problem of event-based feed-
back control of systems with impact effects, with the par-
ticular objective of creating and asymptotically stabilizing
periodic orbits. The method of Poincaré sections transforms
the analysis of periodic orbits into one of analyzing fixed
points of the Poincaré return map, which in turn is equivalent

to analyzing equilibrium points of a sampled-data system
evolving on the impact surface. Parameter values that are
held constant within the continuous phase of the hybrid
dynamics and updated at impact events appear as standard
sampled-data controls in the Poincaré return map. In many
practical instances that have only been alluded to in this note,
but which have been developed in detail elsewhere [18], [8],
[17], [5], it is very advantageous to design the continuous-
phase controller so that it creates a hybrid subsystem in the
system with impulse effects. It was shown how this could be
exploited in event-based control designs.
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